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Abstract
We consider the problem of learning multioutput function classes in the batch and online
settings. In both settings, we show that a multioutput function class is learnable if and only
if each single-output restriction of the function class is learnable. This provides a complete
characterization of the learnability of multilabel classification and multioutput regression
in both batch and online settings. As an extension, we also consider multilabel learnability
in the bandit feedback setting and show a similar characterization as in the full-feedback
setting.

Keywords: Learnability, Online Learning, Multilabel Classification, Multioutput Re-
gression

1 Introduction

Multioutput learning is a problem where an instance is labeled by a vector-valued target.
This is a generalization of scalar-valued-target learning settings such as multiclass classifica-
tion and regression. Multioutput learning has enjoyed a wide range of practical applications
like image tagging, document categorization, recommender systems, an weather forecasting
to name a few. This widespread applicability has motivated the development of several
practical methods (Kapoor et al., 2012; Borchani et al., 2015; Yang et al., 2020; Xu et al.,
2013; Nam et al., 2017), as well as theoretical analysis (Koyejo et al., 2015b; Liu and Tsang,
2015). However, the most fundamental question of learnability in a multioutput setting
remains unanswered.

Characterizing learnability is the foundational step toward understanding any statistical
learning problem. The fundamental theorem of statistical learning characterizes the learn-
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ability of binary function class in terms of the finiteness of a combinatorial quantity called
the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971, 1974). Extend-
ing VC theory, Natarajan (1989) proposed and studied the Natarajan dimension, which was
later shown by Ben-David et al. (1995) to characterize learnability in multiclass settings with
a finite number of labels. In fact, Ben-David et al. (1995) observed that the learnability
of multiclass function class F → {e1, . . . , eK}

X can also be characterized in terms of the
learnability of each component-wise binary function class Fk = {x ↑↓ ↔f(x), ek↗ : f ↘ F},
where {e1, . . . , eK} is the standard basis of RK and ↔·, ·↗ is the Euclidean inner-product.
Furthermore, they define an equivalence class of loss functions for the 0-1 loss and charac-
terize the learnability of multiclass problems with respect to all losses in the equivalence
class. We take a similar approach in this paper. Closing the question of learnability for
multiclass problems, Brukhim et al. (2022) shows that the Daniely-Shwartz (DS) dimen-
sion, originally proposed by Daniely and Shalev-Shwartz (2014), characterizes multiclass
learnability in the infinite labels setting. Similarly, in the online setting, the Littlestone
dimension (Littlestone, 1987) characterizes the online learnability of a binary function class
and a generalization of the Littlestone dimension (Daniely et al., 2011) characterizes online
learnability in the multiclass setting with finite labels. As for scalar-valued regression, the
fat shattering (Bartlett et al., 1996) and the sequential fat shattering (Rakhlin et al., 2015a)
dimensions characterize batch and online learnability respectively. Surprisingly, to our best
knowledge, no such characterization of the learnability of multioutput function classes exists
in the literature.

In this paper, we close this gap by characterizing the learnability of function classes
F → Y

X , where Y → RK is vector-valued target space for some K ↘ N. Let us define scalar-
valued function classes Fk = {x ↑↓ ↔f(x), ek↗ : f ↘ F} for each k ↘ [K], where {e1, . . . , eK}

is the standard basis of RK . Similarly, define Yk := {↔y, ek↗ : y ↘ Y}. Our main result,
informally stated below, asserts that F is learnable if and only if each coordinate restriction
Fk is learnable.

Theorem. ( Informal) A multioutput function class F → Y
X is learnable if and only if each

restriction Fk → Y
X

k
is learnable.

We prove a version of this result in four canonical settings: batch classification, online
classification, batch regression, and online regression. For the batch settings, we consider
the PAC framework and for the online settings, we consider the fully adversarial model. In
addition, our result holds for a wide family of loss functions. A unifying theme throughout
all four learning settings is our ability to constructively convert a learning algorithm A for
F into learning algorithm Ak for Fk for each k ↘ {1, ...,K} and vice versa. We show that
even for multioutput losses that tightly “couple” the K coordinates of a function class, their
learnability still depends on the learnability of each coordinate. For the batch setting, our
algorithmic techniques use the realizable-to-agnostic conversion introduced by Hopkins et al.
(2022). In the online setting, we provide a new realizable-to-agnostic conversion similar in
the spirit of Hopkins et al. (2022). In principle, both ours and Hopkins et al. (2022)’s
realizable-to-agnostic conversion is based on the idea of using algorithms to construct a
cover of function classes, originally introduced in the seminal work of Ben-David et al.
(2009).
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Our proof techniques, however, do not extend naturally to the case when K is infinite.
So, characterizing learnability for an infinite-dimensional target space is an interesting open
problem. Moreover, our reductions are computationally ine!cient and lead to sub-optimal
sample complexities and regret bounds. As such, we leave the construction of e!cient and
optimal multioutput learning algorithms as an interesting direction for the future work.

1.1 Related works

Multilabel classification has been extensively studied in the batch setting. We review a
few works here and also refer the reader to the references therein. Dembczyński et al.
(2010) quantify the 0-1 risk of multilabel classifiers trained by minimizing the Hamming loss
and vice versa. Dembczyński et al. (2012) and Chekina et al. (2013) study how exploiting
dependencies between labels can improve the predictive performance of multilabel classifiers
and how such exploitation interacts with loss minimization. Jain et al. (2016) consider the
case where the label set is extremely large and design new loss functions to handle these
settings. Busa-Fekete et al. (2022) derive upper and lower bounds on the excess risk for
non-parametric and parametric function classes for various loss functions assuming label
sparsity. Gao and Zhou (2011) and Koyejo et al. (2015a) study the consistency of surrogate
loss functions for multilabel classification. Finally, Gentile and Orabona (2012) consider
online multilabel classification under partial feedback and present a novel algorithm based
on second-order descent methods.

There is also a long history of studying least squares estimators for multioutput linear
models in the statistical literature, see (Rao, 1965; Brown and Zidek, 1980) and references
therein. The topic received widespread attention in learning theory following the seminal
work of Micchelli and Pontil (2005) in RKHS methods for vector-valued regression. We
refer the reader to a comprehensive review of kernel methods for vector-valued regression
by Alvarez et al. (2012). An early work of Gnecco and Sanguineti (2008) provides esti-
mation and approximation error of vector-valued functions using Rademacher complexity.
Following the influential work of Maurer (2016) on Rademacher contraction inequalities for
vector-valued functions, there have been works on the Rademacher analysis of vector-valued
functions (see Cortes et al. (2016); Reeve and Kaban (2020); Yousefi et al. (2018); Foster
and Rakhlin (2019)). Finally, we point out a recent work by Park and Muandet (2023)
towards developing empirical process theory for vector-valued functions.

2 Preliminaries

Let X denote the instance space and Y → RK be the target space for some K ↘ N. For
a space Z, we let Z

ω be the set of all finite sequences of elements from Z. Consider a
vector-valued function class F → Y

X , where Y
X denotes set of all functions from X to

Y. For an unlabeled sample SU ↘ X
ω, let F|SU

denote the projection of F onto SU .

Let ↔·, ·↗ denote the Euclidean inner-product on RK . Define scalar-valued function classes
Fk = {x ↑↓ ↔f(x), ek↗ : f ↘ F} for each k ↘ [K], where {e1, . . . , eK} is the standard basis
of RK . Here, each Fk → Y

X

k
, where Yk = {↔y, ek↗ : y ↘ Y} denotes the restriction of the

target space to its kth component.
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For a function f ↘ F , we use fk(x) := ↔f(x), ek↗ to denote the k
th coordinate output

of f(x). On the other hand, we use y
k := ↔y, ek↗ to denote k

th coordinate of y ↘ Y.
Additionally, it is useful to distinguish between the range space Y and the image of functions
f ↘ F . We define the image of function class F as im(F) := ≃f↑F im(f), where im(f) =
{f(x) : x ↘ X}. Finally, we take [N ] := {1, 2, . . . , N}.

In this work, we only consider bounded, non-negative loss functions ω : Y ⇐ Y ↓ R↓0

that satisfy the identity of the indiscernibles. For the remainder of the paper, we drop the
adjectives “bounded” and “non-negative” when referring to loss functions.

Definition 1 (Identity of Indiscernibles). A loss function ω : Y⇐Y ↓ R↓0 satisfies identity
of indiscernibles whenever ω(y1, y2) = 0 if and only if y1 = y2.

Note that if ω1 and ω2 are two losses defined on Y ⇐ Y that satisfy the identity of
indiscernibles, then ω1(y1, y2) = 0 if and only if ω2(y1, y2) = 0. We also define a notion
of approximate subadditivity, although not all the loss functions we consider have this
property.

Definition 2 (c-subadditive). A loss function ω is c-subadditive if there exists a constant
c > 0 that only depends on the loss function ω such that ω(y1, y2) ⇒ c ω(y1, y) + ω(y, y2) for
all y, y1, y2 ↘ Y.

If |Y| < ⇑, ω being c-subadditive is an immediate consequence of ω satisfying the

identity of indiscernibles. In fact, the value of c in this case is
maxr →=t ε(r,t)
minr →=t ε(r,t)

. To see why

this is true, it su!ces to only consider the case when ω(y1, y2) > ω(y, y2) because the
inequality is trivially true otherwise. Since the loss values are distinct, we must have y ⇓= y1.
Using the identity of indiscernible, we obtain ω(y1, y) ⇔ minr ↔=t ω(r, t), thus implying that
c ω(y1, y) ⇔ maxr ↔=t ω(r, t) ⇔ ω(y1, y2). The case when |Y| = ⇑ is a bit delicate because
minr ↔=t ω(r, t) may not exist. So, one needs extra structure in the loss function to infer
c-subadditivity. For instance, if ω is a distance metric, then it is trivially 1-subadditive due
to the triangle inequality.

2.1 Batch Setting

In the batch setting, we are interested in characterizing the learnability of F under the
classical PAC models: both in the original realizable formulation (Valiant, 1984) and in the
agnostic extension (Kearns et al., 1994).

Definition 3 (Agnostic Multioutput Learnability). A function class F is agnostic learnable
with respect to loss ω : Y⇐Y ↓ R↓0, if there exists a function m : (0, 1)2 ↓ N and a learning
algorithm A : (X ⇐ Y)ω ↓ Y

X with the following property: for every ε, ϑ ↘ (0, 1) and for
every distribution D on X ⇐ Y, running algorithm A on n ⇔ m(ε, ϑ) iid samples from D

outputs a predictor g = A(S) such that with probability at least 1↖ ϑ over S ↙ D
n,

ED[ω(g(x), y)] ⇒ inf
f↑F

ED[ω(f(x), y)] + ε.

Note that we do not require the output predictor A(S) to be in F , but only require A(S)
to compete with the best predictor in F . If we restrict distribution D to a class such that
inff↑F ED[ω(f(x), y)] = 0, then we get realizable learnability.
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The learnability of a function class is generally characterized in terms of the complexity
measure of the function class. As stated in the introduction, the VC dimension characterizes
the learnability of binary function classes (Vapnik and Chervonenkis, 1974), and so does
the Natarajan dimension for multiclass classification (Ben-David et al., 1995). In a scalar-
valued regression problem, the fat-shattering dimension of the function class characterizes
learnability with respect to the absolute-value and squared loss (Bartlett et al., 1996; Alon
et al., 1997). In particular, a real-valued function class G → [0, B]X is learnable if and only
if its fat-shattering dimension, denoted as fatϑ(G), is finite for every scale ϖ > 0. We extend
this characterization to a wide range of loss functions in Lemma 11. Finally, for a real-
valued class G, we also use a more general notion of complexity measure called Rademacher
complexity, denoted as Rn(G), that provides a su!cient condition for learnability (Bartlett
and Mendelson, 2003). Precise definitions of all these complexity measures are provided in
Appendix A.1.

One recurring theme in this work is to first construct a realizable multioutput learner
and then convert it into an agnostic multioutput learner. It is well known that realizable
learnability and agnostic learnability are equivalent for multiclass classification problems
with respect to 0-1 loss, (see Ben-David et al. (1995), (Shalev-Shwartz and Ben-David,
2014, Theorem 6.7)). Lemma 4, which is an immediate consequence of (Hopkins et al.,
2022, Theorem 18), extends this equivalence between realizable and agnostic learning to
general loss functions and target spaces.

Lemma 4 (Hopkins et al. (2022)). Consider a function class F → Y
X such that |im(F)| <

⇑ and a general loss function ω : Y ⇐ Y ↓ R↓0 that is c-subadditive. Then, F is realizable
PAC learnable with respect to ω if and only if F is agnostic PAC learnable with respect to ω.

The result of (Hopkins et al., 2022, Theorem 18) is stated for the case when |Y| < ⇑.
However, in the regression setting, we need a slightly general version of their result to handle
ϱ-discretized function classes Fϖ

→ Y
X (see Proof of Theorem 12) where |im(Fϖ)| < ⇑ but

|Y| = | [0, 1]K | = ⇑. Nevertheless, the proof of Lemma 4 requires only a minor modification
to that of (Hopkins et al., 2022, Theorem 18). Given the central role of this result in our
characterization, we provide full proof of Lemma 4 in Section 3.1.2. Finally, we note that
agnostic-to-realizable conversions in the batch setting are also possible via boosting and
compression-based arguments (Montasser et al., 2019; Attias and Hanneke, 2023). We use
the conversion of Hopkins et al. (2022) due to its generality and simplicity.

2.2 Online Setting

In the online setting, an adversary plays a sequential game with the learner over T rounds.
In each round t ↘ [T ], an adversary selects a labeled instance (xt, yt) ↘ X ⇐ Y and reveals
xt to the learner. The learner makes a (potentially randomized) prediction ŷt ↘ Y. Finally,
the adversary reveals the true label yt, and the learner su”ers the loss ω(yt, ŷt), where ω is
some pre-specified loss function. Given a function class F → Y

X , the goal of the learner is
to output predictions ŷt such that its cumulative loss is close to the best possible cumulative
loss over functions in F . A function class is online learnable if there exists an algorithm such
that for any sequence of labeled examples (x1, y1), ..., (xT , yT ), the di”erence in cumulative
loss between its predictions and the predictions of the best possible function in F is small.

5



Raman, Subedi, and Tewari

Definition 5 (Online Multioutput Learnability). A multioutput function class F is online
learnable with respect to loss ω, if there exists an (potentially randomized) algorithm A such
that for any adaptively chosen sequence of labelled examples (xt, yt) ↘ X ⇐Y, the algorithm
outputs A(xt) ↘ Y at every iteration t ↘ [T ] such that

E
[

T∑

t=1

ω(A(xt), yt)↖ inf
f↑F

T∑

t=1

ω(f(xt), yt)

]
⇒ R(T )

where the expectation is taken with respect to the randomness of A and that of the possibly
adaptive adversary, and R(T ) : N ↓ R+ is the additive regret: a non-decreasing, sub-linear
function of T .

If it is guaranteed that the learner always observes a sequence of examples labeled by
some function f ↘ F , then we say we are in the realizable setting. On the other hand, if
the true label yt is not revealed to the learner in each round t ↘ [T ] and the adversary only
reveals the learner’s loss ω(A(xt), yt) then we say we are in the bandit setting.

The online learnability of scalar-valued function classes H → Y
X has been characterized.

For example, when Y is finite (i.e. Y = [K] for some K ↘ N), the Multiclass Littlestone
Dimension (MCLdim) of H → Y

X characterizes online learnability with respect to the 0-
1 loss. A function class H is online learnable with respect to the 0-1 loss if and only if
MCLdim(H) is finite (Daniely et al., 2011). Moreover, MCLdim(H) tightly captures the
best achievable regret in both the realizable and agnostic settings (Daniely et al., 2011).
When the label space Y is a bounded subset of R, the sequential fat-shattering dimension of
a real-valued function class H → RX , denoted fatseqϑ (H), characterizes the online learnability
of H with respect to the absolute value loss (Rakhlin et al., 2015a). Unlike the Littlestone
dimension, note that the sequential fat-shattering dimension is a scale-sensitive dimension.
That is, fatseqϑ (H) is defined at every scale ϖ > 0. Accordingly, a real-valued function class

H → RX is learnable with respect to the absolute value loss if and only if its sequential
fat-shattering dimension is finite at every scale ϖ > 0 (Rakhlin et al., 2015a). We extend
this characterization to a wide range of loss functions in Lemma 22. Beyond scalar-valued
learnability, for any label space Y, function classH → Y

X , and loss function ω : Y⇐Y ↓ R↓0,
the sequential Rademacher complexity of the loss class ω∝H, denoted Rseq

T
(ω∝H), is a useful

tool for providing su!cient conditions for online learnability (Rakhlin et al., 2015a). See
Appendix A.2 for complete definitions.

Like the batch setting, a key technique we use to prove online learnability is to first
construct a realizable online learner and then convert it into an agnostic online learner.
However, unlike the batch setting, there is no known generic algorithm that converts a
(potentially randomized) realizable online learner into an agnostic online learner. Thus, one
of the contributions of this work is Theorem 13, informally stated below, which provides an
online analog of the realizable-to-agnostic conversion from Hopkins et al. (2022).

Theorem. (Informal) Let F → Y
X be a multioutput function class such that |im(F)| < ⇑

and ω : Y ⇐ Y ↓ R↓0 be any bounded, c-subadditive loss function. If F is online learnable
with respect to ω in the realizable setting, then F is online learnable with respect to ω in the
agnostic setting.
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3 Batch Multioutput Learnability

3.1 Batch Multilabel Classification

In this section, we study the learnability of batch multilabel classification. Accordingly, let
Y = {↖1, 1}K . First, we consider the learnability of a natural decomposable loss. Then,
we extend the result to more general non-decomposable losses that satisfy the identity of
indiscernible. We want to point out that a multilabel classification with K labels can be
viewed as a multiclass classification with 2K labels. With this viewpoint, the Natarajan
dimension of F continues to characterize the batch multilabel learnability for any loss
satisfying the identity of indiscernibles (see (Ben-David et al., 1995, Section 4)). For the
sake of completeness, we also provide proof of this characterization in Appendix B. However,
it is more natural to view a multilabel classification as K di”erent binary classification
problems as opposed to a multi-class classification problem with 2K labels. Exploiting this
natural decomposability of a multilabel function class, we relate the learnability of F to the
learnability of each component Fk.

3.1.1 Characterizing Batch Learnability for the Hamming Loss

A canonical and natural loss function for multilabel classification is the Hamming loss,
defined as ωH(f(x), y) :=

∑
K

i=1

{
fi(x) ⇓= y

i
}
, where f(x) = (f1(x), . . . , fK(x)) and y =

(y1, . . . , yK). The following result establishes an equivalence between the learnability of F
with respect to Hamming loss and the learnability of each Fk with respect to 0-1 loss.

Theorem 6. A function class F → Y
X is agnostic PAC learnable with respect to ωH if and

only if each of Fk → Y
X

k
is agnostic PAC learnable with respect to the 0-1 loss.

Proof We first prove that learnability of each component is su!cient followed by the proof
of necessity.

Part 1: Su!ciency. Here our goal is to prove that the agnostic PAC learnability of
each Fk is su!cient for agnostic PAC learnability of F . Our proof is constructive: given
oracle access to agnostic PAC learners Ak for each Fk with respect to 0-1 loss, we construct
an agnostic PAC learner A for F with respect to ωH . Let D be arbitrary distribution on
X ⇐ Y and S = {(xi, yi)}ni=1 ↙ D

n be iid samples from distribution D. Denote Dk to be
the marginal distribution of D restricted to X ⇐ Yk. Then, for all k ↘ [K], the marginal
samples Sk = {(xi, yki )}

n

i=1 with scalar-valued targets are iid samples from Dk. For each
k ↘ [K], define hk = Ak(Sk) to be the hypothesis returned by algorithm Ak when trained
on Sk.

Let mk(ε, ϑ) denote the sample complexity of Ak. Since Ak is an agnostic PAC learner
for Fk, we have that for n ⇔ maxk mk(

ϱ

K
,
ς

K
), with probability at least 1↖ϑ/K over samples

Sk ↙ D
n

k
,

EDk

[ {
hk(x) ⇓= y

k

}]
⇒ inf

fk↑Fk

EDk

[ {
fk(x) ⇓= y

k

}]
+

ε

K
.

Summing these risk bounds over all coordinates k and using union bounds over prob-
abilities, we get that with probability at least 1 ↖ ϑ over samples S ↙ D

n, we obtain∑
K

k=1 EDk

[ {
hk(x) ⇓= y

k
}]

⇒
∑

K

k=1 inffk↑Fk
EDk

[ {
fk(x) ⇓= y

k
}]

+ ε. Now using the fact
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that F → F1 ⇐ . . .⇐ FK followed by the linearity of expectation gives

ED

[
K∑

k=1

{
hk(x) ⇓= y

k

}]
⇒ inf

f↑F

ED

[
K∑

k=1

{
fk(x) ⇓= y

k

}]
+ ε.

This completes our proof as it shows that the learning rule that concatenates the predictors
returned by each Ak on the marginalized samples Sk is an agnostic PAC learner for F with
respect to ωH with sample complexity at most maxk mk(ε/K, ϑ/K).
Part 2: Necessity. Next, we show that if F is learnable with respect to ωH , then each Fk

is PAC learnable with respect to the 0-1 loss. Our proof is again based on reduction: given
oracle access to agnostic PAC learner A for F , we construct an agnostic PAC learner A1

for F1. A similar construction can be used for all other Fk’s.
Let D1 be arbitrary distribution on X ⇐ Y1 and S = {(xi, y1i )}

n

i=1 be iid samples from
D1. In order to use the algorithm A, we first augment the samples S to create samples
with K-variate target. Define an augmented sample S̃ = {(xi, (y1i , . . . , y

K

i
))}n

i=1 such that
yik ↙ {↖1, 1} each with probability 1/2 for all i ↘ [n] and k ↘ {2, . . . ,K} . Next, we run
A on S̃ and obtain the hypothesis h = (h1, . . . , hK) = A(S̃). We now show that h1 obtains
agnostic PAC bounds.

Consider a distribution D̃ on X ⇐ Y such that a sample (x, (y1, . . . , yK)) from D̃ is
obtained by first sampling (x, y1) ↙ D1 and appending y

k’s sampled independently from
uniform distribution on {↖1, 1} for each k ↘ {2, . . . ,K}. Let m(ε, ϑ,K) denote the sample
complexity of A. Since A is an agnostic PAC learner for F , for n ⇔ m(ε, ϑ,K), with
probability at least 1↖ ϑ, we have

E
D̃

[
K∑

k=1

{
hk(x) ⇓= y

k

}]
⇒ inf

f↑F

E
D̃

[
K∑

k=1

{
fk(x) ⇓= y

k

}]
+ ε.

For k ⇔ 2, since the target is chosen uniformly at random from {↖1, 1}, the 0-1 risk of any
predictor is 1/2. Therefore, the expression above can be written as

ED1

[ {
h1(x) ⇓= y

1
}]

+
K∑

k=2

1/2 ⇒ inf
f↑F

(
ED1

[ {
f1(x) ⇓= y

1
}]

+
K∑

k=2

1/2

)
+ ε,

which reduces to ED1 [
{
h1(x) ⇓= y

1
}
] ⇒ inff1↑F1 ED1 [

{
f1(x) ⇓= y

1
}
] + ε. Therefore, F1 is

agnostic PAC learnable with respect to 0-1 loss with sample complexity at most m(ε, ϑ,K).

3.1.2 Characterizing Batch Learnability for General Losses

In this section, we characterize the learnability for general multilabel losses. Our main
technical tool in characterizing the learnability for general loss functions is the equivalence
between realizable and agnostic learning guaranteed by Lemma 4. Thus, we first provide
the proof of that lemma before we proceed further.
Proof (of Lemma 4) Note that agnostic learnability implies realizable learnability by def-
inition. So, it su!ces to show that realizable learnability of F with respect to ω implies
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agnostic learnability. Our proof here is constructive. That is, given a realizable algorithm A

for F , we provide an algorithm, stated as Algorithm 1, that constructs an agnostic learner
for F .

Algorithm 1 Agnostic learner for F with respect to ω

Input: Realizable learner A for F with respect to ω, unlabeled samples SU ↙ DX , and
di”erent labeled samples SL ↙ D independent from SU

1 Run A over all possible labelings of SU by F to construct a concept class

C(SU ) :=
{
A

SU , f(SU )


| f ↘ F|SU

}
.

2 Return ĝ ↘ C(SU ) with the lowest empirical error over SL with respect to ω.

Let D be an arbitrary distribution over X ⇐ Y. Define

f
ω := inf

f↑F

ED[ω(f(x), y)]

to be the optimal predictor in F . Now consider a predictor g = A(SU , f
ω(SU )) ↘ C(SU )

returned by A when trained on samples SU labeled by f
ω. Note that g exists in C(SU )

because we consider all possible labelings of SU by F and there must be a sample labeled
by f

ω as well. Let mA(ε, ϑ,K) be the sample complexity of the algorithm A. Since A is
a realizable learner for F , for |SU | ⇔ mA


ϱ

2c ,
ς

2 ,K

with probability 1 ↖ ϑ/2 over sample

SU ↙ DX , we have

EDX [ω(g(x), fω(x))] ⇒
ε

2c
,

where DX is the marginal distribution of D restricted to X and c is the subaddtivity
constant of ω. Since the loss function is c-subadditive, for any (x, y) ↘ X ⇐ Y, we have
ω(g(x), y) ⇒ ω(fω(x), y) + c ω(g(x), fω(x)) pointwise. Taking expectation with respect to
(x, y) ↙ D, we obtain

ED[ω(g(x), y)] ⇒ cEDX [ω(g(x), f
ω(x))] + ED[ω(f

ω(x), y)] ⇒ ED[ω(f
ω(x), y)] +

ε

2
,

where the inequality holds with probability ⇔ 1 ↖ ϑ/2. Thus, we have shown that there
exists a predictor g ↘ C(SU ) that achieves agnostic PAC bounds for F with respect to ω.
Let ω(·, ·) ⇒ b be the upper bound on ω. Recall that by Hoe”ding’s inequality and union
bound, with probability at least 1 ↖ ϑ/2 over sample SL ↙ D, the empirical risk of every

hypothesis in C(SU ) on a sample of size ⇔
8b2

ϱ2
log 4|C(SU )|

ς
is at most ε/4 away from its

population risk. So, if |SL| ⇔
8b2

ϱ2
log 4|C(SU )|

ς
, then with probability at least 1 ↖ ϑ/2 over

sample SL ↙ D, we have

1

|SL|

∑

(x,y)↑SL

ω(g(x), y) ⇒ ED [ω(g(x), y)] +
ε

4
⇒ ED[ω(f

ω(x), y)] +
3ε

4
.

Next, consider the predictor ĝ returned by Algorithm 1. Since it is an empirical risk min-
imizer, its empirical risk can be at most the empirical risk of g. Given that the population
risk of ĝ can be at most ε/4 away from its empirical risk, we have that

ED [ω(ĝ(x), y)] ⇒ ED[ω(f
ω(x), y)] +

3ε

4
+

ε

4
⇒ inf

f↑F

ED[ω(f(x), y)] + ε,

9
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where the second inequality above uses the definition of fω. Note that this inequality holds
with probability at least 1↖ϑ, where the probability is taken over both samples SU and SL.
Thus, we have shown that Algorithm 1 is an agnostic PAC learner for F with respect to ω.

We now upper bound the sample complexity of Algorithm 1, denoted m(ε, ϑ,K) here-
inafter. Note that mA(ε, ϑ,K) is at most the number of unlabeled samples required for the
realizable algorithm A to succeed plus the number of labeled samples for the ERM step to
succeed. Thus,

m(ε, ϑ,K) ⇒ mA


ε

2c
,
ϑ

2
,K


+

8b2

ε2
log

4|C(SU )|

ϑ

⇒ mA


ε

2c
,
ϑ

2
,K


+

8b2

ε2


mA


ε

2c
,
ϑ

2
,K


log (|im(F)|) + log

4

ϑ


,

where the second inequality follows due to |C(SU )| ⇒ |im(F)||SU | and we need |SU | to
be of size mA


ϱ

2c ,
ς

2 ,K

.

With Lemma 4 in hand, we can now relate the learnability of H with respect to any ω

satisfying identity of indiscernibles to the learnability of H with respect to ωH . To that end,
we prove a result establishing the equivalence of learnability between any two loss functions
satisfying the identity of indiscernibles.

Lemma 7. Let ω and ω
↗ be any two loss functions satisfying the identity of indiscernibles.

Then, a function class F → Y
X is agnostic PAC learnable with respect to ω if and only if

F → Y
X is agnostic PAC learnable with respect to ω

↗.

The key idea behind the proof of Lemma 7 is to use a realizable learner for ω to construct
a realizable learner for ω↗. This is possible because ω

↗(y1, y2) = 0 if and only if ω(y1, y2) = 0
for any y1, y2 ↘ Y. Given such realizable learner for ω↗, Lemma 4 guarantees the existence
of an agnostic learner for ω↗.
Proof Since ω and ω

↗ are arbitrary, it su!ces to prove only one direction. So, let us assume
that F is learnable with respect to ω. We will now show that F is learnable with respect
to ω

↗ as well. First, we show this for any realizable distribution D with respect to ω
↗. Since,

for any y1, y2 ↘ Y, we have ω
↗(y1, y2) = 0 if and only if ω(y1, y2) = 0, the distribution D is

also realizable with respect to ω. Furthermore, as there are at most 22K distinct possible
inputs to ω

↗(·, ·), the loss function can only take a finite number of values. So, we can
always find universal constants a > 0 and b > 0 (that only depends on ω and ω

↗) such that
aω ⇒ ω

↗
⇒ bω. Given that F is learnable with respect to ω, there exists a learning algorithm

A with the following property: for any ε, ϑ > 0, for S ↙ D
n, such that n = mA(

ϱ

b
, ϑ,K), the

algorithm outputs a predictor h = A(S) such that, with probability 1↖ ϑ over S ↙ D
n, we

have ED[ω(h(x), y)] ⇒
ϱ

b
. This inequality upon using the fact that ω

↗(h(x), y) ⇒ bω(h(x), y)
pointwise reduces to ED[ω↗(h(x), y)] ⇒ ε. Therefore, any realizable learner A for ω is also
a realizable learner for ω

↗. Finally, as ω
↗ satisfies the identity of indiscernibles and thus

c-subadditivity, Lemma 4 guarantees the existence of agnostic PAC learner B for F with
respect to ω

↗. In particular, one such agnostic PAC learner B is Algorithm 1 that has sample

10
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complexity

mB(ε, ϑ,K) ⇒ mA


ε

2bc
,
ϑ

2
,K


+

b
2

ε2
O


mA


ε

2bc
,
ϑ

2
,K


K + log

1

ϑ


,

where c > 1 is the subadditivity constant of ω↗ and mA(·, ·,K) is the sample complexity of
any realizable algorithm A.

An immediate consequence of Lemma 7 is that learnability with respect to any loss
ω satisfying the identity of indiscernibles is equivalent to learnability with respect to the
Hamming loss ωH . Thus, given Theorem 6, we can deduce the following result.

Theorem 8. Let ω be any multilabel loss function satisfying the identity of indiscernibles.
A function class F → Y

X is agnostic PAC learnable with respect to ω if and only if each
restriction Fk → Y

X

k
is agnostic PAC learnable with respect to the 0-1 loss.

Remark. Since the learnability of a binary function class with respect to the 0-1 loss is
characterized by its VC dimension (Shalev-Shwartz and Ben-David, 2014, Theorem 6.7),
Theorem 8 implies that F is learnable with respect to ω satisfying the identity of indis-
cernibles if and only if VC(Fk) < ⇑ for each k ↘ [K].

3.2 Batch Multioutput Regression

In this section, we consider the case when Y = [0, 1]K → RK for K ↘ N. For bounded targets
(with a known bound), this target space is without loss of generality because one can always
normalize each Yk to [0,1] by subtracting the lower bound and dividing by the upper bound
of Yk. As usual, we consider an arbitrary multioutput function class F → Y

X . Following
our outline in classification, we first study the learnability of F under decomposable losses
and then non-decomposable losses.

3.2.1 Characterizing Learnability for Decomposable Losses

A canonical loss for the scalar-valued regression is the absolute value metric, d1(fk(x), yk) :=
|fk(x)↖y

k
|. Analogously, we define dp(fk(x), yk) := |fk(x)↖y

k
|
p for p > 1 are other natural

scalar-valued losses. For multioutput regression, we consider decomposable losses that are
natural multivariate extensions of the d1 metric. In particular, we consider loss functions
with the following properties.

Assumption 1. The loss can be written as ω(f(x), y) =
∑

K

k=1 ςk ∝ d1(fk(x), yk) where for
each k ↘ [K], the function ςk : R↓0 ↓ R↓0 is L-Lipschitz and satisfies ςk(0) = 0.

Here, ςk ∝d1 is a composition function defined as ςk ∝ d1(fk(x), yk) := ςk


d1(fk(x), yk)


.

Note that ςk ∝ d1 is a large family of loss functions that e”ectively contains all natural
decomposable multioutput regression losses. For instance, taking ςk(z) = |z|

p for p ⇔ 1
gives ωp norms raised to their p-th power. Considering ςk(z) = |z|

2
/2 [|z| ⇒ ϑ] + ϑ(|z| ↖

ϑ/2) [|z| > ϑ] for some 1 > ϑ > 0 yields multivariate extension of Huber loss used for robust
regression. One may also construct a multioutput loss by considering di”erent scalar-valued

11
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losses for each coordinate output. Next, we establish an equivalence between the learnability
of F → Y

X with respect to ω and the learnability of each Fk with respect to the loss ςk ∝d1.

Theorem 9. Let ω be any loss function that satisfies Assumption 1. Then, a function class
F → Y

X is agnostic learnable with respect to ω if and only if each of Fk → Y
X

k
is agnostic

learnable with respect to ςk ∝ d1.

Proof The proof of the su!ciency direction is similar to that of Theorem 6, so we defer
it to Appendix C.1. We now focus on the necessity direction. To that end, we show that if
F is agnostic learnable with respect to ω, then each Fk is agnostic learnable with respect to
ςk ∝d1. In particular, given oracle access to agnostic learner A for F , we construct agnostic
learner A1 for F1. By symmetry, a similar reduction can then be used to construct an
agnostic learner for each component Fk.

Since we are given a sample with a single, univariate target, the main problem is to find
the right way to augment samples to a K-variate target. In the proof of Theorem 6, we
showed that randomly choosing yik ↙ Uniform({↖1, 1}) for k ⇔ 2 results in all predictors
having a constant 1/2 risk–leaving only the risk of the first component on both sides.
Unfortunately, in regression under general losses, no single augmentation works for every
distribution on X . Thus, we augment the samples by considering all possible behaviors of
(F2, . . . ,FK) on the sample. Since the function class maps to a potentially uncountably
infinite space, we first discretize each component of the function class and consider all
possible labelings over the discretized space. Fix 1 > ϱ > 0. For k ⇔ 2, define the
discretization

f
ϖ

k
(x) =


f(x)

ϱ


ϱ (1)

for every fk ↘ Fk and the discretized component class F
ϖ

k
= {f

ϖ

k
|fk ↘ Fk}. Note that a

function in Fk maps to {0,ϱ, 2ϱ, . . . , ′1/ϱ∞ϱ} and the size of the range of the discretized
function class F

ϖ

k
is 1 + ′1/ϱ∞ ⇒ (ϱ + 1)/ϱ ⇒ 2/ϱ. For the convenience of exposition, let

us define F
ϖ

2:K to be F
ϖ without the first component, and we denote f

ϖ

2:K to be an element
of Fϖ

2:K .

Algorithm 2 Agnostic learner for F1 with respect to ς1 ∝ d1

Input: Agnostic learner A for F , samples S = (x1:n, y11:n) ↙ D
n

1 , and another independent

samples S̃ from D1

1 Define Saug = {(x1:n, y11:n, f
ϖ

2:K(x1:n) | f
ϖ

2:K ↘ F
ϖ

2:K}, all possible augmentations of S by
F

ϖ

2:K .
2 Run A over all possible augmentations to get C(S) :=

{
A

Sa


| Sa ↘ Saug

}
.

3 Define C1(S) = {g1 | (g1, . . . , gk) ↘ C(S)}, a restriction of C(S) to its first coordinate
output.

4 Return ĝ1, the predictor in C1(S) with the lowest empirical error over S̃ with respect to
ς1 ∝ d1.

We now show that Algorithm 2 is an agnostic learner for F1. First, let us define

f
ω

1 := argmin
f1↑F1

ED1 [ς1 ∝ d1(f1(x), y
1)],

12
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to be optimal predictor in F1 with respect to D1. By definition of F1, there must exist
f
ω

2:K ↘ F2:K such that (fω

1 , f
ω

2:K) ↘ F . We note that f
ω

k
need not be optimal predictors in

Fk for k ⇔ 2, but we use the φ notation just to associate these component functions with
the first component function f

ω

1 . Define f
ω,ϖ

2:K ↘ F
ϖ

2:K to be the corresponding discretization
of fω

2:K . At a high level, the key idea of this proof is to show that the algorithm A when run
on the sample (x1:n, y11:n, f

ω,ϖ

2:K(x1:n) produces a predictor g = A(x1:n, y11:n, f
ω,ϖ

2:K(x1:n)) such
that its restriction g1 is a valid agnostic learner for F1. Although one such augmentation
is enough to produce an agnostic learner for F1, all possible augmentations are required in
step 2 of Algorithm 2 because f

ω

1 is not known to the learner apriori. We now make this
argument precise.

Suppose g = A((x1:n, y11:n, f
ω,ϖ

2:K(x1:n)) is the predictor obtained by running A on the
sample augmented by f

ω,ϖ

2:K . Note that g ↘ C(S) by definition. Let mA(ε, ϑ,K) be the
sample complexity of A. Since A is an agnostic learner for F with respect to ω, we have
that for n ⇔ mA(ε/4, ϑ/2,K), with probability at least 1↖ ϑ/2,

ED1

[
ς1 ∝ d1(g1(x), y

1)
]
+

K∑

k=2

EDX

[
ςk ∝ d1(gk(x), f

ω,ϖ

k
(x))

]

⇒ inf
f↑F

(
ED1

[
ς1 ∝ d1(f1(x), y

1)
]
+

K∑

k=2

EDX

[
ςk ∝ d1(fk(x), f

ω,ϖ

k
(x))

]
)

+
ε

4

Note that the quantity on the left is trivially lower bounded by the risk of the first compo-
nent. To handle the right-hand side, we first note that the optimal risk is trivially upper
bounded by the risk of (fω

1 , f
ω

2:K), yielding

ED1

[
ς1 ∝ d1(g1(x), y

1)
]
⇒ ED1

[
ς1 ∝ d1(f

ω

1 (x), y
1)
]
+

K∑

k=2

EDX

[
ςk ∝ d1(f

ω

k
(x), fω,ϖ

k
(x))

]
+

ε

4
.

Next, using the L-Lipschitzness of ςk and the fact that ςk(0) = 0 implies ςk∝d1(fω

k
(x), fω,ϖ

k
(x)) ⇒

Ld1(fω

k
(x), fω,ϖ

k
(x)) ⇒ Lϱ for all k ⇔ 2. Thus, picking ϱ = ϱ

4LK and using the definition of
f
ω

1 , we obtain

ED1

[
ς1 ∝ d1(g1(x), y

1)
]
⇒ inf

f1↑F1

ED1 [ς1 ∝ d1(f1(x), y
1)] +

ε

2
.

Therefore, we have shown the existence of one predictor g ↘ C(S) such that its restriction
to the first component, g1, obtains the agnostic bound. Note that since ς1 is L-Lipschitz
and satisfies ς1(0) = 0, we obtain that ς1 ∝ d1(·, ·) ⇒ L. The upper bound also uses the
fact that |f1(x)↖ y

1
| ⇒ 1. Now recall that by Hoe”ding’s Inequality and union bound, with

probability at least 1↖ ϑ/2, the empirical risk of every hypothesis in C1(S) on a sample of

size ⇔
8L2

ϱ2
log 4|C1(S)|

ς
is at most ε/4 away from its true error. So, if |S̃| ⇔ 8L2

ϱ2
log 4|C1(S)|

ς
,

then with probability at least 1↖ ϑ/2, the empirical risk of the predictor g1 is

1

|S̃|

∑

(x,y1)↑S̃

ς1∝d1(g1(x), y
1) ⇒ ED1

[
ς1 ∝ d1(g1(x), y

1)
]
+
ε

4
⇒ inf

f1↑F1

ED1 [ς1∝d1(f1(x), y
1)]+

3ε

4
.
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Since ĝ1, the output of Algorithm 2 is the ERM on S̃ over C1(S), its empirical risk can
be at most the empirical risk of g1, which is at most inff1↑F1 ED1 [ς1 ∝ d1(f1(x), y1)] +

3ϱ
4 .

Given that the population risk of ĝ1 is at most ε/4 away from its empirical risk, we can
conclude that the population risk of ĝ1 is

ED1 [ς1 ∝ d1(ĝ1(x), y
1)] ⇒ inf

f1↑F1

ED1 [ς1 ∝ d1(f1(x), y
1)] + ε.

Applying union bounds, the entire process, algorithm A on the dataset augmented by f
ω,ϖ

2:K
and ERM in step 4, succeeds with probability 1↖ ϑ. The sample complexity of Algorithm
2 is the sample complexity of Algorithm A and the sample complexity of ERM in step 4,
which is

⇒ mA(ε/4, ϑ/2,K) +
8L2

ε2
log

4|C1(S)|

ϑ

⇒ mA(ε/4, ϑ/2,K) +
8KL

2

ε2


mA(ε/4, ϑ/2,K) log


4K L

ε


+ log

4

ϑ


,

where the second inequality follows due to |C1(S)| ⇒ (2/ϱ)mA(ϱ/4,ς/2,K)K is the required
size of C1(S) and our choice of ϱ = ε/(4KL). This completes the proof as we have shown
that Algorithm 2 is an agnostic learner for F1 with respect to ς1 ∝ d1.

3.2.2 A More General Characterization of Learnability for Decomposable
Losses

Unlike Theorems 6 and 8 in classification setting where we connected the learnability of F
to the learnability of Fk’s with respect to 0-1 loss, Theorem 9 relates the learnability of F
to the learnability of Fk with respect to ςk ∝ d1 instead of the more canonical loss d1. In
this section, we complete that final step to characterizing learnability in terms of d1 with
an additional assumption on ςk.

Assumption 2. For all k ↘ [K], the function ςk : R↓0 ↓ R↓0 is monotonic.

Under these assumptions, Theorem 10 provides a more general characterization than The-
orem 9.

Theorem 10. Let ω be any loss function that satisfies Assumptions 1 and 2. Then, a
multioutput function class F → ([0, 1]K)X is agnostic learnable with respect to ω if and only
if each Fk → [0, 1]X is agnostic learnable with respect to d1.

Since the fat-shattering dimension of a real-valued function class characterizes its learn-
ability with respect to d1 loss, Theorem 10 implies that a multioutput function class F is
learnable with respect to ω satisfying Assumptions 1 and 2 if and only if fatϑ(F) < ⇑ for
every fixed scale ϖ > 0. Theorem 10 is an immediate consequence of Theorem 9 and the
following lemma, the proof of which is deferred to Appendix C.2.

Lemma 11. Let Y = [0, 1] be the label space and ς : R↓0 ↓ R↓0 be any Lipschitz and
monotonic function that satisfies ς(0) = 0. A scalar-valued function class G → [0, 1]X is
agnostic learnable with respect to ς ∝ d1 if and only if G is agnostic learnable with respect
to d1.
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The part of the lemma showing that d1 learnability implies ς ∝ d1 is trivial using the
Rademacher-based argument and Talagrand’s contraction lemma. However, proving ς ∝ d1

learnability implies d1 learnability is non-trivial. The case ς(z) = |z|
2 is considered in

(Anthony and Bartlett, 1999, Theorem 19.5), but their proof requires a mismatch between
the label space and the prediction space, namely Y = [↖1, 2] but G → [0, 1]X . In this
work, we improve their result by showing the equivalence between ς ∝ d1 learnability and
d1 learnability without requiring extended label space.

An application of Lemma 11 is that the learnability of a real-valued function class G

with respect to losses d1 and dp are equivalent for any p > 1.

3.2.3 Characterizing Learnability for Non-Decomposable Losses

Next, we study the learnability of function class F with respect to non-decomposable losses.
In the regression setting, the natural non-decomposable loss to consider is ωp norm, which

is defined as ωp(f(x), y) :=
∑

k=1 |fk(x)↖ y
k
|
p
1/p

for 1 ⇒ p < ⇑. For p = ⇑, the p-norm
is defined as ω↘(f(x), y) := maxk |fk(x)↖ y

k
|. One might be interested in ωp norms instead

of their decomposable counterparts ω
p
p losses discussed in the previous section mainly for

robustness to outliers. The following result characterizes the agnostic learnability of F with
respect to ωp norms.

Theorem 12. Fix p ⇔ 1. The function class F → Y
X is agnostic learnable with respect to

ωp norm if and only if each of Fk → Y
X

k
is agnostic learnable with respect to the absolute

value loss, d1.

Using ςk(z) = |z| in Theorem 9 implies that F is learnable with respect to ω1 if and
only if each Fk is learnable with respect to d1. Thus, to prove Theorem 12, it su!ces to
show that for all p > 1, F is learnable with respect to ωp if and only if F is learnable with
respect to ω1 norm.
Proof We begin by proving the su!ciency direction. As discussed above, the learnability
of each Fk with respect to d1 implies that F is learnable with respect to ω1. Then, the high-
level idea of the proof is to use an agnostic learner for F with respect to ω1 to construct
a realizable learner for F

ϖ with respect to ω1. Using the fact ω1(y1, y2) = 0 if and only if
ωp(y1, y2) = 0 for any y1, y2 ↘ Y, the realizable learner for ω1 is also a realizable learner
for ωp. Finally, as |im(Fϖ)| < ⇑ for every ϱ > 0, Lemma 4 guarantees the existence of
an agnostic learner for F

ϖ with respect to ωp. Then, a simple application of the triangle
inequality shows that an agnostic learner for F

ϖ is also an agnostic learner for F with
respect to ωp. We now proceed with the formal proof.
Part 1: Su!ciency. Fix p > 1. Recall that the learnability of each Fk with respect to d1

implies that F is learnable with respect to ω1. Let D be arbitrary distribution on X ⇐ Y

and A be an agnostic PAC learner for F with respect to ω1 with sample complexity m(ε, ϑ)
. For any ε, ϑ > 0, with n su!ciently larger than m(ε/2, ϑ,K), with probability at least
1↖ ϑ over S ↙ D

n, we have

ED[ω1(g(x), y)] ⇒ inf
f↑F

ED[ω1(f(x), y)] +
ε

2
,

where g = A(S). Define F
ϖ to be a discretized function class obtained by discretiz-

ing F component-wise using the scheme (1). Consider D to be a realizable distribution
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with respect to F
ϖ. Note that the triangle inequality implies ω1(f(x), y) ⇒ ω1(fϖ(x), y) +

ω1(f(x), fϖ(x)) ⇒ ω1(fϖ(x), y)+Kϱ. Taking ϱ = ϱ

2K and using the fact that inff↑F E[ω1(fϖ(x), y)] =
0, we obtain ED[ω1(g(x), y)] ⇒ ε. Next, using the inequality ωp(g(x), y) ⇒ ω1(g(x), y) point-
wise yields

ED[ωp(g(x), y)] ⇒ ε.

Therefore, A is a realizable learner for F
ϖ with respect to ωp with sample complexity

m(ε/2, ϑ,K). Since |im(Fϖ)| < ⇑ and ωp(·, ·) are 1-subadditive, Lemma 4 implies that
F

ϖ is agnostic learnable with respect to ωp via Algorithm 1, referred to as algorithm B

henceforth. Thus, for any ε, ϑ > 0, there exists a n ⇔ mB(ε/2, ϑ/2), for any distribution D̃

on X ⇐ Y, running B on S ↙ D
n outputs a predictor g̃ ↘ Y

X such that with probability at
least 1↖ ϑ over S ↙ D̃

n, we have

E
D̃
[ωp(g̃(x), y)] ⇒ inf

fω↑Fω
E
D̃
[ωp(f

ϖ(x), y)] +
ε

2
= inf

f↑F

E
D̃
[ωp(f

ϖ(x), y)] +
ε

2
.

Using triangle inequality, we have ωp(fϖ(x), y) ⇒ ωp(f(x), y)+ωp(fϖ(x), f(x)) ⇒ ωp(f(x), y)+
ϱK pointwise. Again taking ϱ = ϱ

2K , we obtain

E
D̃
[ωp(g̃(x), y)] ⇒ inf

f↑F

E
D̃
[ωp(f(x), y)] + ε.

Therefore, we have shown that F is agnostic PAC learnable with respect to ωp.
The sample complexity of agnostic learner B can be made precise using the sample com-

plexity of Algorithm 1. In particular, the sample complexity of B is the sample complexity
of the realizable learner A and the sample complexity of the ERM in step 2 of Algorithm
1. Proof of Lemma 4 shows that the sample complexity of B must be

mB(ε, ϑ,K) ⇒ mA


ε

2c
,
ϑ

2
,K


+

8b2

ε2


mA


ε

2c
,
ϑ

2
,K


log |(im(Fϖ)|) + log

4

ϑ


,

where b is the upperbound on the loss and c is the subadditivity constant. Since b ⇒ K,
and c = 1 for all ωp norms with p ⇔ 1, we obtain

mB(ε, ϑ,K) ⇒ mA(ε/2, ϑ/2,K) +
8K3

ε2


mA(ε/2, ϑ/2,K) log


4K

ε


+ log

4

ϑ


,

where we also use the fact that |im(Fϖ)| ⇒ (2/ϱ)K for our choice of ϱ = ϱ

2K .
Part 2: Necessity. Fix p > 1. We now prove that F being learnable with respect to ωp

implies F is learnable with respect to ω1. The proof is identical to the proof of su!ciency,
so we only provide a sketch of the argument here. Our proof strategy follows a similar route
through realizable learnability of the discretized class Fϖ and then the use of Lemma 4.

Recall that any agnostic learner A for F with respect to ωp is a realizable learner for Fϖ

with respect to ωp. Using the inequality ω1(·, ·) ⇒ Kωp(·, ·) pointwise, we can deduce that
A is also a realizable learner for F

ϖ with respect to ω1. Since |im(Fϖ)| ⇒ (2/ϱ)K < ⇑,
Lemma 4 guarantees existence of an agnostic learner for Fϖ with respect to ω1. Using tri-
angle inequality, we obtain ω1(fϖ(x), y) ⇒ ω1(f(x), y) + ω1(fϖ(x), f(x)) ⇒ ω1(f(x), y) + ϱK

pointwise, and choosing appropriate discretization scale allows us to turn agnostic bound
for Fϖ into an agnostic bound for F .
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Remark. We note that Theorem 12 holds for any norm on RK , but we only focus on ωp

norms here due to their practical significance. As the fat-shattering dimension of a real-
valued function class characterizes its learnability with respect to d1 loss (Bartlett et al.,
1996), Theorem 12 implies that a multioutput function class F is learnable with respect to
ωp for 1 ⇒ p ⇒ ⇑ if and only if fatϑ(Fk) < ⇑ for all k ↘ [K] at every fixed scale ϖ > 0.

Since we are only concerned with the question of learnability in this work, our focus
is not on optimal sample complexity rates. However, we point out that for any p ⇔ 1, if
each Fk is learnable with respect to d1, then F is learnable with respect to ωp via ERM
with a better sample complexity than Algorithm 1. The proof of this claim is based on
Rademacher complexity and is provided in Appendix D.

4 Online Multioutput Learnability

Here, we study the online learnability of multioutput function classes. Throughout this sec-
tion, we give regret bounds assuming an oblivious adversary. A standard reduction (Chapter
4 in Cesa-Bianchi and Lugosi (2006)) allows us to convert oblivious regret bounds to adap-
tive regret bounds in the full-information setting. A key requirement allowing an oblivious
regret bound to generalize to an adaptive regret bound is that the learner’s predictions on
round t should not depend on any of its past predictions from previous rounds. This is true
for all of the online learning algorithms in this section.

4.1 Online Agnostic-to-Realizable Reduction

Our strategy for constructively characterizing the learnability of general losses in both the
batch classification and regression setting required the ability to convert a realizable learner
to an agnostic learner in a black-box fashion. In this section, we provide an analog of this
conversion for the online setting. More specifically, we focus on the setting where F → Y

X

is a multioutput function class but |im(F)| < ⇑ is finite. Then, for any c-subadditive loss
function ω, we constructively convert a (potentially randomized) realizable online learner
for F with respect to ω into an agnostic online learner for F with respect to ω. Theorem 13
formalizes the main result of this subsection.

Theorem 13. Let F → Y
X be a multioutput function class such that |im(F)| < ⇑ and

ω : Y⇐Y ↓ R↓0 be any c-subadditive loss function such that ω(·, ·) ⇒ M . If A is a realizable
online learner for F with respect to ω with sub-linear expected regret R(T, |im(F)|), then for
every ↼ ↘ (0, 1), there exists an agnostic online learner for F with respect to ω with expected
regret

cT

T φ
R(T φ

, |im(F)|) +M


2T 1+φ ln(|im(F)|),

where R(T, |im(F)|) is any concave, sublinear upperbound on R(T, |im(F)|).

Note that if R(T φ
, |im(F)|) is sublinear in its first argument, then cT

TεR(T φ
, |im(F)|) +

M

2T 1+φ ln(|im(F)|) is sublinear in T for any ↼ ↘ (0, 1). By Lemma 14, we are guaranteed

the existence of R(T, |im(F)|).
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Lemma 14. (Ceccherini-Silberstein et al., 2017, Lemma 5.17) Let g be a positive sublinear
function. Then, g is bounded from above by a concave sublinear function.

Therefore, Theorem 13 and Lemma 14 show that for any function class F with finite
image space and any c-subadditive loss function, realizable and agnostic online learnability
are equivalent. We now begin the proof of Theorem 13.

Proof Let A be a (potentially randomized) online realizable learner for F with respect
to ω. By definition, this means that for any (realizable) sequence (x1, f(x1)), ..., (xT , f(xT ))
labeled by a function f ↘ F , we have

E
[

T∑

t=1

ω(A(xt), f(xt))

]
⇒ R(T, |im(F)|),

where R(T, |im(F)|) is a sub-linear function of T . We now use A to construct an agnostic
online learner Q for F with respect to ω. Since we are assuming an oblivious adversary, let
(x1, y1), ..., (xT , yT ) ↘ (X ⇐ Y)T denote the stream of points to be observed by the online
learner and f

ω = argminf↑F
∑

T

t=1 ω(f(xt), yt) to be the optimal function in hindsight.

Our high-level strategy is to construct a large set of Experts that approximately cover
all possible labelings of the instances x1, ..., xT by functions in F . In particular, each Expert
uses an independent copy of A to make predictions, but update A using di!erent sequences
of labeled instances. Together, our set of Experts update A using all possible sequences
of labeled instances. In order to ensure that the number of Experts is not too large, we
construct such a set of Experts over a su!ciently small sub-sample of the stream. Finally,
we run the celebrated Randomized Exponential Weights Algorithm (REWA) (Cesa-Bianchi
and Lugosi, 2006) using our set of experts and the scaled loss function ε

M
over the original

stream of points (x1, y1), ..., (xT , yT ). We now formalize this idea below.

For any bitstring b ↘ {0, 1}T , let ↽ : {t : bt = 1} ↓ im(F) denote a function mapping
time points where bt = 1 to elements in the image space im(F). Let #b → (im(F)){t:bt=1}

denote all such functions ↽. For every f ↘ F , let ↽
f

b
↘ #b be the mapping such that

for all t ↘ {t : bt = 1}, ↽f

b
(t) = f(xt). Let |b| = |{t : bt = 1}|. For every b ↘ {0, 1}T

and ↽ ↘ #b, define an Expert Eb,↼. Expert Eb,↼, formally presented in Algorithm 3, uses
A to make predictions in each round. However, Eb,↼ only updates A on those rounds
where bt = 1, using ↽ to compute a labeled instance (xt,↽(t)). For every b ↘ {0, 1}T , let
Eb =


↼↑!b

{Eb,↼} denote the set of all Experts parameterized by functions ↽ ↘ #b. If b is the
all zeros bitstring, then Eb is empty. Therefore, we actually define Eb = {E0}≃


↼↑!b

{Eb,↼},
where E0 is the expert that never updates A and plays ŷt = A(xt) for all t ↘ [T ]. Note that
1 ⇒ |Eb| ⇒ (|im(F)|)|b|.

With this notation in hand, we are now ready to present Algorithm 4, our main agnostic
online learnerQ for F with respect to ω. Our goal is to show thatQ enjoys sublinear expected
regret. There are three main sources of randomness: the randomness involved in sampling
B, the internal randomness of A, and the internal randomness of REWA. Let B,A and P

denote the random variables associated with each source of randomness respectively. By
construction, B,A, and P are independent.
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Algorithm 3 Expert(b, ↽)

Input: Independent copy of realizable online learner A for F with respect to ω

1 for t = 1, ..., T do

2 Receive example xt

3 Predict ŷt = A(xt)
4 if bt = 1 then

5 Update A by passing (xt,↽(t))

6 end

Algorithm 4 Agnostic online learner Q for F with respect to ω

Input: Parameter 0 < ↼ < 1

1 Let B ↘ {0, 1}T such that Bt

iid
↙ Bernoulli(T

ε

T
)

2 Construct the set of experts EB = {E0} ≃


↼↑!B
{EB,↼} according to Algorithm 3

3 Run REWA P using EB and the loss function ε

M
over the stream (x1, y1), ..., (xT , yT )

Using Theorem 21.11 in Shalev-Shwartz and Ben-David (2014) and the fact that B,A

and P are independent, REWA guarantees almost surely that

T∑

t=1

E [ω(P(xt), yt)|B,A] ⇒ inf
E↑EB

T∑

t=1

ω(E(xt), yt) +M


2T ln(|EB|).

Taking an outer expectation gives

E
[

T∑

t=1

ω(P(xt), yt)

]
⇒ E

[
inf

E↑EB

T∑

t=1

ω(E(xt), yt)

]
+ E

[
M


2T ln(|EB|)

]
.

Therefore,

E
[

T∑

t=1

ω(Q(xt), yt)

]
= E

[
T∑

t=1

ω(P(xt), yt)

]

⇒ E
[

inf
E↑EB

T∑

t=1

ω(E(xt), yt)

]
+ E

[
M


2T ln(|EB|)

]

⇒ E
[

T∑

t=1

ω(E
B,↼

fϑ

B
(xt), yt)

]
+ME

[
2T ln(|EB|)

]
.

In the last step, we used the fact that for all b ↘ {0, 1}T and f ↘ F , we have E
b,↼

f
b
↘ Eb.

It now su!ces to upperbound E
[∑

T

t=1 ω(EB,↼
fϑ

B
(xt), yt)

]
. To do so, we need some

additional notation. Given the realizable online learner A, an instance x ↘ X , and an
ordered finite sequence of labeled examples L ↘ (X ⇐ Y)→, let A(x|L) be the random
variable denoting the prediction of A on the instance x after running and updating on L.
For any b ↘ {0, 1}T , f ↘ F , and t ↘ [T ], let L

f

b<t
= {(xi, f(xi)) : i < t and bi = 1} denote
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the subsequence of the sequence of labeled instances {(xi, f(xi))}
t≃1
i=1 where bi = 1. Using

this notation, we can write

E
[

T∑

t=1

ω(E
B,↼

fϑ

B
(xt), yt)

]
= E

[
T∑

t=1

ω(A(xt|L
f
ϑ

B<t
), yt)

]

= E
[

T∑

t=1

ω(A(xt|L
f
ϑ

B<t
), yt)

[Bt = 1]

[Bt = 1]

]

=
T

T φ

T∑

t=1

E
[
ω(A(xt|L

f
ϑ

B<t
), yt) [Bt = 1]

]

=
T

T φ

T∑

t=1

E
[
ω(A(xt|L

f
ϑ

B<t
), yt) {Bt = 1}

]
.

To see the last equality, note that the prediction A(xt|L
f
ϑ

B<t
) only depends on bitstring

(B1, . . . , Bt≃1) and the internal randomness of A, both of which are independent of Bt.
Thus, we have

E
[
ω(A(xt|L

f
ϑ

B<t
), yt) {Bt = 1}

]
= E

[
ω(A(xt|L

f
ϑ

B<t
), yt)

]
E [ {Bt = 1}]

= E
[
ω(A(xt|L

f
ϑ

B<t
), yt)

]
[Bt = 1]

as needed. Continuing onwards,

E
[

T∑

t=1

ω(E
B,↼

fϑ

B
(xt), yt)

]
=

T

T φ
E
[

T∑

t=1

ω(A(xt|L
f
ϑ

B<t
), yt) {Bt = 1}

]

=
T

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), yt)

]

⇒
cT

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), fω(xt))

]
+

T

T φ
E
[

∑

t:Bt=1

ω(fω(xt), yt)

]

=
cT

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), fω(xt))

]
+

T∑

t=1

ω(fω(xt), yt)

=
cT

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), fω(xt))

]
+ inf

f↑F

T∑

t=1

ω(f(xt), yt)

The inequality follows from the fact that ω is a c-subadditive and the last equality follows

from the definition of f
ω. We now need to bound cT

TεE
[∑

t:Bt=1 ω(A(xt|L
f
ϑ

B<t
), fω(xt))

]
.

Using the fact that A
ω is a realizable online learner and gets updated on a stream of
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instances labeled by f
ω only on rounds where Bt = 1, we get

cT

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), fω(xt))

]
=

cT

T φ
E
[
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), fω(xt))

B
]]

⇒
cT

T φ
E [R(|B|, |im(F)|)] .

Putting things together, we find that,

E
[

T∑

t=1

ω(Q(xt), yt)

]
⇒ E

[
T∑

t=1

ω(E
B,↼

fϑ

B
(xt), yt)

]
+ME

[
2T ln(|EB|)

]

⇒ inf
f↑F

T∑

t=1

ω(f(xt), yt) +
cT

T φ
E [R(|B|, |im(F)|)] +ME

[
2T ln(|EB|)

]

⇒ inf
f↑F

T∑

t=1

ω(f(xt), yt) +
cT

T φ
E [R(|B|, |im(F)|)] +ME

[
2T |B| ln(|im(F)|)

]
,

where the last inequality follows from the fact that that |EB| ⇒ (|im(F)|)|B|. By Jensen’s in-

equality, we further get that, E
[

2T |B| ln(|im(F)|)
]
⇒


2T φ+1 ln(|im(F)|), which implies

that

E
[

T∑

t=1

ω(Q(xt), yt)

]
⇒ inf

f↑F

T∑

t=1

ω(f(xt), yt)+
cT

T φ
E [R(|B|, |im(F)|)]+M


2T φ+1 ln(|im(F)|).

Next, by Lemma 14, there exists a concave sublinear functionR(|B|, |im(F)|) that upper-
boundsR(|B|, |im(F)|). By Jensen’s inequality, we obtain E[R(|B|, |im(F)|)] ⇒ R(T φ

, |im(F)|),
which yields

E
[

T∑

t=1

ω(Q(xt), yt)

]
⇒ inf

f↑F

T∑

t=1

ω(f(xt), yt) +
cT

T φ
R(T φ

, |im(F)|) +M


2T φ+1 ln(|im(F)|).

This completes the proof as we have shown that Q is an agnostic online learner for F with
respect to ω with the stated regret bound.

4.2 Online Multilabel Classification

Let Y = {↖1, 1}K . We provide analogs of Theorem 6 and 8 in the online setting. We
begin by characterizing the learnability of the Hamming loss and then move to give a
characterization of learnability for all losses satisfying the identity of indiscernibles. Similar
to the batch setting, we can show that the MCLdim of F characterizes online multilabel
learnability (see Appendix F), but here, we give a characterization that better exploits the
multilabel structure of the problem.
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4.2.1 Characterizing Online Learnability for the Hamming Loss

Theorem 15 characterizes the online learnability of a multilabel function class F with respect
to ωH .

Theorem 15. A function class F → Y
X is online learnable with respect to the Hamming

loss if and only if each restriction Fk → Y
X

k
is online learnable with respect to the 0-1 loss.

The proof of Theorem 15 is similar to that of Theorem 6, so we defer the full proof to
Appendix E and only provide a sketch here. The proof of su!ciency direction is based
on a reduction: given oracle access to online learners {Ak}

K

k=1 for {Fk}
K

k=1 with respect
to ω0-1, we construct an online learner A for F with respect to ωH . In fact, similar to the
batch setting, the online multilabel learning algorithm A is simple: in each round t ↘ [T ],
receive xt, query the predictions A1(xt), ...,AK(xt), and finally predict the concatenation
ŷt = (A1(xt), ...,AK(xt)). Once the true label yt = (y1t , ..., y

K
t ) is revealed, update each

online learner Ak by passing (xt, ykt ) for k ↘ [K]. Using some algebra, one can show that
this prediction rule achieves sublinear regret for F .

For the necessity direction, given oracle access to an online learner A for F with respect
to ωH , we construct an online learner B for F1 with respect to ω0-1. A similar reduction can
be used to construct online learners for each restriction Fk. Similar to the batch setting, the
online learning algorithm B is simple: in each round t ↘ [T ], receive xt, query ŷt = A(xt)
and predict ŷ

1
t = A1(xt). Once the true label y1t is revealed, update A by passing (xt, yt)

where yt = (y1t ,⇀
2
t , ...,⇀

K
t ) and {⇀

i
t}

K

i=2 is an i.i.d sequence of Rademacher random variables.
A straightforward analysis shows that such a prediction rule achieves sublinear regret for
F1.

4.2.2 Characterizing Online Learnability for General Losses

Using Theorem 13 and Theorem 15, we now characterize the learnability of arbitrary mul-
tilabel loss functions ω as long as they satisfy the identity of indiscernibles. The key
idea is that since there are only finite number of possible inputs to ω, for any ω satisfy-
ing the identity of indiscernibles, there must exist universal constants a and b such that
aωH(y1, y2) ⇒ ω(y1, y2) ⇒ bωH(y1, y2). Then, we can characterize the learnability of ω by
relating it to the learnability of ωH . In fact, we prove a slightly more general result, showing
an equivalence between the learnability of any two arbitrary losses satisfying the identity
of indiscernibles.

Lemma 16. Let ω and ω
↗ be any two loss functions satisfying the identity of indiscernibles.

A function class F → Y
X is online learnable with respect to ω if and only if F is online

learnable with respect to ω
↗.

The proof of Lemma 16 is similar to that of Lemma 7 with the main di”erence being the
use of Theorem 13 instead of Lemma 4. Since Lemma 16 is our first application of Theorem
13, we provide the full proof here.
Proof Since ω and ω

↗ are arbitrary, it su!ces to prove only one direction. To that end,
suppose F is online learnable with respect to ω. We now show that F is online learnable
with respect to ω

↗ as well.
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Let a and b be the universal constants such that for all y1, y2 ↘ Y, aω(y1, y2) ⇒ ω
↗(y1, y2) ⇒

bω(y1, y2). Let c =
maxr →=t ε

↑(r,t)
minr →=t ε

↑(r,t) . Since |im(F)| = 2K < ⇑ and ω
↗ is a c-subadditive, by

Theorem 13, it su!ces to give a realizable online learner for F with respect to ω
↗. Since F

is online learnable with respect to ω, there exists an algorithm A such that for any sequence
(x1, y1), ..., (xT , yT ), we have

E
[

T∑

t=1

ω(A(xt), yt)↖ inf
f↑F

T∑

t=1

ω(f(xt), yt)

]
⇒ R(T, 2K)

where R(T, 2K) is a sublinear function of T . In the realizable setting, we are guaranteed
that for any sequence (x1, y1), ..., (xT , yT ) that the online learner may observe, there exists
a f ↘ F s.t f(xt) = yt for all t ↘ [T ]. Since ω satisfies the identity of indiscernibles, we have
that for any realizable sequence (x1, y1), ..., (xT , yT ), inff↑F

∑
T

t=1 ω(f(xt), yt) = 0. Thus, we

have that E
[∑

T

t=1 ω(A(xt), yt)
]
⇒ R(T, 2K). Noting that ω(A(xt), yt) ⇔

ε
↑(A(xt),yt)

b
implies

that E
[∑

T

t=1 ω
↗(A(xt), yt)

]
⇒ bR(T, 2K), showing that A is also a realizable online learner

for F with respect to ω
↗. For any ↼ ↘ (0, 1), the construction in Theorem 13 can then be

used to convert A into an agnostic online learner for F with respect to ω
↗ with expected

regret bound
cbT

T φ
R(T φ

, 2K) +M

∈

4KT 1+φ

where M is such that ω ⇒ M and R(T φ
, 2K) is any concave sublinear upperbound of

R(T φ
, 2K). This completes our proof.

As an immediate consequence of Lemma 16 and Theorem 15, we get the following
theorem characterizing the online learnability of general multilabel losses.

Theorem 17. Let ω be any multilabel loss function that satisfies the identity of indis-
cernibles. A function class F → Y

X is online learnable with respect to ω if and only if each
restriction Fk → Y

X

k
is online learnable with respect to the 0-1 loss.

Remark. Since the Littlestone dimension characterizes online learnability for binary classi-
fication under the 0-1 loss (Ben-David et al., 2009), Theorem 17 also implies that finiteness
of Ldim(Fk) for all k ↘ [K] is a necessary and su!cient condition for online multilabel
learnability.

Moreover, if Ldim(Fk) < ⇑ for all k ↘ [K], then we have MCLdim(F) < ⇑. This fol-
lows from the fact that MCLdim(F) ⇒

∑
K

k=1 Ldim(Fk). To see this, note that MCLdim(F)
is the lowerbound on the number of mistakes of any deterministic multiclass learner in
the realizable setting (Daniely et al., 2011, Theorem 17). On the other hand, one can
construct a deterministic realizable learner for F using K di”erent Standard Optimal Al-
gorithms (SOA) for binary function classes Fk’s. Namely, define an algorithm A such
that A(x) := (SOA(F1)(x), . . . , SOA(FK)(x)) ↘ {↖1, 1}K . Since each SOA(Fk) makes
at most Ldim(Fk) number of mistakes, A makes no more than

∑
K

k=1 Ldim(Fk) mis-
takes. We can use this fact to give an improved version of Theorem 13 for classes F

23



Raman, Subedi, and Tewari

with MCLdim(F) < ⇑. In particular, when Y = {↖1, 1}K , any F → Y
X that is learnable

in the realizable setting with respect to ω is also learnable in the agnostic setting with regret

O


B


TMCLdim(F) ln(T )

⇒ O


B


T
∑

K

k=1 Ldim(Fk) ln(T )

. Here, B is the maximum

value ω can take. The improved regret bound can be found in the su!ciency proof of
Theorem 34 in Appendix F.

4.3 Bandit Online Multilabel Classification

We extend the results in the previous subsection to the online setting where the learner
only observes bandit feedback in each round. Theorem 18 gives a characterization of bandit
online learnability of a function class F in terms of the online learnability of each restriction.

Theorem 18. Let ω be any loss function that satisfies the identity of indiscernibles. A
function class F → Y

X is bandit online learnable with respect to ω if and only if each
restriction Fk → Y

X

k
is online learnable with respect to the 0-1 loss.

Similar to the full-feedback setting, Theorem 18 also gives that the finiteness of Ldim(Fk) for
all k ↘ [K] is a necessary and su!ciency condition for bandit online multilabel learnability.
The proof of Theorem 18 uses the realizable-to-agnostic conversion for bandit feedback
setting when the label space Y is finite. The following Theorem makes this argument
precise.

Theorem 19. Let Y be a finite label space, F → Y
X a multioutput function class, and

ω : Y⇐Y ↓ R↓0 be any c-subadditive loss function such that ω(·, ·) ⇒ M . If A is a realizable
online learner for F with respect to ω under full-feedback with sub-linear expected regret
R(T, |Y|), then for every ↼ ↘ (0, 1), there exists an online learner for F with respect to ω

with expected regret

cT

T φ
R(T φ

, |Y|) + eM


2T 1+φ |Y| ln(|Y|),

under bandit feedback, where R(T, |Y|) is any concave, sublinear upperbound on R(T, |Y|).

The proofs for Theorem 18 and Theorem 19 are provided in Appendix G.

4.4 Online Multioutput Regression

In this section, we characterize the online learnability of multioutput function classes.
Similar to the batch setting, we consider, without loss of generality, the case when Y =
[0, 1]K ∋ RK for K ↘ N. In addition, we consider the same set of decomposable and
non-decomposable loss functions as in the batch setting. Namely, our decomposable loss
functions satisfy Assumptions 1 and 2, and our non-decomposable loss functions are ωp

norms. Informally, our main result asserts that a multioutput function class F ∋ Y
X is

online learnable if and only if each restriction Fk is online learnable.

4.4.1 Characterizing Learnability for Decomposable Losses

In this subsection, we characterize the online learnability of multioutput function classes
with respect to decomposable losses satisfying Assumption 1. Our main theorem is presented
below.
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Theorem 20. Let ω be a decomposable loss function satisfying Assumption 1. A multioutput
function class F → Y

X is online learnable with respect to ω if and only if each Fk → Y
X

k
is

online learnable with respect to ςk ∝ d1.

Proof As usual, we prove Theorem 20 in two parts: first su!ciency and then necessity.
The su!ciency proof is similar to that of the proof for Hamming loss in Theorems 6 and
15. The necessity direction is more involved, but the main idea is to combine the augmen-
tation technique used in the proof of Theorem 9 with the algorithmic conversion technique
developed in the proof of Theorem 13.
Part 1: Su!ciency. We first prove that online learnability of each restriction Fk with
respect to ςk∝d1 is su!cient for online learnability of F with respect to ω. Since ω(f(x), y) =∑

K

k=1 ςk ∝ d1(fk(x), yk) is decomposable, we can use the exact same strategy as in Section
4.2.1 to convert online learners A1, ..., AK for F1, ...,FK with respect to ςk ∝ d1 to an
online learner A for F with respect to ω. More specifically, in each round t ↘ [T ], receive
xt, query the predictions A1(xt), ...,AK(xt), and finally predict the concatenation ŷt =
(A1(xt), ...,AK(xt)). Once the true label yt = (y1t , ..., y

K
t ) is revealed, update each online

learner Ak by passing (xt, ykt ) for k ↘ [K]. Using the exact same proof as in Section 4.2.1,
it follows that the expected regret of A is

∑
K

k=1Rk(T ) where Rk(T ) is the regret of online
algorithm Ak. Since K is finite, the regret of A is sublinear in T when evaluated using ω.
Part 2: Necessity. Similar to the batch setting, we prove the necessity direction of
Theorem 20 constructively. That is, given oracle access to an online learner A for F with
respect to ω, we construct an online learner Q for F1 with respect to ς1 ∝ d1. By symmetry,
a similar reduction can be used to construct online learners for each restriction Fk. As
mentioned before, we assume an oblivious adversary, and therefore the stream of points
to be observed by the online learner, denoted (x1, y1), ..., (xT , yT ) ↘ (X ⇐ [0, 1])T , is fixed
beforehand. Let fω

1 = argminf1↑F1

∑
T

t=1 ςk ∝ d1(f1(xt), yt) denote the optimal function in
hindsight and f

ω
↘ F its completion.

Since we are trying to construct an online learner for F1, the targets y1, ..., yT are scalar-
valued. However, A is an online learner for F and therefore can only processes vector-valued
targets. Thus, we need to figure out how to augment the scalar-valued targets y1, ..., yT in
a way that allows us to use A to construct an online learner Q for F1. Following a similar
strategy as in the proof of Theorem 13, we can construct a set of Experts that simulate
online games with A by augmenting, in all possible ways, the scalar-valued targets of a
sub-sample of the stream into vector-valued targets using vectors in Y

ϖ

2:k, the discretized
label space for components 2 through K. In particular, our high-level strategy is to:

1. Randomly sub-sample points from the stream

2. Construct a set of Experts, each of which:

(a) Uses an independent copy of A to make predictions ŷt = A1(xt)

(b) Augments the scalar-valued targets of each labeled instance in the sub-sampled
stream to vector-valued targets using vectors in the discretized image space
im(Fϖ

2:K)

(c) Simulates an online game with its independent copy ofA over only the augmented
sub-sampled stream with vector-valued targets
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3. Run REWA using the set of experts in Step 2 and the ς1 ∝ d1 loss function over the
original stream of points.

We now formalize this idea. For any bitstring b ↘ {0, 1}T , let ↽ : {t : bt = 1} ↓ im(Fϖ

2:K)
denote a function mapping time points where bt = 1 to vectors in the discretized image
space im(Fϖ

2:K). Let #b → (im(Fϖ

2:K)){t:bt=1} denote all such functions ↽. For every f ↘ F ,

let ↽
f

b
↘ #b be the mapping such that for all t ↘ {t : bt = 1}, ↽

f

b
(t) = f

ϖ

2:K(xt). Let
|b| = |{t : bt = 1}|. For every b ↘ {0, 1}T and ↽ ↘ #b, define an Expert Eb,↼. Expert Eb,↼,
formally presented in Algorithm 5, uses A to make predictions in each round. However,
Eb,↼ only updates A on those rounds where bt = 1, using ↽ to augment the scalar-valued
labeled instance (xt, yt) to the vector-valued labeled instance (xt, (yt,↽(t))). For every
b ↘ {0, 1}T , let Eb =


↼↑!b

{Eb,↼} denote the set of all Experts parameterized by functions
↽ ↘ #b. If b is the all zeros bitstring, then Eb is empty. Therefore, we actually define
Eb = {E0} ≃


↼↑!b

{Eb,↼}, where E0 is the expert that never updates A and plays A1(xt)

for all t ↘ [T ]. Note that 1 ⇒ |Eb| ⇒ ( 2
ϖ
)K|b|.

Algorithm 5 Expert(b, ↽)

Input: Independent copy of Online Learner A for ω
1 for t = 1, ..., T do

2 Receive example xt

3 Predict ỹt = A1(xt)
4 Receive yt

5 if bt = 1 then

6 Update A by passing (xt, (yt,↽(t)))

7 end

With this notation in hand, we are now ready to present Algorithm 6, our main online
learner Q for F1.

Algorithm 6 Online learner Q for F1 with respect to ς1 ∝ d1

Input: Parameters 0 < ↼ < 1 and 0 < ϱ < 1

1 Let B ↘ {0, 1}T such that Bt

iid
↙ Bernoulli(T

ε

T
)

2 Construct the set of experts EB = {E0} ≃


↼↑!B
{EB,↼} according to Algorithm 5

3 Run REWA P using EB and the loss function ς1 ∝ d1 over the stream (x1, y1), ..., (xT , yT )

Our goal now is to show that Q enjoys sublinear expected regret. There are three main
sources of randomness: the randomness involved in sampling B, the internal randomness
of each independent copy of the online learner A, and the internal randomness of REWA.
Let B,A and P denote the random variable associated with these sources of randomness
respectively. By construction, B,A, and P are independent.

Using Theorem 21.11 in Shalev-Shwartz and Ben-David (2014) and the fact that A,P ,
and B are independent, REWA guarantees

E
[

T∑

t=1

ς1 ∝ d1(P(xt), yt)

]
⇒ E

[
inf

E↑EB

T∑

t=1

ς1 ∝ d1(E(xt), yt)

]
+ E

[
2T ln(|EB|)

]
.
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Thus,

E
[

T∑

t=1

ς1 ∝ d1(Q(xt), yt)

]
= E

[
T∑

t=1

ς1 ∝ d1(P(xt), yt)

]

⇒ E
[

inf
E↑EB

T∑

t=1

ς1 ∝ d1(E(xt), yt)

]
+ E

[
2T ln(|EB|)

]

⇒ E
[

T∑

t=1

ς1 ∝ d1(E
B,↼

fϑ

B
(xt), yt)

]
+ E

[
2T ln(|EB|)

]
.

In the last step, we used the fact that for all b ↘ {0, 1}T and f ↘ F , E
b,↼

f
b
↘ Eb.

It now su!ces to upperbound E
[∑

T

t=1 ς ∝ d1(E
B,↼

fϑ

B
(xt), yt)

]
. We use the same notation

used to prove Theorem 13, but for the sake of completeness, we restate it here. Given an
online learner A for ω, an instance x ↘ X , and an ordered sequence of labeled examples
L ↘ (X ⇐ [0, 1]K)→, let A(x|L) be the random variable denoting the prediction of A on the
instance x after running and updating on L. For any b ↘ {0, 1}T , fϖ

2:K ↘ F
ϖ

2:K , and t ↘ [T ],

let Lf

b<t
= {(xi, (yi, fϖ

2:K(xi))) : i < t and bi = i} denote the subsequence of the sequence of

labeled instances {(xi, (yi, fϖ

2:K(xi)))}
t≃1
i=1 where bi = 1. Using this notation, we can write

E
[

T∑

t=1

ς1 ∝ d1(E
B,↼

fϑ

B
(xt), yt)

]
= E

[
T∑

t=1

ς1 ∝ d1(A1(xt|L
f
ϑ

B<t
), yt)

]

= E
[

T∑

t=1

ς1 ∝ d1(A1(xt|L
f
ϑ

B<t
), yt)

[Bt = 1]

[Bt = 1]

]

=
T

T φ

T∑

t=1

E
[
ς1 ∝ d1(A1(xt|L

f
ϑ

B<t
), yt) [Bt = 1]

]

=
T

T φ

T∑

t=1

E
[
ς1 ∝ d1(A1(xt|L

f
ϑ

B<t
), yt) {Bt = 1}

]
.

To see the last equality, note that the prediction A(xt|L
f
ϑ

B<t
) (and therefore A1(xt|L

f
ϑ

B<t
))

only depends on bitstring (B1, . . . , Bt≃1) and the internal randomness of A, both of which
are independent of Bt. Thus, we have

E
[
ς1 ∝ d1(A1(xt|L

f
ϑ

B<t
), yt) {Bt = 1}

]
= E

[
ς1 ∝ d1(A1(xt|L

f
ϑ

B<t
), yt)

]
E [ {Bt = 1}]

= E
[
ς1 ∝ d1(A1(xt|L

f
ϑ

B<t
), yt)

]
[Bt = 1]

as needed. Continuing onwards,
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E
[

T∑

t=1

ς1 ∝ d1(E
B,↼

fϑ

B
(xt), yt)

]
=

T

T φ
E
[

T∑

t=1

ς1 ∝ d1(A1(xt|L
f
ϑ

B<t
), yt) {Bt = 1}

]

=
T

T φ
E
[

∑

t:Bt=1

ς1 ∝ d1(A1(xt|L
f
ϑ

B<t
), yt)

]

⇒
T

T φ
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), (yt, f

ω,ϖ

2:K(xt)))

]

=
T

T φ
E
[
E
[

∑

t:Bt=1

ω(A(xt|L
f
ϑ

B<t
), (yt, f

ω,ϖ

2:K(xt)))

B
]]

⇒
T

T φ
E
[

∑

t:Bt=1

ω(fω(xt), (yt, f
ω,ϖ

2:K(xt))) +RA(|B|)

]

=
T

T φ
E
[

∑

t:Bt=1

ω(fω(xt), (yt, f
ω,ϖ

2:K(xt)))

]
+

T

T φ
E [RA(|B|)]

The first inequality follows from the definition of ω. The second inequality follows from
the fact that A is an online learner for ω with regret bound RA(T ) and is updated on the
stream labeled by f

ω,ϖ

2:K only when Bt = 1. Now, we can upperbound the first term as
follows:

T

T φ
E
[

∑

t:Bt=1

ω(fω(xt), (yt, f
ω,ϖ

2:K(xt)))

]
=

T

T φ
E
[

∑

t:Bt=1

(
ς1 ∝ d1(f

ω

1 (xt), yt) +
K∑

k=2

ςk ∝ d1(f
ω

k
(xt), f

ω,ϖ

k
(xt))

)]

⇒
T

T φ
E
[

∑

t:Bt=1

ς1 ∝ d1(f
ω

1 (xt), yt) +
∑

t:Bt=1

KLϱ

]

⇒
T

T φ
E
[

T∑

t=1

ς1 ∝ d1(f
ω

1 (xt), yt) {Bt = 1}

]
+

T

T φ
E [|B|KLϱ]

=
T

T φ

T∑

t=1

ς1 ∝ d1(f
ω

1 (xt), yt)
T
φ

T
+

T

T φ
T
φ
KLϱ

=
T∑

t=1

ς1 ∝ d1(f
ω

1 (xt), yt) +KTLϱ.

The first inequality follows from the fact that ςk is L-Lipschitz and d1(fω

k
(xt), f

ω,ϖ

k
(xt)) ⇒

ϱ. Putting things together, we find that,
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E
[

T∑

t=1

ς1 ∝ d1(Q(xt), yt)

]

⇒ E
[

T∑

t=1

ς1 ∝ d1(E
B,↼

fϑ

B
(xt), yt)

]
+ E

[
2T ln(|EB|)

]

⇒

T∑

t=1

ς1 ∝ d1(f
ω

1 (xt), yt) +KTLϱ+
T

T φ
E [RA(|B|)] + E

[
2T ln(|EB|)

]

⇒ inf
f1↑F1

T∑

t=1

ς1 ∝ d1(f1(xt), yt) +KTLϱ+
T

T φ
E [RA(|B|)] + E

[
2TK|B| ln(

2

ϱ
)

]
.

where the last inequality follows from the fact that that |EB| ⇒ ( 2
ϖ
)K|B| and the definition

of fω. By Jensen’s inequality, we further get that, E
[

2TK|B| ln( 2
ϖ
)
]
⇒


2T φ+1K ln( 2

ϖ
),

which implies that

E
[

T∑

t=1

ς1 ∝ d1(Q(xt), yt)

]
⇒ inf

f1↑F1

T∑

t=1

ς1∝d1(f1(xt), yt)+KTLϱ+
T

T φ
E [RA(|B|)]+


2T φ+1K ln(

2

ϱ
).

Next, by Lemma 14, there exists a concave sublinear function RA(|B|) of |B| that
upperbounds RA(|B|). By Jensen’s inequality, we obtain E[RA(|B|)] ⇒ RA(T φ), which
yields

E
[

T∑

t=1

ς1 ∝ d1(Q(xt), yt)

]
⇒ inf

f1↑F1

T∑

t=1

ς1∝d1(f1(xt), yt)+KTLϱ+
T

T φ
RA(T

φ)+


2T φ+1K ln(

2

ϱ
).

Picking ϱ = 1
KTL

and ↼ ↘ (0, 1), gives that Q enjoys sublinear expected regret:

E
[

T∑

t=1

ς1 ∝ d1(Q(xt), yt)

]
↖ inf

f1↑F1

T∑

t=1

ς1∝d1(f1(xt), yt) ⇒ 1+
T

T φ
RA(T

φ)+

4T φ+1K ln(KTL).

This completes the proof as we have shown that Q is an online learner for F1 with
respect to ς1 ∝ d1.

4.4.2 A More General Characterization of Learnability for Decomposable
Losses

Theorem 20 characterizes the learnability of multioutput function classes F with respect
to decomposable loss functions ω in terms of the learnability of Fk with respect to ςk ∝ d1.
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Similar to the batch setting, we can remove ςk, and characterize the learnability of F with
respect to ω in terms of the learnability of Fk’s with respect to d1. However, to do so, we
need to an place additional assumption on the decomposable loss function ω. Theorem 21
below summarizes the main result of this section.

Theorem 21. Let ω be any decomposable loss function satisfying Assumptions 1 and 2. A
multioutput function class F → Y

X is online learnable with respect to ω if and only if each
Fk → Y

X

k
is online learnable with respect to d1.

The main tool needed to prove Theorem 21 is Lemma 22, which relates the online
learnability of a scalar-output function class H ∋ [0, 1]X with respect to ς ∝ d1 to its online
learnability with respect to d1, where ς is any monotonic, Lipschitz function such that
ς(0) = 0. The proof of Lemma 22 can be found in Appendix H.

Lemma 22. Let ς : R↓0 ↓ R↓0 be any monotonic and Lipschitz function such that
ς(0) = 0. A scalar-valued function class G ∋ [0, 1]X is online learnable with respect to
ς ∝ d1, if and only if G is online learnable with respect to d1.

Note that for every 1 ⇒ p < ⇑ and x ⇔ 0, ς(x) = x
p is a monotonic increasing,

Lipschitz function. Therefore, Lemma 22 shows that online learnability with respect to dp

is equivalent to online learnability with respect to d1. Combining Assumption 2, Theorem
20, and Lemma 22 immediately gives Theorem 21. Since the Sequential Fat Shattering
dimension characterizes online learnability with respect to the absolute loss, Theorem 21
further implies that for any decomposable loss satisfying Assumptions 1 and 2, the finiteness
of fatseqϑ (Fk) for all k ↘ [K] and ϖ > 0 is a su!cient and necessary condition for online
multioutput learnability.

4.4.3 Characterizing Learnability of Non-Decomposable Losses

In this section, we characterize the online learnability of multioutput function classes F

for a natural family of non-decomposable losses, ωp norms for 1 ⇒ p ⇒ ⇑. We prove an
analogous theorem to Theorem 12, by relating the online learnability of F with respect to ωp

to the online learnability of each Fk with respect to d1. We note that the proof of only uses
the fact that ωp norms are equivalent (up to a K dependent constant) to the ω1 norm. Since
any two norms in a finite dimensional space are equivalent, Theorem 23 actually holds true
for any norm in RK . But we only consider ωp norms here due to their practical importance.

Theorem 23. Let 1 ⇒ p ⇒ ⇑. A function class F → Y
X is online learnable with respect

to ωp if and only if each Fk → Y
X

k
is online learnable with respect to d1.

By Theorem 20, F is online learnable with respect to ω1 if and only if each restriction
Fk is online learnable with respect to d1. Thus, to prove Theorem 23 it su!ces to show
that F is online learnable with respect to ωp if and only if F is online learnable with respect
to ω1 for p > 1. At a high-level, the proof Theorem 23 follows a similar route as the proof
of Theorem 12: convert an agnostic learner for F into a realizable learner for Fϖ and then
use realizable-to-agnostic conversion for Fϖ.
Proof Fix p > 1. By the argument above, it su!ces to show that F is online learnable
with respect to ωp if and only if F is online learnable with respect to ω1. We begin by
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proving su!ciency - if F is online learnable with respect to ω1 then F is online learnable
with respect to ωp.

Let A be an online learner for F with respect to ω1. Our goal is to construct an online
learner Q for F with respect to ωp. We assume an oblivious adversary, and therefore the
stream of points to be observed by the online learner Q, denoted (x1, y1), ..., (xT , yT ) ↘

(X ⇐ [0, 1]K)T , is fixed beforehand. Let fω = argminf↑F
∑

T

t=1 ωp(f(xt), yt) also denote the
optimal function in hindsight with respect to the ωp loss.

Our strategy follows three steps. First, we show that A is a realizable online learner
for F

ϖ with respect to ωp. Then, since |im(Fϖ)| ⇒ ( 2
ϖ
)K < ⇑ is finite and ωp is a 1-

subadditive (by triangle inequality), Theorem 13 allows to convert the realizable online
learner A for F

ϖ with respect to ωp into an agnostic online learner Q for F
ϖ with respect

to ωp. Finally, for an appropriately selected discretization parameter ϱ, we show that Q is
also an agnostic online for F with respect to ωp, which completes the proof. To that end, let
(x1, fω,ϖ(x1)), ..., (xT , fω,ϖ(xT ) denote a (realizable) sequence of instances labeled by some
function f

ω,ϖ
↘ F

ϖ. Since || · ||q ⇒ || · ||p for q > p, we have that

E
[

T∑

t=1

ωp(A(xt), f
ω,ϖ(xt))

]
⇒ E

[
T∑

t=1

ω1(A(xt), f
ω,ϖ(xt))

]

Since A is an online learner for F with respect to ω1, we get,

E
[

T∑

t=1

ω1(A(xt), f
ω,ϖ(xt))

]
⇒ inf

f↑F

T∑

t=1

ω1(f(xt), f
ω,ϖ(xt)) +RA(T ) ⇒ ϱKT +RA(T )

where RA(T ) is the regret of online learner A. Combining things together, we have that

E
[

T∑

t=1

ωp(A(xt), f
ω,ϖ(xt))

]
⇒ ϱKT +RA(T ),

showing that A is a realizable online learner for Fϖ with respect to ωp for a small enough
ϱ. Now, since |im(Fϖ)| ⇒ ( 2

ϖ
)K < ⇑ is a finite, ωp is a 1- subadditive loss function, and A

is a realizable online learner, for any ↼ ↘ (0, 1), Theorem 13 gives an agnostic online learner
Q for F

ϖ with respect to ωp with the following regret guarantee over the original stream
(x1, y1), ..., (xT , yT ):

E
[

T∑

t=1

ωp(Q(xt), yt)

]
⇒ inf

fω↑Fω

T∑

t=1

ωp(f
ϖ(xt), yt)+

T

T φ
(ϱKT

φ+RA(T
φ))+K


2T φ+1K ln(

2

ϱ
),

where ϱKT
φ + RA(T φ) is any concave sublinear upperbound of ϱKT

φ + RA(T φ). We
also use the fact that the function T ↑↓ ϱKT

φ is a concave sublinear function of T and
the sum of two concave functions is itself a concave function. Noting that ωp(fϖ(xt), yt) ⇒
ωp(f(xt), yt) + ωp(fϖ(xt), f(xt)) ⇒ ωp(f(xt), yt) + ϱK, gives

E
[

T∑

t=1

ωp(Q(xt), yt)

]
⇒ inf

f↑F

T∑

t=1

ωp(f(xt), yt)+ϱKT+
T

T φ
(ϱKT

φ+RA(T
φ))+K


2T φ+1K ln(

2

ϱ
).
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Combining like terms together, we have

E
[

T∑

t=1

ωp(Q(xt), yt)

]
⇒ inf

f↑F

T∑

t=1

ωp(f(xt), yt) + 2ϱKT +
T

T φ
RA(T

φ) +K


2T φ+1K ln(

2

ϱ
).

Finally, picking ϱ = 1
2KT

gives that

E
[

T∑

t=1

ωp(Q(xt), yt)

]
↖ inf

f↑F

T∑

t=1

ωp(f(xt), yt) ⇒ 1 +
T

T φ
RA(T

φ) +K


2T φ+1K ln(4KT ).

Since RA(T φ) is sublinear in T
φ and ↼ ↘ (0, 1), Q enjoys sublinear expected regret.

Thus, we have shown that Q is also an agnostic online learner for F with respect to ωp.
The reverse direction follows identically and uses the fact that for any p > 1, || · ||p ⇒

|| · ||1 ⇒ K|| · ||p. In particular, using the exact same argument, we can show that if A is
an online learner for F with respect to ωp, then A is also a realizable online learner for Fϖ

with respect to ω1 with expected regret bound:

E
[

T∑

t=1

ω1(A(xt), f
ω,ϖ(xt))

]
⇒ KE

[
T∑

t=1

ωp(A(xt), f
ω,ϖ(xt))

]
⇒ ϱK

2
T +KRA(T ).

Using A as the realizable learner in Theorem 13, for any ↼ ↘ (0, 1), picking ϱ = 1
(K+K2)T

gives a regret bound:

E
[

T∑

t=1

ω1(Q(xt), yt)

]
↖ inf

f↑F

T∑

t=1

ω1(f(xt), yt) ⇒ 1 +
KT

T φ
RA(T

φ) +K


2T φ+1K ln(4K2T ),

where RA(T φ) is any concave sublinear upperbound of RA(T φ). Since ↼ ↘ (0, 1), Q is an
online learner for F with respect to ω1 as needed. This completes the proof of Theorem 23.

Remark. As with decomposable losses, Theorem 23 also implies that for any ωp norm loss,
the finiteness of fatseqϑ (Fk), for all k ↘ [K] and fixed ϖ > 0, is a su!cient and necessary
condition for online multioutput learnability.

5 Discussion

In this work, we give a characterization of multioutput learnability in four settings: batch
classification, online classification, batch regression, and online regression. In all four set-
tings, we show that a multioutput function class is learnable if and only if each restriction is
learnable. All of our bounds in this paper scale with K, preventing our current techniques
from extending to the case when K is infinite. Accordingly, we pose it as an open question
to characterize multioutput learnability when K is infinite (e.g. function-space valued re-
gression). Furthermore, we also leave it open to find combinatorial dimensions that provide
tight quantitative characterizations of batch and online multioutput learnability.
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Appendix A. Complexity Measures

A.1 Complexity Measures for Batch Learning

In binary classification, the Vapnik-Chervonenkis (VC) dimension of a function class char-
acterizes its learnability.

Definition 24 (Vapnik-Chervonenkis Dimension). A set S = {x1, . . . , xd} is shattered by
a binary function class H → {↖1, 1}d if for every ⇀ ↘ {↖1, 1}d, there exists a hypothesis
h↽ ↘ H such that for all i ↘ [d], we have h↽(xi) = ⇀i. The VC dimension of H, denoted
VC(H), is the size of the largest shattered set S → X . If the size of the shattered set can be
arbitrarily large, we say that VC(H) = ⇑.

The learnability of a multiclass function class is characterized by its Natarajan dimen-
sion.

Definition 25 (Natarajan Dimension). A set S = {x1, . . . , xd} is shattered by a multiclass
function class H ∋ Y

X if there exist two witness functions f, g : S ↓ Y such that f(xi) ⇓=
g(xi) for all i ↘ [d], and for every ⇀ ↘ {↖1, 1}d, there exists a function h↽ ↘ H such that
for all i ↘ [d], we have

h↽(xi) =


f(xi) if ⇀i = 1

g(xi) if ⇀i = ↖1
.

The Natarajan dimension of H, denoted Ndim(H), is the size of the largest shattered set
S → X . If the size of the shattered set can be arbitrarily large, we say that Ndim(H) = ⇑.

For real-valued regression problems, the learnability is characterized in terms of the
fat-shattering dimension of a function class.

Definition 26 (Fat-Shattering Dimension). A real-valued function class G → [0, 1]X shatters
points S = {x1, x2, . . . , xd} at scale 1 > ϖ > 0, if there exists witness functions r : S ↓ [0, 1]
such that, for every ⇀ ↘ {±1}d, there exists g↽ ↘ G such that △i ↘ [d], ⇀i(g↽(xi)↖r(xi)) ⇔ ϖ.
The fat-shattering dimension of G at scale ϖ, denoted fatϑ(G), is the size of the largest set
that can be ϖ-shattered by G. If the size of the shattered set can be arbitrarily large, then we
say that fatϑ(G) = ⇑.

We also define a general notion of complexity called Rademacher complexity that pro-
vides a su!cient and necessary condition of uniform convergence. Since uniform conver-
gence implies learnability, we use Rademacher complexity to argue su!cient conditions for
learnability.

Definition 27 (Empirical Rademacher Complexity). Let D be a distribution over X ⇐ Y.
For a bounded loss function ω, define the loss class to be ω ∝ F = {(x, y) ↑↓ ω(f(x), y)}.
If S = {(x1, y1), ..., (xn, yn)} be a set of i.i.d samples drawn from D, then the empirical
Rademacher complexity of ω ∝ F is defined as

Rn(ω ∝ F) = E↽

[
sup
f↑F

(
1

n

n∑

i=1

⇀iω(f(xi), yi)

)]
,

where ⇀ ↘ {±1}n is a sequence of n i.i.d. Rademacher random variables.
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A.2 Complexity Measures for Online Learning

For the complexity measures below, it is useful to define a Z-valued binary tree (Rakhlin
et al., 2015b). A binary tree T of depth d is Z-valued if each of its internal nodes are
labelled by elements of Z. Such a tree can be identified by a sequence (T1, ..., Td) labelling
functions Ti : {±1}i≃1

↓ Z which provide labels for each internal node. A path of length d

is given by a sequence ⇀ = (⇀1, ...,⇀d) ↘ {±1}d. Then, Ti(⇀1, ...,⇀i≃1) gives the label of node
following the path (⇀1, ...,⇀i≃1) starting from the root, going “right” if ⇀j = +1 and “left”
if ⇀j = ↖1. Note that, T1 ↘ Z is the label for the root node. For brevity, we slightly abuse
notation by letting Ti(⇀1, ...,⇀i≃1) = Ti(⇀<i), but it is understood that Ti only depends on
the prefix (⇀1, ...,⇀i≃1). We are now ready to formally define complexity measures in the
online setting.

When Y = {↖1,+1} is binary, the Littlestone Dimension (Littlestone (1987)) tightly
characterizes the online learnability of a function class H → Y

X with respect to the 0-1 loss.

Definition 28 (Littlestone Dimension). Let T denote a complete binary tree of depth d

whose internal nodes are labeled by elements X and two edges from parent to child nodes
are labeled by ↖1 and +1. The tree is shattered by a binary hypothesis class G → {↖1,+1}X

if for every ⇀ ↘ {↖1,+1}d, there exists a hypothesis g↽ ↘ G such that the root to leaf
path (x1, . . . , xd) obtained by taking left when ⇀t = ↖1 and right when ⇀t = +1 satisfies
g↽(xt) = ⇀t for all 1 ⇒ t ⇒ d. The Littlestone Dimension of G, denoted Ldim(G), is the
maximal depth of the complete binary tree shattered by G. If G can shatter a tree of arbitrary
depth, we say that Ldim(G) = ⇑.

For finite label spaces Y, the Multiclass Littlestone Dimension (Daniely et al., 2011)
tightly characterizes the online learnability of a function class H → Y

X with respect to the
0-1 loss.

Definition 29 (Multiclass Littlestone Dimension). Let T denote a X -valued binary tree
of depth d whose edges are labelled by elements from Y, such that the edges from a sin-
gle parent to its child-nodes are each labeled with a di!erent label. The tree T is shat-
tered by a function class H → Y

X if, for every path ⇀ ↘ {±1}d, there is a function
h↽ ↘ H such that h↽(Ti(⇀<i)) = y(⇀i), where y(⇀i) is the label of the edge between nodes
(Ti(⇀<i), Ti+1(⇀<i+1)). The Multiclass Littlestone Dimension (MCLdim) of H, denoted
MCLdim(H), is the maximal depth of a complete binary tree that is shattered by H. If
MCLdim = ⇑, then there exists shattered trees of arbitrarily large depth.

When Y is a bounded subset of R, the sequential fat-shattering dimension (Rakhlin
et al., 2015a) at scale ϖ characterizes the learnability of H → [0, 1]X with respect to to the
absolute loss d1.

Definition 30 (Sequential Fat-Shattering Dimension). Let T denote a X -valued binary
tree of depth d. The tree T is ϖ-shattered by a function class H → [0, 1]X if there exists an
R-valued binary tree R of depth d such that for all ⇀ ↘ {±1}d, there exists h↽ ↘ H such
that for all t ↘ [d],

⇀t(h↽(Tt(⇀<t))↖Rt(⇀<t)) ⇔ ϖ
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The tree R is called the witness to shattering. The sequential fat shattering dimension
of H at scale ϖ, denoted fatseqϑ (H), is the maximal depth of a complete binary tree that is
ϖ-shattered by H. If there exists ϖ-shattered trees of arbitrarily large depth, then fatseqϑ (H) =
⇑.

Beyond both finite and bounded label spaces, the sequential Rademacher complexity
(Rakhlin et al., 2015a) provides a useful tool for giving su!cient conditions for learnability.

Definition 31 (Sequential Rademacher Complexity). Let ⇀ = {⇀i}
T

i=1 be a sequence of
independent Rademacher random variables. Let T be a Z-valued binary tree of depth d.
The sequential Rademacher complexity of a function class H → RZ on T is defined as

Rseq
T

(H; T ) = E↽⇐{±1}n

[
sup
h↑H

1

T

T∑

t=1

⇀th(Tt(⇀<t))

]
.

Then, the worst-case sequential Rademacher complexity is defined as Rseq
T

(H) = supT Rseq
T

(H; T ).

Appendix B. Natarajan Dimension Characterizes Batch Multilabel
Learnability

A multilabel classification problem where labels (i.e. bitstrings) in Y are of length K can
also be viewed as multiclass classification on the target space with 2K labels. Given this
observation, the Natarajan dimension of the function class F continues to characterize
the multilabel learnability with respect to any loss function ω satisfying the identity of
indiscernibles.

Theorem 32 (Ben-David et al. (1995)). Let ω be any loss function satisfying the identity
of indiscernibles. A function class F → Y

X is agnostic learnable with respect to ω in the
batch setting if and only if Ndim(F) < ⇑.

The proof in Ben-David et al. (1995) involves arguments based on growth function. Here,
we provide proof that uses realizable and agnostic learnability due to Hopkins et al. (2022).

Proof (of su!ciency) We first show that the finiteness of Ndim(F) is su!cient for learn-
ability. Suppose Ndim(F) < ⇑. Then, we know that F is agnostic learnable with respect
to 0-1 loss (Ben-David et al., 1995). Since the target space Y as well as the range space
of F is finite, for every loss ω satisfying the identity of indiscernibles, there exists an a > 0
such that a ω(h(x), y) ⇒ {h(x) ⇓= y} for any (x, y) ↘ X ⇐ Y and function h ↘ Y

X . Let
D be a realizable distribution to F with respect to ω. Since ω(y1, y2) = 0 if and only if
{y1 ⇓= y2} = 0, the distribution D is also realizable with respect to 0-1 loss. Since F is

learnable with respect to 0-1 loss, there exists a learning algorithm A with the following
property: for any ε, ϑ > 0, for a su!ciently large S ↙ D

n, the algorithm outputs a predictor
h = A(S) such that, with probability 1 ↖ ϑ over S ↙ D

n, we have ED[ {h(x) ⇓= y}] ⇒ a ε.

Using the inequality stated above pointwise, the predictor h also satisfies ED[ω(h(x), y)] ⇒ ε.
Therefore, A is also a realizable algorithm with respect to ω. Since ω satisfies the identity
of indiscernible, Lemma 4 guarantees the existence of agnostic PAC learner B for F with
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respect to ω.

Proof (of necessity) Suppose F is learnable with respect to ω. Since the target space
is finite, there must exist a constant b > 0 such that {h(x) ⇓= y} ⇒ b ω(h(x), y) for any
(x, y) ↘ X ⇐ Y and any function h ↘ Y

X . Let D be a realizable distribution with respect
to ω. Due to the 0 alignment property, D is also realizable with respect to 0-1 loss. Since
F is learnable with respect to ω loss, there exists a learning algorithm A with the following
property: for any ε, ϑ > 0, for a su!ciently large S ↙ D

n, the algorithm outputs a predictor
h = A(S) such that, with probability 1 ↖ ϑ over S ↙ D

n, we have ED[ω(h(x), y)] ⇒ b ε. In
particular, using the inequality stated above pointwise, we obtain ED[ {h(x) ⇓= y}] ⇒ ε.
Therefore, F is learnable with respect to 0-1 loss in the realizable setting. As the finite-
ness of the Natarajan dimension is necessary for the learnability of F under the 0-1 loss
(Natarajan, 1989), we must have Ndim(F) < ⇑.

Appendix C. Proofs for Batch Multioutput Regression

C.1 Proof of Su!ciency in Theorem 9

Proof We first prove that the agnostic learnability of each Fk is su!cient for the agnostic
learnability of F . As in the classification setting, the proof here is based on a reduction.
That is, given oracle access to agnostic learners Ak for each Fk with respect to ςk ∝ d1 loss,
we construct an agnostic learner A for F with respect to loss ω.

Denote Dk to be the marginal distribution of D restricted to X ⇐Yk. Let us use mk(ε, ϑ)
to denote the sample complexity of Ak. Then, for all k ↘ [K], the marginal samples
Sk = {(xi, yki )}

n

i=1 with scalar-valued targets are iid samples form Dk. For each k ↘ [K],
define gk = Ak(Sk) to be the predictor returned by algorithm Ak when trained on Sk. Since
Ak is an agnostic learner for Fk, we have that for sample size n ⇔ maxk mk(

ϱ

K
,
ς

K
), with

probability at least 1↖ ϑ/K over samples Sk ↙ D
n

k
,

EDk [ςk ∝ d1(gk(x), y
k)] ⇒ inf

fk↑Fk

EDk [ςk ∝ d1(fk(x), y
k)] +

ε

K
.

Summing these risk bounds over all k coordinates and union bounding over the success
probabilities, we get that with probability at least 1↖ ϑ over samples S ↙ D

n,

K∑

k=1

EDk [ςk ∝ d1(gk(x), y
k)] ⇒

K∑

k=1

inf
fk↑Fk

EDk [ςk ∝ d1(fk(x), y
k)] + ε.

Using the fact that the sum of infimums over individual coordinates is at most the overall
infimum of sums followed by the linearity of expectation, we can write the expression above
as

ED

[
K∑

k=1

ςk ∝ d1(gk(x), y
k)

]
⇒ inf

f↑F

ED

[
K∑

k=1

ςk ∝ d1(fk(x), y
k)

]
+ ε.

This shows that the learning rule that runs Ak on marginal samples Sk and concatenates
the resulting scalar-valued predictors to get a vector-valued predictor is an agnostic learner
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for F with respect to loss ω with sample complexity at most maxk mk(ε/K, ϑ/K). This
completes our proof of su!ciency.

C.2 Equivalence of d1 and ς ∝ d1 Learnability in Batch Regression

In this section, we provide proof of Lemma 11, which establishes the equivalence of d1 and
ς ∝ d1 learnability in scalar-valued batch regression.
Proof (of Lemma 11) To prove su!ciency first, let G be agnostically learnable with respect
to d1. This implies that the fat-shattering dimension of G is finite at every scale (Bartlett
et al., 1996) and uniform convergence holds over the loss class d1 ∝G. Since ς is a Lipschitz
function, a simple application of Talagrand’s contraction lemma on Rademacher complexity
(Bartlett and Mendelson, 2003) implies that uniform convergence holds over the loss class
ς ∝ d1 ∝ G as well. Thus, G is learnable with respect to ς ∝ d1 via ERM.

Next, we show that if G → [0, 1]X is learnable with respect to ς ∝ d1, then G is learnable
with respect to d1. Since the fat-shattering dimension of G characterizes d1 learnability of
G, it su!ces to show that G being learnable with respect to ς ∝ d1 implies fatϑ(G) < ⇑ for
every ϖ ↘ (0, 1).

Suppose, for the sake of contradiction, G is learnable with respect to ς ∝ d1 but there
exists a scale ϖ ↘ (0, 1) such that fatϑ(G) = ⇑. Then, for every d ↘ N, there exists
X = {x1, . . . , xd} → X and a witness function r : X ↓ [0, 1] such that for every ⇀ ↘

{↖1, 1}d, there exists a g↽ ↘ G such that ⇀i(g↽(xi) ↖ r(xi)) ⇔ ϖ for all i ↘ [d]. Define
GX = {g↽ ↘ G | ⇀ ↘ {↖1, 1}d} be the set of functions that shatters X. Define H = {↖1, 1}X

to be a set of all functions from X to {↖1, 1}. By definition of H, we must have VC(H) = d.
We use an agnostic learner for G with respect to ς ∝ d1 to construct an agnostic learner
for H whose sample complexity, for large enough d, is smaller than the known lower bound
for VC classes. Since fatϑ(G) = ⇑, d can be made arbitrarily large and thus we derive a
contradiction.

Let A be the promised agnostic learner for G with respect to ς ∝ d1 with sample com-
plexity m(ε, ϑ). For all f ↘ [0, 1]X , define a threshold function hf : X ↓ {↖1, 1} as
hf (x) = 2 {f(x) ⇔ r(x)}↖ 1. Let D be an arbitrary distribution on X ⇐ {↖1, 1} and DX

be its marginal on X.

Algorithm 7 Agnostic PAC learner for H
Input: Agnostic learner A for G, unlabeled samples SU ↙ DX , and another independent

labeled samples SL ↙ D

1 Define Saug = {(SU , g
ϖ(SU )) | g ↘ GX}, all possible augmentations of SU by ϱ-discretization

of functions in GX for ϱ ⇒ ϖ/2.
2 Run A over all possible augmentations to get C(SU ) :=

{
A

S

| S ↘ Saug

}
.

3 Define C±1(SU ) = {hf | f ↘ C(SU )}, a thresholded class of C(SU ).
4 Return the predictor in C±1(SU ) with the lowest empirical 0-1 risk over SL.

We now show that Algorithm 7 is an agnostic learner for H. Consider d ▽ SU +
SL. Then, |C±1(SU )| = |Saug| ⇒ (2/ϱ)|SU | can be much smaller than 2d. Let h

ω :=
argminh↑H ED[ {h(x) ⇓= y}] be the optimal hypothesis for D. Note that, by definition of
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shattering, for every h ↘ H, there exists a g ↘ GX such that h(x) = hg(x) for all x ↘ X.
In particular, there must exist gω ↘ GX such that hω(x) = hgϑ(x) := 2 {g

ω(x) ⇔ r(x)}↖ 1
for all x ↘ X. Let g

ϖ denote the ϱ-discretization of g as defined in Equation (1) for
some ϱ ⇒ ϖ/2. Now, consider a sample (SU , g

ω,ϖ(SU )) ↘ Saug. Let ĝ = A((SU , g
ω,ϖ(SU )))

be the predictor returned by the algorithm when run on a sample labeled by g
ω,ϖ. Define

hĝ = 2 {ĝ(x) ⇔ r(x)}↖1 to be its thresholded function. Then, using the triangle inequality
on the indicator function, we have

ED[ {hĝ(x) ⇓= y}] ⇒ ED[ {h
ω(x) ⇓= y}] + EDX [ {hĝ(x) ⇓= h

ω(x)}]. (2)

Note that {hĝ(x) ⇓= h
ω(x)} = {hĝ(x) ⇓= hgϑ(x)} ⇒ {|ĝ(x)↖ g

ω(x)| ⇔ ϖ}. To see why the
last inequality is true, we only have to consider the case where the indicator on the left is 1,
otherwise, the inequality is trivial. Recall that {hĝ(x) ⇓= hgϑ(x)} = 1 whenever ĝ(x) and
g
ω(x) lie on the opposite side of witness r(x). Since g

ω has to be at least ϖ away from the
witness r(x), we obtain {|ĝ(x) ↖ g

ω(x)| ⇔ ϖ} = 1. Next, using the fact that ϱ ⇒ ϖ/2, we
have {|ĝ(x)↖ g

ω(x)| ⇔ ϖ} ⇒ {|ĝ(x)↖ g
ω,ϖ(x)| ⇔ ϖ/2} because discretization can decrease

the distance between these functions by at most ϖ/2. Furthermore, using monotonicity
of ς, we get {|ĝ(x) ↖ g

ω,ϖ(x)| ⇔ ϖ/2} ⇒ {ς(|ĝ(x) ↖ g
ω,ϖ(x)|) ⇔ ς(ϖ/2)} . Combining

everything, we get a pointwise inequality

{hĝ(x) ⇓= h
ω(x)} ⇒ {ς(|ĝ(x)↖ g

ω,ϖ(x)|) ⇔ ς(ϖ/2)} ⇒
1

ς(ϖ/2)
ς(|ĝ(x)↖ g

ω,ϖ(x)|).

Using this inequality gives an upperbound on the risk of hĝ, namely

EDX [ {hĝ(x) ⇓= h
ω(x)}] ⇒

1

ς(ϖ/2)
ED[ς(|ĝ(x)↖ g

ω,ϖ(x)|)]. (3)

Since ĝ = A((SU , g
ω,ϖ(SU ))), we can use the algorithm’s guarantee to get a further

upperbound on the expectation above. In particular, if |SU | ⇔ m( ϱ⇀(ϑ/2)4 , ϑ/2), then with
probability at least 1↖ ϑ/2 over sampling SU ↙ DX , we have

EDX [ς(|ĝ(x)↖ g
ω,ϖ(x)|)] ⇒ inf

g↑G

EDX [ς(|g(x)↖ g
ω,ϖ(x)|)] +

ες(ϖ/2)

4
.

Note that infg↑G EDX [ς(|g(x) ↖ g
ω,ϖ(x)|)] ⇒ EDX [ς(|g

ω(x) ↖ g
ω,ϖ(x)|)] ⇒ ς(ϱ), where the

last step uses the fact that |gω(x)↖ g
ω,ϖ(x)| ⇒ ϱ and ς is monotonic. Using L-Lipschitzness

of ς and the fact that ς(0) = 0, we get ς(ϱ) ⇒ Lϱ. Picking ϱ = min(ϖ/2, ϱ⇀(ϑ/2)4L ), we get

infg↑G EDX [ς(|g(x)↖g
ω,ϖ(x)|)] ⇒ ϱ⇀(ϑ/2)

4 . Plugging this back to the inequality in the display

above, we get to EDX [ς(|ĝ(x)↖ g
ω,ϖ(x)|)] ⇒ ϱ⇀(ϑ/2)

2 . Using this guarantee on (3), we obtain

EDX [ {hĝ(x) ⇓= h
ω(x)}] ⇒

ε

2
.

This bound applied to (2) yields

ED[ {hĝ(x) ⇓= y}] ⇒ inf
h↑H

ED[ {h(x) ⇓= y}] +
ε

2
.
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Thus, we have shown the existence of a predictor hĝ ↘ C±1(SU ) that achieves agnostic

PAC bounds for H. Let ĥ be the predictor returned by step 4 of the algorithm. Next,
we show that for su!ciently large SL, the predictor ĥ also attains agnostic PAC bounds.
Recall that by Hoe”ding’s Inequality and union bound, with probability at least 1 ↖ ϑ/2,

the empirical risk of every hypothesis in C±1(SL) on a sample of size ⇔
8
ϱ2
log 4|C±1(SU )|

ς
is

at most ε/4 away from its true error. So, if |SL| ⇔
8
ϱ2
log 4|C±1(SU )|

ς
, then with probability

at least 1↖ ϑ/2, the empirical risk of the predictor hĝ(x) is

1

|SL|

∑

(x,y)↑SL

{hĝ(x) ⇓= y} ⇒ ED[ {hĝ(x) ⇓= y}] +
ε

4
⇒ inf

h↑H

ED[ {h(x) ⇓= y}] +
3ε

4
,

where the last inequality follows from the risk guarantee of hĝ established above. Since ĥ

is the empirical risk minimizer over SL, we must have

1

|SL|

∑

(x,y)↑SL

{ĥ(x) ⇓= y} ⇒
1

|SL|

∑

(x,y)↑SL

{hĝ(x) ⇓= y} ⇒ inf
h↑H

ED[ {h(x) ⇓= y}] +
3ε

4
.

Finally, as the population risk of ĥ is at most ε/4 away from its empirical risk, we have

ED[ {ĥ(x) ⇓= y}] ⇒ inf
h↑H

ED[ {h(x) ⇓= y}] + ε,

which is the agnostic PAC guarantee for H. Applying union bounds, the entire process,
running algorithm A on the dataset augmented by g

ω,ϖ and the ERM in step 4, succeeds
with probability 1↖ ϑ. This establishes that the Algorithm 7 is an agnostic PAC learner for
H. The sample complexity of Algorithm 7 is the number of samples required for Algorithm
A to succeed and the ERM in step 4 to succeed. Thus, the overall sample complexity of
Algorithm 7, denoted mH(ε, ϑ), can be bounded as

mH(ε, ϑ) ⇒ mA


ε ς(ϖ/2)

4
,
ϑ

2


+

8

ε2
log

4|C±1(SU )|

ϑ

⇒ mA


ε ς(ϖ/2)

4
,
ϑ

2


1 +

8

ε2
log


2

min(ϖ/2, ες(ϖ/2)/4)


+

8

ε2
log

4

ϑ

where the second inequality follows because |C±1(SU )| = |Saug| ⇒ (2/ϱ)|SU | and we need

|SU | to be of size mA


ϱ ⇀(ϑ/2)

4 ,
ς

2


. We also use the fact that ϱ = min(ϑ2 ,

ϱ⇀( ϖ2 )
4 ).

However, it is well known (Shalev-Shwartz and Ben-David, 2014, Theorem 6.8) that the
sample complexity of learning H in agnostic setting is

C
d+ log(2/ϑ)

ε2

for some C > 0. Thus, we must have mH(ε, ϑ) ⇔ C(d + log(2/ϑ))/ε2. However, this is
a contradiction because d can be arbitrarily large but mH(ε, ϑ) must have a finite upper
bound for every fixed ε, ϑ. Therefore, the function class G cannot be learnable with respect
to ς ∝ d1 whenever there exists a scale ϖ ↘ (0, 1) such that fatϑ(G) = ⇑.
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Appendix D. Rademacher Based Proof for Batch Regression

To show that the learnability of each Fk with respect to d1 is su!cient for the learn-
ability of F with respect to ωp norms for p ⇔ 1, we use the fact that ωp(f(x), y) is a K-
Lipschitz in its first argument with respect to ̸·̸

↘
norm, that is |ωp(f(x), y)↖ωp(g(x), y)| ⇒

K ̸f(x)↖ g(x)̸
↘
, and use the following bound on the Rademacher complexity of the loss

class ω ∝ F = {(x, y) ↑↓ ω(f(x), y)} | f ↘ F}.

Lemma 33 (Foster and Rakhlin (2019)). Let F → Y
X be a multioutput function class. For

any ϑ ↘ (0, 1), there exists a constants 0 < c < 1 and C > 0 such that

Rn(ωp ∝ F) ⇒ K inf
ϖ>0


4ϱ+

C
∈
n

K∑

k=1

 1

ϖ


fatcϱ(Fk) log

1+ς


e n

ε


dε


.

The result presented here is in fact the intermediate result in Foster and Rakhlin (2019),
and we provide a sketch of how their argument can be adapted to our setting.
Proof Note that for f, g ↘ F , we have |ωp(f(x), y) ↖ ωp(g(x), y)| ⇒ |ωp(f(x), g(x))| ⇒

ω1(f(x), g(x)) ⇒ K ̸f(x)↖ g(x)̸
↘
. Furthermore, we have that |fk(x) ↖ y

k
| ⇒ 1, so we

obtain |ωp(f(x), y)| ⇒ K. Define the normalized ωp loss as ω̄p(f(x), y) := ωp(f(x), y)/K. By
standard chaining argument, we know that

Rn(ω ∝ F) = KRn(ω̄ ∝ F) ⇒ K inf
ϖ>0


4ϱ+

12
∈
n

 1

ϖ


logN2(ω̄p ∝ F , ε, n)dε


.

Since a cover with || · ||↘ norm is also a cover with respect to || · ||2 norm, we have that
logN2(ω̄p∝F , ε, n) ⇒ logN↘(ω̄∝F , ε, n). Since ω̄p(f(x), y) is 1↖Lipschitz with respect to ||·||↘
norm, following Lemma 1 of Foster and Rakhlin (2019), we obtain logN↘(ω̄p ∝ F , ε, n) ⇒∑

K

k=1 logN↘(Fk, ε, n).
A result due to Rudelson and Vershynin (2006) states that for any ϑ ↘ (0, 1), there exists

constants 0 < ck < 1 and Ck > 0 such that

logN↘(Fk, ε, n) ⇒ Ck fatckϱ(Fk) log
1+ς (en/ε).

Picking C = maxk Ck and c = mink ck, we obtain the contraction inequality

Rn(ω ∝ F) ⇒ K inf
ϖ>0




4ϱ+
12C
∈
n

 1

ϖ

√√√√
K∑

k=1

fatcϱ(Fk) log
1+ς


e n

ε


dε




 .

Using
∑

K

k=1 fatcϱ(Fk) log
1+ς


e n

ϱ


⇒

∑
K

k=1


fatcϱ(Fk) log

1+ς

e n

ϱ


yields the desired con-

traction inequality.

With Lemma 33 in our repertoire, the su!ciency proof is a routine uniform convergence
argument.
Proof (of su!ciency in Theorem 12) Suppose each restriction Fk is learnable with respect
to d1. Then, we know that for all k ↘ [K] and for all 1 > ϖ > 0, we have fatϑ(Fk) < ⇑
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(Bartlett et al., 1996), (Anthony and Bartlett, 1999, Chatper 19)). Using Lemma 33, for
ϑ = 1/2, we can find constants c, C such that

Rn(ωp ∝ F) ⇒ K inf
ϖ>0


4ϱ+

C
∈
n

K∑

k=1

 1

ϖ


fatcϱ(Fk) log

3/2

e n

ε


dε


.

Fix ϱ > 0. The second term inside infimum vanishes as n ↓ ⇑, yielding Rn(ω ∝F) ⇒ 4ϱK.
As ϱ > 0 is arbitrary, the Rademacher complexity Rn(ω ∝ F) goes to 0 as n ↓ ⇑. This
argument can be readily turned into non-asymptotic bounds on Rn(ωp ∝ F) if the precise
form of fatϑ(Fk) as a function of ϖ is known. Since the empirical Rademacher complexity
vanishes, uniform convergence holds over the loss class ωp ∝F and thus F is learnable with
respect to ωp via empirical risk minimization.

Appendix E. Online Multilabel Learnability with respect to Hamming
Loss

In this section, we provide the proof of Theorem 15.
Proof We first prove that the online learnability of each restriction is su!cient for the
online learnability of ωH .
Part 1: Su!ciency. Our proof is based on a reduction: given oracle access to on-
line learners {Ak}

K

k=1 for {Fk}
K

k=1 with respect to ω0-1, we construct an online learner
A for F with respect to ωH . In fact, similar to the batch setting, the online multilabel
learning algorithm A is simple: in each round t ↘ [T ], receive xt, query the predictions
A1(xt), ...,AK(xt), and finally predict the concatenation ŷt = (A1(xt), ...,AK(xt)). Once
the true label yt = (y1t , ..., y

K
t ) is revealed, update each online learner Ak by passing (xt, ykt )

for k ↘ [K]. It su!ces to show that the expected regret of A is sublinear in T with respect
to ωH . By Definition 5, we have that for all k ↘ [K],

E
[

T∑

t=1

{Ak(xt) ⇓= y
k

t }↖ inf
fk↑Fk

T∑

t=1

{fk(xt) ⇓= y
k

t }

]
⇒ Rk(T )

where Rk(T ) is some sublinear function in T . Summing the regret bounds across all
k ↘ [K] splitting up the expectations, and using linearity of expectation, we get that

E
[∑

K

k=1

∑
T

t=1 {Ak(xt) ⇓= y
k
t }

]
↖ E

[∑
K

k=1 inffk↑Fk

∑
T

t=1 {fk(xt) ⇓= y
k
t }

]
⇒

∑
K

k=1Rk(T ).

Noting that
∑

K

k=1 inffk↑Fk

∑
T

t=1 {fk(xt) ⇓= y
k
t } ⇒ inff↑F

∑
K

k=1

∑
T

t=1 {fk(xt) ⇓= y
k
t },

swapping the order of summations, and using the definition of ωH we have that,

E
[

T∑

t=1

ωH(A(xt), yt)

]
↖ E

[
inf
f↑F

T∑

t=1

ωH(f(xt), yt)

]
⇒

K∑

k=1

Rk(T ),

whereA(xt) = (A1(xt), ...,AK(xt)). This concludes the proof of this direction since
∑

K

k=1Rk(T )
is still a sublinear function in T .
Part 2: Necessity. Next we prove that if F is online learnable with respect to to ωH , then
each Fk is online learnable with respect to ω0-1. Namely, given oracle access to an online
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learner A for F with respect to ωH , we construct an online learner B for F1 with respect
to ω0-1. A similar reduction can be used to construct online learners for each restriction
Fk. Similar to the batch setting, the online learning algorithm B is simple: in each round
t ↘ [T ], receive xt, query ŷt = A(xt) and predict ŷ

1
t = A1(xt). Once the true label y1t is

revealed, update A by passing (xt, yt) where yt = (y1t ,⇀
2
t , ...,⇀

K
t ) and {⇀

i
t}

K

i=2 is an i.i.d
sequence of Rademacher random variables.

It su!ces to show that the expected regret of B is sublinear in T with respect to ω0-1.
As previously mentioned, we assume that the sequence (x1, y11), ..., (xT , y

1
T
) is chosen by an

oblivious adversary, and thus is not random. Let yt = (y1t ,⇀
2
t , ...,⇀

K
t ). By Definition 5, we

have that,

E
[

T∑

t=1

ωH(A(xt), yt)↖ inf
f↑F

T∑

t=1

ωH(f(xt), yt)

]
⇒ R(T, 2K)

where the expectation is over both the randomness of A(xt) and (⇀2
t , ...,⇀

K
t ) and R(T, 2K) is

a sub-linear function of T . Splitting up the expectation, using the definition of the Hamming
loss, and by the linearity of expectation, we have that

T∑

t=1

K∑

k=1

E
[

{Ak(xt) ⇓= y
k

t }

]
↖ inf

f↑F

T∑

t=1

K∑

k=1

E
[

{fk(xt) ⇓= y
k

t }

]
⇒ R(T, 2K).

Next, observe that for every t ↘ [T ], for every k ↘ {2, ...,K}, the randomness of ykt = ⇀
k
t

implies E
[

{Ak(xt) ⇓= y
k
t }

]
= E

[
{f(xt) ⇓= y

k
t }

]
= 1

2 . Thus,

T∑

t=1

E
[

{A1(xt) ⇓= y
1
t }+

K ↖ 1

2

]
↖ inf

f↑F

T∑

t=1

E
[

{f1(xt) ⇓= y
1
t }+

K ↖ 1

2

]
⇒ R(T, 2K).

Canceling constant factors gives, E
[∑

T

t=1 {A1(xt) ⇓= y
1
t }

]
↖inff1↑F1

∑
T

t=1 {f1(xt) ⇓= y
1
t } ⇒

R(T, 2K), showing that B is an online agnostic learner for F1 with respect to ω0-1.

Appendix F. MCLdim Characterizes Online Multilabel Learnability

In this section, we show that the MCLdim characterizes the online learnability of a mul-
tilabel function class F → Y

X with respect to to any loss ω that satisfies the identity of
indiscernibles. Theorem 34 makes this more precise.

Theorem 34. Let ω be any loss function satisfying the identity of indiscernibles. A function
class F → Y

X is online learnable with respect to ω if and only if MCLdim(F) < ⇑.

Proof (of su!ciency) We first show that finiteness of MCLdim is su!cient for online
learnability. The proof follows exactly like the proof of Lemma 16. We include it here again
for completeness sake. Let ω be any loss function satisfying the identity of indiscernibles
and F → Y

X be a multilabel function class such that MCLdim(F) = d < ⇑. Since
F has finite MCLdim, the deterministic Multiclass Standard Optimal Algorithm for F ,
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hereinafter denoted MCSOA(F), achieves mistake-bound d in the realizable setting (Daniely
et al., 2011). Therefore, following the same procedure as in Daniely et al. (2011), we can
construct a finite set of experts E of size |E| =

∑
d

j=0


T

j


|im(F)|j ⇒ (2KT )d such that for

any (oblivious) sequence of instances x1, ..., xT , for any function f ↘ F , there exists an
expert Ef ↘ E , such that f(xt) = E(xt) for all t ↘ [T ]. Finally, running the celebrated
Randomized Exponential Weights Algorithm (REWA) using E as the set of experts and the
scaled loss function ε

B
↘ [0, 1] guarantees that for any labelled sequence (x1, y1), ..., (xT , yT ),

E
[

T∑

t=1

ω(ŷt, yt)↖ inf
E↑E

T∑

t=1

ω(E(xt), yt)

]
⇒ E

[
T∑

t=1

ω(ŷt, yt)↖ inf
f↑F

T∑

t=1

ω(f(xt), yt)

]

⇒ O


B


T ln(|E|)


⇒ O


B


dTK ln(T )



where ŷt is the prediction of REWA in the t’th round. Thus, running REWA over the set
of experts E using ε

B
gives an online learner for F with respect to ω.

Proof (of necessity) To prove necessity, we need to show that if F is online learnable with
respect to ω, then MCLdim(F) < ⇑. To do so, we show that if F is online learnable with
respect to ω, then F is online learnable with respect to ω0-1 in the realizable setting. Let A
be an online learner for F with respect to ω. Then, by definition,

E
[

T∑

t=1

ω(A(xt), yt)↖ inf
f↑F

T∑

t=1

ω(f(xt), yt)

]
⇒ R(T, 2K)

where R(T, 2K) is a sublinear function in T . Since ω satisfies the identity of indiscernibles,
in the realizable setting, inff↑F

∑
T

t=1 ω(f(xt), yt) = 0. Therefore, under realizability,

E
[

T∑

t=1

ω(A(xt), yt)

]
⇒ R(T, 2K).

Because there are only a finite number of inputs to ω, there must exist a universal constant
a such that aω0-1 ⇒ ω. Substituting in gives that,

E
[

T∑

t=1

ω0-1(A(xt), yt)

]
⇒

R(T, 2K)

a
.

Since a is a universal constant that does not depend on T , R(T,2K)
a

is still a sublinear
function in T , implying that A is also a realizable online learner for F with respect to ω0-1.
This completes the proof as MCLdim characterizes realizable learnability and so we must
have MCLdim(F) < ⇑.
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Appendix G. Proofs for Bandit Online Multilabel Classification

In this section, we provide proofs for the characterization of online multilabel classification
under bandit feedback.
Proof (of Theorem 19) The proof of Theorem 19 is nearly identical to the proof of Theorem
13. The only di”erence is that in Algorithm 4, we now need use the bandit Expert’s
algorithm EXP4 from Auer et al. (2002) instead of REWA. Similar to REWA, based on
Theorem 2.3 in Daniely and Helbertal (2013) and the fact that A,B and P are independent,
EXP4 guarantees that

E
[

T∑

t=1

ω(P(xt), yt)

]
⇒ E

[
inf

E↑EB

T∑

t=1

ω(E(xt), yt)

]
+ eME

[
2T |Y| ln(|EB|)

]
,

where P(xt) denotes EXP4’s prediction in round t. The remaining proof for deriving
the upper bound

E
[

inf
E↑EB

T∑

t=1

ω(E(xt), yt)

]
⇒ inf

f↑F

T∑

t=1

ω(f(xt), yt) +
cT

T φ
R(T φ

, |Y|)

is identical to that in Theorem 13, so we omit it here. Putting these pieces together gives
the stated guarantee.

Proof (of Theorem 18) Let c =
maxr →=t ε(r,t)
minr →=t ε(r,t)

. We first show necessity: if F is bandit online

learnable with respect to ω, then each restriction Fk is online learnable with respect to ω0-1.
This follows trivially from the fact that if A is a bandit online learner for F , then A is also
an online learner for F under full-feedback. Thus, by Theorem 17, online learnability of F
with respect to ω implies online learnability of restriction Fk with respect to the 0-1 loss.

We now focus on showing su!ciency: if for all k ↘ [K], Fk is online learnable with respect
to 0-1 loss, then F is bandit online learnable with respect to loss ω. Since |Y| = 2K < ⇑

and ω is a c-subadditive, by Theorem 19, it su!ces to show that there exists a realizable
online learner for F with respect to ω. However, using Theorem 17, online learnability of
each restriction Fk with respect to 0-1 the loss implies (agnostic) online learnability of F
with respect to ω. Since an agnostic online learner is trivially a realizable online learner,
the proof is complete.

Appendix H. Equivalence of d1 and ω ∝ d1 Online Learnability

Proof (of Lemma 22) Since ς is a Lipschitz function, the proof of su!ciency follows imme-
diately from Corollary 5 in Rakhlin et al. (2015a), a contraction Lemma for the sequential
Rademacher complexity. Thus, we focus on proving necessity - if G is online learnable with
respect to ς ∝ d1, then G is online learnable with respect to d1.

Since the sequential fat shattering dimension of G characterizes d1 learnability (Rakhlin
et al., 2015a), it su!ces to show that G being online learnable with respect to ς ∝d1 implies
fatseqϑ (G) < 0 for every ϖ ↘ (0, 1). Like in the batch setting, we prove this via contradiction.
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Suppose, for the sake of contradiction, G is online learnable with respect to ς ∝ d1 but
there exists a scale ϖ ↘ (0, 1) such that fatseqϑ (G) = ⇑. Then, for every T ↘ N, there exists a
X -valued binary tree T and a [0, 1]-valued binary witness tree R both of depth T such that
for all ⇀ ↘ {↖1, 1}T , there exists g↽ ↘ G such that for all t ↘ [T ], ⇀t(g↽(Tt(⇀<t))↖Rt(⇀<t)) ⇔
ϖ. Without loss of generality, assume that for any path ⇀ ↘ {↖1, 1}T , the set of instances
{Tt(⇀<t)}Tt=1 are distinct. This is true because we can construct a ϖ-shattered tree of much
bigger depth and prune away repeated instances along a path to get a tree of depth T .
Define GT = {g↽ ↘ G|⇀ ↘ {↖1, 1}T } to be the set of functions that shatter T with witness
R. Let X → X denote the set of examples that label the internal nodes of T . Consider
the binary hypothesis class H = {↖1, 1}X which contains all possible functions from X to
{↖1, 1}. By definition of H, we must have Ldim(H) ⇔ T . Therefore, T , with left and right
edges labeled by ↖1 and +1 respectively, is shattered by H. Let T± denote such a tree.
Note that for all t ↘ [T ], we have Tt(⇀<t) = T±,t(⇀<t). Since Ldim(H) ⇔ T , any realizable
online learner for H must make at least T

2 mistakes in expectation for an adversary that
plays according to a root-to-leaf path in T± chosen uniformly at random. However, using
an agnostic online learner for G with respect to ς ∝ d1, we construct a realizable online
learner for H that achieves a sublinear regret bound when an adversary plays according to
a root-to-leaf path in T± chosen uniformly at random. Since fatseqϑ (G) = ⇑, T can be made
arbitrarily large, eventually giving us a contradiction.

To that end, let A be an online learner for G with respect to ς ∝ d1 with regret
RA(T ). Let ⇀ ↙ {↖1, 1}T denote a sequence of T i.i.d Rademacher random variables and
{(T±,t(⇀<t),⇀t)}Tt=1 the associated sequence of labeled instances determined by traversing
T± using ⇀. Note that {(T±,t(⇀<t),⇀t)}Tt=1 is a sequence of labeled instances corresponding
to a root-to-leaf path in T± chosen uniformly at random. By construction of H, there exists
a h

ω
↽ ↘ H such that hω↽(T±,t(⇀<t)) = ⇀t for all t ↘ [T ] and therefore the stream is realizable

by H. Let gω↽ ↘ G be the function at the end of the root-to-leaf path corresponding to ⇀ in
T , the original tree shattered by G.

We now use A to construct an agnostic online learner for H with sublinear regret on
the stream {(T±,t(⇀<t),⇀t)}Tt=1. Our algorithm is very similar to realizable-to-agnostic con-
version in Theorem 13. Namely, we construct a finite set of experts, each of which uses A
to make predictions, but only updates A on certain rounds. Finally, we run REWA using
this set of Experts over our stream. For completeness’ sake, we provide the full description
below.

For any bitstring b ↘ {0, 1}T , let ↽ : {t : bt = 1} ↓ im(Gϖ) denote a function mapping
time points where bt = 1 to elements in the discretized image space im(Gϖ). Let #b :
(im(Gϖ)){t:bt=1} denote all such functions ↽. For every g ↘ G, let ↽g

b
↘ #b be the mapping

such that for all t ↘ {t : bt = 1}, ↽
g

b
(t) = g

ϖ(Tt(⇀<t)). Let |b| = |{t : bt = 1}|. For
every b ↘ {0, 1}T and ↽ ↘ #b, define an Expert Eb,↼. Expert Eb,↼, formally presented in
Algorithm 8, uses A to make predictions in each round. However, Eb,↼ only updates A

on those rounds where bt = 1, using ↽ to produce a labeled instance (Tt(⇀<t),↽(t)). For
every b ↘ {0, 1}T , let Eb =


↼↑!b

{Eb,↼} denote the set of all Experts parameterized by
functions ↽ ↘ #b. If b is the all zeros bitstring, then Eb is empty. Therefore, we actually
define Eb = {E0} ≃


↼↑!b

{Eb,↼}, where E0 is the expert that never updates A. Note that

1 ⇒ |Eb| ⇒ ( 2
ϖ
)|b|.
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Algorithm 8 Expert(b, ↽)

Input: Independent copy of Online Learner A for ς ∝ d1

1 for t = 1, ..., T do

2 Receive example T±,t(⇀<t)
3 Predict ŷt = 2 {A(T±,t(⇀<t)) ⇔ Rt(⇀<t)}↖ 1
4 Receive yt = ⇀t

5 if bt = 1 then

6 Update A by passing (T±,t(⇀<t),↽(t))

7 end

With this notation in hand, we are now ready to present Algorithm 9, our main online
learner Q for H with respect to 0-1 loss. The analysis is similar to the one before, but we
include it below for completeness sake.

Algorithm 9 Online learner Q for H with respect to 0-1 loss

Input: Parameters 0 < ↼ < 1 and 0 < ϱ <
ϑ

2

1 Let B ↘ {0, 1}T such that Bt

iid
↙ Bernoulli(T

ε

T
)

2 Construct the set of experts EB = {E0} ≃


↼↑!B
{EB,↼} according to Algorithm 8.

3 Run REWA P using EB and the 0-1 loss over the stream (T±,1(⇀<1),⇀1), ..., (T±,T (⇀<T ),⇀T )

Our goal now is to show that Q enjoys sublinear expected regret. There are three main
sources of randomness: the randomness involved in sampling B, the internal randomness
of each independent copy of the online learner A, and the internal randomness of REWA.
Let B,A and P denote the random variable associated with these sources of randomness
respectively. By construction, A,B, and P are independent.

Using Theorem 21.11 in Shalev-Shwartz and Ben-David (2014) and the fact that A,B

and P , are independent, REWA guarantees,

E
[

T∑

t=1

{P(T±,t(⇀<t)) ⇓= ⇀t}

]
⇒ E

[
inf

E↑EB

T∑

t=1

{E(T±,t(⇀<t)) ⇓= ⇀t}

]
+ E

[
2T ln(|EB|)

]
.

Therefore,

E
[

T∑

t=1

{Q(T±,t(⇀<t)) ⇓= ⇀t}

]
= E

[
T∑

t=1

{P(T±,t(⇀<t)) ⇓= ⇀t}

]

⇒ E
[

inf
E↑EB

T∑

t=1

{E(T±,t(⇀<t)) ⇓= ⇀t}

]
+ E

[
2T ln(|EB|)

]

⇒ E
[

T∑

t=1

{E
B,↼

gϑϱ
B

(T±,t(⇀<t)) ⇓= ⇀t}

]
+ E

[
2T ln(|EB|)

]
.

In the last step, we used the fact that for all b ↘ {0, 1}T and g ↘ G, E
b,↼

g
b
↘ Eb.
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It now su!ces to upperbound E
[∑

T

t=1 {E
B,↼

gϑϱ
B

(T±,t(⇀<t)) ⇓= ⇀t}

]
. We use the same

notation used to prove Theorem 13, but for the sake of completeness, we restate it here.
Given an online learner A for ς ∝d1, an instance x ↘ X , and an ordered sequence of labeled
examples L ↘ (X ⇐ [0, 1])→, let A(x|L) be the random variable denoting the prediction of
A on the instance x after running and updating on L. For any b ↘ {0, 1}T , gϖ ↘ G

ϖ, and
t ↘ [T ], let Lg

b<t
= {(T±,t(⇀<i), gϖ(T±,t(⇀<i))) : i < t and bi = 1} denote the subsequence of

the sequence of labeled instances {(T±,t(⇀<i), gϖ(T±,t(⇀<i)))}
t≃1
i=1 where bi = 1. Using this

notation, we can write

E
[

T∑

t=1

{E
B,↼

gϑϱ
B

(T±,t(⇀<t)) ⇓= ⇀t}

]
= E

[
T∑

t=1

{
2 {A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
) ⇔ Rt(⇀<t)}↖ 1 ⇓= ⇀t

}]

= E
[

T∑

t=1

{
2 {A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
) ⇔ Rt(⇀<t)}↖ 1 ⇓= h

ω

↽(T±,t(⇀<t))
}]

⇒ E
[

T∑

t=1

{
|A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
)↖ g

ω

↽(T±,t(⇀<t))| ⇔ ϖ

}]

⇒ E
[

T∑

t=1

{
|A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
)↖ g

ω,ϖ

↽ (T±,t(⇀<t))| ⇔
ϖ

2

}]

⇒ E
[

T∑

t=1

{
ς ∝ d1(A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t))) ⇔ ς(

ϖ

2
)
}]

⇒
1

ς(ϑ2 )
E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

]

The first inequality follows from ϖ-shattering. Indeed, if 2 {A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
) ⇔ Rt(⇀<t)}↖

1 ⇓= h
ω
↽(T±,t(⇀<t)), then A(T±,t(⇀<t)|L

g
ϑ
ϱ

B<t
) and g

ω
↽ must lie on opposite sides of the witness

Rt(⇀<t). The second inequality stems from the choice of ϱ <
ϑ

2 . The third inequality
follows from the monotonicity of ς. The last inequality follows from Markov’s. Now, we
can continue like before.

E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

]

= E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

[Bt = 1]

[Bt = 1]

]

=
T

T φ
E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ

B<t
), gω,ϖ↽ (T±,t(⇀<t))) {Bt = 1}

]
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To see the last equality, note that the prediction A(T±,t(⇀<t)|L
g
ϑ

B<t
) only depends on bit-

string (B1, . . . , Bt≃1), the string (⇀1, ...,⇀t≃1), and the internal randomness of A, all of which
are independent of Bt. Thus, we have

E
[
ς ∝ d1(A(T±,t(⇀<t)|L

g
ϑ

B<t
), gω,ϖ↽ (T±,t(⇀<t))) {Bt = 1}

]
= E

[
ς1 ∝ d1(A1(xt|L

g
ϑ
ϱ

B<t
), yt)

]
E [ {Bt = 1}]

= E
[
ς1 ∝ d1(A1(xt|L

g
ϑ
ϱ

B<t
), yt)

]
[Bt = 1]

as needed. Continuing onwards,

E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

]

=
T

T φ
E
[

T∑

t=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t))) {Bt = 1}

]

=
T

T φ
E
[

∑

t:Bt=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

]

=
T

T φ
E
[
E
[

∑

t:Bt=1

ς ∝ d1(A(T±,t(⇀<t)|L
g
ϑ
ϱ

B<t
), gω,ϖ↽ (T±,t(⇀<t)))

B
]]

⇒
T

T φ
E
[

∑

t:Bt=1

ς ∝ d1(g
ω

↽(T±,t(⇀<t)), g
ω,ϖ

↽ (T±,t(⇀<t))) +RA(|B|)

]

The last inequality follows from the fact that A is an online learner for ς ∝ d1 with regret
bound RA(T ) and is updated using a stream labeled by g

ω,ϖ only when Bt = 1. Now, we
can upperbound:

T

T φ
E
[

∑

t:Bt=1

ς ∝ d1(g
ω(T±,t(⇀<t)), g

ω,ϖ

↽ (T±,t(⇀<t)))

]
+

T

T φ
E [RA(|B|)]

⇒
T

T φ
E
[

∑

t:Bt=1

ς(ϱ)

]
+

T

T φ
E [RA(|B|)]

⇒
T

T φ
E [ϱL|B|] +

T

T φ
E [RA(|B|)]

= ϱLT +
T

T φ
E [RA(|B|)]
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The first two inequalities follow from the fact that ς is monotonic, L-Lipschitz, ς(0) = 0,
and d1(gω(T±,t(⇀<t)), g

ω,ϖ
↽ (T±,t(⇀<t)) ⇒ ϱ. Putting things together, we find that

E
[

T∑

t=1

{Q(T±,t(⇀<t)) ⇓= ⇀t}

]
⇒ E

[
T∑

t=1

{E
B,↼

gϑϱ
B

(T±,t(⇀<t)) ⇓= ⇀t}

]
+ E

[
2T ln(|EB|)

]

⇒
ϱLT + T

TεE [RA(|B|)]

ς(ϑ2 )
+ E

[
2T ln(|EB|)

]

⇒
ϱLT + T

TεE [RA(|B|)]

ς(ϑ2 )
+ E

[
2T |B| ln(

2

ϱ
)

]
.

where the last inequality follows from the fact that that |EB| ⇒ ( 2
ϖ
)|B|. By Jensen’s inequal-

ity, we further get that, E
[

2T |B| ln( 2
ϖ
)
]
⇒


2T φ+1 ln( 2

ϖ
), which implies that

E
[

T∑

t=1

{Q(T±,t(⇀<t)) ⇓= ⇀t}

]
⇒

ϱLT + T

TεE [RA(|B|)]

ς(ϑ2 )
+


2T φ+1 ln(

2

ϱ
).

Next, by Lemma 14, there exists a concave sublinear function RA(|B|) that upperbounds
RA(|B|). By Jensen’s inequality, we obtain E[RA(|B|)] ⇒ RA(T φ), which yields

E
[

T∑

t=1

{Q(T±,t(⇀<t)) ⇓= ⇀t}

]
⇒

ϱLT + T

TεRA(T φ)

ς(ϑ2 )
+


2T φ+1 ln(

2

ϱ
).

Picking ϱ = 1
LT

and ↼ ↘ (0, 1), gives that Q enjoys sublinear expected regret

E
[

T∑

t=1

{Q(T±,t(⇀<t)) ⇓= ⇀t}

]
⇒

1

ς(ϑ2 )
+

T

ς(ϑ2 )T
φ
RA(T

φ) +

4T φ+1 ln(LT ).

Since RA(T φ) is sublinear in T
φ , Q is a realizable online learner for H with sublinear regret.

Thus, for a su!ciently large T , E
[∑

T

t=1 {Q(T±,t(⇀<t)) ⇓= ⇀t}

]
<

T

2 . This is a contradiction

because {(T±,t(⇀<t),⇀t)}Tt=1 is a realizable sequence of instances corresponding to a root-
to-leaf path in T± chosen uniformly at random and thus any realizable online learner must
su”er expected regret at least T

2 . Thus, if there exists a scale ϖ > 0 such that fatseqϑ (G) = ⇑,
there cannot exist an online learner for G with respect to ς ∝ d1.
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