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Abstract

In online binary classification under apple tasting feedback, the learner only observes the true
label if it predicts “1”. First studied by Helmbold et al. (2000a), we revisit this classical partial-
feedback setting and study online learnability from a combinatorial perspective. We show that the
Littlestone dimension continues to provide a tight quantitative characterization of apple tasting in
the agnostic setting, closing an open question posed by Helmbold et al. (2000a). In addition, we
give a new combinatorial parameter, called the Effective width, that tightly quantifies the minimax
expected number of mistakes in the realizable setting. As a corollary, we use the Effective width
to establish a trichotomy of the minimax expected number of mistakes in the realizable setting. In
particular, we show that in the realizable setting, the expected number of mistakes of any learner,
under apple tasting feedback, can only be either ©(1), ©(v/T), or O(T). This is in contrast to the
full-information realizable setting where only O(1) and ©(T') are possible.
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1. Introduction

In the standard online binary classification setting, a learner plays a repeated game against an ad-
versary. In each round, the adversary picks a labeled example (z,y) € X x {0, 1} and reveals the
unlabeled example z to the learner. The learner observes z and then makes a prediction § € {0, 1}.
Finally, the adversary reveals the true label y and the learner suffers the loss 1{y # y} (Littlestone,
1987). In many situations, receiving feedback after every prediction may not be realistic. For exam-
ple, in spam filtering, emails that are classified as spam are often not verified by the user. Accord-
ingly, the learner only receives feedback when an email is classified as “not spam.” In recidivism
prediction, a person whose is predicted to re-commit a crime may not be released. Accordingly,
we will not know whether this person would have re-committed a crime had they been released.
Situations like these are known formally as “apple tasting” (Helmbold et al., 2000a). In the generic
model, a learner observes a sequence of apples, some of which may be rotten. For each apple, the
learner must decide whether to discard or taste the apple. The learner suffers a loss if they discard a
good apple or if they taste a rotten apple. Crucially, when the learner discards an apple, they do not
receive any feedback on whether the apple was rotten or not.
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Binary online classification under apple tasting feedback was first studied by Helmbold et al.
(2000a) in the realizable setting. Here, they give a simple and generic conversion of a deterministic
online learner in the full-information setting into a randomized online learner in the apple tasting
setting. In particular, they show that if M and M_ are upper bounds on the number of false positive
and false negative mistakes of the deterministic online learner respectively, then the expected num-
ber of mistakes made by their conversion, under apple tasting feedback, is at most M + 2/TM_.
Along with these upper bounds, they provide lower bounds on the expected number of mistakes
for randomized apple tasting learners in terms of the number of false positive and false negative
mistakes made by any deterministic online learner in the full-information setting. That is, if there
exists M, M_ € N such that every deterministic online learner in the full-information setting
makes either at least M false positive mistakes or M_ false negative mistakes, then every ran-
domized online learner makes at least % min {é\/m , M+} expected number of mistakes under
apple tasting feedback. Finally, as an open question, they ask whether their results can be extended
to the harder agnostic setting where the true labels can be noisy.

While Helmbold et al. (2000a) establish bounds on the minimax expected number of mistakes
in the realizable setting, their bounds are in terms of the existence of an algorithm with certain
properties. This is in contrast to much of online learning theory, where minimax regret is often
quantified in terms of combinatorial dimensions that capture the complexity of the hypothesis class
(Littlestone, 1987; Ben-David et al., 2009; Daniely et al., 2011; Rakhlin et al., 2015). Accordingly,
we revisit apple tasting and study online learnability from a combinatorial perspective. In particular,
we are interested in identifying combinatorial dimensions that tightly quantify the minimax regret
for apple tasting in both the realizable and agnostic settings. To that end, our main contributions
are:

(1) We close the open question posed by Helmbold et al. (2000a) by showing that the minimax ex-
pected regret in the agnostic setting, under apple tasting feedback, is at most 3/ L(#)T log(T')

and at least %, where L(H) is the Littlestone dimension of H.

(2) On the other hand, we show that the Littlestone dimension alone does not give a tight quanti-
tative characterization in the realizable setting. Instead, we show that the minimax expected
number of mistakes in the realizable setting, under apple tasting feedback is

6 (max{ (W(H) ~ 1T, 1}),

where W (#H) is the Effective width of 1, a new combinatorial parameter that accounts for the
asymmetric nature of the feedback.

(3) Using the bound above, we establish the following trichotomy on the minimax rates in the
realizable setting: (i) ©(1) when W(H) = 1, (ii) ©(v/T) when 1 < W(H) < oo, and (iii)
O(T) when W(H) = oo.

To prove (1), we extend the EXP3.G algorithm from Alon et al. (2015) to binary prediction with
expert advice. Then, we use the standard technique from Ben-David et al. (2009) to construct an
agnostic learner using a realizable, mistake-bound learner in the full-information setting. To prove
the upper bound in (2), we define a new combinatorial parameter, called the Effective width, and
use it to construct a deterministic online learner in the realizable, full-information feedback setting
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with constraints on the number of false positive and false negative mistakes. We then use this online
learner and a conversion technique from Helmbold et al. (2000a) to construct a randomized online
learner in the realizable, apple tasting feedback setting with the stated guarantee in (2). For the lower
bound in (2), we consider a new combinatorial object called an apple tree and use it to explicitly
construct a hard, realizable stream for any randomized, apple tasting learner. This is in contrast to
Helmbold et al. (2000a), who prove lower bounds on the minimax expected number of mistakes by
converting randomized apple tasting learners into deterministic full-information feedback learners.

1.1. Related Works

Apple tasting is usually presented as an example of a more general partial feedback setting called
partial monitoring games, where the player’s feedback is specified by a feedback matrix (Cesa-
Bianchi and Lugosi, 2006; Bartdk et al., 2014). Of particular interest is the work by Bartdk (2012),
who gives a beautiful result (Theorem 2) characterizing the minimax rates in different partial mon-
itoring games (including apple tasting). However, this is done for a slightly different setting where
there is no hypothesis class 7, but just a finite set of actions the learner can play. The goal here is
to compete with the best fixed action in hindsight. In contrast, in our setting, there is a hypothesis
class, often infinite in size, and the goal is compete against the best fixed hypothesis in hindsight.
Related to partial monitoring games is sequential prediction with graph feedback, for which apple
tasting feedback is also special case (Alon et al., 2015). In this model, a learner plays a repeated
game against an adversary. In each round, the learner selects one of K actions but observes the
losses for a subset of the actions determined by a combinatorial structure called a feedback graph.
Alon et al. (2015) classify feedback graphs into three types and establish a trichotomy on the rates of
the minimax regret based on the type of graph. In this paper, we extend the online learner presented
in Alon et al. (2015) to the setting of binary prediction with expert advice to establish the minimax
regret of apple tasting in the agnostic setting.

In a parallel direction, there has been an explosion of work using combinatorial dimension
to give tight quantitative characterizations of online learnability. For example, Littlestone (1987)
proposed the Littlestone dimension and showed that it exactly characterizes the optimal mistake
bound of deterministic learners for online binary classification in the full-information, realizable
setting. Later, Ben-David et al. (2009) show that the Littlestone dimension also provides a tight
quantitative characterization of the optimal expected regret in the full-information, agnostic setting.
Later, Daniely et al. (2011) define a multiclass extension of the Littlestone dimension and show
that it provides a tight quantitative characterization of realizable and agnostic mutliclass online
learnability under full-information feedback when the label space is finite. In their same work,
Daniely et al. (2011) define the Bandit Littlestone dimension and show that it exactly characterizes
the optimal mistake bound of deterministic learners in the realizable setting under partial feedback
setting known as bandit feedback. Daniely and Helbertal (2013) and Raman et al. (2024) later show
that the Bandit Littlestone dimension also characterizes agnostic bandit online learnability. Beyond
binary and multiclass classification, combinatorial dimensions have been used to characterize online
learnability for regression (Rakhlin et al., 2015), list classification (Moran et al., 2023), ranking
(Raman et al., 2023b), and general supervised online learning models (Raman et al., 2023a).
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2. Preliminaries

2.1. Notation

Let X' denote the instance space and H C {0,1}* denote a binary hypothesis class. Given an
instance x € X, and any collection of hypothesis V' C {0,1}*, we let V(z) := {h(z) : h € V'}
denote the projection of V' onto x. As usual, [NV] is used to denote {1,2,..., N}.

2.2. Online Classification and Apple Tasting

In the standard binary online classification setting with full-information feedback a learner A plays
a repeated game against an adversary over 7' rounds. In each round ¢ € [T, the adversary picks a
labeled instance (74, y:) € X x {0,1} and reveals x; to the learner. The learner makes a (possibly
randomized) prediction A(x;) € {0,1}. Finally, the adversary reveals the true label y; and the
learner suffers the 0-1 loss 1{A(x;) # y;}. Given a hypothesis class H C {0, 1}, the goal of the
learner is to output predictions such that its expected regret

T

T
E {A(x:) # yt}] - ﬁg?fiz 1{h(x:) # yt}>
t=1

RA(T,H) := sup (E
t=1

(®1,y1) - (xT,yT)

is small, where the expectation is only over the randomness of the learner. A hypothesis class
‘H is said to be online learnable under full-information feedback, if there exists an (potentially
randomized) online learning algorithm A such that R4(7,H) = o(T") while A receives the true
label y; at the end of each round. If it is guaranteed that the learner always observes a sequence of
examples labeled by some hypothesis h € H, then we say we are in the realizable setting and the
goal of the learner is to minimize its expected cumulative mistakes,

T
M (T,H) := sup sup E ZI[{A(:ct)%h(xt)} ,

heH x1,...or |

where again the expectation is taken only with respect to the randomness of the learner. In the apple
tasting feedback model, the adversary still picks a labeled instance (2, y:) € X x {0, 1} and reveals
x; to the learner. However, the learner only gets to observe the true label ¥, if they predict §; = 1.
Analogous to the full-information setting, a hypothesis class # C {0, 1} is online learnable under
apple tasting feedback, if there exists an online learning algorithm whose expected regret, under
apple tasting feedback, on any sequence of labeled instances is o(T).

Definition 1 (Agnostic Online Learnability under Apple Tasting Feedback) A hypothesis class
‘H is online learnable under apple tasting feedback, if there exists an algorithm A such that R o(T, H) =
o(T) while A only receives feedback when predicting 1.

As in the full-information setting, if it is guaranteed that the sequence of examples is labeled by
some hypothesis b € H, then we say we are in the realizable setting and an analogous definition of
learnability under apple tasting feedback follows.

Definition 2 (Realizable Online Learnability under Apple Tasting Feedback) A hypothesis class
‘H is online learnable under apple tasting feedback in the realizable setting, if there exists an algo-
rithm A such that M 4(T, H) = o(T") while A only receives feedback when predicting 1.
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2.3. Trees and Combinatorial Dimensions

In online learning, combinatorial dimensions are defined in terms of frees, a basic unit that captures
temporal dependence. A binary tree 7 of depth d is complete if it admits the following recursive
structure. A depth one complete binary tree is a single root node with left and right outgoing edges.
A complete binary tree 7 of depth d has a root node whose left and right subtrees are each complete
binary trees of depth d — 1. Given a complete binary tree 7, we can label its internal nodes and
edges by elements of X' and {0, 1} respectively to get a Littlestone tree.

Definition 3 (Littlestone tree) A Littlestone tree of depth d is a complete binary tree of depth d
where the internal nodes are labeled by instances of X and the left and right outgoing edges from
each internal node are labeled by 0 and 1 respectively.

Given a Littlestone tree 7 of depth d, a root-to-leaf path down 7 is a bitstring o € {0, 1}¢
indicating whether to go left (o; = 0) or to go right (0; = 1) at each depth ¢ € [d|. A path
o € {0,1}4 down T gives a sequence of labeled instances {(x;,0;)}%,, where z; is the instance
labeling the internal node following the prefix (o1, ...,0;—1) down the tree. A hypothesis h, € H
shatters a path o € {0,1}9, if for every i € [d], we have h,(x;) = o;. In other words, h, is
consistent with the labeled examples when following o. A Littlestone tree 7 is shattered by A if
for every root-to-leaf path o down 7, there exists a hypothesis i, € H that shatters it. Using this
notion of shattering, we define the Littlestone dimension of a hypothesis class.

Definition 4 (Littlestone dimension) The Littlestone dimension of H, denoted L(H), is the largest
d € N such that there exists a Littlestone tree T of depth d shattered by H. If there exists shattered
Littlestone trees T of arbitrary depth, then we say that L(H) = cc.

Remarkably, the Littlestone dimension gives a tight quantitative characterization of realizable
learnability under full-information feedback. In particular, Littlestone (1987) gives a generic de-
terministic algorithm, termed the Standard Optimal Algorithm (SOA), and shows that it makes at
most L(H) number of mistakes on any realizable stream. Moreover, they showed that for every
deterministic learner, there exists a realizable stream that can force at least L(#) mistakes, proving
that the Ldim exactly quantifies the mistake bound for deterministic realizable learnability under
full-information feedback.

Under apple tasting feedback, one can use the lower and upper bounds derived by Helmbold
et al. (2000a) to deduce that the Ldim also provides a qualitative characterization of realizable
learnability. However, unlike the full-information feedback setting, the Ldim alone cannot provide
matching lower and upper bounds on the minimax expected number of mistakes under apple tasting
feedback. Indeed, for the simple class of singletons over the natural numbers, Hgne = {2 —
I{z = a} : a € N} we have that L(Hng) = 1 while the minimax expected number of mistakes
scales with the time horizon 7" (see Section 3.2). On the other hand, for the “flip” of the singletons,
H ={x+— 1{x # a} : a € N}, we also have that L(#) = 1, but A is trivially learnable in at most
1 mistake in the realizable setting. Accordingly, new ideas are needed to handle the asymmetric
nature of apple tasting feedback.

As a first step, we go beyond the symmetric nature of complete binary trees and define a new
asymmetric binary tree called an apple tree. In particular, a binary tree 7 of depth d and width w
is an apple tree if it admits the following recursive structure. An apple tree of width w > d is a
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complete binary tree with depth d. An apple tree with width w = 1 and depth d is a degenerate
binary tree of depth d where every internal node has only a left child. An apple tree 7 (w, d) of
depth d and width w < d has a root node v whose left subtree is an apple tree 7 (w,d — 1) and
whose right subtree is an apple tree 7 (w — 1,d — 1). At a high-level, the width of an apple tree
w controls the number of ones any path starting from the root can have before the path ends. The
depth d of an apple tree controls the maximum number of zeros along any path starting from the
root. From this perspective, one can alternatively construct an apple tree of width w and depth d by
starting with a complete binary tree of depth d and then trimming each path starting from the root
node such that it ends once it contains w ones or until a leaf node has been reached.

Similar to Littlestone trees, we can label the internal nodes of an apple tree with instances in X’
and the edges with elements of {0, 1}. By doing so, we get an Apple Littlestone (AL) tree.

Definition 5 (Apple Littlestone tree) An Apple Littlestone tree of width w and depth d is an apple
tree of width w and depth d where the internal nodes are labeled by instances of X and the left and
right outgoing edges from each internal node are labeled by 0 and 1 respectively.

The notion of shattering for Littlestone trees extends exactly to AL trees. Formally, an AL tree
T (w, d) of width w and depth d is shattered by H, if for every path o down the tree 7T, there exists

a hypothesis h, € H consistent with {(z;, Ji)}ﬁl. Note that, unlike Littlestone trees, AL trees
are imbalanced. In fact, for an AL tree 7 of width w and depth d, there can be at most w ones
along any valid path o down the tree before the path ends. Therefore, not all root-to-leaf paths are
of the same length. Nevertheless, this notion of shattering is still well defined and naturally leads to

a combinatorial dimension analogous to the Littlestone dimension.

Definition 6 (Apple Littlestone dimension) 7The Apple Littlestone dimension of H at width w €
N, denoted AL,,(H), is the largest d such that there exists an apple tree T (w, d) of width w and
depth d shattered by H. If there exists shattered Apple Littlestone trees T with width w of arbitrarily
large depth, then we say that AL,,(H) = oco. If there are no shattered apple trees T of width w,
then we say that AL,,(H) = 0.

In general, the value of AL, (H) for w < L(#) can be much larger than L(#). For example,
even for the class of singletons defined over N, we have that AL (Hing) = 00 while L(Hing) =
1. Accordingly, unlike the Ldim, the Apple Littlestone dimension (ALdim), does not provide a
qualitative characterization of learnability. Instead, using the ALdim, we define a new combinatorial
parameter termed the Effective width. In Section 3, we show that the Effective width provides a tight
quantitative characterization of realizable learnability under apple tasting feedback.

Definition 7 (Effective width) The Effective width of a hypothesis class H, denoted W (H), is the
smallest w € N such that AL,,(H) < oc. If there is no w € N such that AL,,(H) < oo, then we
say that W(H) = oo.

The following lemma, whose proof is in Appendix B, establishes important properties of AL,,(#)
and W (#) that we use to characterize learnability.

Lemma 8 (Structural Properties) For every H C {0,1}%, the following statements are true.

(i) ALy, (H) > ALy, (H) for all wy < wa.
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(ii) ALy (M) > min{w, L(#H)}.
(iii) ALy (H)

L(H) forallw > L(H) + 1 when L(H) < cc.

(iv) W(H) < L(H) + 1 when L(H) < oc.
(v) W(H) < oo <= L(H) < 0.

Property (iv) can be tight in the sense that for the class of singletons, W(Hsing) = 2 while
L(Hsing) = 1. Moreover, one cannot hope to lower bound W(#) in terms of L(#). Indeed, for
any finite hypothesis class H, we have that W(#) = 1 while L(?) can be made arbitrarily large.
Finally, as an example, we also compute the Effective width for the k-wise generalization of Hjye
in Appendix G.

3. Realizable Learnability

In this section, we revisit the learnability of apple tasting in the realizable setting, first studied by
Helmbold et al. (2000a). Our main result is Theorem 9, which lower- and upper bounds the minimax
expected number of mistakes in terms of the Littlestone dimension and the Effective width.

Theorem 9 (Realizable Learnability) For any hypothesis class H C {0,1}%,

émin{max{\/(W(H) STT,L(H) }, T }< i MA(T, H) < Al (H)+2/ (W(H) — DT

The lower and upper bounds of Theorem 9 can be tight up to constant factors. There are two
cases to consider. When W () = 1, the lower and upper bounds in Theorem 9 reduce to @ <
inf 4 M4(T,H) < ALy(H) for T > L(H). Taking |X| = d < oo and H = {0,1}* gives
that L(H) = ALy(H) = d, ultimately implying that the lower- and upper bounds can be off
by only a constant factor of %. Secondly, consider the case where W(#) > 2. Then, if T >
max{W(H) — 1, ALy, (H)}, Theorem 9 implies that g+/(W(#) — 1) T < inf 4 M4(T,H) <
3v/(W(H) — 1)T, showing that the upper- and lower bounds are off only by a constant factor.

Theorem 9 implies that when W(H) = 1, a constant upper bound on the expected regret is
possible. In fact, when AL;(H) < oo, there exists a deterministic online learner which makes at
most AL; (#H) mistakes in the realizable setting under apple tasting feedback (see Appendix A). On
the other hand, Theorem 9 also shows that, in full generality, it is not possible to achieve a constant
expected mistake bound under apple tasting feedback in the realizable setting. Indeed, if W(H) >
1, then the worst-case expected mistakes of any randomized learner, under apple tasting feedback,
is at least (/7). This is in contrast to the full-information setting, where the minimax expected
number of mistakes in the realizable setting is constant, and that too achieved by a deterministic
learner (i.e SOA). Accordingly, Theorem 9 gives a trichotomy in the minimax expected number of
mistakes for the realizable setting.

Corollary 10 (Trichotomy in minimax expected number of mistakes) For any hypothesis class
H C {0,1}%,

O(1), ifW(H) = 1.
iﬁfMA(T,H) =¢0(T) if2<W(H) < .
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In Section 4, we will show that inf s R4 (T, H) = O(v/T), where © hides poly-logarithmic
factors in 7". With this in mind, Corollary 10 shows that when W (#) > 2, realizable learnability
under apple tasting feedback can be as hard as agnostic learnability under apple tasting feedback.
Unfortunately, for many simple classes, like the singletons over N, we have W(#) > 2. On the
other hand, for classes containing hypothesis that rarely output 0, like the “flip” of the class of sin-
gletons, realizable learnability under apple tasting feedback can be as easy as realizable learnability
under full-information feedback.

3.1. Upper Bounds for Randomized Learners in the Realizable Setting

We prove a slightly stronger upper bound than the one stated in Theorem 9.

Lemma 11 (Randomized Realizable Upper Bound) For any hypothesis class H C {0,1}%,
inf Ma(T, M) < inf {ALw(H) +2y/(w — 1)T} :
we

The upper bound in Theorem 9 follows by picking w = W(#H). If one picks w = L(#H) + 1,
then AL,,(H) = L(#) and we get an upper bound of 3/L(#)T on the expected mistakes.

Lemma 11 follows from composing the next two lemmas. Lemma 12 shows that if AL,,(H) <
00, then there exists a deterministic online learner, under full-information feedback, that makes at
most w — 1 false negative mistakes and at most AL, (#) false positive mistakes. Lemma 13 is
from Helmbold et al. (2000a) and shows how to convert any online learner under full-information
feedback into an online learner under apple tasting feedback.

Lemma 12 Forany H C {0,1}* and w € N such that AL,,(H) < oo, there exists a deterministic
online learner which, under full-information feedback, makes at most w — 1 false negative mistakes
and at most AL,,(H) false positive mistakes in the realizable setting.

Proof Suppose w € N such that AL,,(H) < oo and denote A to be Algorithm 1.

Algorithm 1 Realizable Algorithm Under Full-Information Feedback
Input: V4 = H , pick wi; = w such that AL,,(H) < oo

fort=1,...,T do
Receive x;.
For each y € {0,1}, define V}Y = {h € V; | h(z¢) = y}.
if Vi(z;) = {y} then
| Predict g = y.
else
| If VY > 1, and ALy, (V}?) < ALy, (V;), predict §; = 1. Otherwise, predict §; = 0.
Receive y; and update V; «+ V,".
If gy = 0 and y; = 1, then update wy41 < wy — 1. Else, set w41 < w.

end

Let (z1,41), ..., (z7,yr) be the stream to be observed by A. We show that 4, initialized at
w1 = w, makes at most AL,, () false positive mistakes and at most w — 1 false negative mistakes.
Let Sy = {t € [T]| %+ = 1 and y; = 0} be the set of time points where .4 makes false positive
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mistakes, and S_ = {t € [T] | %+ = 0 and y; = 1} be the set of time points where A makes false
negative mistakes. We show |54 | < AL, (H) by first establishing

ALy,  (Vig1) < ALy, (Vi) — 1{t € S}, Vee[T)]. (1)

This inequality then implies that the number of false positive mistakes of A is

T T
Z ﬂ{t € S—‘r} < Z (Asz(Vt) - ALwH-l(V;f-‘rl))
t=1 t=1

= ALwl (Vl) - ALwT+1(VT+1)

< ALy, (Vi) = ALy (H).

To prove inequality (1), we consider the two cases: t € S; andt ¢ S.. Suppose t € S. Then,
we know that ; = 1 and by the prediction rule of .4, we must have AL,,, (V,’) < ALy, (V;). Since
y; = 0, we further obtain that V; 1 = V,? and w;,1 = wy in this case. This yields AL, (Vi) <
ALy, (V;), which subsequently implies AL, (Vi+1) < ALy, (Vi) — 1{t € S, }.

Now, let us consider the case when ¢ ¢ S.. In the case whent ¢ Sy US_, we have w11 = wy
and 1{t € S;} = 0. Thus, we trivially obtain AL, ,(Vi41) < ALy, (V;) — 1{t € S1} since
Vir1 € V4. Next, let us consider the case when ¢ € S_. In this case, we have wrr1 = wy —
1, V; = th, and 1{t € Sy} = 0. Thus, to establish inequality (1), it suffices to show that
ALy, —1(Vit) < ALy, (V). Suppose, for the sake of contradiction, this is not true and we instead
have AL,,_1(V}!) > ALy, (V;). Letd := AL,,(V;). Note that d > 0 because there must exist
hi,he € V; such that hy(z;) # he(x) or otherwise A would not have made a false negative
mistake. Since AL,,_1(V;!) > d, we are guaranteed the existence of an AL tree 71 (w; — 1,d)
shattered by V;!. Furthermore, as §; = 0 and |V;!| > 1, the prediction rule implies that ALy, (V,?) >
ALy, (V) = d. Accordingly, we are also guaranteed the existence of an AL tree 7(w, d) shattered
by V0. Now consider an AL tree 7 that has z; in its root-node, has a subtree To(w;,d) attached
to left-outgoing edge from the root-node and has a subtree 77 (w; — 1, d) attached to right-outgoing
edge from the root-node. Since all hypotheses in V, output 0 on z; and all hypotheses in V' output
1 on x4, the tree T shattered by V;. Since 7 is a valid AL tree of width w; and depth d + 1, we have
that AL, (Vz) > d + 1, a contradiction to our assumption that AL,,, (V;) = d. Therefore, we must
have AL, 1(V;}) < ALy, (Vi) whent € S_.

Next, we show that A makes at most w — 1 false negative mistakes. Let t* € [T'] be the time
point where the algorithm makes its (w — 1)-th false negative mistake. If such time point ¢* does
not exist, then we trivially have |S_| < w — 2 < w — 1. We now consider the case when t* € [T]
exists. It suffices to show that, V¢t > t*, we have t ¢ S_. Suppose, for the sake of contradiction,
J¢ > t* such that t € S_. Since §; = 0 and y; = 1, we must have |Vt1| > 1. Thus, the prediction
strategy implies that ALy, (V;") > AL,, (V;). Given thatt > t* and A has already made w — 1 false
negative mistakes, we must have w; = 1. Thus, we have AL;(V;?) > AL{(V;) =: d. Note that
d > 1 because there must exist i1, ha € V; such that hq(x;) # ha(z¢). Since AL; (V) > d, we
are guaranteed the existence of an AL tree 7o(1,d) of width 1 and depth d shattered by V,°. Next,
consider a tree 7 with x; on the root node and has a subtree 7o(1, d) attached to the left-outgoing
edge from the root node. Let h € V; any hypothesis such that h(z;) = 1. The hypothesis ~ must
exist because |V;!| > 1. By putting A in the leaf node following the right-outgoing edge from the
root node in 7, it is clear that 7 is a valid AL tree of width 1 and depth d + 1 shattered by V;.
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The existence of 7 implies that AL;(V;) > d + 1, a contradiction to our assumption AL;(V;) = d.
Thus, Vt > t*, we have ¢ ¢ S_. Therefore, .A makes no more than w — 1 false negative mistakes. ll

We remark that Helmbold et al. (2000b) also give a deterministic online learner in the full-
information setting under constraints on the number of false positive and false negative mistakes
(see Algorithm SCS in (Helmbold et al., 2000b, Section 2)). However, similar to Helmbold et al.
(2000a), their algorithm checks the existence of an online learning algorithm satisfying certain
properties. We extend on this result by giving an SOA-type algorithm that only requires computing
combinatorial dimensions.

Lemma 13 is the restatement of Corollary 2 in Helmbold et al. (2000a). For completeness sake,
we provide a proof in Appendix C. Lemma 11 follows by composing Lemma 12 and Lemma 13.

Lemma 13 (Helmbold et al. (2000a)) Forany H C {0,1}*, if there exists a deterministic learner
which, under full-information feedback, makes at most M _ false negative mistakes and at most M
false positive mistakes, then there exists a randomized learner, whose expected number of mistakes,
under apple tasting feedback, is at most M + 2\/T M_ in the realizable setting.

3.2. Lower Bounds for Randomized Learners in the Realizable Setting

As in the upper bound, we prove a slightly stronger lower bound than the one stated in Theorem 9.

Lemma 14 (Realizable Lower Bound) For any hypothesis class H C {0,1}%,

igf Mu(T,H) > % sup v/min{w, L(H), T} min{AL,(H),T}.
welN

The lower bounds in Theorem 9 follows by picking w = W(H) — 1 and w = L(#H) + 1
respectively. When w = W(H) — 1, we have that min{w, L(H),T} = min{W(H) — 1,7} and
min{AL,(H),T} > min{W(H) — 1,7} using Lemma 8 (ii) and (iv). On the other hand, when
w = L(#H) + 1, we have that min{AL,,(#),T} = min{L(*), T’} using Lemma 8 (iii).

Proof Let H C {0,1}*, w € N, and T € N be the time horizon. Since learning under apple
tasting feedback implies learning under full-information feedback, a lower bound of w
on the minimax expected number of mistakes follows trivially from the full-information feedback
lower bound. Accordingly, for the remainder of the proof we suppose w < min{L(%),T'}, since

if this condition is not met, the claimed lower bound is at most w Let 7 be any AL tree

of width w of depth d = L\/ wmin{T, AL, (H)}J shattered by 7. Such a tree must exist because

d < AL, (H). Let A be any randomized apple tasting online learner. Our goal will be to construct
a hard, determinsitic, realizable stream of instances (x1,¥1), ..., (7, yr) such that A’s expected
regret is at least %.

We first construct a path o* down 7T recursively using A. Starting with o7, let A; be the event
that A, if presented with L%J copies of the root node 7, predicts 1 on at least one of the copies.
Then, set o7 = 0if P(A;) > % and set 0] = 1 otherwise. For j > 2, let z7, ..., x; be the sequence
of instances labeling the internal nodes along the prefix (o7, ...,07_;) down 7. Let A; be the event

that A, if simulated with the sequence of (j — 1) L%J labeled instances consisting of L%J copies of

the labeled instance (%, o), followed by | £ | copies of the labeled instance (2%, 03)...., followed
*

*

by L%J copies of the labeled instance (x 1,05 ), predicts the label 1 at least once when presented

7j—1

10
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with L%J copies of the instance x; Set a; =0if P(4;) > % and set JJ*- = 1 otherwise. Continue
this process until o* is a valid path that reaches the end of tree 7.

We now construct our hard, labeled stream in blocks of size L%J . Each block only contains a sin-
gle labeled instance, repeated L%J times. For the first block By, repeat the labeled instance (z7, o7).
Likewise, for block B; for 2 < j < |0*|, repeat for | £ | times the labeled instance (27, 0'}). Now,
consider the stream S = (By, ..., B|U*|) obtained by concatenating the blocks By, ..., B|s+| in that

order. If |o*|| 4 | < T, populate the rest of the stream S with the labeled instance (acl*g*‘,a‘*o*‘).
We first claim that such a stream is realizable by #. This follows trivially from the fact that (1)
o* is a valid path down T, (2) by the definition of shattering, there exists a hypothesis h € H such
that for all j € [[o*]], we have h(z}) = o7 and (3) our stream S only contains labeled instances
from the set {(z7,07)};. We now claim that A’s expected regret on the stream ' is at least il. To
see this, observe that whenever o7 = 1, A’s expected mistakes on the block B; is at least i L%J
since A gets passed the labeled instance (x;, 1) for [%J iterations, but the probability that it never
predicts 1 on this batch after seeing By, ..., Bj_1 is P(A}) > % Likewise, whenever o = 0, A’s

J
expected mistakes on the block B; is at least % since it gets passed the labeled instance (x;, 0) for

L%J time points but predicts 1 on at least one of them with probability P(A;) > %

We now lower bound the expected mistakes of A on the entire stream S by considering the
number of ones in o* on a case by case basis. Note that since ¢* is a valid path down T, we
have w < |o*| < d. Consider the case where o* has w ones. Then, A’s expected regret is at

least its expected regret on those batches B; where cr;k = 1. Thus, its expected regret is at least

5 L%J > %% > %. Consider the case where o* has w — j ones for w > j > 1. Then, since o*

is a valid path, it must be the case that there are d — (w — j) zero’s in o*. Therefore, A’s expected
regret is at least

2 2

2 |w 2 = w| =2

(w_j){dJ-i-d_w—F] >d_w—j+w—]{dJ >d
2

where the last inequality follows from the fact that d > w. Thus, in all cases, A’s expected regret is

at least 4. The claimed lower bound follows by using the fact that d > \/w min{T, AL, (H)}/2.

4. Agnostic Learnability

We show that the Ldim quantifies the minimax expected regret in the agnostic setting under apple
tasting feedback, closing the open problem posed by (Helmbold et al., 2000a, Page 138).

Theorem 15 (Agnostic Learnability) For any hypothesis class H C {0,1}%,

L(H)T

< ifRA(T,H) < 3V/L(H)TInT.

The lower bound in Theorem 15 follows directly from the full-information lower bound in the
agnostic setting (Ben-David et al., 2009). Therefore, in this section, we only focus on proving
the upper bound. Our strategy will be in two steps. First, we modify the celebrated Randomized
Exponential Weights Algorithm (REWA) (Cesa-Bianchi and Lugosi, 2006) to handle apple tasting

11



RAMAN SUBEDI RAMAN TEWARI

feedback by using the ideas from Alon et al. (2015). In particular, our algorithm EXP4.AT is an
adaptation of EXP3.G from Alon et al. (2015) to binary prediction with expert advice under apple
tasting feedback. Second, we give an agnostic online learner which uses the SOA to construct a
finite set of experts that exactly covers H and then runs EXP4.AT using these experts. The upper
bound in Theorem 15 follows immediately from the composition of these two results.

4.1. The EXP4.AT Algorithm

In this subsection, we present EXP4.AT, an adaptation of REWA to handle apple tasting feedback.

Algorithm 2 EXP4.AT: online learning with apple tasting feedback

Input: Learning rate n € (0, %)

Let ¢; be the uniform distribution over [V]

fort=1,..., T do

Get advice &}, ..., &N € {0, 1}V

Compute p} = (1—1) 31V, ¢i€} +1

Predict §j; = 1 with probability p; and §; = 0 with probability p) = 1 — p}

Observe true label y; if §; = 1 and let ft(y) = %ﬁl{mzl}
giexp(=nle(£]))

Sy alexp(—nl(E]))

Fori=1,...,N update ¢j ,, =

end

Theorem 16 (EXP4.AT Regret Bound) Ifn = \/hzl—%v, then for any sequence of true labels
Y1, ---, Y1, the predictions 41, ..., Yr, output by EXP4.AT satisfy:

T

T
Z {g: # yt}] < IEI[IJE} Z 1{& # w}+3VTInN.
J t=1

t=1

E

In order to prove Theorem 16, we need the following lemma which gives a second-order regret
bound for the EXP4.AT algorithm. The proof of Lemma 17 follows a similar potential-function
strategy as in the proof of Lemma 4 in Alon et al. (2015) and can be found in Appendix D.

Lemma 17 (EXP4.AT Second-order Regret Bound) For any ) € (0, 3) and any sequence of
true labels y1, ..., yr, the probabilities p., ..., pr output by EXP4.AT satisfy

T
S>> p?ét(y)—,ierflfv]zét(gg)slnnNJrnZ& +772pt (1=p})0i(0 +nzp§€t

t=1 ye{0,1} IS t=1

Theorem 16 follows by taking expectations of both sides of the inequality in Lemma 17. The
full proof can be found in Appendix E.

12
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4.2. Proof Sketch of Theorem 15

Given any hypothesis class H, we construct an agnostic online learner under apple tasting feedback
with the claimed upper bound on expected regret. Similar to the generic agnostic online learner
in the full-information setting (Ben-David et al., 2009), the high-level strategy is to use the SOA
to construct a small set of experts F such that |E| < T*) and for every h € H, there exists an
expert &, € E such that &, (x) = h(x;) for all t € [T']. Then, our agnostic online learner will run
EXP4.AT using this set of experts E. The upper bound in Theorem 15 immediately follows from
the guarantee of EXP4.AT in Theorem 16 and the fact that we have constructed an exact cover of
‘H. The full proof of Theorem 15 can be found in Appendix F.

5. Discussion and Open Questions

In this work, we revisited the classical setting of apple tasting and studied learnability from a com-
binatorial perspective. Our work makes an important step towards developing learning theory for
online classification under partial feedback. An important future direction is to extend this work to
multiclass classification under various partial feedback models, such as those captured by feedback
graphs (Alon et al., 2015).

With respect to apple tasting, there are still interesting open questions. For example, our focus in
the realizable setting was on randomized learnability. Remarkably, under full-information feedback,
randomness is not needed to design online learners with optimal mistake bounds (up to constant
factors). It is therefore natural to ask whether randomness is actually needed in the realizable setting
under apple tasting feedback.

Question 1. For any H# C {0, 1} with W(H) < 00, is infpeterministic 4 MA(T, H) = o(T)?

In Appendix A, we provide some partial answers. We show that if W(H) = 1 or L(H) = 1,
then such generic deterministic learners do exist with mistake bounds that are constant factors away
from the lower bound in Theorem 14. We conjecture that the statement in the open question is true.

Our lower and upper bounds in the agnostic setting are matching up to a factor logarithmic in
T. Recently, Alon et al. (2021) showed that in the full-information setting, this log(7") factor can
be removed from the upper bound, meaning that the optimal expected regret in the agnostic setting
under full-information feedback is ©(/L(#)T"). As an open question, we ask whether it is possible
to also remove the factor of log(7") from our upper bound in Theorem 15.

Question 2. For any H C {0, 1}, is it true that inf 4 R4(T, H) = O(y/L(H)T)?
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Appendix A. Upper bounds for Deterministic Learners in the Realizable Setting

In this section, we provide deterministic apple tasting learners for some special classes. Our first
contribution shows that when W () = 1, there exists deterministic online learner which makes at
most AL; () mistakes under apple tasting feedback.

Theorem 18 (Deterministic Realizable upper bound when W(#) = 1) For any H C {0,1}%,
there exists a deterministic online learner which, under apple tasting feedback, makes at most

AL (H) mistakes in the realizable setting.

Proof We will show that Algorithm 3 makes at most AL;(7{) mistakes in the realizable setting.

Algorithm 3 Deterministic Realizable Algorithm For Apple Tasting

Input: Vi =H

fort=1,...,T do
Receive x;.
If there exists A € V; such that h(x;) = 1, predict g, = 1. Else, predict g, = 0.
If §; = 1, receive y; and update V1 < {h € V; : h(xy) =y}

end

Let ¢t € [T] be any round such that g; # y,. We will show AL;(Vi41) < ALy (V;) — 1. By the
prediction strategy and the fact that we are in the realizable setting, if 9 # y; then it must be the
case that g, = 1 but y, = 0. For the sake of contradiction, suppose that AL; (V1) = AL (V}) = d.
Then, there exists an AL tree 7 of width 1 and depth d shattered by V;, 1. Consider a new AL tree
T" of width 1 where the root node labeled is x; and the left subtree of the root node is 7. Note that
T is a width 1 AL tree with depth d + 1. Since §; = 1, there exists a hypothesis i € V; such that
h(z:) = 1. Moreover, for every hypothesis in h € V41 C V;, we have that h(z;) = 0. Since T
is shattered by V;;1 C V; and T is the left subtree of the root node in 7', we have that 77 is an
AL tree of width 1 and depth d + 1 shattered by V;. However, this contradicts our assumption that
AL;(V;) = d. Thus, it must be the case AL;(Viy1) < AL1(V;) — 1 whenever the algorithm errs,
and the algorithm can err at most AL; () times before AL;(V;) = 0. [

We extend the results of Theorem 18 to hypothesis classes where L(H) = 1. Note that AL (H)
can be much larger than L(H) even when L(H) = 1. For example, for the class of singletons
H ={x+— 1{x =a} : a € N}, we have that L(H) = 1 but AL, (H) = .

Theorem 19 (Deterministic realizable upper bound for L(#) = 1) For any H C {0,1}* such
that L(H) = 1, there exists a deterministic learner which, under apple tasting feedback, makes at
most 1 + 2\/T mistakes in the realizable setting.

Proof We will show that Algorithm 4 makes at most 1 4+ 2v/T" mistakes in the realizable setting
under apple tasting feedback after tuning r.

Let S = (z1,h*(2¢)), ..., (z7, h* (7)) be the stream observed by the learner, where h* € H is
the optimal hypothesis. As in the proof of Lemma 13, consider splitting the stream into the following
three parts. Let .S; denote those rounds where L(Vto) = 0 but 5 = 0. Let Sy denote the rounds
where L(V,%) = 1, § = 1, but y; = 0. Finally, let S3 denote the rounds where L(V,?) = 1, §; = 0,
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Algorithm 4 Deterministic Realizable Algorithm For Apple Tasting
Input: Vi =Handr >0
Initialize: C'(h) =0 forallh € H

fort=1,...,T do
Receive example x;
For each y € {0,1}, define V}Y = {h € V; | h(z¢) = y}.
if Vi(z;) = {y} then
| Predicty; =y
else if L(V,?) = 0 then
Predict g = 1
Observe true label 1
Update V;q = VY
else if 3h € V;! such that C(h) > r then
Predict g, = 1
Observe true label v
Update V41 = V!

else
Predict g = 0
for h € V! do
| Update C(h) +=1
end
Set Vit1 = Vi

end

but y; = 1. The number of mistakes Algorithm 4 makes on the stream S is at most |Sy |+ |S2|+|S5].
We now upper bound each of these terms separately.

Starting with S7, observe that if L(V;?) = 0, then |[V,?| < 1. Thus, if y; = 0, Algorithm 4
correctly identifies the hypothesis labeling the data stream and does not make any further mistakes.
Accordingly, we have that |S1| < 1.

Next, |Sz| is at most the number of times that Algorithm 4 predicts 1 when L(V,?) = 1. Note
. 0)_—
that if L(V;?) = 1 then |V;!| < 1. Thus, by the end of the game, there can be at most HELVO)=1}

r

hypothesis h € H such that C'(h) > r. Since Algorithm 4 only predicts 1 when there exists a
hypothesis in V;! with count at least r, we have that |Ss| < %p):m <L

Finally, we claim that |S3| < r. Suppose for the sake of contradiction that |S3| > r + 1. Then,
by definition, there exists 7+ 1 rounds where L(V}") = 1, §; = 0 but y; = 1. However, if L(V,?) =1
and y; = 1, then V;! = {h*}. Therefore, on the 7 + 1’th round where L(V}?) = 1, 9 = 0, and
y¢ = 1, it must be the case C'(h*) > r. However, if this were true, then the Algorithm would have
predicted §; = 1 on the r 4+ 1’th round, a contradiction. Thus, it must be the case that |S3| < r.

Putting it all together, Algorithm 4 makes at most 1 + % + 7 mistakes. Picking 7 = /T, gives

the mistake bound 1 + 21/T", completing the proof. |

We highlight that Theorem 19 is tight up to constants factors. Indeed, for the class H of single-
tons over N, we have that W(7{) = 2. Therefore, Theorem 9 implies the lower bound of g.
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Appendix B. Proof of Lemma 8

To see (i), observe that given any shattered AL tree 7 of depth d and width wo > w;, we can
truncate paths with more than w; ones to get a shattered AL tree 7" of the same depth where now
every path has at most w; ones and the right most path has exactly w; ones.

To see (ii), consider the case where w < L(#H). Then, by property (i), we have that AL,,(H) >
ALy (H) > L(H) > w. If w > L(H), then AL, (H) > L(#) which follows from the fact that
an AL tree 7 of width w and depth L(H) < w is a complete binary tree of depth L(H).

To see (iii), fix w > L(#H) + 1. Then, by property (ii), we have that AL,,(H) > L(#). Thus,
it suffices to show that AL,,(H) < L(#). Suppose for the sake of contradiction that AL,,(H) >
L(#) + 1. Then, using property (i) and the fact that w > L(#) + 1, we have that ALy,3)41(H) >
AL, (H) > L(#H)+1. Thus, by definition of ALdim, there exists a Littlestone tree of depth L(H)+1
shattered by 7, a contradiction.

To see (iv), note that when L(H) < oo, we have that ALy, 3y)41(#H) = L(#) by property (iii).
Thus, by definition of the Effective width, it must be the case that W(H) < L(#) + 1.

To see (v), it suffices to prove that L(H) = oo = W(H) = oo since (iv) shows that
L(H) < oo = W(H) < co. This is true because if L(H) = oo, then for any width w € N and
depth d € IN, one can always prune a shattered Littlestone tree of depth d to get a shattered AL tree
of depth d and width w.

Appendix C. Proof of Lemma 13

Algorithm 5 Conversion of Full-Information Algorithm to Apple Tasting Algorithm
Input: Full-Information Algorithm .4, false negative mistake bound M_ of A
fort=1,...,T do

Receive z; and query A to get & = A(xy).

Draw 7 ~ Unif([0, 1]) and predict

1 if & = 1.
U = 1 if§,=0andr < /M_/T.
0 otherwise.

If §; = 1, receive y; and update A by passing (z, y;).
end

If T < M_, then the claimed expected mistake bound is > 7', which trivially holds for any
algorithm. So, we only consider the case when 7" > M_. Let A be a deterministic online learner,
which makes at most M_ false negative mistakes and at most M false positive mistakes under
full-information feedback. We now show that Algorithm 5, a randomized algorithm that uses .4 in
a black-box fashion, has expected mistake bound at most M + 2+/71'M_ in the realizable setting
under apple-tasting feedback.

For each bitstring b € {0,1}3, define S, = {t € [T] | b1 = &,b2 = G, and b3 = y; }. Here,
b1, by, b3 are the first, second, and third bits of the bitstring b. Using this notation, we can write the
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expected mistake bound of Algorithm 5 as

T
E [Z Wi # ye} | = E[[S101] + [Soo1] + |S110] + [So10] ] -

t=1

Since gy, = 1 whenever & = 1, we have |S101| = 0. Note that |Spo1| < N, where N is the
number of failures before M_ successes in independent Bernoulli trials with probability /M_ /T
of success. That is, IV quantifies the number of rounds before &; is flipped M_ number of times
from O to 1 in rounds when y; = 1. Recalling that N ~ Negative-Binomial(M_, \/M_/T), we

have
E[|Soo1] < E[N] < M_ (, /J\Z_ ) < /M T—M._.

Moreover, using the fact that A makes at most M, false positive mistakes, we have |.S119| < M.

Finally, using the prediction rule in Algorithm 5, we have

ZT:IL{&_O and yt—l}] <E[Zﬂ{r<\/7}

t=1 t=1

e

E[lSo10l]] <E

Putting everything together, we have

T

E > 1{j # yt}] <M T—-M_+My+/MT<M,+2/M_T.

t=1

This completes our proof.

Appendix D. Proof of Lemma 17

Observe that /(1) SA% for yﬁE {0,1} since p} > n. Let ¢y = > _yefo1} pYly(y) and define
¢; such that £i(y) = &(y) — 4 for all y € {0,1}. Notice that executing EXP4.AT on the loss
vectors /1, ..., {7 is equivalent to executing EXP4.AT on the loss vectors ¢/, ..., ¢/.. Indeed, since
{4 is constant over the experts, the weights ¢/ remained unchanged regardless of whether £} or /; is

used to update the experts. Moreover, we have that /,(y) > — 1.
n
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We start by following the standard analysis of exponential weighting schemes. Let w! = 1,
wiﬂ = wieXp(—nﬁé(&i)) and W, = ZZ 1 wt Then, qt = W and we have
N

Wipr Wiy
W 2w,

i=1

_ EN: wiexp(—nly(ED))
. Wy

N . .

= ZqieXp(—nfé(fi))
Z;l | | |

<> a (1= n((ED)) + P (G(ED)?)
=1

N N
=1—n) al(&)+n’Y_ at(E))?,

i=1 i=1

where the inequality follows from the fact that £}(&f) > —% ande® < 1+az+a?forallz < 1.

Taking logarithms, summing over ¢, and using the fact that In(1 — z) < —z for all z > 0 we get

WT+1 S A i 2 i
In ZZ q@l(EN +n qutz (EN)?

t=1 i=1

Also, for any expert j € [N], we have

Wri1 T+1 /
1 > In = (&)
gz Z

T+1

Combining this with the upper bound on In , rearranging, and dividing by 7, we get

T N ' T In N
PN IACH Z 5j+7+nZZqH’5’

t=1 i=1 t=1 i=1

Using the definition of ¢}, we further have that

N

qug@ (&) Zé(sﬂ +M+nzzq; 0(ED))

t=1 i=1 t=1 t=1 i=1

Next, observe that

zqzzt ) _(ZW) i (1—2%5@) 0= Y - i)

y€{0,1}
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Moreover,

2
N
> qiED)? th > Ly =E&}0)
i=1 i=1 ye{0,1}
N . .
=> gl > Wy=&w)?
=1 ye{0,1}
N . .
=Y (D al{y= 5Z}> G(y)°
yE{O,l} i=1
= (Z qi&’) G(1)% + (1 - Z%ﬁ) 4(0)°
i=1 i=1
1
<o ) PG
Tyeo
Therefore, for any fixed expert j,
n T d InN
N R O WIUE WICIRESSE T O W
T3 yeqony t=1 t=1 7= yeqony

Multiplying by 1 — n and rearranging, we have

T
SS Wiy zet &) < ¢ 1“N+ zet +nz S

t=1ye{0,1} t=1ye{0,1}

which further implies the guarantee:

ZT: i (&) <M+n26t +nz > o}

t=1 y6{071} t=1ye{0,1}

M+nzﬂt +772 Y pllly) — )%

=1 ye{o.1}

Next, note that
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Yool -0 = > plaw? - Y. plhy)
yE{O,l} yE{O,l} ye{ovl}
< >0 phw)?® - DD 0)(y)
yG{O,l} ye{ovl}
= Yl -p)ly)?
y€{0,1}

< pr(1—pH)e(0)* + ply(1)?,

where the first inequality is true because of the nonnegativity of the losses ¢, and the last in-
equality is true because 0 < p; < 1. Putting things together, we have that

Z Z ptgt

t=1ye{0,1}

+772pt 1—p} )l (0 +nzpt€t
t=1 t=1

||M%
=3
3‘2
+
3
Pﬁ

Since expert j € [N] was arbitrary, this completes the proof.

Appendix E. Proof of Theorem 16

From Lemma 17, we have that for an fixed expert j € [N]

> 3 it

T
+nzptpt1€t 0)> +n > pili(1)®
t=1ye{0,1} _

t=1 t=1

||Mﬂ
‘E
=
+
3
Fﬁ

Taking expectations on both sides and using the fact that E; [@t(y)] =Wy # u}, Es [ét(y)Q] =

1 {y;éyt} gives

T T
i [Zﬂ{.@t#yt}] > & £y < T+n21{1¢yt}+nZE [ 01 {Opifyt} +pgﬂ{1;1é yt}]

t=1 t=1 t
In N
<22 T
n
P _ In N
Substituting 7 = 4/ 57, we have

T T
E [Z 1{; # yt}] — > 1{& #y} <2V2TN <3VTh N,

t=1 t=1

which completes the proof.
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Appendix F. Proof of Theorem 15

Let (z1,91), ..., (7, yr) denote the stream of labeled instances to be observed by the agnostic
learner and let h* = argming, Zthl 1{h(x¢) # y:} be the optimal hypothesis in hindsight.
Given the time horizon T, let Ly = {L C [T] : |L| < L(H)} denote the set of all possible subsets
of [T] of size of L(#). For every L € L, define an expert £1, whose prediction on time point
t € [T'] on instance x; is defined by

 JSOA (2|{(wi, E(i)}Zt) . ift ¢ L
Fuln) = {ﬁSOA (ItH(xth(-Ti)) ﬁ;%) , otherwise

where SOA (¢|{ (2, €1(x;)) f;}) denotes the prediction of the SOA on the instance z; after
running and updating on the labeled stream {(z;, £r.(x;))}._1. Let E = {&, : L € Lt} denote the
set of all Experts parameterized by subsets L € Ly. Observe that |E| < TV,

We claim that there exists an expert £1« € E such that for all ¢ € [T'], we have that Ep« (z;) =
h*(x¢). To see this, consider the hypothetical stream of instances labeled by the optimal hypothesis
S* = {(w4, h*(z4))}_;. Let L* = {t1,t2,...} be the indices on which the SOA would have made
mistakes had it run and updated on S*. By the guarantee of SOA, we know that |L*| < L(#). By
construction of F, there exists an expert £7 parameterized by L*. We claim that for all ¢ € [T,
we have that £« (z;) = h*(z). This follows by strong induction on ¢t € [T]. For the base case
t = 1, there are two subcases to consider. If 1 € L*, then we have that £+ (x1) = =SOA (z1|{}) =
h*(z1), by definition of L*. If 1 ¢ L*, then 1« (z1) = SOA (z1|{}) = h*(x1) also by definition
of L*. Now for the induction step, suppose that £« (z;) = h*(x;) forall i < ¢. Then,ift+1 € L*,
we have that £« (ﬂjt+1) = -SOA (:EtJr]_ |{(.’Ez, Erx (.’Ez)) g:l) = -SOA (l‘t+1|{(ﬂfi, h*(.’]jl)) 521) =
h*(l‘t+1). Ift+1 ¢ L*, then £+ (xt+1) = SOA (xt+1\{(xi, Erx (1‘,)) 1;:1) = SOA (actH]{(xi, h*(wz))}zzl) =
h*(x¢+1). The final equality in both cases are due to the definition of L*.

Now, consider the agnostic online learner .4 that runs EXP4.AT using E. By Theorem 16, we
have that

T

T
Z 1{A(z) # yt}] < slrelle; H{E(x¢) # yie} + 3T In|E]|

t=1

E

T
< Z {&p () # yi} + 3VL(H)TIn T
t=1

T
=S 1{h*(2) # e} + 3VLH) T In T,
t=1

Thus, A achieves the stated upper bound on expected regret under apple tasting feedback, which
completes the proof.

Appendix G. Effective width of the k-wise generalization of 7y,

In this section, we compute the Effective width of the k-wise generalization of the class of singletons
Hsing-
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Proposition 20 Let X = Nand Hy = {x — 1{z € A} : AC N,|A| < k}. Then, W(H) = k+1

Proof Consider an Apple Littlestone tree 7 (w,d) of width w = k and depth d > w such that
all the internal nodes on level i € [d] are labeled by the instance i € N. It is not too hard to see
that Hy, shatters 7 (w, d). Since d > w was chosen arbitrarily, this is true for all d € ,IN and thus
ALy (Hy) = oo. On the other hand, consider an Apple Littlestone tree 7' (w’, d) of width w’ = k+1
and depth d € N. Note that in order to shatter 7”, there must exist a hypothesis that outputs at least
k 4 1 ones across k + 1 distinct instances in X. However, by definition, every hypothesis h € H
outputs 1 on at most k distinct instances. Thus, 7' cannot be shattered by Hy.1. Since this is true
for all such d € N, we have that ALy 1(Hy) = 0. This completes the proof as it must be the case
that W(H) =k + 1. [ |
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