
Proceedings of Machine Learning Research vol 247:1–32, 2024 37th Annual Conference on Learning Theory

Online Learning with Set-valued Feedback

Vinod Raman * VKRAMAN@UMICH.EDU
University of Michigan

Unique Subedi * SUBEDI@UMICH.EDU
University of Michigan

Ambuj Tewari TEWARIA@UMICH.EDU

University of Michigan

Editors: Shipra Agrawal and Aaron Roth

Abstract
We study a variant of online multiclass classification where the learner predicts a single label but
receives a set of labels as feedback. In this model, the learner is penalized for not outputting a
label contained in the revealed set. We show that unlike online multiclass learning with single-label
feedback, deterministic and randomized online learnability are not equivalent even in the realizable
setting with set-valued feedback. Accordingly, we give two new combinatorial dimensions, named
the Set Littlestone and Measure Shattering dimension, that tightly characterize deterministic and
randomized online learnability respectively in the realizable setting. In addition, we show that the
Measure Shattering dimension characterizes online learnability in the agnostic setting and tightly
quantifies the minimax regret. Finally, we use our results to establish bounds on the minimax regret
for three practical learning settings: online multilabel ranking, online multilabel classification, and
real-valued prediction with interval-valued response.
Keywords: Online Learning, Supervised Learning, Learnability

1. Introduction

In the standard online multiclass classification setting, a learner plays a repeated game against an
adversary. In each round t → [T], the adversary picks a labeled example (xt, yt) → X ↑ Y and
reveals the unlabeled example xt to the learner. The learner observes xt and then makes a prediction
ŷt → Y . Finally, the adversary reveals the true label yt and the learner suffers the loss {ŷt ↓= yt}

(Littlestone, 1987; Daniely et al., 2011).
In practice, however, there may not be a single correct label y → Y , but rather, a collection of

correct labels S ↔ Y . For example, in online multilabel ranking, the learner is tasked with ranking
a set of labels in terms of their relevance to an instance. However, as feedback, the learner only
receives a bitstring indicating which of the labels were relevant. This feedback model is standard
in multilabel ranking since obtaining the full ranking is generally costly (Liu et al., 2009). Since,
for any given bitstring, there can be multiple rankings that correctly place relevant labels above
non-relevant labels, the learner effectively only observes a set of correct rankings. Beyond ranking,
other notable examples of set-valued feedback include multilabel classification with a thresholded
Hamming loss, where the learner is only penalized after misclassifying a certain number of labels,
and real-valued prediction where the response is an interval on the real line (Diamond, 1990; Gil
et al., 2002; Huber et al., 2009). Even more generally, one can equivalently represent the ground

* Equal contribution

© 2024 V. Raman, U. Subedi & A. Tewari.

RAMAN SUBEDI TEWARI

truth label as a collection of elements from the prediction space for any learning problem with the
0-1 loss where there is an asymmetry between the prediction and label space.

Motivated by online multilabel ranking and other natural learning problems, we study a variant
of online multiclass classification where in each round t → [T], the learner still predicts a single
label ŷt → Y , but the adversary reveals a set of correct labels St → S(Y), where S(Y) ↔ 2Y is
an arbitrary set system. The learner suffers a loss if and only if ŷt /→ St. Given a hypothesis class
H ↔ Y

X , the goal of the learner is to output predictions such that its regret, the difference between
its cumulative loss and the cumulative loss of the best-fixed hypothesis in hindsight, is small. The
class H is said to be online learnable if there exists an online learning algorithm whose regret is a
sublinear function of the time horizon T .

Given a learning problem (X ,Y,S(Y),H), what are necessary and sufficient conditions for H
to be online learnable? For example, under single-label feedback (multiclass classification), the on-
line learnability of a hypothesis class H ↔ Y

X is characterized by the finiteness of a combinatorial
parameter called the Littlestone dimension (Littlestone, 1987; Ben-David et al., 2009; Daniely et al.,
2011). Analogously, is there a combinatorial parameter that characterizes online learnability under
set-valued feedback? Motivated by these questions, we make the following contributions.

(1) We show that under set-valued feedback, deterministic and randomized learnability are not
equivalent even in the realizable setting. This is in contrast to online learning with single-
label feedback, where there is no separation between deterministic and randomized realizable
learnability (Littlestone, 1987; Daniely et al., 2011). Additionally, we show deterministic and
randomized realizable learnability are equivalent if the Helly number, a parameter that arises
in combinatorial geometry, of S(Y) is finite.

(2) In light of this separation, we give two new combinatorial dimensions, the Set Littlestone and
Measure shattering dimension, and show that they characterize deterministic and randomized
realizable learnability respectively.

(3) Moving beyond the realizable setting, we show that the Measure Shattering dimension con-
tinues to characterize agnostic learnability. This implies an equivalence between randomized
realizable learnability and agnostic learnability.

(4) Finally, as applications, we use our results to bound the minimax expected regret for three
practical learning settings: online multilabel ranking, online multilabel classification, and
real-valued prediction with interval-valued response.

To prove the separation in (1), we identify a learning problem where every deterministic learner
fails, but there exists a simple randomized learner. As for our combinatorial dimensions in (2), the
Set Littlestone and Measure shattering dimensions are defined using complete trees with infinite-
width. This is in contrast to much of the existing combinatorial dimensions in online learning. To
prove that the Set Littlestone dimension is sufficient for deterministic realizable learnability, we
extend the Standard Optimal Algorithm for single-label to set-valued feedback. On the other hand,
to prove that the Measure shattering dimension is sufficient for randomized realizable learnability,
we adapt the recent algorithmic chaining technique from Daskalakis and Golowich (2022). Lastly,
our construction of an agnostic learner in (3) uses a non-trivial extension of the adaptive covering
technique introduced in Hanneke et al. (2023).

2

ONLINE LEARNING WITH SET-VALUED FEEDBACK

1.1. Related Works

There is a rich history of characterizing online learnability in terms of combinatorial dimensions.
For example, Littlestone (1987); Ben-David et al. (2009) proved that the Littlestone dimension
characterizes online learnability in binary classification. Studying optimal randomized learnability,
Filmus et al. (2023) proposed the Randomized Littlestone and showed that it characterizes optimal
regret bounds for randomized learners in the realizable setting. Daniely et al. (2011); Hanneke
et al. (2023) show that the Littlestone dimension continues to characterize online learnability in the
multiclass classification setting. Recent work by Moran, Sharon, Tsubari, and Yosebashvili (2023)
showed that a modification of the Littlestone dimension characterizes list online classification, the
“flip” of our setting where the learner outputs a set of labels, but the adversary reveals a single
label. In addition, Daniely and Helbertal (2013) showed that the Bandit Littlestone dimension
characterizes online learnability when the adversary can output a set of correct labels, however, the
learner only observes the indication of whether their predicted label was in the set or not. Moreover,
there is a growing literature on online multiclass learning with feedback graphs (van der Hoeven
et al., 2021; Alon et al., 2015). In this setting, the learner predicts a single label but observes the
losses of a specific set of labels determined by an arbitrary directed feedback graph. Finally, the
Helly number Helly (1923) has previously been used to characterize proper learning in both online
and PAC settings (Hanneke et al., 2021; Bousquet et al., 2020) and has also appeared in the literature
on distributed learning (Kane et al., 2019).

1.2. Relation to List Online Classification

List online classification, studied by Moran et al. (2023), is intimately related to online classification
with set-valued feedback. Indeed, online classification with set-valued feedback is equivalent to a
modified list online classification game, where in each round t → [T]: (1) the learner picks a label
ŷt → Y and constructs a list L̂t ↗ S(Y) such that ŷt → S for every S → L̂t, (2) Nature reveals the true
set St → S(Y), and (3) the learner suffers the loss {St /→ L̂t} ↘ {ŷt /→ St}. However, there are
important differences between this “modified” list online classification game and the “original” list
online classification game proposed by Moran et al. (2023) when taking S(Y) to be the label space.
First, in the “original” list online classification game, the learner is allowed to output any finite list of
elements in S(Y). This is not the case with the “modified” list online classification game. Indeed,
the “modified” list online learner is required to pick any sequence of elements in S(Y) whose
sequence-wise intersection is not empty. This means that the “modified” list online classification
game can be harder than the “original” list online classification game, for example, when S(Y)
contains all disjoint sets. On the other hand, the “original” list online classification game can also
be harder than the “modified” list online classification game, for example, when

⋂
S→S(Y) S ↓= ≃.

These statements are true even when the sets St → S(Y) are all finite. Therefore, the “modified”
and “original” list online classification game with label space S(Y) are incomparable.

2. Preliminaries

2.1. Notation

Let X denote the instance space and (Y,ω(Y)) be a measurable label space. Let !(Y) denote the
set of all probability measures on (Y,ω(Y)). In this paper, we consider the case where Y can be
unbounded (e.g. Y =). Given a measurable label space (Y,ω(Y)), let S(Y) ↔ ω(Y) denote

3

RAMAN SUBEDI TEWARI

an arbitrary, measurable collection of subsets of Y . For any set S → S(Y), we let Sc = Y \ S

denote its complement. Let H ↔ Y
X denote an arbitrary hypothesis class consisting of predictors

h : X ⇐ Y . Finally, we let [N] := {1, 2, . . . , N}.

2.2. Online Learning

In the online setting, an adversary plays a sequential game with the learner over T rounds. In each
round t → [T], an adversary selects a labeled instance (xt, St) → X ↑ S(Y) and reveals xt to the
learner. The learner makes a potentially randomized prediction ŷt → Y . Finally, the adversary
reveals the set St, and the learner suffers the loss {ŷt /→ St}. Given a hypothesis class H ↔ Y

X ,
the goal of the learner is to output predictions ŷt such that its cumulative loss is close to the best
possible cumulative loss over hypotheses in H. Before we define online learnability, we provide
formal definitions of deterministic and randomized online learning algorithms.

Definition 1 (Deterministic Online Learner) A deterministic online learner is a deterministic
mapping A : (X ↑ S(Y))ω ↑ X ⇐ Y that maps past examples and the newly revealed instance
x → X to a label y → Y .

Definition 2 (Randomized Online Learner) A randomized online learner is a deterministic map-
ping A : (X ↑ S(Y))ω ↑ X ⇐ !(Y) that maps past examples and the newly revealed instance
x → X to a probability distribution µ̂ → !(Y). The learner then randomly samples a label ŷ ⇒ µ̂

to make a prediction.

We typically use A(x) to denote the prediction of A on x. When A is randomized, we use A(x) to
denote the random sample ŷ drawn from the distribution that A outputs.

A hypothesis class is said to be online learnable if there exists an online learning algorithm,
either deterministic or randomized, whose (expected) cumulative loss, on any sequence of labeled
examples, (x1, S1), ..., (xT , ST), is not too far from that of best-fixed hypothesis in hindsight.

Definition 3 (Online Agnostic Learnability) A hypothesis class H ↔ Y
X is online learnable in

the agnostic setting if there exists a (potentially randomized) algorithm A such that its expected
regret

RA(T,H) := sup
(x1,S1),...,(xT ,ST)

(
E
[

T∑

t=1

{A(xt) /→ St}

]
⇑ inf

h→H

T∑

t=1

{h(xt) /→ St}

)

is a non-decreasing, sub-linear function of T .

A sequence of labeled examples {(xt, St)}Tt=1 is said to be realizable by H if there exists a hypoth-
esis hω → H such that hω(xt) → St for all t → [T]. In such case, we have infh→H

∑
T

t=1 {h(xt) /→

St} = 0.

Definition 4 (Online Realizable Learnability) A hypothesis class H ↔ Y
X is online learnable in

the realizable setting if there exists a (potentially randomized) algorithm A such that its expected
number of mistakes

MA(T,H) := sup
(x1,S1),...,(xT ,ST)

↑h
ω
→H such that hω(xt)→St

E
[

T∑

t=1

{A(xt) /→ St}

]

is a non-decreasing, sub-linear function of T .

4

ONLINE LEARNING WITH SET-VALUED FEEDBACK

One may analogously define a slightly restricted notion of deterministic realizable learnability
by restricting the algorithm A to be deterministic.

3. Combinatorial Dimensions

In online learning theory, combinatorial dimensions are often defined in terms of trees, a basic
unit that captures temporal dependence. Accordingly, we start this section by formally defining the
notion of a tree.

Given an instance space X and a (potentially uncountable) set of objects M, an X -valued, M-
ary tree T of depth T is a complete rooted tree such that each internal node v is labeled by an
instance x → X and for every internal node v and object m → M, there is an outgoing edge e

m
v

indexed by m. We can mathematically represent this tree by a sequence (T1, ..., TT) of labeling
functions Tt : Mt↓1

⇐ X which provide the labels for each internal node. A path of length T

down the tree is given be a sequence of objects m = (m1, ...,mT) → M
T . Then, Tt(m1, ...,mt↓1)

gives the label of the node by following the path (m1, ...,mt↓1) starting from the root node, going
down the edges indexed by the mt’s. We let T1 → X denote the instance labeling the root node.
For brevity, we define m<t = (m1, ...,mt↓1) and therefore write Tt(m1, ...,mt↓1) = Tt(m<t).
Analogously, we let m↔t = (m1, ...,mt).

Often, it is useful to label the edges of a tree with some auxiliary information. Given an X -
valued, M-ary tree T of depth T and a (potentially uncountable) set of objects N , we can formally
label the edges of T using objects in N by considering a sequence (f1, ..., fT) of edge-labeling
functions ft : Mt

⇐ N . For each depth t → [T], the function ft takes as input a path m↔t of length
t and outputs an object in N . Accordingly, we can think of the object ft(m↔t) as labeling the edge
indexed by mt after following the path m<t down the tree. We now use this notation to rigorously
define existing combinatorial dimensions in online learning.

We begin with the Littlestone dimension, which is known to characterize binary/multiclass on-
line classification, where S(Y) = {{y} : y → Y}.

Definition 5 (Littlestone dimension (Littlestone, 1987; Daniely et al., 2011)) Let T be a com-
plete, X -valued , {±1}-ary tree of depth d. The tree T is shattered by H ↔ Y

X if there ex-
ists a sequence (f1, ..., fd) of edge-labeling functions ft : {±1}t ⇐ Y such that for every path
ω = (ω1, ...,ωd) → {±1}d, there exists a hypothesis hε → H such that for all t → [d], hε(Tt(ω<t)) =
ft(ω↔t) and ft((ω<t,⇑1)) ↓= ft((ω<t,+1)). The Littlestone dimension of H, denoted L(H), is the
maximal depth of a tree T that is shattered by H. If there exists shattered trees of arbitrarily large
depth, we say L(H) = ⇓.

A natural extension of the Littlestone dimension to set-valued feedback is to (1) replace the
two differing labels on the edges of the Littlestone tree with two disjoint sets in S(Y) and (2)
require that for every path down the tree, there is a hypothesis whose outputs on the sequence of
instances lie inside the sets labeling the sequence of edges. In fact, one can even consider trees
with more than two outgoing edges. Such combinatorial structures have been previously studied
to characterize online learnability under bandit feedback (Daniely and Helbertal, 2013) and list
classification (Moran et al., 2023).

Along this direction, Definition 6 considers complete trees where each internal node has p out-
going edges. Each outgoing edge is labeled by a set in S(Y) with the additional constraint that the
mutual intersection of the p sets labeling the p edges has to be empty. Finally, such a [p]-ary is

5

RAMAN SUBEDI TEWARI

shattered if for every root-to-leaf path down the tree, there exists a hypothesis whose outputs on the
sequence of instances lie in the sets labeling the edges along the sequence.

Definition 6 (p-Set Littlestone dimension) Let T be a complete X -valued, [p]-ary tree of depth
d. The tree T is shattered by H ↔ Y

X if there exists a sequence (f1, ..., fd) of edge-labeling
set-valued functions ft : [p]t ⇐ S(Y) such that for every path q = (q1, ..., qd) → [p]d, we have⋂

i→[p] ft((q<t, i)) = ≃ and there exists a hypothesis hq → H such that hq(Tt(q<t)) → ft(q↔t) for
all t → [d],. The p-Set Littlestone dimension of H denoted SLp(H,S(Y)), is the maximal depth
of a tree T that is shattered by H. If there exists shattered trees of arbitrarily large depth, we say
SLp(H,S(Y)) = ⇓.

When it is clear from context, we drop the dependence of S(Y) and only write SLp(H). Note
that if p1 > p2, then SLp1(H) ↘ SLp2(H). It is not too hard to see that the finiteness of SLp(H)
for every p ↘ 2 is a necessary condition for online learnability. For many natural problems (see
Theorem 10 and Section 6), the finiteness of SLp(H) for every p ↘ 2 is also sufficient for online
learnability. However, Example 1 shows that the finiteness of SLp(H) for every p ↘ 2 is actually
not sufficient.

Example 1 Let Y = N, S(Y) = {A
c : A ↗ N, |A| < ⇓}, and suppose H = {x ⇔⇐ y : y → Y}

is the class of constant functions. First, we claim that SLp(H) = 0 for all p ↘ 2. Fix p ↘ 2 and
let S1, ..., Sp → S(Y) denote an arbitrary sequence of p sets. For each i → [p], let Ai be the finite
set such that Si = A

c

i
. Then,

⋂
p

i=1 Si =
⋂

p

i=1A
c

i
= (

⋃
p

i=1Ai)
c
↓= ≃ since |

⋃
p

i=1Ai| < ⇓. Thus,
SLp(H) = 0 because it is not possible to find p sets in S(Y) whose mutual intersection is empty.
Since p is arbitrary, this is true for every p ↘ 2. Next, we claim that H is not online learnable. This
follows from the fact that for every ε → [0, 1] and measure µ → !(Y), there exists a finite set Aµ ↗ N
such that µ(Aµ) ↘ ε. Suppose for the sake of contradiction this is not true. That is, there exists an
ε → [0, 1] and a measure µϑ → !(Y) such that for all finite sets A ↗ N, we have µϑ(A) < ε. For
every i → N, let Ni = {1, 2, ..., i} denote the first i natural numbers. Note that µϑ(Ni) < ε and that
{Ni}i→N is a monotone increasing sequence of finite sets such that limi↗↘Ni = N. Therefore, we
have that 1 = µϑ(N) = µϑ(limi↗↘Ni) = limi↗↘ µϑ(Ni) < ε, a contradiction. Accordingly, for
any ε → [0, 1], no matter what measure µ̂t the algorithm picks to make its prediction in round t, there
always exists a finite set Aµ̂t such that µ̂t(Aµ̂t) ↘ ε. Since |Aµ̂t | < ⇓, we know that Ac

µ̂t
→ S(Y).

Thus, there is always a strategy for the adversary to force the learner’s expected loss to be at least
ε in each round t → [T]. On the other hand, since for any sequence of sets S1, ..., ST → S(Y), we
have that ↖T

t=1St ↓= ≃, there exists a hypothesis hy → H such that hy(x) → St for all x → X and
t → [T]. Thus, every stream is realizable by H. Accordingly, for every ε → [0, 1], the expected regret
of any online learner in the realizable setting is at least εT .

Example 1 shows that, in full generality, one might need to go beyond trees with finite width in
order to characterize online learnability with set-valued feedback. Using this observation, we define
two new combinatorial dimensions, the Set Littlestone and Measure shattering dimension, whose
associated trees can have infinite-width. In Section 4, we show that the Set Littlestone dimension
(SLdim) tightly characterizes the online learnability of H by any deterministic online learner in the
realizable setting.

Definition 7 (Set Littlestone dimension) Let T be a complete X -valued, Y-ary tree of depth d.
The tree T is shattered by H ↔ Y

X if there exists a sequence (f1, ..., fd) of edge-labeling set-valued

6

ONLINE LEARNING WITH SET-VALUED FEEDBACK

functions ft : Yt
⇐ S(Y) such that for every path y = (y1, ..., yd) → Y

d, we have yt /→ ft(y↔t) and
there exists a hypothesis hy → H such that hy(Tt(y<t)) → ft(y↔t) for all t → [d]. The Set Littlestone
dimension of H, denoted SL(H,S(Y)), is the maximal depth of a tree T that is shattered by H. If
there exists shattered trees of arbitrarily large depth, we say SL(H,S(Y)) = ⇓.

On the other hand, we show that the Measure Shattering dimension (MSdim) characterizes
the online learnability of H by any randomized online learner in both the realizable and agnostic
settings under set-valued feedback. We note that the Measure Shattering dimension is similar to the
sequential fat-shattering dimension in the sense that it is a scale-sensitive, and therefore defined at
every ϑ > 0.

Definition 8 (Measure Shattering dimension) Let T be a complete X -valued, !(Y)-ary tree of
depth d, and fix ϑ → (0, 1]. The tree T is ϑ-shattered by H ↔ Y

X if there exists a sequence
(f1, ..., fd) of edge-labeling set-valued functions ft : !(Y)t ⇐ S(Y) such that for every path
µ = (µ1, ..., µd) → !(Y)d, we have µt(ft(µ↔t)) ↙ 1 ⇑ ϑ and there exists a hypothesis hµ → H

such that hµ(Tt(µ<t)) → ft(µ↔t) for all t → [d]. The Measure Shattering dimension of H at scale ϑ,
denoted MSϖ(H,S(Y)), is the maximal depth of a tree T that is ϑ-shattered by H. If there exists ϑ-
shattered trees of arbitrarily large depth, we say MSϖ(H,S(Y)) = ⇓. Analogously, we can define
MS0(H,S(Y)) by requiring strict inequality, µt(ft(µ↔t)) < 1.

As with most scale-sensitive dimensions, MSdim has a monotonicity property, namely, MSϖ1(H) ↙
MSϖ2(H) for any ϑ2 ↙ ϑ1. This follows immediately upon noting that for any A → S(Y), we have
µ(A) ↙ 1⇑ ϑ1 ↙ 1⇑ ϑ2. Thus, a tree shattered at scale ϑ1 is also shattered at scale ϑ2.

3.1. Relations Between Combinatorial Dimensions

In this section, we show how the p-SLdim, SLdim, and MSdim are related under various conditions
on the problem setting. One natural case is when the set system S(Y) has finite Helly number, a
quantification of the following property: every collection-wise disjoint sequence of sets in S(Y)
contains a small collection-wise disjoint subsequence of sets.

Definition 9 (Helly Number of S(Y)) The Helly number of S(Y) ↔ ω(Y), denoted H(S(Y)), is
the smallest number p → such that for any collection of sets C ↔ S(Y) where

⋂
S→C

S = ≃, there
is a subset C≃

↗ C of size at most p where
⋂

S→C→ S = ≃.

We say that S(Y) is a Helly space if and only if H(S(Y)) < ⇓. The Helly property captures
many practical learning settings. For example, when Y is finite, any collection S(Y) ↔ ω(Y) is
a Helly space. However, Helly spaces are more general and capture situations where Y can be
uncountably large. For example, if Y = [0, 1] and S(Y) = {[a, b] : 0 ↙ a < b ↙ 1} is the set
of all intervals in Y , then the celebrated Helly’s theorem states that H(S(Y)) = 2 (Radon, 1921).
In Section 6, we give even more examples of natural settings where H(S(Y)) < ⇓. In this work,
we use the Helly number of S(Y) to establish a relationship between the combinatorial dimensions
defined above.

Theorem 10 (Structural Properties) For S(Y) ↔ ω(Y) and H ↔ Y
X , we have

(i) SLp(H) ↙ MSϖ(H) ↙ SL(H) for all p ↘ 2 and ϑ → [0, 1
p
].

7

RAMAN SUBEDI TEWARI

(ii) If p = H(S(Y)) < ⇓, then SLp(H) = MSϖ(H) = SL(H) for all ϑ → [0, 1
p
].

The proof of Theorem 10 is found in Appendix A. The key idea in the proof of (ii) is that
when S(Y) is a Helly space, we can “compress” the infinite-width trees in the definition of SLdim
and MSdim to finite-width trees used in the definition of p-SLdim. Perhaps the most important
implication of these relations is that when S(Y) is a Helly family, deterministic and randomized
realizable learnability are equivalent and characterized by the same dimension. Thus, as we show
in Section 4.1, the separation between randomized and deterministic realizable learnability only
occurs when H(S(Y)) = ⇓. We leave it as an open question whether the finiteness of H(S(Y)) is
necessary for this equivalence.

4. Realizable Setting

4.1. A Separation Between Deterministic and Randomized Learnability

We first show that unlike in online multiclass learning with single-label feedback, deterministic and
randomized learnability are not equivalent under set-valued feedback. We note that Hanneke and
Yang (2023); Hanneke et al. (2021) show a similar separation in the context of bandit learnability
and proper online learnability.

Theorem 11 (Deterministic Learnability ↓∝ Randomized Learnability) There exists a Y , S(Y)
and H ↔ Y

X such that in the realizable setting (i) H is online learnable, however (ii) no determin-
istic algorithm is an online learner for H.

Proof Let Y = and S(Y) = {Ay}y→Y where Ay = \ y. Let H = {hy : y → } be the set of
constant functions. That is, hy(x) = y for all x → X .

Let A be any deterministic online learner for H and T → N be the time horizon. We construct a
realizable stream of length T such that A makes a mistake on each round. Without loss of generality,
we let the adversary play after A since A is deterministic. To that end, pick any sequence of
instances {xt}Tt=1 → X

T and consider the labeled stream {(xt, AA(xt))}
T

t=1, where A(xt) denotes
the prediction of A in the t’th round. By definition of Ay, we have

∑
T

t=1 {A(xt) /→ AA(xt)} = T .
Moreover, since T is finite, it also holds that

⋂
T

t=1AA(xt) ↓= ≃. Thus, there exists hy → H such that
for all t → [T], hy(xt) → AA(xt), showing that the stream {(xt, AA(xt))}

T

t=1 is indeed realizable.
Since A is arbitrary, every deterministic algorithm fails to learn H under set-valued feedback from
S(Y).

We now give a randomized online learner for H that achieves sub-linear regret for any sequence
of instances labeled by sets from S(Y). Let {(xt, St)}Tt=1 → (X ↑ S(Y))T denote the stream of
instances to be observed by the randomized online learner. Consider a randomized learner A that in
each round samples uniformly from {1, ..., T}. Then, A’s expected cumulative loss satisfies

[
T∑

t=1

{A(xt) /→ St}

]
=

T∑

t=1

[A(xt) /→ St] =
T∑

t=1

[
St = AA(xt)

]
↙

T∑

t=1

1

T
= 1,

where we have used the fact that A(xt) /→ St iff the adversary exactly picks the set St = AA(xt).
Thus, A achieves a constant regret bound, showcasing that it is an online learner for H under set-
valued feedback from S(Y). This completes the overall proof as we have given a learning setting
that is online learnable, but not by any deterministic learner.

8

ONLINE LEARNING WITH SET-VALUED FEEDBACK

4.2. Deterministic Learnability

Given that deterministic and randomized online learnability are not generally equivalent, we show
that the SLdim tightly characterizes deterministic online learnability in the realizable setting.

Theorem 12 (Deterministic Realizable Learnability) For any S(Y) ↔ ω(Y) and H ↔ Y
X , we

have infDeterministic A MA(T,H) = SL(H).

Our proof of the upperbound on the optimal MA(T,H) is constructive. We show that Algo-
rithm 1 makes at most SL(H) mistakes in any realizable stream by generalizing the arguments by
Littlestone (1987). To prove the lowerbound on MA(T,H) for any deterministic algorithm A, we
construct a difficult stream by traversing the shattered tree of depth SL(H) adapting to A’s predic-
tions. Both proofs can be found in Appendix B.

Algorithm 1 Deterministic Standard Optimal Algorithm
Initialize V0 = H

for t = 1, ..., T do
Receive unlabeled example xt → X .
For each A → S(Y), define Vt↓1(A) := {h → Vt↓1 | h(xt) → A}.
Let St(Y) := {A → S(Y) : A ↖ {h(xt) | h → Vt↓1} ↓= ≃}.

If SL(Vt↓1) > 0, predict ŷt = argminy→Y maxA→S(Y)
y/→A

SL(Vt↓1(A)).

Else, predict ŷt →
⋂

A→St(Y) A.
Receive feedback St → St(Y) and update Vt = Vt↓1(St).

end

Remark. We highlight that Algorithm 1 generalizes the classical Standard Optimal Algorithm. In
fact, if S(Y) = {{y} : y → Y} then Algorithm 1 reduces exactly to the classical Standard Optimal
Algorithm from Littlestone (1987) and SLdim reduces to the Ldim. Moreover, when S(Y) =
{Y \ {y} : y → Y}, Algorithm 1 reduces to the Bandit Standard Optimal Algorithm from Daniely
et al. (2011) and SLdim reduces to the Bandit Littlestone dimension.

4.3. Randomized Learnability

Next, we characterize randomized online learnability in the realizable setting. The proof of Theorem
13 can be found in Appendix C.

Theorem 13 (Randomized Realizable Learnability) For any S(Y) ↔ ω(Y) and H ↔ Y
X ,

sup
ϖ→(0,1]

ϑ MSϖ(H) ↙ inf
A

MA(T,H) ↙ C inf
ϖ→(0,1]

{
ϑT +

∫ 1

ϖ

MSϱ(H)dϖ
}

where C > 0 is some universal constant. Moreover, both the upper and lowerbounds can be tight
in general up to constant factors.

Using Theorem 10, it follows that MA(T,H) = ”(SL(H)) whenever H(S(Y)) < ⇓. We
highlight that the upperbound can be tight up to logarithmic factors in T . If S(Y) is a set of
singletons, then we have MS0(H) = L(H). Thus, the upperbound reduces to L(H), which matches

9

RAMAN SUBEDI TEWARI

the known lowerbound of L(H)/2 in the realizable multiclass classification (Daniely et al., 2011).
Example 2 shows that the lowerbound of supϖ>0 ϑ MSϖ(H) can be tight in the realizable setting.

To achieve our upperbound, we first construct a randomized online learner running at a fixed
scale ϑ → (0, 1), whose expected cumulative loss, in the realizable setting, is at most ϑT +MSϖ(H).
Then, we upgrade this result by adapting the algorithmic chaining technique from Daskalakis and
Golowich (2022) to give a randomized, multi-scale online learner in the realizable setting. Our
lowerbound is obtained by traversing the tree of depth MSϖ(H) adapting to the distributions that the
algorithm produces to make its randomized predictions.

We conclude this section by showing that the Helly number of S(Y) is a sufficient condition
for deterministic and randomized learnability to be equivalent in the realizable setting. Corollary 14
follows directly upon using Theorems 10(ii), 12, and 13.

Corollary 14 (Deterministic Learnability ∝ Randomized Learnability for Helly Families) Let
S(Y) ↔ ω(Y) such that H(S(Y)) < ⇓. Then, in the realizable setting, H ↔ Y

X is online learnable
via a randomized algorithm if and only if H is online learnable via a deterministic algorithm.

5. Agnostic Setting

In this section, we move beyond the realizable setting, and consider the more general agnostic
setting, where we are not guaranteed that there exists a consistent hypothesis. Our main theorem
shows that the finiteness of MSdim at every scale ϑ > 0 is both a necessary and sufficient condition
for agnostic online learnability with set-valued feedback.

Theorem 15 (Agnostic Learnability) For any S(Y) ↔ ω(Y) and hypothesis class H ↔ Y
X

where supϖ→(0,1] MSϖ(H) > 0,

max

{√
SL2(H)T

8
, sup
ϖ→(0,1]

ϑ MSϖ(H)


↙ inf

A

RA(T,H) ↙ inf
ϖ→(0,1]


MSϖ(H) + ϑT +


2MSϖ(H)T ln(T)



and the upper and lowerbounds can be tight in general up to constant factors. Moreover, when
supϖ→(0,1] MSϖ(H) = 0, there is no non-negative lowerbound.

Using Theorem 10, it follows that RA(T,H) = ”̃(
′
T) whenever H(S(Y)) < ⇓ and SL(H) <

⇓. We highlight that the upper bound can be tight up to logarithmic factors in T . If S(Y) is
a set of singletons, then we have MS0(H) = L(H). Thus, the upper bound reduces to L(H) +
2L(H)T ln(T), which matches the known lower bound of


L(H)T/8 in the agnostic multiclass

classification (Daniely et al., 2011). The following example shows that the lower bound cannot be
improved in general.

Example 2 Let Y = {1, 2, 3, 4, 5, 6}, S(Y) = {{1, 4, 5}, {2, 5, 6}, {3, 4, 6}}, and H = {h1, h2, h3},
where again hi is the hypothesis that always outputs i. Let d = SL2(H) and dϖ = MSϖ(H). Since
there are no disjoint sets in S(Y), we trivially have d = 0, reducing the lowerbound to ϑ dϖ . First,
we prove that supϖ ϑdϖ = 1

3 . This follows from the fact that H(S(Y)) = 3, and therefore, by The-
orem 10, for all ϑ → [0, 13] we have dϖ = SL(H) = 1. Moreover, by the monotonicty property of
MSdim, dϖ ↙ d 1

3
= 1 for all ϑ >

1
3 . Thus, it must be the case supϖ>0 ϑ dϖ = 1

3 .

10

ONLINE LEARNING WITH SET-VALUED FEEDBACK

Now, we give a randomized online learner whose expected regret is at most supϖ>0 ϑdϖ = 1
3

on the worst-case sequence, matching the lowerbound. Consider an online learner A, which on
the round t = 1 predicts by uniformly sampling from {4, 5, 6}, and on all other rounds predicts
by uniformly sampling from {4, 5, 6} ↖ St↓1, where St↓1 is the set revealed by the adversary on
round t ⇑ 1. Our goal will be to show that A’s expected regret on any sequence is at most 1

3 . Let
{(xt, St)}Tt=1 denote the stream chosen by the adversary. Then, we have
[

T∑

t=1

{A(xt) /→ St}

]
=

1

3
+

T∑

t=2

[{A(xt) /→ St}|St ↓= St↓1] {St ↓= St↓1} =
1

3
+

1

2

T∑

t=2

{St ↓= St↓1},

where the first equality follows from the fact that [{A(x1) /→ S1}] =
1
3 and [{A(xt) /→ St} |St = St↓1] =

0. Moreover, we can lowerbound the expected cumulative loss of the best fixed hypothesis as

min
h→H

T∑

t=1

{h(xt) /→ St} = min
i→[3]

T∑

t=1

{i /→ St} ↘
1

2

T∑

t=2

{St ↓= St↓1}

Combining the upper- and lowerbound gives that RA(T,H) ↙ 1
3 .

Remark. An important implication of Theorem 15 is that when H(S(Y)) = 2, a lowerbound scaling
with T is always possible. However, Example 2 above witnessing the tightness of the lowerbounds
in Theorem 15 shows that this is not the case when H(S(Y)) ↘ 3. Thus, a sharp phase transition
occurs when H(S(Y)) increases from 2 to 3.

6. Applications

In this section, we show how online multilabel ranking with relevance-score feedback and online
multilabel classification are special instances of our model of online learning with set-valued feed-
back. In Appendix E, we also consider real-valued prediction with interval-valued response.

6.1. Online Multilabel Ranking

In online multilabel ranking, we let X denote the instance space, Y denote the set of permutations
over labels [K] := {1, ...,K}, and R = {0, 1}K denote the target space for some K → . We refer
to an element r → R as a binary relevance-score vector that indicates the relevance of each of the
K labels. A permutation ϱ → Y induces a ranking of the K labels in decreasing order of relevance.
For an index i → [K], we let ϱi

→ [K] denote the rank of label i. Likewise, given an index i → [K],
we let ri denote the relevance of label i. A ranking hypothesis h → H ↔ Y

X maps instances in X

to a permutation (ranking) in Y . Given an instance x → X , one can think of h(x) as h’s ranking of
the K different labels in decreasing order of relevance.

Unlike classification, a distinguishing property of multilabel ranking is the mismatch between
the predictions the learner makes and the feedback it receives. Because of this mismatch, there is
no canonical loss in multilabel ranking like the 0-1 loss in classification. Nevertheless, a natural
analog of the 0-1 loss in multilabel ranking is ς0-1(ϱ, r) = supi,j→[K] {r

i
< r

j
} {ϱ

i
< ϱ

j
}. At

a high-level, the 0-1 ranking loss penalizes a permutation ϱ if it ranks a less relevant item above a
more relevant item.

11

RAMAN SUBEDI TEWARI

Under the 0-1 loss, online multilabel ranking with binary relevance-score feedback is a specific
instance of our general online learning model with set-valued feedback. To see this, note that given
a relevance score vector r → R, there can be many permutations ϱ → Y such that ς0-1(ϱ, r) = 0.
Indeed, suppose r = (0, 1, 1). Then, both the permutations ϱ1 = (3, 1, 2) and ϱ2 = (3, 2, 1) achieve
0 loss. Thus, an equivalent way of representing r = (0, 1, 1) is to consider the set of permutations
in Y for which ς0-1(ϱ, r) = 0. To this end, given any r → R, let Y(r) = {ϱ → Y : ς0-1(ϱ, r) = 0}.
Then, note that for every ϱ → Y and r → R, we have ς0-1(ϱ, r) = {ϱ /→ Y(r)}. From this
perspective, we can equivalently define the online multilabel ranking setting by having the adversary
in each round t → [T], reveal a set Y(rt) → {Y(r) : r → R} = S(Y) instead of the binary relevance
score vector rt → R, and penalizing the learner according to the 0-1 set loss {ϱt /→ Y(rt)}, instead
of ς0-1(ϱ, r).

Since online multilabel ranking is a specific instance of our general online learning with set-
valued feedback, our qualitative characterization in terms of the SLdim and MSdim carry over.
Thus, in this section, we instead focus on establishing a sharp quantitative characterization of online
learnability. To do so, we first show that H(S(Y)) = 2. The proof of Lemma 16 is deferred to
Appendix E.1.

Lemma 16 (Helly Number of Permutation Sets) Let S(Y) = {Y(r) : r → R} where Y(r) =
{ϱ → Y : ς0-1(ϱ, r) = 0}. Then, H(S(Y)) = 2.

Since H(S(Y)) = 2, by Theorem 10, we know that for all ϑ → [0, 12], SL2(H) = MSϖ(H) =
SL(H). Therefore, the SL2(H) characterizes both deterministic and randomized online multilabel
ranking learnability. Moreover, we can use Theorems 12, 13, and 15 to give Corollary 17, a sharp
quantitative characterization of online multilabel ranking learnability in both the realizable and ag-
nostic settings.

Corollary 17 (Online Learnability of Multilabel Ranking) Let Y , R, and S(Y) be defined as
above. For any ranking hypothesis class H ↔ Y

X we have

(i) SL2(H)
2 ↙ infA MA(T,H) ↙ SL2(H).

(ii)


SL2(H)T
8 ↙ infA RA(T,H) ↙ SL2(H) +


2SL2(H)T ln(T).

We note that the infimum in Corollary 17(i) is over all algorithms, not just deterministic ones. Also,
observe that the upper- and lowerbounds in Corollary 17 do not depend on |Y| or |R|.

6.2. Online Multilabel Classification

In online multilabel classification, we let X denote the instance space, and Y = {0, 1}K is the set of
all bit strings of length K → . Unlike multilabel ranking, instead of predicting a permutation over
[K], the goal is to predict ŷ → Y , which indicates which of the labels are relevant. As feedback, the
learner also receives a bit string y → Y which gives the ground truth on which of the K labels are
relevant. A multilabel hypothesis h → H ↔ Y

X maps instances in X to a bit string in Y .
The most natural loss in multilabel classification is the Hamming loss, defined by ςH(ŷ, y) =∑

K

i=1 {ŷ
i
↓= y

i
}. However, when K is very large, evaluating performance using the Hamming

loss might be too stringent. Instead, it might be more natural to consider a thresholded version of
the Hamming loss, defined as ςH,q(ŷ, y) = {ςH(ŷ, y) > q} = {ŷ /→ B(y, q)}, where q → [K⇑1]

12

ONLINE LEARNING WITH SET-VALUED FEEDBACK

and B(y, q) = {ŷ → Y : ςH(ŷ, y) ↙ q} denotes the Hamming ball of radius q centered at y. The loss
ςH,q allows the learner’s prediction ŷ to be incorrect in at most q different spots before penalizing
the learner. By taking Y = {0, 1}K and Sq(Y) = {B(y, q) : y → Y}, it is not hard to see that
online multilabel classification with ςH,q is a specific instance of our general online learning model
with set-valued feedback. Thus, a quantitative characterization of online multilabel classification in
terms of SL(H) and MSϖ(H) follows immediately from Theorems 12 and 15. The precise statement
is provided in Appendix E.3.

In multilabel ranking, we showed that the 2-SLdim, provides a tight quantitative characteriza-
tion of online learnability without any dependence on K. Such a characterization in terms of the
2-SLdim, as opposed to SLdim or MSdim, is desirable because it satisfies the Finite Character Prop-
erty (Ben-David et al., 2019, Definition 4). A crucial step in doing so was showing that the Helly
number of the permutation set system is 2, and more importantly, does not scale with K. Along
this direction, it is natural to ask whether there exists a p → such that the p-SLdim gives a K-free
quantitative characterization of online multilabel classification under ςH,q. To resolve this question
positively it suffices to show that H(Sq(Y)) does not scale with K, as conjectured below.

Conjecture 18 (Helly Number of Hamming Balls) For any K → N and q → [K ⇑ 1], we have
that H(Sq(Y)) = 2q+1.

In Appendix E.3, we partially resolve this conjecture by showing 2q+1
↙ H(Sq(Y)) ↙

∑
q

r=0


K

r


+

1. We leave it as an open question to prove a matching upperbound.

Acknowledgments

AT acknowledges the support of NSF via grant IIS-2007055. VR acknowledges the support of the
NSF Graduate Research Fellowship. US acknowledges the support of the Rackham International
Student Fellowship.

References

Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feedback
graphs: Beyond bandits. In Conference on Learning Theory, pages 23–35. PMLR, 2015.

Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In COLT, vol-
ume 3, page 1, 2009.

Shai Ben-David, Pavel Hrubeš, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Learnability can
be undecidable. Nature Machine Intelligence, 1(1):44–48, 2019.

Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy. Proper learning, helly
number, and an optimal svm bound. In Jacob Abernethy and Shivani Agarwal, editors, Proceed-
ings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine
Learning Research, pages 582–609. PMLR, 09–12 Jul 2020.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

13

RAMAN SUBEDI TEWARI

Amit Daniely and Tom Helbertal. The price of bandit information in multiclass online classification.
In Conference on Learning Theory, pages 93–104. PMLR, 2013.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability
and the erm principle. In Sham M. Kakade and Ulrike von Luxburg, editors, Proceedings of the
24th Annual Conference on Learning Theory, volume 19 of Proceedings of Machine Learning
Research, pages 207–232, Budapest, Hungary, 09–11 Jun 2011. PMLR.

Constantinos Daskalakis and Noah Golowich. Fast rates for nonparametric online learning: from
realizability to learning in games. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 846–859, 2022.

Phil Diamond. Least squares fitting of compact set-valued data. Journal of Mathematical Analysis
and Applications, 147(2):351–362, 1990.

Jürgen Eckhoff. Helly, Radon, and Carathéodory Type Theorems. In Handbook of
Convex Geometry, pages 389–448. North-Holland, Amsterdam, 1993. ISBN 978-0-
444-89596-7. URL https://www.sciencedirect.com/science/article/pii/

B9780444895967500171.

Yuval Filmus, Steve Hanneke, Idan Mehalel, and Shay Moran. Optimal prediction using expert
advice and randomized littlestone dimension, 2023.

Marı́a Angeles Gil, Marı́a Asunción Lubiano, Manuel Montenegro, and Marı́a Teresa López. Least
squares fitting of an affine function and strength of association for interval-valued data. Metrika,
56:97–111, 2002.

Steve Hanneke and Liu Yang. Bandit learnability can be undecidable. In The Thirty Sixth Annual
Conference on Learning Theory, pages 5813–5849. PMLR, 2023.

Steve Hanneke, Roi Livni, and Shay Moran. Online learning with simple predictors and a com-
binatorial characterization of minimax in 0/1 games. In Conference on Learning Theory, pages
2289–2314. PMLR, 2021.

Steve Hanneke, Shay Moran, Vinod Raman, Unique Subedi, and Ambuj Tewari. Multiclass online
learning and uniform convergence. Proceedings of the 36th Annual Conference on Learning
Theory (COLT), 2023.

Ed Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.

Catherine Huber, Valentin Solev, and Filia Vonta. Interval censored and truncated data: Rate of
convergence of npmle of the density. Journal of Statistical Planning and Inference, 139(5):
1734–1749, 2009.

Daniel Kane, Roi Livni, Shay Moran, and Amir Yehudayoff. On communication complexity of
classification problems. In Conference on Learning Theory, pages 1903–1943. PMLR, 2019.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1987.

14

https://www.sciencedirect.com/science/article/pii/B9780444895967500171
https://www.sciencedirect.com/science/article/pii/B9780444895967500171

ONLINE LEARNING WITH SET-VALUED FEEDBACK

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331, 2009.

Shay Moran, Ohad Sharon, Iska Tsubari, and Sivan Yosebashvili. List online classification. In The
Thirty Sixth Annual Conference on Learning Theory, pages 1885–1913. PMLR, 2023.

Johann Radon. Mengen konvexer körper, die einen gemeinsamen punkt enthalten. Mathematische
Annalen, 83(1-2):113–115, 1921.

Sasha Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize : From value
to algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/

file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014.

Dirk van der Hoeven, Federico Fusco, and Nicolò Cesa-Bianchi. Beyond bandit feedback in online
multiclass classification. Advances in Neural Information Processing Systems, 34:13280–13291,
2021.

15

https://proceedings.neurips.cc/paper_files/paper/2012/file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf

RAMAN SUBEDI TEWARI

Appendix A. Relationships Between Combinatorial Dimensions

A.1. Proof of (i) in Theorem 10.

Fix p ↘ 2 and ϑ → (0, 1
p
]. We first prove MSϖ(H) ↙ SL(H). Let T be a !(Y)-ary tree of depth

dϖ = MSϖ(H) shattered by H. For each internal node v in T , keep the outgoing edges indexed
by {φy}y→Y , where φy is a Dirac measure with point mass on y, and remove all other edges. Let
Ay be the set labeling the outgoing edge from v indexed by φy. Since φy(Ay) ↙ 1 ⇑ ϑ, we have
y /→ Ay. Changing the index of edges from φy to y for all the remaining outgoing edges, we obtain
a Y-ary tree of depth dϖ . Repeating this process of pruning and reindexing recursively for every
internal node, a !(Y)-ary tree shattered by H can be transformed into a Y-ary tree of the same
depth shattered by H. Thus, we must have MSϖ(H) ↙ SL(H) for all ϑ → (0, 1

p
]. For ϑ = 0, the

shattering condition gives φy(Ay) < 1, which implies that y /→ Ay. The rest of the arguments are
identical to case ϑ → (0, 1

p
] presented above. Therefore, MSϖ(H) ↙ SL(H) for all ϑ → [0, 1

p
].

We now prove SLp(H) ↙ MSϖ(H) for ϑ → [0, 1
p
]. Let T be a [p]-ary tree shattered by H. We

expand T to obtain a !(Y)-ary tree of depth d at scale 1
p

. Let v be the root node in T , and A1, ..., Ap

be the labels on the outgoing edges from v. To transform T to a !(Y)-ary tree, we construct an
outgoing edge for each measure. Fix a measure µ → !(Y). There must be an Aµ → {A1, ..., Ap}

such that µ(Aµ) ↙ 1⇑ 1
p

. Suppose, for the sake of contradiction, this is not true. That is, µ(Ai) >

1 ⇑
1
p

for all A1, ..., Ap, which further implies that µ(Ac

i
) <

1
p

. Since
⋂

p

i=1Ai = ≃, we have
Y =

⋃
p

i=1A
c

i
and thus

µ(Y) = µ

(
p

i=1

A
c

i

)
↙

p∑

i=1

µ(Ac

i) < 1,

which contradicts the fact that µ is a probability measure. Therefore, for every µ, there exists a
Aµ → {A1, ..., Ap} such that µ(Aµ) ↙ 1⇑ 1

p
. For every measure µ → !(Y), add an outgoing edge

from v indexed by µ and labeled by Aµ. Pick the sub-tree in T following the outgoing edge from v

labeled by Aµ and append it to the newly constructed outgoing edge from v indexed by µ. Remove
the two original outgoing edges from v indexed by elements of [p] and their corresponding subtree.
Upon repeating this process recursively for every internal node v in T , we obtain a !(Y)-ary tree
that is 1

p
-shattered by H. Thus, we have MS 1

p
(H) ↘ SLp(H). Using monotonicity of MSdim, we

therefore conclude that MSϖ(H) ↘ SLp(H) for all ϑ → [0, 1
p
].

A.2. Proof of (ii) in Theorem 10.

Let p = H(S(Y)) < ⇓. Given p ↘ 2 and (i), it suffices to show that SLp(H) ↘ MSϖ(H) ↘ SL(H)
for all ϑ → [0, 1

p
]. We first show that MSϖ(H) ↘ SL(H) for all ϑ → [0, 1

p
]

Consider a Y-ary tree T of depth d = SL(H) shattered by H. Let v be the root node of T , and
{Ay}y→Y be the sequence of sets labeling the outgoing edges from v. Since p < ⇓, there must be
a subsequence {Ayi}

p

i=1 ↗ {Ay}y→Y such that ↖p

i=1Ayi = ≃. We keep the edges labeled by sets
{Ayi}

p

i=1 and remove all other edges, and repeat this process for every internal node v in T . The
subsequence of length p may not be unique, but choosing arbitrarily is permissible. Upon repeating
this process recursively for every internal node in the tree T , we obtain a tree T

≃ of width p such
that the sets labeling the p outgoing edges from any internal node are mutually disjoint.

Next, we expand T
≃ to obtain a !(Y)-ary tree of depth d at scale 1

p
. Let v be the root node in

T
≃, and {Ayi}

p

i=1 be the labels on the outgoing edges from v. To transform T
≃ to a !(Y)-ary tree,

16

ONLINE LEARNING WITH SET-VALUED FEEDBACK

we now construct an outgoing edge for each measure. Fix a measure µ → !(Y). There must be an
i → [p] such that µ(Ayi) ↙ 1 ⇑ 1

p
. Suppose, for the sake of contradiction, this is not true. That is,

µ(Ayi) > 1 ⇑
1
p

for all i → [p], which further implies that µ(Ac
yi
) <

1
p

. Since ↖
p

i=1Ayi = ≃, we
have Y = ∞

p

i=1A
c
yi

and thus

µ(Y) = µ

∞
p

i=1A
c

yi


↙

p∑

i=1

µ(Ac

yi
) <

p∑

i=1

1

p
< 1,

which contradicts the fact that µ is a probability measure. Therefore, for every µ, there exists a
yµ → {yi}

p

i=1 such that µ(Ayµ) ↙ 1 ⇑
1
p

. For every measure µ → !(Y), add an outgoing edge
from v indexed by µ and labeled by Ayµ . Pick the sub-tree in T

≃ following the outgoing edge
from v indexed by yµ and append it to the newly constructed outgoing edge from v indexed by µ.
Remove p remaining outgoing edges from v indexed by y → {yi}

p

i=1. Upon repeating this process
for every internal node v in T

≃, we obtain a !(Y)-ary tree that is 1
p

-shattered by H. Thus, we have
MS 1

p
(H) ↘ SL(H). Using monotonicity of MSdim, we therefore conclude that MSϖ(H) ↘ SL(H)

for all ϑ → [0, 1
p
].

We now prove that SLp(H) ↘ MSϖ(H). Suppose T is a !(Y)-ary tree ϑ-shattered by H

according to Definition 8. Let v be the root node of T . Let Ay be the set labeling the outgoing edge
from v indexed by φy. Since φy(Ay) ↙ 1 ⇑ ϑ, we have that y /→ Ay. Therefore,

⋂
y→Y

Ay = ≃.
Since p < ⇓, there must be a subsequence {Ayi}

p

i=1 ↗ {Ay}y→Y such that
⋂

p

i=1Ayi = ≃. Keep
the outgoing edges indexed by {φyi}

p

i=1 and remove all other edges along with their subtrees. For
each i → [p], change the index φyi to i. The root node v should now have p outgoing edges, where
each edge is indexed by a unique element i → [p] and labeled by the set Ayi such that

⋂
p

i=1Ayi = ≃.
Repeat this process recursively on the subtrees following the p reindexed edges results into a SLp
tree of depth dϖ shattered by H. Thus, SLp(H) ↙ MSϖ(H) for ϑ → (0, 1

p
]. The case when ϑ = 0

follows similarly.

Appendix B. Deterministic Learnability in the Realizable Setting

B.1. Upperbounds

Proof (of upperbound in Theorem 12) We first show that Algorithm 1 is a mistake-bound algorithm
that makes at most SL(H) mistakes on any realizable stream. To show this, we argue that (1) every
time Algorithm 1 makes a mistake, the SLdim of the version space goes down by 1 and (2) if the
SLdim of the current version space is 0, then there is a prediction strategy such that the algorithm
does not make any further mistakes.

Let t → [T] be a round where Algorithm 1 makes a mistake, that is ŷt /→ St, and SL(H) > 0.
We show that the SL goes down by at least 1, that is SL(Vt) ↙ SL(Vt↓1) ⇑ 1. For the sake
of contradiction, assume that SL(Vt) > SL(Vt↓1) ⇑ 1. As SL(Vt) ↙ SL(Vt↓1), we must have
SL(Vt) = SL(Vt↓1) =: m. Since the SL did not go down and the algorithm made a mistake, the
min-max prediction strategy implies that for every y → Y , there exists Ay → S(Y) such that y /→ Ay

and SL(Vt↓1(Ay)) = m. Next, construct a Y-ary tree T with xt labeling the root node. For every
y → Y , label the outgoing edge indexed by y with the set Ay. Append the Y-ary tree of depth m

associated with version space Vt↓1(Ay) to the edge indexed by y. Note that the depth of tree T

must be m + 1, thus implying SL(Vt↓1) = m + 1, which is a contradiction. Therefore, it must be
the case that SL(Vt) ↙ SL(Vt↓1)⇑ 1.

17

RAMAN SUBEDI TEWARI

Let tω → [T] be round when the algorithm makes its SL(H)th mistake. If tω does not exist, the
algorithm makes at most SL(H)⇑1 mistakes. So, without loss of generality, consider the case when
t
ω exists. It now suffices to show that the algorithm makes no further mistakes. We have already

shown that SL(Vtω) = 0. Next, we show that for any t > t
ω, there must exist y → Y such that for

all A → St(Y) we have y → A. Suppose, for the sake of contradiction, this is not true. That means,
for all y → Y , there exists Ay → St(Y) such that y /→ Ay. Consider a tree with xt in the root node,
and every edge indexed by y → Y is labeled with the set Ay. As Ay ↖ {h(xt) | h → Vt↓1} ↓= ≃,
for every y, there exists a hypothesis hy such that hy(xt) → Ay. By definition of SL, this implies
that SL(Vt↓1) ↘ 1, which contradicts the fact that SL(Vtω) = 0. Thus, there must be a prediction
strategy y → Y such that for any set St → St(Y) that the adversary can reveal, y → St. With the
prediction strategy in step 4, the algorithm makes no further mistakes.

B.2. Lowerbounds

Proof (of lowerbound in Theorem 12) We now show that for any deterministic learner, there ex-
ists a realizable stream where the learner makes at least SL(H) = d mistakes. The stream is
obtained by traversing the Set Littlestone tree of depth d, adapting to the algorithm’s prediction.
Let T be a complete X -valued, Y-ary tree of depth d that is shattered by H. Let (f1, ..., fd) be
the sequence of edge-labeling functions ft : Yt

⇐ S(Y) associated with T . Consider the stream
{(T1(ŷ<t), ft(ŷ↔t))}dt=1, where T1(ŷ<1) is the root node of the tree, and ŷ = (ŷ1, . . . , ŷd) is algo-
rithm’s prediction on rounds 1, 2, . . . , d. Note that we can use the learner’s prediction on round t to
generate the true feedback for round t because the learner is deterministic and its prediction on any
instance can be simulated apriori. Since we have ŷt /→ ft(ŷ↔t) for all t → [d] by the definition of
the tree, the algorithm makes at least d mistake in the stream above. Finally, the stream considered
above is realizable because there exists hŷ such that hŷ(Tt(ŷ<t)) → ft(ŷ↔t) for all t → [d]. This
completes our proof.

Appendix C. Randomized Learnability in the Realizable Setting

C.1. Upperbounds

C.1.1. FIXED-SCALE RANDOMIZED LEARNER

We give a fixed-scale learner in the realizable setting and prove a guarantee on its expected number
of mistakes. In particular, we show that the expected mistake bound of Algorithm 2, for any fixed
input scale ϑ > 0, is at most ϑT + MSϖ(H) on any realizable stream.

Lemma 19 (Fixed-scale Randomized Learning Guarantee) For any S(Y) ↔ ω(Y), H ↔ Y
X ,

and any input scale ϑ > 0, the expected cumulative loss of Algorithm 2, on any realizable stream,
is ↙ ϑT + MSϖ(H).

Proof We show that given any target accuracy ε > 0, the expected cumulative loss of Algorithm
2 is at most dϑ + εT on any realizable stream, where dϑ = MSϑ(H). In fact, we show that Algo-
rithm 2 achieves an even stronger guarantee, namely that on any realizable sequence {(xt, St)}Tt=1,
Algorithm 2 computes distributions µ̂t → !(Y) such that

18

ONLINE LEARNING WITH SET-VALUED FEEDBACK

Algorithm 2 Randomized Standard Optimal Algorithm (RSOA)
Input: H, Target accuracy ε > 0
Initialize V0 = H

for t = 1, ..., T do
Receive unlabeled example xt → X .
For each A → S(Y), define Vt↓1(A) := {h → Vt↓1 | h(xt) → A}.
Let St(Y) := {A → S(Y) : A ↖ {h(xt) | h → Vt↓1} ↓= ≃}.

If MSϑ(Vt↓1) = 0, let µ̂t → !(Y) be such that for all A → St(Y) we have µ̂t(A) > 1⇑ ε.

Else, compute
µ̂t = argmin

µ→!(Y)
max

A→S(Y)
µ(A)↔1↓ϑ

MSϑ(Vt↓1(A)).

Predict ŷt ⇒ µ̂t.

Receive feedback St and update Vt = Vt↓1(St).
end

T∑

t=1

{µ̂t(S
c

t) ↘ ε} ↙ dϑ. (1)

From here, it follows that
∑

T

t=1 {ŷt /→ St}


↙ dϑ + εT. To see this, observe that

[
T∑

t=1

{ŷt /→ St}

]
=

T∑

t=1

[ŷt /→ St]

=
T∑

t=1

[ŷt /→ St] {µ̂t(S
c

t) ↘ ε}+ [ŷt /→ St] {µ̂t(S
c

t) < ε}

↙

T∑

t=1

{µ̂t(S
c

t) ↘ ε}+ εT

↙ dϑ + εT

We now show that the outputs of Algorithm 2 satisfy Equation (1). It suffices to show that (1)
on any round where µ̂t(St) ↙ 1 ⇑ ε and MSϑ(Vt↓1) > 0, we have MSϑ(Vt) ↙ MSϑ(Vt↓1) ⇑ 1, and
(2) if MSϑ(Vt↓1) = 0 then there is always a distribution µ̂t → !(Y) such that [ŷt /→ St] ↙ ε.

Let t → [T] be a round where µ̂t(St) ↙ 1 ⇑ ε and MSϑ(Vt↓1) > 0. For the sake contradiction,
suppose that MSϑ(Vt) = MSϑ(Vt↓1) = d. Then, by the min-max computation in line (4) of Algo-
rithm 2, for every measure µ → !(Y), there exists a subset Aµ → S(Y) such that µ(Aµ) ↙ 1 ⇑ ε

and MSϑ(Vt↓1(Aµ)) = d. Now construct a tree T with xt labeling the root node. For each measure
µ → !(Y), construct an outgoing edge from xt indexed by µ and labeled by Aµ. Append the tree
of depth d associated with the version space Vt↓1(Aµ) to the edge indexed by µ. Note that the
depth of T must be d + 1. Therefore, by definition of MSdim, we have that MSϑ(Vt↓1) = d + 1, a
contradiction. Thus, it must be the case that MSϑ(Vt) ↙ MSϑ(Vt↓1)⇑ 1.

Now, suppose t → [T] is a round such that MSϑ(Vt↓1) = 0. We show that there always exist
a distribution µ̂t → !(Y) such that for all A → St(Y) , we have µ̂t(A) ↘ 1 ⇑ ε. Since we are

19

RAMAN SUBEDI TEWARI

in the realizable setting, it must be the case that St → St(Y). Therefore, µ̂t(St) ↘ 1 ⇑ ε and
[ŷt /→ St] ↙ ε as needed. To see why such a µ̂t must exist, suppose for the sake of contradiction

that it does not exist. Then, for all µ → !(Y), there exists a set Aµ → St(Y) such that µ(Aµ) ↙ 1⇑ε.
As before, consider a tree with root node labeled by xt. For each measure µ → !(Y), construct an
outgoing edge from xt indexed by µ and labeled by Aµ. Since Aµ ↖ {h(xt) | h → Vt↓1} ↓= ≃,
there exists a hypothesis hµ such that hµ(xt) → Aµ. By definition of MSdim, this implies that
MSϑ(Vt↓1) ↘ 1, which contradicts the fact that MSϑ(Vt↓1) = 0. Thus, there must be a distribution
µ̂t → !(Y) such that for any set A → St(Y), we have µ̂t(A) ↘ 1 ⇑ ε. Since this is precisely the
distribution that Algorithm 2 plays in step (3) and since MSϑ(Vt→) ↙ MSϑ(Vt↓1) for all t≃ ↘ t, the
algorithm no longer suffers expected loss more than ε. This completes the proof of Lemma 19.

We point out that Filmus et al. (2023) also considers a randomized online learner in the realiz-
able setting that shares similarities with Algorithm 2. In particular, their algorithm also maintains
a version space and optimizes over probability distributions. However, they only consider binary
classification and use a different complexity measure. Moreover, the idea of optimizing over prob-
ability distributions on a measurable space should also remind the reader of the generic min-max
algorithm proposed by Rakhlin et al. (2012).

C.1.2. MULTI-SCALE RANDOMIZED LEARNER

The RSOA (Algorithm 2) runs at a fixed, pre-determined scale ϑ → [0, 1]. In this section, we upgrade
this result by adapting the technique from Daskalakis and Golowich (2022) to give a randomized,
multi-scale online learner (Algorithm 4) in the realizable setting. Lemma 20 presents the main
result, which bounds the expected cumulative loss of Algorithm 4 on any realizable data stream and
gives the upperbound stated in Theorem 13.

Lemma 20 (Multi-scale Randomized Online Learner) For any S(Y) ↔ ω(Y) and H ↔ Y
X ,

the expected cumulative loss of Algorithm 4 on any realizable stream is at most

C inf
ϖ→[0,1]

{
ϑT +

∫ 1

ϖ

MSϱ(H) dϖ


,

for some universal constant C > 0.

We highlight that the guarantee given by Lemma 20 is analogous to Dudley’s integral entropy
bound in batch setting and also matches Theorem 1 in Daskalakis and Golowich (2022). Compared
to Lemma 19, the upperbound given by Lemma 20 can be significantly better. For example, when
the Measure Shattering dimension exhibits growth MSϖ(H) ∈ ϑ

↓p for some p → (0, 1), the bound
given by Lemma 20 is constant O(1), while the bound given by Lemma 19 scales according to
T

p
(1+p) .

The main algorithmic idea needed to obtain the guarantee in Lemma 20 is to figure out how to
make predictions using more than one scale. At a high-level, our multi-scale learner uses a sequence
of N scales {ϑi}Ni=1, where ϑi =

1
2i , to compute a sequence of measures {µi

t}
N

i=1 ↗ !(Y) in each
round t → [T]. Then, our multi-scale learner uses the Measure Selection Procedure, defined in
Algorithm 3, to carefully select one of the measures µ̂t → {µ

t

i
}
N

i=1 and makes a prediction ŷt ⇒ µ̂t.
Once the true label set is revealed, the multi-scale learner updates its self in the exact same way

as RSOA. Algorithm 4 formalizes the idea above.

20

ONLINE LEARNING WITH SET-VALUED FEEDBACK

Algorithm 3 Measure Selection Procedure (MSP)
Input: Sequence of measures µ1, ..., µN , valid sets S ↔ ω(Y)
If there exists a m → such that for all 2 ↙ i ↙ m, we have:

sup
A→S

|µi(A
c)⇑ µi↓1(A

c)| ↙ 2ϑi↓1 but inf
A→S

|µm(Ac)⇑ µm+1(A
c)| ↘ 2ϑm

return m.
Else, return N .

Algorithm 4 Multi-scale Online Learner (MSOL)
Input: Input: H, number of scales N
Initialize: V0 = H, ϑi = 1

2i for i → [N]

for t = 1, ..., T do
Receive unlabeled example xt → X .
For each A → S(Y), define Vt↓1(A) := {h → Vt↓1 | h(xt) → A}.
Let St(Y) := {A → S(Y) : A ↖ {h(xt) | h → Vt↓1} ↓= ≃}.

if MSϖN (Vt↓1) = 0 then
Let µ̂t → !(Y) such that µ̂t(A) > 1⇑ ϑN for all A → St(Y).

else
for i = 1, . . . , N do

If MSϖi(Vt↓1) = 0, let µi
t → !(Y) such that µi

t(A) > 1⇑ ϑi for all A → St(Y).
Else, let

µ
i

t = argmin
µ→!(Y)

max
A→S(Y)

µ(A)↔1↓ϖi

MSϖi(Vt↓1(A)).

end
Compute mt = MSP({µi

t}
N

i=1,St(Y)) and let µ̂t = µ
mt
t

.
Predict ŷt ⇒ µ̂t.

Receive feedback St → St(Y) and update Vt = Vt↓1(St).
end

21

RAMAN SUBEDI TEWARI

We now prove Lemma 20, which closely follows the analysis by Daskalakis and Golowich
(2022).
Proof Fix a N → . Our first goal is to show that on any realizable stream, the expected cumulative
loss of Algorithm 4 is at most

ϑN T + 16
N∑

i=1

ϑi · MSϖi(H),

where ϑi =
1
2i . To that end, let {(xt, St)}Tt=1 denote the realizable stream that is to be observed

by the learner. For all t → [T + 1], define the potential function

#t = (T + 1⇑ t)ϑN + 16
N∑

i=1

ϑiMSϖi(Vt↓1).

It suffices to show that #t⇑#t+1 ↘ µ̂t(Sc
t) for all t → [T]. To see why this is sufficient, observe

that summing over all t → [T] gives

T∑

t=1

µ̂t(S
c

t) ↙
T∑

t=1

(#t ⇑ #t+1) = #1 ⇑ #T+1 ↙ TϑN + 16
N∑

i=1

ϑiMSϖi(H)

where the inequality follows from the fact that #T+1 ↘ 0 and V0 = H. Finally, noting that

ŷt⇐µ̂t [{ŷt /→ St}] = µ̂t(Sc
t) gives

∑
T

t=1 {ŷt /→ St}


↙ TϑN + 16

∑
N

i=1 ϑiMSϖi(H) as de-
sired.

The rest of this proof is dedicated to showing that #t ⇑ #t+1 ↘ µ̂t(Sc
t) for all t → [T]. Fix a

t → [T]. Using the definition of #t, we need to show that

ϑN + 16
N∑

i=1

ϑi(MSϖi(Vt↓1)⇑ MSϖi(Vt)) ↘ µ̂t(S
c

t). (2)

If µ̂t(Sc
t) < ϑN , then Inequality 2 holds since for all t → [T] and i → [N], MSϖi(Vt↓1) ↘

MSϖi(Vt). Thus, we focus on the case where µ̂t(Sc
t) ↘ ϑN .

Suppose µ̂t(Sc
t) ↘ ϑN . Then, MSϖN (Vt↓1) ↘ 1, the for-loop on line 5(a) runs, and the measure

µ̂t = µ
mt
t

computed on line 5(b) is used to make a prediction. This is because when MSϖN (Vt↓1) =
0, we are guaranteed the existence of a measure µ̂t → !(Y) such that µ̂t(Sc

t) < ϑN (see proof of
Theorem 13) and by line 4, this would have precisely been the measure the learner uses to make its
prediction.

We now show that when µ̂t(Sc
t) ↘ ϑN , there exists an index j → [N] such that ϑj ↘

µ̂t(Sc
t)

16

and µ
j

t
(Sc

t) ↘ ϑj . This implies Inequality (2), because if µj

t
(Sc

t) ↘ ϑj , then MSϖj (Vt↓1) ↘ 1, and
MSϖj (Vt) < MSϖj (Vt↓1), which follows from the definition of MSdim, and the min-max prediction
strategy in step 5(a:ii). Then, we can compute

ϑN + 16
N∑

i=1

ϑi(MSϖi(Vt↓1)⇑ MSϖi(Vt)) ↘ 16ϑj(MSϖj (Vt↓1)⇑ MSϖj (Vt)) ↘ µ̂t(S
c

t),

22

ONLINE LEARNING WITH SET-VALUED FEEDBACK

which matches the guarantee of Inequality 2. Accordingly, the rest of the proof will focus on
showing the existence of such an index j → [N]. To do so, let k → denote the smallest natural
number such that µ̂t(Sc

t) ↘ ϑk = 1
2k

. By definition of k, we have that µ̂(Sc
t) < ϑk↓1 = 2ϑk.

Note that k ↓= N + 1 since that would imply that µ̂(Sc
t) <

1
2N

= ϑN which contradicts the fact
that µ̂t(Sc

t) ↘ ϑN . Thus, it must be the case that k → {1, ..., N}. Let mt = MSP({µi
t}

N

i=1,St(Y))
denote the index output by MSP in round t. We consider two subcases: (1) k → {mt + 1, ..., N}

and (2) k → {1, ...,mt}.
Case I. Suppose k → {mt + 1, ..., N}. Then, we show that j = mt + 1. That is, ϑmt+1 ↘

µ̂t(Sc
t)

16 and µ
mt+1
t

(Sc
t) ↘ ϑmt+1 Recall that µ̂t(Sc

t) = µ
mt
t

(Sc
t). Since mt < N , by definition, we

have that infA→St(Y) |µ
mt
t

(A) ⇑ µ
mt+1
t

(A)| ↘ 2ϑmt . This implies that |µmt
t

(Sc
t) ⇑ µ

mt+1
t

(Sc
t)| ↘

2ϑmt . Moreover, we have that µmt
t

(Sc
t) = µ̂t(Sc

t) < 2ϑk ↙ 2ϑmt+1 = ϑmt . Combining the two
inequalities, we get that µmt+1

t
(Sc

t) ↘ ϑmt > ϑmt+1. Since µ̂t(Sc
t) < 2ϑmt+1, we also obtain

ϑmt+1 ↘
µ̂t(Sc

t)
2 >

µ̂t(Sc
t)

16 . This completes this case.
Now, suppose that k → {1, ...,mt}. Then we know that µmt

t
(Sc

t) = µ̂t(Sc
t) ↘ ϑk ↘ ϑmt .

We further break this case down into two subcases: (a) k → {mt ⇑ 3,mt ⇑ 2, ...,mt} and (b)
k → {1, ...,mt ⇑ 4}.

Case II(a). Consider the case where k → {mt ⇑ 3,mt ⇑ 2, ...,mt}. We show that j = mt. We
know that µ̂t(Sc

t) < 2ϑk = 2 1
2k

= 16ϑk+3 ↙ 16ϑmt . This implies that ϑmt ↘
µ̂t(Sc

t)
16 . Since we

have that µmt
t

(Sc
t) = µ̂t(Sc

t) ↘ ϑmt , this completes the proof that j = mt.
Case II(b). Consider the case where k → {1, ...,mt ⇑ 4}. Here, we will show that j = k + 1.

Observe that,

|µ
mt
t

(Sc

t)⇑ µ
k+3
t

(Sc

t)| ↙
mt↓1∑

i=k+3

|µ
i

t(S
c

t)⇑ µ
i+1
t

(Sc

t)| ↙
mt↓1∑

i=k+3

2ϑi

↙ 2
↘∑

i=k+3

1

2i
= 4ϑk+3 =

ϑk

2
,

where the second inequality follows from the definition of mt = MSP({µi
t}

N

i=1,St(Y)). This
implies that µmt

t
(Sc

t) ⇑ µ
k+3
t

(Sc
t) ↙

ϖk
2 . Since µ

mt
t

(Sc
t) ↘ ϑk, we get that µk+3

t
(Sc

t) ↘
ϖk
2 =

4ϑk+3 ↘ ϑk+3. Finally, recall that µ̂t(Sc
t) < 2ϑk = 16ϑk+3, implying that ϑk+3 ↘

µ̂t(Sc
t)

16 as
desired. This completes the subcase.

Overall, we have shown that when µ̂t(Sc
t) ↘ ϑN , there exists an index j → [N] such that

ϑj ↘
µ̂t(Sc

t)
16 and µ

j

t
(Sc

t) ↘ ϑj . This means that for all t → [T], #t ⇑ #t+1 ↘ µ̂t(Sc
t) and therefore

the expected cumulative loss of Algorithm 4 is at most ϑN T +
∑

N

i=1 ϑi · MSϖi(H), as needed.
Our next goal is to show that if ϑ⇒ = infϖ>0{ϑT +

 1
ϖ
MSϱ(H)dϖ}, then setting N = ∋

1
log 2ϖ↑ △

gives that

ϑN T + 16
N∑

i=1

ϑi · MSϖi(H) ↙ C inf
ϖ>0

{
ϑT +

∫ 1

ϖ

MSϱ(H)dϖ



for some constant C > 0. However, this follows from the fact that when N = ∋
1

log 2ϖ↑ △,
ϑN ↙ 2ϑ⇒ and the fact that 16

∑
N

i=1 ϑi · MSϖi(H) is, up to a constant factor, the appropriate lower
Reimann sum such that 16

∑
N

i=1 ϑi · MSϖi(H) ↙ C
 1
ϖ↑ MSϱ(H)dϖ.

23

RAMAN SUBEDI TEWARI

C.2. Lowerbounds

In this section, we prove the lowerbound given in Theorem 13. Fix ϑ > 0. Let H and S(Y) be such
that MSϖ(H) = dϖ . By definition of MSdim, there exists a X -valued, !(Y)-ary tree T of depth
dϖ shattered by H. Let (f1, ..., fd) be the sequence of edge-labeling functions ft : !(Y)t ⇐ S(Y)
associated with T . Let A be any randomized learner for H. Our goal will be to use T and its edge-
labeling functions (f1, ..., fd) to construct a hard realizable stream for A such that on every round,
A makes a mistake with probability at least ϑ. This stream is obtained by traversing T , adapting to
the sequence of distributions output by A.

To that end, for every round t → [dϖ], let µ̂t denote the distribution that A computes before
making its prediction ŷt. Consider the stream {(Tt(µ̂<t), ft(µ̂↔t))}

dε

t=1, where µ̂ = (µ̂1, . . . , µ̂dε)
denotes the sequence of distributions output by A. This stream is obtained by starting at the root
of T , passing T1 to A, observing the distribution µ̂1 computed by A, passing the label ft(µ̂↔1) to
A, and then finally moving along the edge labeled by µ̂1. This process then repeats dϖ ⇑ 1 times
until the bottom of T is reached. Note that we can observe and use the distribution computed by
A on round t to generate the true feedback because a randomized algorithm deterministically maps
a sequence of labeled instances to a distribution. Moreover the stream is realizable since by the
definition of shattering, there exists a hµ̂ → H such that hµ̂(Tt(µ̂<t)) → ft(µ̂↔t) for all t → [dϖ].

Now, we are ready to show that this stream is difficult for A. By definition of the tree, for all
t → [dϖ], we have that µ̂t(ft(µ̂↔t)) ↙ 1 ⇑ ϑ. Therefore, since A receives ft(µ̂↔t) as feedback on
round t, we have that [A(Tt(µ̂<t)) /→ ft(µ̂↔t)] = ŷt⇐µ̂t [ŷt /→ ft(µ̂↔t)] = 1 ⇑ µ̂t(ft(µ̂↔t)) ↘ ϑ

for all t → [dϖ]. Summing over all t → [dϖ] gives that



dε∑

t=1

{A(Tt(µ̂<t)) /→ ft(µ̂↔t)}



 =

dε∑

t=1

[A(Tt(µ̂<t)) /→ ft(µ̂↔t)] ↘ ϑ dϖ .

This shows that A makes at least ϑdϖ mistakes in expectation on the realizable stream {(Tt(µ̂<t), ft(µ̂↔t))}
dε

t=1.
Since our choice of ϑ and the randomized algorithm A was arbitrary, this holds true for any ϑ > 0
and any randomized online learner. This completes the proof.

Appendix D. Agnostic Learnability

D.1. Agnostic Upperbound

Proof (of (i) in Theorem 15) Let (x1, S1), . . . , (xT , ST) be the data stream. Let hω = argminh→H
∑

T

t=1 {h(xt) /→

St} be an optimal function in hind-sight. For a target accuracy ε > 0, let dϑ = MSϑ(H). Given time
horizon T , let LT = {L ↗ [T]; |L| ↙ dϑ} denote the set of all possible subsets of [T] with size at
most dϑ. For every L → LT define an expert EL such that

EL(xt) := RSOAϑ(xt | L<t),

where L<t = L ↖ {1, 2, . . . , t ⇑ 1} and RSOAϑ(xt | L<t) is the prediction of the Randomized
Standard Optimal Algorithm (RSOA), defined as Algorithm 2, running at scale ε that has updated on
labeled examples {(xi, Si)}i→L<t . Let E =

⋃
L→LT

{EL} denote the set of all Experts parameterized
by subsets L → LT . Note that |E| =

∑
dϑ
i=0


T

i


↙ T

dϑ . Finally, given our set of experts E , we run the
Randomized Exponential Weights Algorithm (REWA), denoted hereinafter as P , over the stream

24

ONLINE LEARNING WITH SET-VALUED FEEDBACK

(x1, S1), ..., (xT , ST) with a learning rate ϖ =


2 ln(|E|)/T . Let B denote the random variable
associated with the internal randomness of the RSOA. Then, conditioned on B, Theorem 21.11 of
Shalev-Shwartz and Ben-David (2014) tells us that

T∑

t=1

E [{P(xt) /→ St} | B] ↙ inf
E→E

T∑

t=1

{E(xt) /→ St}+

2T ln(|E|)

↙ inf
E→E

T∑

t=1

{E(xt) /→ St}+

2dϑT ln(T),

where the second inequality follows because |E| ↙ T
dϑ . Taking expectations on both sides of the

inequality above, we obtain

E
[

T∑

t=1

{P(xt) /→ St}

]
↙ E

[
inf
E→E

T∑

t=1

{E(xt) /→ St}

]
+


2dϑT ln(T),

Here, we have an expectation on the right-hand side because the Expert predictions are random.
Define R

ω = {t → [T] | h
ω(xt) → St} to be the part of the stream realizable by h

ω. Note that the
set Rω is not random because the adversary is oblivious. Then, we have

inf
E→E

T∑

t=1

{E(xt) /→ St} = inf
E→E

(
∑

t→Rω

{E(xt) /→ St}+
∑

t/→Rω

{E(xt) /→ St}

)

↙ inf
E→E

∑

t→Rω

{E(xt) /→ St}+
∑

t/→Rω

{h
ω(xt) /→ St}

= inf
E→E

∑

t→Rω

{E(xt) /→ St}+ inf
h→H

T∑

t=1

{h(xt) /→ St},

where the first inequality above follows because {h
ω(xt) /→ St} = 1 for all t → R

ω. Thus, the
expected cumulative loss of P is

E
[

T∑

t=1

{P(xt) /→ St}

]
↙ inf

h→H

T∑

t=1

{h(xt) /→ St}+E
[
inf
E→E

∑

t→Rω

{E(xt) /→ St}

]
+

2dϑT ln(T)

(3)
Thus, it suffices to show that the second term on the right side of the inequality above is ↙ dϑ+ εT .

To do so, we need some more notation. Let us define µ̂t = µ-RSOAϑ(xt | L) to be the
measure returned by RSOAϑ, as described in step 4 and 5 of Algorithm 2, for xt given that the
algorithm has been updated on examples of the time points t → L. We say that µ-RSOAϑ makes
a mistake on round t if {µ̂t(Sc

t) ↘ ε} = 1. With this notion of the mistake, Equation (1) tells
us that RSOAϑ, run and updated on any realizable sequence, makes at most dϑ mistakes. Since
µ-RSOAϑ(x | L) is a deterministic mapping from the past examples to a probability measure in
!(Y), we can procedurally define and select a sequence of time points in R

ω where µ-RSOAϑ, had
it run exactly on this sequence of time points, would make mistakes at each time point. To that end,
let

t̃1 = min
{
t → R

ω : µ̂t(S
c

t) ↘ ε where µ̂t = µ-RSOAϑ


xt| {}

}

25

RAMAN SUBEDI TEWARI

be the earliest time point in R
ω, where a fresh, unupdated copy of µ-RSOAϑ makes a mistake, if it

exists. Given t̃1, we recursively define t̃i for i > 1 as

t̃i = min
{
t → R

ω : µ̂t(S
c

t) ↘ ε where µ̂t = µ-RSOAϑ


xt| {t̃1, . . . , t̃i↓1}


and t > t̃i↓1

}

if it exists. That is, t̃i is the earliest timepoint after t̃i↓1 in R
ω where µ-RSOAϑ having updated only

on the sequence (x
t̃1
, S

t̃1
), ..., (x

t̃i↓1
, S

t̃i↓1
)) makes a mistake. We stop this process when we reach

an iteration where no such time point in R
ω can be found where µ-RSOAϑ makes a mistake.

Using the definitions above, let t̃1, t̃2..., denote the sequence of timepoints in R
ω selected via

this recursive procedure. Define L
ω = {t̃1, t̃2..., } and let ELω be the expert parametrized by the set

of indices Lω. The expert ELω exists because R
ω is a part of the stream that is realizable to h

ω and
Equation (1) implies that |Lω

| ↙ dϑ. By definition of the expert, we have ELω(xt) = RSOAϑ(xt |
L
ω
<t) for all t → [T]. Let us define µ̂

ω
t = µ-RSOAϑ(xt | Lω

<t). Then, we have

inf
E→E

∑

t→Rω

{E(xt) /→ St}

↙

∑

t→Rω

{ELω(xt) /→ St}

=
∑

t→Rω

{RSOAϑ(xt | L
ω

<t) /→ St} {µ̂
ω

t (S
c

t) < ε}+
∑

t→Rω

{RSOAϑ(xt | L
ω

<t) /→ St} {µ̂
ω

t (S
c

t) ↘ ε}

↙

∑

t→Rω

{RSOAϑ(xt | L
ω

<t) /→ St} {µ̂
ω

t (S
c

t) < ε}+
∑

t→Rω

{µ̂
ω

t (S
c

t) ↘ ε}

↙

∑

t→Rω

{RSOAϑ(xt | L
ω

<t) /→ St} {µ̂
ω

t (S
c

t) < ε}+ dϑ,

where the last inequality follows from the definition of Lω and the fact that |Lω
| ↙ dϑ. Since

E [{RSOAϑ(xt | L
ω

<t) /→ St} {µ̂
ω

t (S
c

t) < ε}] = µ̂
ω

t (S
c

t) {µ̂
ω

t (S
c

t) < ε} ↙ ε,

we obtain

E
[
inf
E→E

∑

t→Rω

{E(xt) /→ St}

]
↙ ε|R

ω
|+ dϑ ↙ εT + dϑ.

Finally, plugging this bound in Equation (3) yields

E
[

T∑

t=1

{P(xt) /→ St}

]
↙ inf

h→H

T∑

t=1

{h(xt) /→ St}+ dϑ + εT +

2dϑT ln(T).

Since ε > 0 is arbitrary, this completes our proof.

D.2. Agnostic Lowerbound

Proof (of (ii) in Theorem 15) Let d = SL2(H) and dϖ = MSϖ(H) for ϑ → [0, 1]. The lowerbound
of supϖ>0 ϑ dϖ on the expected regret in the agnostic setting follows trivially from the lowerbound

26

ONLINE LEARNING WITH SET-VALUED FEEDBACK

on the expected cumulative loss in the realizable setting (see (ii) in Theorem 13). Moreover, when
supϖ>0 dϖ = 0, there is no non-negative lowerbound on the expected regret. Indeed, consider
the case where Y = [5], S(Y) = {{3, 4}, {4, 5}}) , and H = {h1, h2}, where hi is a constant
hypothesis that always outputs i. Then, supϖ>0 dϖ = 0 trivially. However, the expected regret of
the algorithm that always outputs 4 is ⇑T .

Next, we will focus on showing how the lowerbound of


d T

8 can be obtained. When d = 0,

the claimed lowerbound is max


dT/8 , supϖ>0 dϖ


= supϖ>0 ϑ dϖ , which we have already

established. Let d > 0 and T be a SL2 tree of depth d shattered by H. With a binary tree T , we
now use the technique from Ben-David et al. (2009) to obtain the aforementioned lowerbound.

Consider T = k d for some odd k → N. For ω → {±1}T , define ω̃i = sign
∑

ik

t=(i↓1)k+1 ωt



for all i → {1, 2 . . . , d}. Note that the sequence (ω̃1, . . . , ω̃d) gives a path down the tree T . The
game proceeds as follows. The adversary samples a string ω → {±1}T uniformly at random and
generates a sequence of labeled instances (x1, S1), . . . (xT , ST) such that for all i → {1, 2, . . . , d}
and all t → {(i⇑ 1)k+1, . . . , ik}, we have xt = Ti(ω̃<i) and St = fi((ω̃<i,ωt)). That is, on round
t → {(i⇑1)k+1, . . . , ik}, the adversary always reveals the instance Ti(ω̃<i) but alternates between
revealing the sets labeling the left and right outgoing edges from Ti(ω̃<i) depending on ωt.

Let A be any randomized online learner. Then, for each block i → [d], we have

E




ik∑

t=(i↓1)k+1

{A(xt) /→ St}



 ↘

ik∑

t=(i↓1)k+1

1

2
=

k

2
.

The inequality above holds because St is chosen uniformly at random from two disjoint sets fi((ω̃<i,⇑1))
and fi((ω̃<i,+1)), so the expected loss of any randomized algorithm is at least 1/2.

Let hε̃ be the hypothesis at the end of the path (ω̃1, . . . , ω̃d) in T . For each block i → [d], we
have

E




ik∑

t=(i↓1)k+1

{hε̃(xt) /→ St}



 = E




ik∑

t=(i↓1)k+1

{ω̃i ↓= ωt}



 =
k

2
⇑

1

2
E




ik∑

t=(i↓1)k+1

ω̃i ωt





=
k

2
⇑

1

2
E







ik∑

t=(i↓1)k+1

ωj







↙
k

2
⇑

√
k

8
,

where the final step follows upon using Khinchine’s inequality (Cesa-Bianchi and Lugosi, 2006,
Page 364). Combining these two bounds above, we obtain

E




ik∑

t=(i↓1)k+1

{A(xt) /→ St}⇑

ik∑

t=(i↓1)k+1

{hε̃(xt) /→ St}



 ↘

√
k

8
.

27

RAMAN SUBEDI TEWARI

Summing this inequality over d blocks, we obtain

E
[

T∑

t=1

{A(xt) /→ St}⇑ inf
h→H

T∑

t=1

{h(xt) /→ St}

]
↘ E

[
T∑

t=1

{A(xt) /→ St}⇑

T∑

t=1

{hε̃(xt) /→ St}

]

↘ d

√
k

8
=

√
dT

8
.

which completes our proof.

Appendix E. Applications

E.1. Online Multilabel Ranking

In this section, we prove Lemma 16, establishing lower and upperbounds on Helly numbers of
permutation sets. Before we prove Lemma 16, we define some new notation. For any bit string
r → R, let P (r) := {i : r

i = 1} and let |r| := |P (r)| denote the number of 1’s. Given two
bit strings r1, r2 where |r1| ↘ |r2|, we say that r2 ↔ r1 iff P (r2) ↔ P (r1). The following
property will also be useful. Let r1, r2 → R and without loss of generality suppose |r1| ↘ |r2|. If
Y(r1) ↖ Y(r2) ↓= ≃ then r2 ↔ r1. To prove the contraposition, suppose that r2 ⊋ r1. Then, there
exist an index j → [K] such that rj2 = 1 but rj1 = 0. Thus, every permutation in Y(r2) ranks label
j in the top |r2|, but every permutation in Y(r1) ranks label j outside the top |r1|. That is, for all
ϱ2 → Y(r2) we have ϱ

j

2 ↙ |r2| but for all ϱ1 → Y(r1), we have ϱ
j

1 > |r1|. Since |r2| ↙ |r1|, we
have Y(r1) ↖ Y(r2) = ≃. We are now ready to prove the main claim. At a high-level, our proof
exploits the fact that if we have a sequence of bit strings such that rQ ↔ rQ↓1 ↔ ... ↔ r1, then we
can iteratively construct a permutation that lies in all Y(ri).
Proof (of Lemma 16) Let Q ↘ 2 and let {ri}

Q

i=1 ↔ R be a sequence of bit strings. It suffices to
show that if for all i, j → [Q] we have Y(ri) ↖ Y(rj) ↓= ≃, then we have

⋂
i→[Q] Y(ri) ↓= ≃. Without

loss of generality, suppose {ri}
Q

i=1 is sorted in increasing order of size. That is, for all i, j → [Q]
such that i > j, we have |ri| ↘ |rj |. Then, by the property above, for all i, j → [Q] where i > j we
have rj ↔ ri. We now construct a permutation ϱ : [K] ⇐ [K] such that for all i → [Q], we have
ϱ → Y(ri).

For every i → {2, ..., Q}, let ↼i : P (ri) \P (ri↓1) ⇐ [|ri|] \ [|ri↓1|] denote an arbitrary bijective
mapping from P (ri) \ P (ri↓1) to [|ri|] \ [|ri↓1|]. For i = 1, let ↼1 : P (r1) ⇐ [|r1|] be a bijective
mapping from P (r1) to [|r1|]. Finally, let ↼Q+1 : [K] \ P (rQ) ⇐ [K] \ [|rQ|] denote an arbitrary
bijective mapping from [K]\P (rQ) to [K]\ [|rQ|]. Note that by definition, for all i, j → {1, ..., Q+
1}, the image space of ↼i and ↼j are disjoint. Moreover, the union of the image space across all
bijective mappings ↼i’s is [K]. Accordingly, we now use these bijective mappings to construct a
permutation ϱ → Y . In particular, let ϱ be the permutation such that for all j → P (r1), we have
ϱ
j = ↼1(j), for all i → {2, ..., Q} and j → P (ri) \ P (ri↓1), we have ϱ

j = ↼i(j) , and for all
j → [K] \ P (rQ) we have ϱ

j = ↼Q+1(j) . We now need to show that for all i → [Q], ϱ → Y(ri).
Fix an i → Q and consider ri. It suffices to show that for all j → P (ri), we have ϱ

j
↙ |ri|. That

is, ϱ ranks the labels in P (ri) in the top |ri|. By the subset property, we have

P (ri) = P (r1) ∞
i

j=2

P (rj) \ P (rj↓1).

28

ONLINE LEARNING WITH SET-VALUED FEEDBACK

Consider some p → P (ri). Then, by the equality above, either p → P (r1) or p →
⋃

i

j=2 P (rj) \
P (rj↓1). Suppose p → P (r1), then by definition ϱ

p = ↼1(p) → [|r1|] and therefore ϱ
p
↙ |ri|.

Suppose p →
⋃

i

j=2 P (rj)\P (rj↓1). In particular, suppose p → P (rj)\P (rj↓1) for some Q ↘ j >

1. Then by definition, ϱp = ↼j(p) → [|rj |] \ [|rj↓1|] and therefore ϱ
p
↙ |ri| since |rj | ↙ |ri|. This

shows that for every j → P (ri), ϱ ranks j in the top |ri| and therefore ς0-1(ϱ, ri) = 0. Since i → [Q]
is arbitrary, this completes the proof as we have shown that

⋂
Q

i=1 Y(ri) ↓= ≃.

E.2. Ranking Littlestone dimension

We end this section by defining an equivalent, arguably more natural, dimension that provides a tight
quantitative characterization of online multilabel ranking learnability under binary relevance score
feedback. The key insight is that we can actually label the edges in the SL2 tree with bit strings
instead of sets from S(Y). This intuition leads to the following dimension for online multilabel
ranking.

Definition 21 (Ranking Littlestone dimension) Let T be a complete X -valued binary tree of
depth d. The tree T is shattered by H ↔ Y

X if there exists a sequence (f1, ..., fd) of edge-labeling
functions ft : {±1}t ⇐ R such that for every path ω = (ω1, ...,ωd) → {±1}d, there exists a hy-
pothesis hε → H such that for all t → [d], ς0-1(hε(Tt(ω<t)), ft(ω↔t)) = 0, but ft((ω<t,+1)) ⊋
ft((ω<t,⇑1)) and ft((ω<t,⇑1)) ⊋ ft((ω<t,+1)). The Ranking Littlestone dimension of H, de-
noted RL(H,S(Y)), is the maximal depth of a tree T that is shattered by H. If there exists shattered
trees of arbitrarily large depth, we say RL(H,S(Y)) = ⇓.

Since bit strings map one-to-one with sets in S(Y), r1 ⊋ r2, r2 ⊋ r1 iff Y(r1) ↖ Y(r2) = ≃,
and ς0-1(ϱ, r) = 0 iff ϱ → Y(r), it follows that SL2(H) = RL(H). Corollary 17 immediately shows
that RL(H) provides a tight quantitative characterization of online multilabel ranking learnability in
both the realizable and agnostic settings.

E.3. Online Multilabel Classification

Lemma 22 (Helly Number of Hamming Balls) Let Y = {0, 1}K and Sq(Y) = {B(y, q) : y →

Y}. Then, for all q → [K ⇑ 1], we have

2q+1
↙ H(Sq(Y) ↙

q∑

r=0

(
K

r

)
+ 1.

Proof (of Lemma 22) Fix q → [K ⇑ 1] and let Sq(Y) = {B(y, q) : y → Y}. To see the upperbound,
observe that for any bit string b1 → {0, 1}K , there are

∑
q

r=0


K

r


sets in Sq(Y) which contain b1.

This follows from the fact that b1 → B(b2, q) if and only if b2 → B(b1, q). Therefore, |{A → Sq(Y) :
b1 → A}| = |B(b1, q)| =

∑
q

r=0


K

r


. The upperbound on H(Sq(Y)) then follows from the fact that

every sequence of sets of size at least
∑

q

r=0


K

r


+ 1 must have an empty intersection.

To establish the lowerbound, it suffices to construct a family of 2q+1 Hamming balls that have
an empty intersection, but every subfamily of size 2q+1

⇑ 1 has a common element. Let S =
{y1, . . . , y2q+1} ↗ {0, 1}K be a family of bitstrings that embeds a hypercube of size q + 1 and
is 0 everywhere else. That is, there exists a set of indices I ↗ [K] of size |I| = q + 1 such that

29

RAMAN SUBEDI TEWARI

S|I = {0, 1}q+1 and S| [K]\I = 00 . . . 00 , where S|I denotes the restriction of bitstrings in S to
indices in I . We will first show that

2q+1⋂

i=1

B(yi, q) = ≃.

To see why this is true, pick a y → {0, 1}K . Since S embeds a boolean cube in I , there exists
i, j → [2q+1] such that y|I = yi |I and ¬y|I = yj |I , where ¬y is obtained by flipping every bit in y.
Given that |I| = q + 1, we have ςH(y, yj) ↘ q + 1 and thus y /→ B(yj , q). Since y → {0, 1}K is
arbitrary,

⋂2q+1

i=1 B(yi, q) = ≃.
Next, we will show that for every j → [2q+1], we have

⋂

i ⇑=j

B(yi, q) ↓= ≃.

For each yj → S, define ỹj → {0, 1}K such that ỹj |I = ¬yj |I and ỹj |[K]\I = 00 . . . 00 = yj |[K]\I .
Recall that a ball of radius q centered at a vertex v of a q+ 1 dimensional boolean cube contains all
vertices except ¬v. Thus, yi → B(ỹj , q) for all i ↓= j. Therefore, ỹj →

⋂
i ⇑=j

B(yi, q), completing
our proof.

As a result of Lemma 22, we do not generally have that SL(H) = SL2(H). Accordingly,
unlike multilabel ranking, the quantitative lowerbound implied by Theorem 15 does not immediately
follow from the structural properties in Theorem 10. Instead, Lemma 23 shows that when K is
sufficiently large, we are guaranteed that SL2(H) > 0 for any non-trivial hypothesis class H ↔ Y

X ,
and thus the lowerbound of Theorem 15 still gives us a meaningful lowerbound scaling with T .

Lemma 23 (Lowerbound on SL2(H)) Fix q → and K ↘ 2q + 1. Let Y = {0, 1}K , Sq(Y) =
{B(y, q) : y → Y}, and H ↔ Y

X be a hypothesis class such that |H| ↘ 2. Then, SL2(H) ↘ 1.

Proof (of Lemma 23) Suppose K ↘ 2q + 1 and |H| ↘ 2. Then, there exists a x → X and a pair of
hypothesis h1, h2 → H such that h1(x) ↓= h2(x). Our goal will be to construct a shattered SL2 tree
of depth one according to Definition 6 with the root node being labeled by x. To do so, it suffices to
find two disjoint balls S1, S2 → Sq(Y) such that h1(x) → S1 and h2(x) → S2. We can then label the
left and right outgoing edge from x by S1 and S2 respectively.

Let p denote the number of indices where h1(x) and h2(x) disagree. Note that since h1(x) ↓=
h2(x), we have p ↘ 1. Let J ↗ [K], |J | = 2q + 1 ⇑ p denote an arbitrary subset of the indices
where h1(x) and h2(x) agree. If 2q + 1⇑ p is even, partition J into two equally sized parts J1 and
J2. If 2q + 1 ⇑ p is odd, partition J into J1 and J2 such that |J1| ⇑ |J2| = 1. For every index in
J1 flip the bit in the corresponding position in h1(x). Let y1 → Y be the bit string resulting from
this operation. Likewise, for every index in J2, flip the bit in the corresponding position in h2(x).
Let y2 → Y denote the resulting bitstring. We now claim that the balls B(y1, q), B(y2, q) → Sq(Y)
satisfy the aforementioned properties.

First, we show that B(y1, q) ↖ B(y2, q) = ≃. By construction, y1 and y2 differ in the locations
where h1(x) and h2(x) differ plus all the indices in J . Thus, ςH(y1, y2) ↘ 2q+1. Finally, we show
that h1(x) → B(y1, q) and h2(x) → B(y2, q). By construction of y1 and y2 and the fact that p ↘ 1,
we get that ςH(h1(x), y1) ↙ ∋

2q+1↓p

2 △ ↙ q and ςH(h2(x), y2) ↙ ∋
2q+1↓p

2 △ ↙ q. Accordingly, we

30

ONLINE LEARNING WITH SET-VALUED FEEDBACK

have that h1(x) → B(y1, q) and h2(x) → B(y2, q) as needed. This completes the proof as we have
given two disjoint balls, B(y1, q) and B(y2, q), such that h1(x) → B(y1, q) and h2(x) → B(y2, q).

Combining Lemma 23 and Theorems 12, 13, and 15 gives a quantitative characterization of
online multilabel classification in both the realizable and agnostic settings.

Corollary 24 (Quantitative Online Learnability of Multilabel Classification) Fix q → and
let K ↘ 2q + 1. Let Y = {0, 1}K , Sq(Y) = {B(y, q) : y → Y}, and H ↔ Y

X be a hypothesis
class. Then, in the realizable setting,

SL2(H)

2
↙ inf

A

MA(T,H) ↙ SL(H).

In the agnostic setting,
√
SL2(H)T

8
↙ inf

A

RA(T,H) ↙ SL(H) +

2SL(H)T ln(T).

We leave it as an interesting future direction to get matching upper and lowerbounds for online
multilabel classification.

E.4. Online Interval Learning

In this section, we expand on Section 6 by providing one more application of set learning to a
real-valued setting that we term online interval learning. Consider an arbitrary instance space X , a
range space Y = [⇑B,B] for some B > 0, and a hypothesis class H ↔ Y

X . We study an online
supervised model where, in each round t → [T], the adversary reveals an example xt, and the learner
makes a prediction ŷt → [⇑B,B]. The adversary then reveals an interval [at, bt], and the learner
suffers the loss


ŷt /→ [at, bt]


. This framework models natural scenarios where the ground truth is

a range of values instead of a single value. For instance, consider a model that predicts appropriate
clothing size using some structural features of a customer. Instead of one fixed size, there is usually
a range of sizes that fits the customer. Since any size outside a particular range is not useful to the
customer, the notion of 0-1 mistake is more natural than a regression loss. In fact, interval-valued
feedback is ubiquitous in experimental fields such as natural science and medicine because of the
inherent uncertainty in measurement.

By defining S(Y) =

[a, b] : ⇑B ↙ a < b ↙ B


, a qualitative characterization of online

interval learnability in terms of SL(H) and MSϖ(H) follows immediately from Theorems 12 and
15. Thus, in this section, we instead focus on establishing a quantitative characterization of online
interval learnability. As in ranking, we start by computing H(S(Y)).

Lemma 25 (Helly Number of Intervals) Let S(Y) =

[a, b] : ⇑B ↙ a < b ↙ B


. Then,

H(S(Y)) = 2.

Lemma 25 is a special case of the celebrated Helly’s Theorem (see Radon (1921); Eckhoff
(1993)). Since H(S(Y)) = 2, by Theorem 10, we know that for all ϑ → [0, 12], MSϖ(H) = SL(H) =
SL2(H). Therefore the SL2(H) characterizes both deterministic and randomized online interval

31

RAMAN SUBEDI TEWARI

learnability in the realizable setting. Moreover, we can use Theorems 12, 13, and 15 to give Corol-
lary 26, a sharp quantitative characterization of online interval learning in both the realizable and
agnostic settings.

Corollary 26 (Online Interval Learnability) Let Y = [⇑B,B], S(Y) =
{
[a, b] : ⇑B ↙ a <

b ↙ B

}
, and H ↔ Y

X be a scalar-valued hypothesis class. Then, in the realizable setting,

SL2(H)

2
↙ inf

A

MA(T,H) ↙ SL(H).

In the agnostic setting,
√
SL2(H)T

8
↙ inf

A

RA(T,H) ↙ SL(H) +

2SL(H)T ln(T).

32

	Introduction
	Related Works
	Relation to List Online Classification

	Preliminaries
	Notation
	Online Learning

	Combinatorial Dimensions
	Relations Between Combinatorial Dimensions

	Realizable Setting
	A Separation Between Deterministic and Randomized Learnability
	Deterministic Learnability
	Randomized Learnability

	Agnostic Setting
	Applications
	Online Multilabel Ranking
	Online Multilabel Classification

	Relationships Between Combinatorial Dimensions
	Proof of (i) in Theorem 10.
	Proof of (ii) in Theorem 10.

	Deterministic Learnability in the Realizable Setting
	Upperbounds
	Lowerbounds

	Randomized Learnability in the Realizable Setting
	Upperbounds
	Fixed-scale Randomized Learner
	Multi-scale Randomized Learner

	Lowerbounds

	Agnostic Learnability
	Agnostic Upperbound
	Agnostic Lowerbound

	Applications
	Online Multilabel Ranking
	Ranking Littlestone dimension
	Online Multilabel Classification
	Online Interval Learning

