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Abstract

Learning operators between infinitely dimensional spaces is an important learning task
arising in machine learning, imaging science, mathematical modeling and simulations, etc.
This paper studies the nonparametric estimation of Lipschitz operators using deep neural
networks. Non-asymptotic upper bounds are derived for the generalization error of the
empirical risk minimizer over a properly chosen network class. Under the assumption
that the target operator exhibits a low dimensional structure, our error bounds decay as
the training sample size increases, with an attractive fast rate depending on the intrinsic
dimension in our estimation. Our assumptions cover most scenarios in real applications
and our results give rise to fast rates by exploiting low dimensional structures of data in
operator estimation. We also investigate the influence of network structures (e.g., network
width, depth, and sparsity) on the generalization error of the neural network estimator and
propose a general suggestion on the choice of network structures to maximize the learning
efficiency quantitatively.

Keywords: Deep neural networks, Nonparametric estimation, Operator learning, Gen-

eralization error analysis

1. Introduction

Learning nonlinear operators from a Hilbert space to another via nonparametric estimation

has been an important topic with broad applications. For example, in reduced-order mod-
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eling, a data-driven approach desires to map a full model trajectory to a reduced model
trajectory or vice versa (Peherstorfer and Willcox, 2016). In solving parametric partial dif-
ferential equations (PDEs), it is desired to learn a map from the parametric function space
to the PDE solution space (Khoo et al., 2021; Li et al., 2020; Lu et al., 2021). In forward and
inverse scattering problems (Khoo and Ying, 2019; Wei and Chen, 2019), it is interesting
to learn an operator mapping the observed data function space to the parametric function
space that models the underlying PDE. In density functional theory, it is desired to learn a
nonlinear operator mapping a potential function to a density function (Fan et al., 2019a).
In phase retrieval (Deng et al., 2020), an operator from the observed data function space
to the reconstructed image function space is learned. Other image processing problems,
e.g., image super-resolution (Qiao et al., 2021), image denoising (Tian et al., 2020), image
inpainting (Qin et al., 2021), are similar to the deep learning-based phase retrieval, where
an operator from a function space to another function space is learned.

As a powerful tool of nonparametric estimation, deep learning (Goodfellow et al., 2016)
has made astonishing breakthroughs in various applications, including computer vision
(Krizhevsky et al., 2012), natural language processing (Graves et al., 2013), speech recog-
nition (Hinton et al., 2012), healthcare (Miotto et al., 2017), as well as nonlinear operator
learning (Khoo et al., 2021; Zhu and Zabaras, 2018; Fan et al., 2019a,b; Khoo and Ying,
2019; Chen and Chen, 1995; Lu et al., 2021; Lanthaler et al., 2022; Bhattacharya et al.,
2021; Li et al., 2020; Nelsen and Stuart, 2020; Kovachki et al., 2023; Zhang et al., 2023b,a).
A typical method for operator learning is to first discretize the function spaces and represent
each function by a vector using sampling. Then deep neural networks are applied to learn
the map between these vector spaces (Khoo et al., 2021; Zhu and Zabaras, 2018; Fan et al.,
2019a,b; Khoo and Ying, 2019). Such methods are mesh dependent: if a different discretiza-
tion scheme is used, the network needs to be trained again. Though empirical successes have
been demonstrated in learning nonlinear operators by this approach in many applications,
it is computationally expensive to train these algorithms and the training procedure has
to be repeated when the dimension of vector spaces is changed. Another approach based
on the theory of approximating operators by neural networks (Chen and Chen, 1995) can
alleviate this issue to a certain extent by avoiding the discretization of the output Hilbert
space of the operator. This approach was first proposed in Chen and Chen (1995) with
two-layer neural networks and recently revisited with deeper neural networks in Lu et al.
(2021) with successful applications (Lin et al., 2021; Cai et al., 2021). However, the meth-
ods in Chen and Chen (1995); Lu et al. (2021); Lin et al. (2021); Cai et al. (2021) are still
mesh-dependent due to the requirement of a fixed number of sample points for the input
function of the operator. More recently, a discretization-invariant (mesh-independent) op-
erator learning framework was proposed in Anandkumar et al. (2020); Bhattacharya et al.
(2021); Li et al. (2020); Nelsen and Stuart (2020); Kovachki et al. (2023) by taking the ad-
vantage of graph kernel networks, principal component analysis (PCA), and kernel integral
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operators, etc. With discretization-invariant approaches, the training procedure does not
need to be performed again when the discretization scheme changes. The approximation
ability of this neural operator learning framework is studied in Kovachki et al. (2023). For
any given approximation error €, the existence of a neural operator is proved to achieve
the e approximation error (Kovachki et al., 2023), while the scale of network size is not

specified.

Although operator learning via deep learning-based nonparametric estimation has been
successful in many applications, its statistical learning theory is still in its infancy, espe-
cially when the operator is from an infinite dimensional space to another. The successes
of deep neural networks are largely due to their universal approximation power (Cybenko,
1989; Hornik, 1991), showing the existence of a neural network with a proper size fulfilling
the approximation task for certain function classes. Quantitative function approximation
theories, provably better than traditional tools, have been extensively studied with various
network architectures and activation functions, e.g., for continuous functions (Yarotsky,
2017; Shen et al., 2020, 2021a,b, to appear; Yarotsky, 2021), for functions with certain
smoothness (Yarotsky, 2018; Yarotsky and Zhevnerchuk, 2020; Lu et al., 2021; Suzuki,
2018), and for functions with integral representations (Barron, 1993; E et al., 2019, 2021;
Siegel and Xu, 2021). In theory, deep neural networks can approximate certain high di-
mensional functions with a fast rate that is independent of the input dimension (Barron,
1993; E et al., 2019, 2021; Siegel and Xu, 2021; Shen et al., 2021a,b; Yarotsky and Zhevn-
erchuk, 2020; Shen et al., 2021c; Chen and Chen, 1995; Chen et al., 2022, 2020; Liu et al.,
2021; Jiao et al., 2021; Cloninger and Klock, 2020; Shaham et al., 2018; Schmidt-Hieber,
2019; Du et al., 2021; Nakada and Imaizumi, 2020b; Liu et al., 2022, 2024). However, in
the context of operator approximation, deep learning theory is very limited. Probably the
first result is the universal approximation theorem for operators in Chen and Chen (1995).
More recently, theories on local approximation of operators by deep neural networks were
studied in Mhaskar (2022). Quantitative approximation results for operators between infi-
nite dimensional spaces were given in Bhattacharya et al. (2021); Lanthaler et al. (2022);
Kovachki et al. (2021) based on the function approximation theory in Yarotsky (2017).
Note that the function approximation results in Yarotsky (2017) does not give the flexi-
bility to choose arbitrary width and depth of neural networks. In this paper, we provide
a new operator approximation theory based on nearly optimal function approximation re-
sults where the width and depth of the network can be chosen flexibly. In comparison with
Lanthaler et al. (2022), the flexibility of choosing arbitrary width and depth provides an
explicit guideline to balance the approximation error and the statistical variance to achieve

a better generalization error in operator learning.

We also establish a novel statistical theory for deep nonparametric estimation of Lip-
schitz operators between infinite dimensional Hilbert spaces. The core question to be an-
swered is: how the generalization error scales when the number of training samples increases
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and whether the scaling is dimension-independent without the curse of dimensionality. In
literature, the statistical theory for function regression via neural networks has been a pop-
ular research topic (Hamers and Kohler, 2006; Kohler and Krzyzak, 2005; Jacot et al., 2018;
Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Cao and Gu, 2019; Chen et al., 2022; Kohler
et al., 2020; Nakada and Imaizumi, 2020a; Farrell et al., 2021; Liu et al., 2021; Jiao et al.,
2021). These works have proved that deep nonparametric regression can achieve the opti-
mal minimax rate of regression established in Stone (1982); Gyorfi et al. (2002). When the
target function has low complexity or the function domain is a low dimensional set, deep
neural networks can achieve a fast rate depending on the intrinsic dimension (Chen et al.,
2019, 2022, 2020; Liu et al., 2021; Shen et al., 2020; Jiao et al., 2021; Cloninger and Klock,
2020; Shaham et al., 2018; Schmidt-Hieber, 2019; Du et al., 2021; Nakada and Imaizumi,
2020b). In more sophisticated cases when a mathematical modeling problem is transferred
to a special regression problem, e.g., solving high dimensional PDEs and identifying the
governing equation of spatial-temporal data, the generalization analysis of deep learning
has been proposed in Berner et al. (2018); Shin et al. (2020); Luo and Yang (2020); Mishra
and Molinaro (2020); Lu et al. (2021); Lu and Lu (2021); Duan et al. (2021); Gu et al.
(2021). All these results focus on the regression problem when the target function is a map-
ping from a finite dimensional space to a finite dimensional space. Therefore, these results
cannot be applied to mappings from an infinite dimensional space to another. To our best
knowledge, the only work on the generalization error analysis of deep operator learning
in Hilbert spaces is Lanthaler et al. (2022) for the algorithm in Lu et al. (2021), which is
not completely discretization-invariant. The generalization error in Lanthaler et al. (2022)
is a posteriori depending on the properties of neural networks fitting the target operator.
Recently, the posterior rates on learning linear operators by Bayesian inversion have been
studied in de Hoop et al. (2021).

In this paper, we establish a priori generalization error for a discretization-invariant
operator learning algorithm for operators between Hilbert spaces. As we shall see later,
our theory can be applied to operator learning from a finite dimensional vector space to
another as a special case. Therefore, the theoretical result in this paper can facilitate the
understanding of many operator learning algorithms by neural networks in the literature.

Our contributions are summarized as follows:

1. We derive an upper bound on the generalization error for a general framework of learn-
ing operators between infinite dimensional spaces by deep neural networks. The frame-
work considered here first encodes the input and output space into finite-dimensional
spaces by some encoders and decoders. Then a transformation between the dimension
reduced spaces is learned using deep neural networks. Our upper bound is derived
for two network architectures: one has constraints on the number of nonzero weight
parameters and parameter magnitude; The other network architecture does not have
such constraints and allows one to flexibly choose the depth and width. Our upper
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bound consists of two parts: the error of learning the transformation by deep neural
networks, and the dimension reduction error with encoders and decoders.

2. Our analysis is general and can be applied for a wide range of popular choices of
encoders and decoders in the numerical implementation, such as those derived from
Legendre polynomials, trigonometric bases, and principal component analysis. The

generalization error is given for each of these examples.

3. We discuss two scenarios to further exploit the additional low-dimensional structures
of data in operator estimation motivated by practical considerations and classical
numerical methods. The first scenario is when encoded vectors in the input space are
on a low-dimensional manifold. In this scenario, we show that the generalization error
converges as the training sample increases with a fast rate depending on the intrinsic
dimension of the manifold. The second scenario is when the operator itself has low
complexity: the composition of the operator with a certain encoder and decoder is
a multi-index model. In this scenario, we show that the convergence rate of the

generalization error depends on the intrinsic dimension of the composed operator.

We organize this paper as follows. In Section 2, we introduce our notations and the
learning framework considered in this paper. Our main results with general encoders and
decoders are presented in Section 3. We discuss the applications of our main results to
specific encoders and decoders derived from certain function basis and PCA in Section 4
and 5, respectively. To further exploit additional low-dimensional structures of data, we
discuss the application of our results to two scenarios in Section 6. The proofs of all results
are given in Section 7. We conclude this paper in Section 8.

2. A general framework

In this section, we introduce the framework considered in this paper for learning operators

between infinite dimensional spaces.

2.1 Preliminaries

We first briefly introduce some definitions and notations on a Hilbert space, encoders,
decoders, and feedforward neural networks used in this paper. A Hilbert space is a Banach
space equipped with an inner product. It is separable if it admits a countable orthonormal
basis. Let H be a separable Hilbert space. An encoder for  is an operator Ey : H — R,
where d is a positive integer representing the encoding dimension. The associated decoder
is an operator Dy : R — #. The composition Iy = Dy o Ey : H — H is a projection.
For any u € H, we define the projection error as |[IIy(u) — ul|%.

In this paper, we consider the ReLU Feedforward Neural Network (FNN) in the form of

f(x) =W -ReLU (Wp_q---ReLUW1x+by)+---+br_1) + by, (1)
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where W)’s are weight matrices, b;’s are biases, and ReLU(a) = max{a,0} is the rectified
linear unit activation (ReL.U) applied element-wise.

We consider two classes of network architectures whose inputs are in a compact domain
of a vector space and whose outputs are vectors in R?. The dimension of the input and

output spaces are to be specified later. The first class is defined as

]:NN(davaaKﬂ/”'vM)
= {T = [f1, fo,..., fa] " : foreach k =1,....d,

fr(x) is in the form of (1) with L layers, width bounded by p,

L

1filloe < M, [[Willooeo < &, Ibilloc < 5, Y [Willo + IIbillo < K}, (2)
=1

where || flloo = supy [f(xX)], [|Wloo,00 = max;;|Wi;l|, |[bllc = max; |b;| for any function
f, matrix W, and vector b with || - ||o denoting the number of nonzero elements of its
argument. The function class given by this first network architecture has an upper bound
on all weight parameters (the magnitude of all weight parameters are upper bounded by &)
and a cardinality constraint (the total number of nonzero parameters are no more than K).
Each element of the output is upper bounded by M. This constraint on the output is often
enforced by clipping the output in the testing procedure. Such a clipping can be realized
with a two-layer network, which is fixed during training. This clipping step is common in
nonparametric regression (Gyorfi et al., 2002).

In the second class of network architecture, we drop the magnitude and cardinality con-
straints for practical concerns on training. The second network architecture is parameterized
by L,p, M only:

]:NN(deapa M) - {F :[f17f27 “'7.fd]—r : for each k = 17 "'7d7
fr(x) is in the form of (1) with L layers, width bounded by p,
[ frlloo < M} (3)

All theoretical results in this paper can be applied to both network architectures.

Notations: We use bold lowercase letters to denote vectors, and normal font letters to
denote scalars. The notation O represents a zero vector. For a d dimensional vector k =
[k1,--- ,kq)", we denote |k| = Zle k;. The vector norms are defined as ||k||oc = max; |k;]

and ||k|j2 = Z?Zl k?. For any scalar s, we denote [s] as the smallest integer that is no
less than s. We use N to denote the set of positive integers and Ng = NU{0}. For a function
f:Q — R in a Hilbert space H, we define the function norms as || f|jcc = supyeq |f(x)]
and ||fllx = +/{f, f)n, where (-,-)3; denotes the inner product of H. For an operator
A : H — H, we denote its operator norm by ||A|, and its Hilbert-Schmidt norm by
|A|lms. More notations used in this paper is summarized in Table 1.
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2.2 Problem setup and a learning framework

Let X and ) be two separable Hilbert spaces and ¥ : X — ) be an unknown operator.
Our goal is to learn the operator ¥ from a finite number of samples S = {u;, v;}??, in the

following setting.

Setting 1 Let X,Y be two separable Hilbert spaces and v be a probability measure on X.
Let § = {ui,vi}%gl be the given data where w;’s are i.i.d. samples from ~ and the v;’s are

generated according to model:

where the €;’s are i.i.d. samples from a probability measure p on Y, independently of u;’s.
We denote the probability measure of v by (.

The pushforward measure of v under ¥ is denoted by W+, such that for any 2 C ),

Wy () =7 ({u: ¥(u) € Q}).

Without additional assumptions, the estimation error of ¥ based on a finite number
of samples may not converge to zero since W is an operator between infinite-dimensional
spaces. In this paper, we exploit the low-dimensional structures in this estimation problem
arising from practical applications, and prove a nonparametric estimation error of ¥ by
deep neural networks.

Our learning framework follows the idea of model reduction in Bhattacharya et al.
(2021). It consists of encoding and decoding in both the X and ) spaces, and deep learning
of a transformation between the encoded vectors for the elements in X and ). We first
encode the elements in X and ) to finite dimensional vectors by an encoding operator. For
fixed positive integers dy and dy, let Ex : X — R and Dy : R% — X be the encoder
and decoder of X, and Ey : Y — R% and Dy : R®™» — ) be the encoder and decoder of )
such that

DyoEyxy~1 and DyoFEy=I.

The empirical counterparts of encoders and decoders are denoted by E%, D%, EY, and DY),
and we call them empirical encoders and decoders.

The simplest encoder in a function space is the discretization operator. When X is a
function space containing functions defined on a compact subset of RP, we can discretize
the domain with a fixed grid, and take the encoder as the sampling operator on this grid.
However, the discretization operator may not reveal the low-dimensional structures in the
functions of interest, and therefore may not effectively reduce the dimension.

A popular choice of encoders in applications is the basis encoder, such as the Fourier
transform with trigonometric basis, or PCA with data-driven basis, etc. Given an orthonor-
mal basis of X and a positive integer dy, the basis encoder maps an element in X to dy
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coefficients associated with a fixed set of dy bases. For any coefficient vector a € Réx,
the decoder Dy (a) gives rise to a linear combination of these dy bases weighted by a. See
Section 4 for the details about the basis encoder. The trigonometric basis and orthogo-
nal polynomials are commonly used bases in applications. These bases are a priori given,
independently of the training data. In this case, the basis encoder can be viewed as a deter-
ministic operator, which is given independently of the training data. The empirical encoder
and decoder are the same as the oracle encoder and decoder: E% = Ex and D%} = Dy.

PCA (Pearson, 1901; Hotelling, 1933, 1992) is an effective dimension reduction tech-
nique, when u;’s exhibit a low-dimensional linear structure. The PCA encoder encodes an
element in X to the dy coefficients associated with the top dy eigenbasis of a trace opera-
tor. The PCA decoder gives a linear combination of the eigenbasis weighted by the given
coefficient vector. In practice, one needs to estimate this trace operator from the training
data and obtain an empirical estimation of Ex and Dy, which are denoted by E%} and D%,
respectively. The PCA encoder is data-driven, and we expect E% ~ Ex, D ~ Dy when
the sample size n is sufficiently large. The encoding and decoding operator in ) can be
defined analogously.

The operator Dy o Ey is the projection operator associated with the encoder Ey and

decoder Dy. We have the following projections and their empirical counterparts:
x4, = DxoEx, Uy, =DyoFEY,
Hy,dy = Dy o Ey, H%,dy = DSL; o ESL;

After the empirical encoders E', EY; and decoders D%, DY, are computed, our objective

is to learn a transformation ' : R — R% such that
Dy oTl'oEy ~ V. (5)

We learn I' using a two-stage algorithm. Given the training data & = {ui,vi}?ﬁl, we
split the data into two subsets S = {u;, v;}; and Sp = {u;, vi}%gnﬂ L where S; is used to
compute the encoders and decoders and S is used to learn the transformation I' between
the encoded vectors. Our two-stage algorithm follows

Stage 1: Compute the empirical encoders and decoders E%, D%, E3,, Dy, based on Si. In
the case of deterministic encoders, we skip Stage 1 and let % = Ex, D% = Dy, E3, =
Ey, DY, = Dy.

Stage 2: Learn I' with Sy by solving the following optimization problem

2n
1
I'ny € argmin— Y |0 o B (u;) — E5(vy)|3 (6)
INSVENN n i=n4+1

for some Fnn class with a proper choice of parameters.

1. The data can be split unevenly as well.
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Notation Description Notation Description
X Input space % Output space
UV: X =Y An unknown operator S = {u, vi}fﬁl Given data set
Push f d f
¥ A probability measure on X Wy Ush forward measure ot ¥
under ¥
The probability measure of The probability measure of
2 o~ ¢ ~
noise & v="U(u)+¢€
Ex,Dx Encoder and decoder of X Ey, Dy Encoder and decoder of Y
0 n Empirical estimations of n on Empirical estimations of
EX? DX . Eya Dy .
FEx, Dx from noisy data Ey, Dy from noisy data
dx Encoding dimension of X dy Encoding dimension of
Mx,ay Projection Dy o Ex Iy, 4y, Projection Dy o Ey
% dy Empirical projection D% o E% V.dy Empirical projection D3; o E3;
MLy, a, (u) —u|lx | Encoding error for w in X [IIIy. 4y, (v) — v|ly | Encoding error for v in Y
FNN Neural network class I'nn Neural network estimator in (6)

Table 1: Notations used in this paper.

Our estimator of ¥, a neural operator, is given as
UnN = Dy oI'nnv o By,
and the mean squared generalization error is defined as
ESEuy [ Onn(u) — ¥(u)|3 (7)

In (6), the transformation I'ny is learned by minimizing the mean squared error in the
encoded space R% . In literature (Bhattacharya et al., 2021), another loss that are popularly
adopted is the following one

2n

1
I'ny € argmin — Z | Dy ol o E%(u;) —Uz'||§;, (8)
rerw ™50

in which the transformation I'yy is learned by minimizing the mean squared error in the
output space ). In this paper, we will derive upper bounds of the generalization error with
the loss defined in (6). An upper bound of the generalization error with the loss (8) can be
derived with similar techniques.

3. Main results

The main results of this paper provide statistical guarantees on the mean squared general-
ization error for the estimation of Lipchitz operators.
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3.1 Assumptions

We first make some assumptions on the measure v and the operator .

Assumption 1 (Compactly supported measure) The probability distribution v is sup-
ported on a compact set Qx C X. There exists Ry > 0 such that, for any u € Qy, we
have

lullx < Rx.
Assumption 2 (Lipschitz operator) There exists Ly > 0 such that
[0 (ur) = W(ug)lly < Lyllur — uallx, for any ui,uz € Q.

Assumption 1 and 2 assume that ~ is compactly supported and W is Lipschitz continuous.
We denote the image of Qx under the transformation ¥ as

Qy ={veY:v="U(u) for some u € Qr}.

Assumption 1 and 2 imply that {1y is bounded: there exists a constant Ry > 0 depending
on Ry and Ly such that for any v € Qy, we have ||v]y < Ry.

We next make some natural assumptions on the empirical encoders and decoders:

Assumption 3 (Lipchitz encoders and decoders) The empirical encoders and decoders
E%, D%, EY;, DY, satusfy:

EY(0x) =0, D%(0) = 0x, E}(0y) =0, Djy(0) =0y,

where 0 denotes the zero vector, Oy is the zero function in X and Oy is the zero function
m Y.

They are also Lipschitz: there exist Lgn,, Lpn,, LESLJ’ LDS? > 0 such that, for any ui, us €
X and any aj,as € R¥X | we have

| E%(u1) — E%(u2)ll2 < Lpn |lur —usllx, [[Dy(a1) — Dy (az)llx < Lpr [lar — azllz,
and for any vi,vy € Y and any a;,as € R, we have
[EY(v1) — Ep(v2)ll2 < Legllvr —vally,  [[Dy(a1) — Dy(az)|ly < Lpyllar — a2

Remark 1 Assumption 8 is made on empirical encoders and decoders. The basis encoders
and PCA encoders, which are most commonly used, satisfy Assumption 3 with the Lipchitz
constants Lgy, = Lpn, = LE53 = LD?} = 1, independently of the training data (see Lemma 6
and Lemma 12).

10
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Assumption 3 implies that E%(u) and EJ;(v) are bounded for any u € Qx and v € Qy.
For any u € Qx, we have ||E%(u)|l2 < [[E%(u) — E%(0)|l2 + [[E%(0)[|2 < Lgy Rx. Similarly,
for any v € Qy, we have [|E5(v)[|2 < Lgy Ry.

Remark 2 The condition
E%(0x) =0, D%(0) =0y, ES‘,(O;;) =0, DS‘,(O) = 0y,

in Assumption 3 is only used to make sure E%(u) and E%(v) are bounded. One can replace

0 by any finite vector.

Assumption 4 (Noise) The random noise € satisfies
(i) € is independent of u.

(i) E[e = 0.

(11i) There exists o > 0 such that |[€]|y < 0.

Assumption 4(i)-(iii) are natural assumptions on noise. Assumption 4(i) is about the
independence of the input and the noise, which is commonly used in nonparametric re-
gression. Assumption 4(iii) together with Assumption 3 imply that the perturbation of the
encoded vectors are bounded: [[E5(¥(u)+€) — E3(V(u))|loo < Lpyo. We denote 0 = Lggo
such that

| ES (¥ (u) +€) — B3 (¥(u))||e < o for any u and €. 9)

Assumption 5 (Noise and encoder) For any noise satisfying Assumption 4 and any

given S1, the conditional expectation satisfies
Ee [ES(¥(u) +€) — E(¥(w))|Si] =0, for any u € Qx,
where EY; is the empirical encoder computed with Sy .

Assumption 5 requires that, if we condition on &; based on which the empirical encoder
EY, is computed, the perturbation on the encoded vector resulted from noise has zero ex-
pectation. Assumption 5 is guaranteed for all linear encoders as long as Assumption 4(ii)
holds:

Ee [E3(¥(u) + 7€) — EB(¥(u))|S1] = Ez [E3(8)|S1] = 0.

Basis encoders, including the PCA encoder, are linear encoders, so they all satisfy Assump-
tion 5.

11
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3.2 Generalization error with general encoders and decoders

Our main result is an upper bound of the generalization error in (7) with general encoders
and decoders. Our results can be applied to both network architectures defined in (2) and
(3). Our first theorem gives an upper bound of the generalization error with the network
architecture defined in (2).

Theorem 3 In Setting 1, suppose Assumption 1 — 5 hold. Let Ty be the minimizer of (6)
with the network architecture F(dy, L,p, K,r, M) in (2), where

__dx dy __dx dy
L =O(logn +logdy), p=0O dy%d"nﬂdx , K=0 dy“d?fnﬂdx logn |,

(10)
M = \ dyLEginy, K = max {1, \/dyLESL}Ry, vV d)(LEQR)(, LEgﬁLDK,L\I/} .
Then we have
EsEu~y | D3 0 T © Bl (u) — ¥ (u)|f3
4+dy 5
< C1(6% + R3)dy, ¥ n” 77ix log® n + Cy(6° + R3)d3(log dy)n ™"
+ C3ESEur Ty g, (1) — ull % + 2EsEumw 5 |13, 4y, (w) — w3, (11)

where Cy,Cs are constants depending on dX,RX,Ry,LE;(,LEgz},LDg(,LD?},Lq, and C3 =
2 12 12
16LD¥LE§L\I,.

Our second theorem gives an upper bound of the generalization error with the network
architecture defined in (3).

Theorem 4 In Setting 1, suppose Assumption 1 — 5 hold. Let Ty be the minimizer of (6)
with the network architecture F(dy, L,p, M) in (3) with

L=0(L), p=0(p),M = /dyLgy Ry, (12)

where z,ﬁ > 0 are positive integers satisfying

~ __dx dy
Lp = |dy, "% nT2ax | (13)
Then we have

EsEyr|| D% o Tnn 0 E% (u) — U (u)|3,

dtdy )
< Cy(6° + RY)dy, ¥ n” 2Fx log® n + CsEsEy |15 4, (u) — ul3
+ 2B By 11 4, (w) — wl[3, (14)

where Cy is a constant depending ondx, Ry, Ry, LE;@, LE;, LD;L(, Ly and C3 = 16L2 SL}IPEJTL} L?I,
18 the same one in Theorem 8.

12
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Remark 5 In Assumption 2, the operator ¥ is assumed to be Lipscthiz. We can relax this
assumption to Holder continuous operators. Specifically, for 0 < a < 1, we assume that
there exists Ly o > 0 such that

- U’QH%v for any uy,us € Qx.

[ (u1) — ¥(uz)l

Under the Holder assumption, we can prove a similar result with the same technique. Specif-

ically, for Theorem 3, we can show that if we set
ﬁ _dx ﬁ _dx
= O(logn +logdy), p=0 | dy,""*n>x | K =0 |dy,"""*n>xlogn |,

= \/dyLEgthy, K = ImaXx {1, AV dyLEgz}Ry, vV deE;L(R,y, LEgz)LD}L\p} .

Then we have

EsEuy || D% o Ty 0 B (u) — ¥(u)|3
4o¢+dX

< C1(6° + RY)dy ¥ n” Tty log® n + C4(c* + R3)d3(log dy)n~
+ C3ESEynr [T 4, (u) — ull3 + 2EsEqpnw o [y 4, (w) — w3,

where C1, Ch are constants depending on o, dx, Ry, Ry, Lgn, Ly, Loy, Lpy, Ly and Cy =
1612 SL}L2E§L%I,.
For Theorem 4, we can show that if we choose L,p > 0 satisfying

,di?(d dy
~ da+2 —
Lp = dy ATEX p datady ,

then

EsEymr || D} o Ty 0 E%(u) — ¥ (u)|)3,
da+dy

ST 2
< C4(G% + R3)dyy "% n” 279x log® n + CYEsEunny [T 4, (1) — w3
+ 2E8Ew~\1'#w‘|ngi,dy (w) — w”%}a

where Cy is a constant depending on o, dx, Rx, Ry, Ly, Lgy, Lpy, Ly and Ch = 16L2 55L2 ;L?I,.

Theorem 3 is proved in Section 7.2 and Theorem 4 is proved in Section 7.3. Theorem
3 and 4 consider I'yy being the minimizer of (6). Using the same proof technique, one can
derive a similar upper bound for I'yy being the minimizer of (8), up to a constant factor
depending on Lgy, L B Lpr, and L Dy, In the rest of this paper, we only consider the loss
function in (6).

In the proof of Theorem 3 and 4, the generalization error is decomposed into a bias
term and a variance term. The bias term is bounded using the network approximation

13
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error, and the variance term is bounded using the covering number of the network class,
which is closely related with the Rademacher complexity. An alternative argument using
local Rademacher complexity Bartlett et al. (2005); Koltchinskii (2006) leads to the same
upper bound. Note that a vanilla Rademacher complexity argument will result in a slower
convergence rate.

In Theorem 4, we have chosen the optimal zﬁ to balance the bias and variance term. For
readers who are interested in the generalization error with arbitrary network depth L and
width p, please see our proof in Section 7.3. The constants in both theorems only depend
on the settings of the problem, and the choices of encoders and decoders. They do not
depend on properties of I'ny. With proper choices of encoders and decoders, such as PCA,
our framework is discretization-invariant, see Section 4 and 5 for some popular choices of
encoders and decoders.

For a general framework of operator learning using deep neural networks, Theorem 3
and 4 unveils how the generalization error of scales with the number of samples, if the
network architecture is properly set. For both network architectures, the upper bound in
(11) and (14) consists of a network estimation error and the projection errors in the X and
Y space.

e The first two terms in (11) and the first term in (14) represent the network esti-
mation error for the transformation I' : R% — R% which maps the encoded vector
E%(u) for u in X to the encoded vector EY,(®(u)) for ®(u) in ). This error decays
exponentially as the sample size n increases with an exponent depending on the di-
mension dy of the encoded space. The dimension dy appears in the exponent and
dy appears as a constant factor. This is because that the transformation I' has dy
outputs and each output is a function from R? to R. Therefore the rate is only cursed
by the input dimension dy. Note that the minimax rate for learning a C! function in
RY is n~ 7ra (Gyorfi et al., 2002). Thus for the network estimation error, our rate is
optimal up to a logarithmic factor.

e The last two terms in (11) and (14) are projection errors in the X and ) space,
respectively. If the measure - is concentrated near a dy-dimensional subspace in X,
both projection errors can be made small if the encoder and decoder are properly
chosen as the projection onto this dy-dimensional subspace (see Section 6).

DeepONet (Lu et al., 2021) is another popular framework for learning operators by
neural networks. DeepONet uses a subnetwork (the trunk net) to learn a set of functions,
and the operator is represented as a linear combination of the trunk nets where the weights
are computed by another subnetwork (the branch net). The main differences between
DeepONet and the framework studied in this paper are: (i) In DeepONet, the output
is given by the dot product between trunk nets and branch nets, while our framework
uses standard feedforward neural networks on latent features. (ii) DeepONet uses a basis

14
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decoder for the output space where the bases are given by the trunk nets. The trunk
nets are trained together with the branch nets. In our framework, we consider general
encoder/decoder, and neural networks are trained to learn the latent transformation. The
encoder/decoder and the neural networks are trained separately. The generalization error
of DeepONet is analyzed in Lanthaler et al. (2022), with different assumptions from ours.
Lanthaler et al. (2021) assumes a Lipscthiz property of the network with respect to the
network weight parameters in Lanthaler et al. (2022, Assumption 5.3). This assumption is
used to simplify the variance estimation. This assumption is difficult to validate in practical
applications, and may not be satisfied. As shown in the proof of Chen et al. (2022, Lemma
5.3 in Appendix C3), without additional conditions, the Lipschitz constant of the network
with respect to the network weight parameters scales like p where p is the width and L is
the depth of the network. In our setting, we do not make any assumption on the network’s
Lipschitz property with respect to the weight parameters. Instead we use Chen et al. (2022,
Lemma 5.3) to bound the network covering number, and further bound the variance in
nonparametric estimation. Note that our Lipschitz assumption in Assumption 3 is with
respect to the input, and therefore can be easily validated for the linear encoder/decoder.

We next compare the difference between the network architectures in Theorem 3 and
Theorem 4. Denote the network architecture in Theorem 3 and Theorem 4 by F; and Fo,
respectively. The architecture JF; has the depth and width scaling properly with respect
to each other, and an upper bound on all weight parameters and a cardinality constraint.
The cardinality constraint is nonconvex and therefore not practical for training this neural
network. The architecture F5 has more flexibility in the choice of depth and width as long
as (13) is satisfied. The cardinality constraint is removed for practical concerns. When we
set L = O(logn),p = O(n“*dT)‘(ix log™'n) in F3, both networks have a depth of O(logn),
while the width of 77 is the square of that of F», i.e., F1 is wider than F5. The comparison
between F; and F5 is summarized in Table 2.

I Fiin (2) \ F2 in (3)
General comparison
Network architecture Fixed L and p depending | One has the flexibility to choose L and p
with a given n onn as long as (13) depending on n is satisfied
Constraints on cardinality Yes No

Constraints on the
Yes No

magnitude of weight parameters

Py d
Set L = O(logn),p = O(n““ﬁx log™' n) in F»

Depth L O(logn) O(logn)
__dx dy __dx dy
Width p O | dy, 2Fdx otdy O | dy, 2dy | TFsdy

Table 2: Comparison of the network architectures in Theorem 3 and 4.

15
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In the rest of this paper, we focus on the network architecture in Theorem 4 and discuss
its applications in various scenarios. Theorem 3 can also be applied in each case with a
similar upper bound.

4. Generalization error with basis encoders and decoders

In this section, we discuss the application of Theorem 4 when the encoder is chosen to be
a deterministic basis encoder with a given orthonormal basis of the Hilbert space. Popular
choices of orthonormal bases include orthogonal polynomials (e.g., Legendre polynomials
(Szeg, 1939; Chkifa et al., 2015; Cohen and DeVore, 2015)) and trigonometric functions
(Orszag, 1971; Chen and Shen, 1998; Li et al., 2016).

4.1 Basis encoders and decoders

Let H be a separable Hilbert space equipped with an inner product (-,-)%, and {¢p}3,
be an orthonormal basis of H such that (¢, pr,)x = 0 whenever k1 # ko and ||¢x||y =
1 for any k. For any u € H, we have

M8

(U, Br) H P (15)

u =

B
Il

1
For a fixed positive integer d representing the encoding dimension, we define the encoder of
H as

Baa(u) = [(u, ¢1)n, oy (u,da)2) " € RY, for any u € H, (16)
which gives rise to the coefficients associated with a fixed set of d basis functions in the
decomposition (15). The decoder Dy q is defined as

d

DH7d(a) = Zakgbk, for any a € R, (17)
k=1

The basis encoder and decoder naturally satisfy the Lipchitz property with a Lipschitz
constant 1 (see a proof of Lemma 6 in Appendix B).

Lemma 6 The encoder Ey q and decoder Dy q defined in (16) and (17) satisfy

| Ba,a(u) — By a(u)ll2 < llu —ully, (18)
|Dw.a(a) — Dy a(a)|ln = [la —allz, (19)

for any u,u € H and a,a € RY.

Remark 7 All encoders in the form of (16) are linear operators and therefore satisfy As-
sumption 5 as long as Assumption 4(ii) holds.

16
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4.2 Generalization error with basis encoders

We next consider the generalization error when the elements in & and ) are encoded by
basis encoders with the encoding dimension dy and dy, respectively. Substituting the
Lipschitz constants of all encoders and decoders by 1 in Theorem 4, we obtain the following
corollary:

Corollary 8 In Setting 1, suppose Assumption 1 — 4 hold. Let I'nn be the minimizer of
(6) with the network architecture F(dy, L,p, M) in (3) with

L=0(L), p=0(p),M = \/dyRy, (20)

where Z,ﬁ> 0 are positive integers satisfying (13). Then we have

EsEu~y| D} o Iy 0 E% (u) — ¥(u)]3,
dtdy

2
< Cy(6” + RY)dy, “* n” 279x log? n + 16 LG EsEyny [T} 4, (u) — ull%
+ 2Es B 7 [T g, (w) — w3, (21)

where Cy is a constant depending on dx,Rx, Ry, Ly.

Popular choices of orthonormal bases are orthogonal polynomials and trigonometric
functions. We next provide an upper bound on the generalization error when Legendre
polynomials or trigonometric functions are used for encoding and decoding. In the rest of
this section, we assume X = Y = L?([—1,1]”) with the inner product

(ui,ug) = /[1,1]D uy (x)ug(x)dx, (22)

where ug(x) denotes the complex conjugate of ug(x).

4.3 Legendre polynomials

On the interval [—1, 1], one-dimensional Legendre polynomials {ﬁk}iozo are defined recur-
sively as

Py(z)

Py(z)
Py () = % [(2/@4— 1)aPy(z) — kPy_1(z)| .

I
—_

)

z,

The Legendre polynomials satisfy

1
~ ~ 2
P Pl(x)dr = ——§
/_1 () Py(x)dx 2% + 1 kl»

17
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where dy; is the Kronecker delta which equals to 1 if K = [ and equals to 0 otherwise. We
define the normalized Legendre polynomials as

Pu(e) = /2B ().

In the Hilbert space L?([—1,1]P), the D-variate normalized Legendre polynomials are de-

fined as
D
ok =1 P, (),
j=1
where k = [k; --- kp]'. The orthonormal basis of Legendre polynomials in L2([—1,1]P) is
{qbﬁ}keNg"

The encoder with Legendre polynomials can be naturally defined as the expansion co-
efficients associated with low-order polynomials. Specifically, when X = L2([0,1]”), we fix
a positive integer ry representing the highest degree of the polynomials in each dimension
and consider the following set of low-order polynomials

Y = {gy ¢ [|klloo < 7}

The encoder Ex and decoder Dy can be defined according to (16) and (17) using the basis
functions in ®“"*. In the space Y = L%([0,1]”), the encoder Fy and decoder Dy can be
defined similarly with basis functions in ®*"¥ for some positive integer 7.

When Legendre polynomials are used for encoding, the encoding error is guaranteed for
regular functions, such as Holder functions.

Definition 9 (Holder space) Let k > 0 be an integer and 0 < o < 1. A function f :
[~1,1]P — R belongs to the Hélder space C**([—1,1]P) if

0% f (x1) — 9% (x2)]

Ifllcre = max  sup |O*f(x)| +max  sup < o
k< xe[-1,11P k= x; #x5€[~1,1]P 31 — x2][3 ’
where OXf = ol

k1 g ko kp -+
Oz, 0xy°---0x

For a given k and o, any functions in C**([—1,1]”) has continuous partial derivatives
up to order k. In particular, C%'([—1,1]”) consists of all Lipschitz functions defined on
[—1,1]P.

We assume that the probability measure v in A and the pushforward measure ¥4 in
Y are supported on subsets of the Holder space.

18
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Assumption 6 (Holder input and output) Let X = Y = L?([-1,1]P) with the inner
product (22). For some integer k > 0 and 0 < « < 1, the support of the probability measure
v and the pushforward measure ¥y satisfies

Qx C CPo(1,1]P), Qy  Cha((=1,17).
There exist Cy x > 0 and Cyy > 0 such that, for any u € Qx and v € )y
lullera < Crx,  [vlera < Cry.

When Legendre polynomials are used to encode Holder functions, the generalization
error for the operator is given as below:

Corollary 10 In Setting 1, suppose Assumption 1-6 hold. Denote s = k 4+ a. Fix positive

1/D
X

integers dx and dy such that d and d;,/D are integers. Suppose the encoders and decoders

- - - - Ldy/"” Ldy?
are chosen as in (16) and (17) with basis functions % and @Y in X and ), respec-
tively. Let I'nn be the minimizer of (6) or (8) with the network architecture F(dy, L,p, M)
in (3) where L,p, M are set as in (20). We have

EsEy~r|| D% o Tnn 0 E% (u) — ¥ (u)|3
4+dy

__2 _2s _2s
<Cy(6® + Ry)dy, " n” ?Fix log? n + C5L3d P + Cedy, P .

where Cy depends on dx, Rx, Ry, Ly, and Cs,Cs depend on D,Cy x,Cy.y, Ly.

Corollary 10 is proved in Section 7.4. In Corollary 10, the last two terms represent the
projection errors in X and ), respectively. When D is large, both terms decay slowly as dy
and dy increase. These two error terms remain the same if we choose the encoders given
by finite element bases in traditional numerical PDE methods. For example, we consider
learning a PDE solver where the operator ¥ represents a map from the initial condition to
the PDE solution at a certain time. Assumption 6 assumes that the initial condition and
the PDE solution are Holder functions. Suppose we discretize the domain and represent
the solution by finite element basis such that the diameter of all finite elements is no larger
than h for some 0 < h < 1. Let W*2([—1,1]”) denote the Sobolev space. We say a set
of basis functions are k-order if they are in W¥*?2([—1,1]P). If the finite element method
with k—th order basis functions is used to approximate the PDE solution, under appropriate
assumptions and for any positive integer k, the squared approximation error is O(h%*) (Ern
and Guermond, 2004, Corollary 1.109). In this case, the total number of basis functions
is O(h=P). Taking such a finite element approximation as our encoder for Qy, we have

_2k
dy = O(h™P) and the resulting squared projection error is of O(d,?). In particular,
if sparse grids (Bungartz and Griebel, 2004) are used to construct basis functions, the
approximation errors for the encoder and decoder can be further reduced.
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In the setting of Corollary 10, we only assume the global smoothness of input and output
functions. The global approximation encoder by Legendre polynomials (or trigonometric
functions in the following subsection) leads to a slow rate of convergence: In Corollary
10, if we choose dy = (log n)% and when n > exp (max {100, (% + %)6}>, the squared
generalization error decays in the order of (log n)_% (see a derivation in Appendix A).

However, in practice, when we solve PDEs, the initial conditions and PDE solutions
often exhibit low-dimensional structures. For example, the initial conditions and PDE
solutions often lie on a low-dimensional subspace or manifold, or the solver itself has low
complexity (see Section 6 and Haasdonk (2017); Rozza (2014) for details). Therefore, one
can use a few bases (small dy and dy) to achieve a small projection error, leading to a fast
rate of convergence in the generalization error.

Although using Legendre bases as encoders and decoders requires a uniform sampling of
functions, when nonuniform samples are given, one can always use interpolations to generate
uniform data and then compute the Legendre coefficients. With this strategy, the whole

process is still discretization invariant.

4.4 Trigonometric functions

Trigonometric functions and the Fourier transform have been widely used in various ap-
plications where the computation is converted from the spacial domain to the frequency
domain. Let {T}(z)}72, be one-dimensional trigonometric functions defined on [—1,1] such
that

T =1/2,

Ty, = sin(kmx) for k > 1, (23)

Top41 = cos(kmx) for k> 1.

In the Hilbert space L?([—1,1]7), the trigonometric basis is given as {¢7x }ienp Wwith
D
on (x) = [[ T, (). (24)
j=1

When X = L%([0, 1]D ), we fix a positive integer 7y and define the set of low-frequency basis
O = (g [[klloo < 7l

We set the encoder Ex and decoder Dy in X according to (16) and (17) using the basis
functions in ®1-"*. Similarly, we set the encoder Ey and decoder Dy in ) using the basis
functions in ®*"¥ for some positive integer ry.

Let P be the set of periodic functions on [—1,1]”. We assume that the input and output
functions are periodic Holder functions.
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Assumption 7 Let X =Y = L*([~1,1]7) with the inner product (22). For some integer
k>0 and 0 < s <1, the support of the probability measure v and the pushforward measure
Uy satisfies

Qr c PNnCh(-1,11P), QycPncke(-1,1]P).

There exist Cyp.x > 0 and Cypy > 0 such that for any u € Qx and v € Qy
H’U‘H(Zkvo‘ < C'Hp,.)(y ||chk,a < C’HPJ].

When trigonometric functions are used to encode periodic Holder functions, the gener-

alization error for the operator is given as below:

Corollary 11 Consider Setting 1. Suppose Assumption 1-5 and 7 hold. Denote s = k+ a.

1/D
X

Fix positive integers dxy and dy such that d and d;/D are integers. Suppose the encoders

and decoders are chosen as in (16) and (17) with basis functions T and T for X
and Y, respectively. Let I'nn be the minimizer of (6) or (8) with the network architecture
F(dy,L,p, M) in (3) where L,p, M are set as in (20). We have

EsEy~r|| D% o Tnn 0 E% (u) — ¥ (u)|3
4+dy 2s

__2 _2s _
<Cy(6® + R3)dy, " n” ?7ix log? n + CrLyd P + Csdy, .

where Cy depends on dx, Rx, Ry, Ly, and C7,Cy depend on D,Cyp x,Cypy, L.

Corollary 11 is proved in Section 7.5. When using trigonometric functions as encoders
and decoders, one can apply Fourier transform when uniform samplings are given and non-
uniform Fourier transform when the given samples are non-uniform. The overall framework
is discretization invariant. The generalization error with trigonometric basis encoder in
Corollary 11 is similar to the error with Legendre polynomials in Corollary 10. If only the
global smoothness of input and output functions is assumed, the generalization error decays
at a low rate. A faster rate can be achieved if we exploit the low-dimensional structures of

the input and output functions.

5. Generalization error for PCA encoders and decoders

When the given data are concentrated near a low-dimensional subspace, PCA is an effective
tool for dimension reduction. In this section, we consider the PCA encoder, where the
orthonormal basis is estimated from the training data.

5.1 PCA encoders and decoders

Let p be a probability measure on a separable Hilbert space H. Define the covariance

operator with respect to p as

Gy =Eunplu® ], (25)

21



Liu, YaANG, CHEN, ZHAO AND LiAaO

where ® denotes the outer product (f ® g)(h) = (g, h)nf for any f,g,h € H, and (-, )y
denotes the inner product in H. Let {\;}32, be the eigenvalues of GG, in a non-increasing
order, and ¢ be the eigenfunction associated with A\;x. For any u € H, we have

Z u ¢>g Hd’g
7=1

For a fixed positive integer d, the eigenfunctions {¢k}z:1 associated with the top d
eigenvalues are called the first d principal components. Fixing d, we define the encoder
operator Fy q:H — R? as

Eya(u) = [(u, 1), (u, da), ..., (u, ¢a)] ", for any u € H, (26)

which gives rise to the coefficients of u associated with the first d principal components.
The decoder Dy 4 : R? — H is defined as

d
Dy q(a Zajqﬁj, for any a = [ay, ...,aq] " € R%. (27)
Jj=1

Given n i.i.d samples {u;}}; from p, the empirical covariance operator is
1 n
i

Let {A\}}72, be the eigenvalues of G}, in a non-increasing order, and ¢}, be the eigenfunction
associated with A\7. We define the emplrlcal encoder E3, ,: H — R? as

By () = [, 60), (w, 88), o, (u, ¢)] " for any u € H. (29)
The empirical decoder is

D3y q4(a Z a;j¢j for any a € RY. (30)
J=1

The PCA encoders and decoders Eyy g, Dy 4, B3, 4, DY, 4 are Lipchitz operators with a
Lipchitz constant 1.

Lemma 12 Let H be a separable Hilbert space and p be a probability measure on H. For
any integer d > 0, let Fy 4 and Dy q be the PCA encoder and decoder and EY, ; and D}, ,

be their empirical counterparts. Then we have

13 ,a(w) = By a(@)l2 < llu =iy, for anyu,ueH,
1D%,4(2) = D, 4(@) |3 = |la —all2, for any a,a € RY.

Lemma 12 can be proved in the same way as Lemma 6. The proof is omitted here.
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5.2 Generalization error with PCA encoders and decoders

In this subsection, we choose PCA encoders and decoders for X and ). For the X space,

we define the covariance operator and its empirical counterpart as
1 n
Gy =Eyyu®u and G: = EZuz & Uu;.
i=1

Let {gb%k}z’; , and {qbﬁ; k}ii | be the first dy principle components of G, and G, respectively.
The PCA encoder and its empirical counterpart are given as

dx
Ex(u) = [(t, ¢y1), (U $y,2), oors (0, 702)] 5 Dal@) =D ajoy (31)
=1
T ]dX
B (u) = [(u, @2 1), (u, @), o (1,00 4,)] 5 Div(@) = a;ol (32)
j=1

for any u € X and a € R,

For the ) space, the ideal covariance operator in the noiseless case is defined based on
the pushforward measure W4~. In the noisy case, the samples {v;}!" ; are random copies
of U(u) + €. Denote the probability measure of v by (. The ideal and empirical covariance
operators are defined as

1 n
Guyy =Epvyw®@w  and  GY = EZUZ-@W.
i=1

Notice that GZ‘ is the empirical counterpart of G, which is different from Gy, in the noisy
case.

Let {qﬁ\p#%k};@l and {¢Zk}Zi1 be the first dy principle components of Gy, and G7,
respectively. We choose the PCA encoder:

dy
Ey(w) = [(w, pw 4y,1), (0, Pwyy,2), s <w7¢\11#’y,dy>]—r7 Dx(a) = Zaj(ﬁlll#'y,jv (33)
=

T dy
B(w) = [(w,621), (1, 6 o), s (0, 080y} |+ D) = a0 (34)
j=1

for any w € Y and a € R% .

The following theorem gives a bound on the generalization error of operator estimation
with PCA encoders:

Theorem 13 In Setting 1, suppose Assumption 1-2 and 4 hold. Consider the PCA en-
coders and decoders defined in (31)-(34). Let {\;}32, be the eigenvalues of the covariance
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operator G\p#7 in nonincreasing order. Let I'nn be the minimizer of (6) with the network
architecture F(dy, L,p, M) in (3), where L,p, M are set as in (20). We have

EsEy~r|| D% o Tnn 0 E%(u) — ¥ (u)|3
4+dy

2
<C4(F + R3)d3 ™ n” 7% log?n + 8 (4R§(L?I, dx + (Ry + 5)2\/@) n"3

2
+ 1652 (M:’Ad) (Ry + )2 + 2052
v Y+1

+ 16 LY Eumn [Tty (1) = w3 + 16B i [Ty ay, (w) — w3, (35)
where Cy is a constant depending on dx,Rx, Ry, Ly.

Theorem 13 is proved in Section 7.6. Since PCA is discretization invariant, our framework
with PCA encoders and decoders enjoys the same desirable property. PCA is effective
when the input and output samples are concentrated near low-dimensional subspaces. In
this case, an orthonormal basis of the subspace is estimated from the samples. Since the
PCA encoder and decoder are data-driven, we expect the corresponding projection errors
are smaller than those by Legendre polynomials or trigonometric functions.

In the generalization error in Theorem 13, the error 1652 (ﬁf (Ry+5)*+205°
does not decay as n increases. This is because PCA extracts the principal components from
noisy data but does not denoise the data set without additional assumptions on noise. If
the noise does not perturb the space spanned by the first dy principal eigenfunctions of

Gy, the constant terms can be dropped as the following corollary.

Corollary 14 Under the conditions of Theorem 13, if the eigenspace spanned by the first
dy principal eigenfunctions of G, coincides with that of Gy ,~, then we have

EsEu~y | D} o Iy 0 E% (u) — W(u)]3,

Atdy )
<C4(F + R3)dZ ™ n” 7% log?n + 8 <4R§(L?I,\/d;( 4 (Ry + 5)2\/dy> n"3
+ 16 LG Eyrr | Ty (1) = ulf3 + 16w [Ty ay (w) — w]f3,. (36)

Corollary 14 is proved in Section 7.7.

6. Exploit additional low-dimensional structures

Section 4 and Section 5 are suitable for the case where the input and output samples
are concentrated near a low-dimensional subspace. While in practice, the low-dimensional
subspace is not a priori known. In order to capture such a subspace, we need to choose a
large encoding dimension so that the low-dimensional subspace is enclosed by the encoded
space, which guarantees a small projection error. However, the network estimation error
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(see Section 3.2 for the definition) has an exponential dependence on dy. The error decays
slowly when dy is large.

Additionally, the given data may be located on a low-dimensional manifold enclosed by
the encoded space, or the operator ¥ may have low complexity. In this section, we will
exploit such additional low-dimensional structures. We will show that, even though dy
and dy are chosen to be large in order to guarantee small projection errors, the exponent
in the network estimation error only depends on the intrinsic dimension of the additional
low-dimensional structures of data, instead of dx. Specifically, we consider two scenarios :
(1) when the collection of encoded vectors Ex(£2x) is on a low-dimensional manifold and
(2) when the operator ¥ only depends on a few directions in the encoded space.

6.1 When encoded vectors lie on a low-dimensional manifold

We first consider the case when the given data exhibit a nonlinear low-dimensional structure:

For a given encoder Ey : X — R% | the encoded vectors { Ex (u) : u is randomly sampled from ~}
lie on a dg-dimensional manifold with dy < dy. This scenario is observed in many appli-
cations. For example, the solutions of most PDEs are in an infinite-dimensional function
space. After uniform discretization, the solutions are encoded to vectors in a very high di-
mensional space. For many PDEs, it is commonly observed that the solutions actually lie on

a low-dimensional manifold enclosed by the discretized high-dimensional space. Therefore

the solution manifold can be well-approximated using much fewer bases than those used

in the discretization. This observation leads to the success of the reduced basis method
(Haasdonk, 2017; Rozza, 2014). Another concrete example is described as follows:

Example 1 Let X = L*([-1,1]) and do,dx be positive integers such that dy < dx. Let
{Ti}re, be the trigonometric functions defined in (23) and {gk}Zidﬁ_l be some real valued
functions. Suppose the probability measure v is supported on

dx

Qy = {u Tu = Zaka with ap € R for k=1,...,dy, and ar, = gr(ai,...,aq,) fork:do—i—l,...,d;(}.
k=1

The support set Qx has an intrinsic dimension dg. If we choose the basis encoder Ex :

X — R using the trigonometric functions {Tk}iﬁl, then the encoded vectors {Ex(u) :

u is randomly sampled fromy} lie on a do-dimensional manifold embedded in R . Figure

1 shows this manifold when dy = 3,dy = 2 and g3 = a% + as.
This nonlinear low-dimensional structure of data can be described as follows:

Assumption 8 Let dy,dy be positive integers such that dy < dy. In Setting 1, there exists

an encoder Ey : X — R such that the encoded vectors { Ex(u) : u is randomly sampled from ~}
is on a dy-dimensional compact smooth Riemannian manifold M isometrically embedded in
R9% . The reach of M (Federer, 1959; Niyogi et al., 2008) is T > 0.
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Under Assumption 8 and Setting 1, the
output W(u) is perturbed by noise, while

the input u is clean and its encoded vector 2
is located on M. Such a setting is com- . 1
mon in practice when a series of experi- o
ments is conducted to simulate a scientific .

phenomenon. In experiments, one designs

the inputs and takes measurements of the

outputs. Usually, the inputs are generated
according to some physical laws that lead

to low-dimensional structures. Due to the Figure 1: An illustration of Example 1 with

limitations of sensors and equipment, the dx =3,dy = 2 and g5 = a + as.
measured outputs are perturbed by noise.

Approximation and statistical estimation theories of deep neural networks for functions
on a low-dimensional manifold have been studied in Chen et al. (2019, 2022, 2020); Liu
et al. (2021); Shen et al. (2020); Jiao et al. (2021); Cloninger and Klock (2020); Shaham
et al. (2018); Schmidt-Hieber (2019); Du et al. (2021); Nakada and Imaizumi (2020b). In
this subsection, we show that deep neural networks can automatically adapt to nonlinear
low-dimensional structures of data, and give rise to a sample complexity depending on the

intrinsic dimension dy. The following theorem gives a generalization error in this scenario.
Theorem 15 In Setting 1, suppose Assumption 1-5 and 8 hold, and the encoder Ex in
Assumption 8 is given. Let I'nny be the minimizer of (6) with the network architecture
F(dy,L,p, M) in (3) with
L =0(L), p=0(dxp),M = /dyLgy Ry, (37)

where z,ﬁ > 0 are positive integers satisfying

T ~ i ot

Lp = |dy,""nit2o | . (38)
Then we have

EsEyry|| D3 o Ty 0 B (u) — (w3

4+dg 2
< C5(6° 4 RY)dy, ™ din” 2% logn
+ C3ESEunn [y (0) = ]|} 4 2ESEwmw 5|15 4, (w) — ][5, (39)

where C5 dpends on do,logd,—\g,RX,Ry,LE;(,LE;,LDX,LDSL),Lq,,T, the surface area of M,
and C3 = 16L%), L%, L.
v By
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Theorem 15 is proved in Section 7.8. The convergence rate in Theorem 15 has an exponential
dependence on dy, instead of dy. Theorem 15 shows that when the encoded vectors are
located on a low-dimensional manifold, deep neural networks are adaptive to such nonlinear
geometric structures of data.

6.2 When the operator ¥ has low complexity

In our framework, learning ¥ is converted to learning the transformation I : R%* — R,
as defined in (5). The second scenario we consider in this subsection is that, even though
the u;’s and v;’s are in infinite-dimensional spaces, the operator ¥ has low complexity: its
corresponding transformation I' can be approximated by some low-dimensional functions
that only depend on few directions in R%. For example, consider solving a linear PDE
with constant coefficients by the Fourier spectral method. In this case, the operator ¥ is
the PDE solver that maps initial conditions to solutions at certain time. By taking the
Fourier transform on both sides of the PDE, solving the PDEs is converted to solving a
series of independent ODESs, each of which controls the evolution of a Fourier coeflicient
of the solution (Shen et al., 2011, Chapter 2). The operator ¥ can be fully characterized
by a system of one-dimensional ODEs. We next adapt this setting to our framework in
order to learn W. We use trigonometric functions as our encoders and decoders: the initial
conditions and solutions are approximated by the first dxy = dy terms of their Fourier
series expansion. Then learning ¥ reduces to learning dy one-dimensional functions, each of
which corresponds to an ODE of a Fourier coefficient, instead of learning dy dx-dimensional
functions.

In this subsection, we show that we can get a faster rate by exploiting the low complexity

of ¥. We first make an assumption on W:

Assumption 9 Let 0 < dy < dx be integers. Assume there exvist Ex, Dy, Ey, Dy such
that for any u € Qx, we have

Hyay, 0o ¥(u) = Dy ogo Ex(u) (40)

with g : R¥ — R in the form:
T T "
ga) = |0(a) - g, (V)| . (41)

for some unknown matriz Vi, € R¥*% and some unknown real valued function gj, : R% —
R where k =1, ...,dy.

In statistics, the functions gx’s in Assumption 9 are known as single-index models for
do = 1, and are known as multi-index models for dy > 1. For any given u ~ -, we decompose
U(u) into two parts: the first part is its projection to the set of encoded vectors Ey(€y);
the second part is the rest orthogonal to the first part. Assumption 9 assumes that the
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operator mapping u to the first part follows a multi-index model. When dy is large enough,
the second part has a small magnitude and is included in the projection error. In the

following example, we give a simple illustration when the second part vanishes.

Example 2 Let X = L*([-1,1]), Qx C X be a compact set in PN X and 0 < dy < dx
be integers. Let {Tj}r-, be trigonometric functions defined in (23). Any u € Qx can

kL
be written as w = Y, apTy for some ai’s. Denote a, = |a; --- adx} . Suppose the

operator we want to learn has the following form

dy
U(u) = gr(Vy )Ty, (42)

k=1
with Vj, € Réx>do gnd gk R% — R fork=1,....dy. We set Ex,Dx as the basis encoder
and decoder using the basis functions {Tk}iil, and By, Dy as encoder and decoder derived
using basis {Tk}iil. In this example, Iy 4, 0 W(u) = ¥(u) for any u ~ . Then learning ¥
reduces to learning the gi’s and the Vi ’s. An illustration of the estimator is shown in Figure
2. In neural networks, the V|'s can be realized by a single layer. Therefore, our magor task
is to learn good approximations of the g;s. Note that each gy, is a do-dimensional function.
By exploiting such low complexity of the operator, we can convert the learning task from

learning dy dx-dimensional functions to learning dy do-dimensional functions.

Dy

Gay

Figure 2: An illustration of Example 2, where the g;’s represent network approximations
of the gx’s in (42).

With Assumption 9, the following theorem gives a faster rate on the generalization error:

Theorem 16 In Setting 1, suppose Assumption 1-5 and 9 hold. Assume that the encoders
and decoders Ex, Dy, Ey, Dy in Assumption 9 are given. Let I'nn be the minimizer of (6)
with the network architecture F(dy,L,p, M) in (3), where

L=0(L), p=0(p),M = \/dyLgyRy (43)
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and L,p > 0 are integers and satisfy (38).
We have

EsEunny|| D3 o Tn 0 Ef(u) — ¥(u)[f3
e 2 _A+dg
<Cs(c2 + R%;)dff ° max {n 2+do  dym  AH2do } log? n

+ C3ESEymn [Ty (0) = ull% + 2ESEupnw [Ty gy (w) — w][3, (44)
where Cg depends on do,logd)(,Rgg,Ry,LE;t(,LE;,LD;L(,LD;,L\p, and C3 = 16L2 SL}LQEgL?I,.

Theorem 16 is proved in Section 7.9. In Assumption 9, each V} is a linear transformation
that can be realized by a singly layer. In our network construction, the first layer is used
to learn these transformations and the rest is used to learn the functions gg’s.

In Assumption 9, the function g is a vector-valued function whose elements are multi-
index models. Our result in Theorem 16 can be easily extended to the case when g is a
composition of several multi-index models. Specifically, for some m > 0, consider g in the
following form

g€ =8nOogmn_10--0g2081, (45)

where g, : R%-1 — R% is in the form of
T T T
gr(a) = [Qk,l(Vma) gdk(Vk,dk_la)} , (46)

for some unknown matrix Vj, ; € R%k-1 ng, unknown function gy, ; : R% — R and dg, Jk >0
being integers. Here dj, is the dimension of g, and c?k is the dimension of V}, ja. Replace g
in Assumption 9 by the one defined above. The upper bound in Theorem 16 also holds up
to a factor depending on maxy d; and maxy c?k

7. Proof of main results

In this section, we give proofs to our main theorems and corollaries.

7.1 Preliminaries

In this section, we define several quantities that will be used in the proof. We first define
two types of covering number of function classes. The first type is independent of data and
will be used to prove Theorem 3.

Definition 17 (Cover) Let F be a class of functions. A set of functions S is a 0-cover of
F with respect to a norm || - || if for any f € F, one has

inf || f— f*| <o.
it [1f =] <
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Definition 18 (Covering number, Definition 2.1.5 of (Van Der Vaart et al., 1996))

Let F be a class of functions. For any § > 0, the covering number of F is defined as
NG, F, || -1|) = min{|Sf| : Sy is a d-cover of F},
where |Sy| denotes the cardinality of Sy.

Definition 17 and 18 depend on the norm || - ||. In the following, we choose || - || as a
sample dependent norm and define the so-called uniform covering number. We first define
the cover with respect to samples:

Definition 19 (Cover with respect to samples) Let F be a class of functions from R%
to R%. Given a set of samples X = {x;}7, C R4, for any § > 0, a function set S¢(X) is
a §-cover of F' with respect to X if for any f € F, there exists [* € Sp(X) such that

| f(xx) — [ (%K)|[oo <6, VI<k<m.

Definition 19 is a special case of Definition 17 in which the norm || - || is chosen as the ¢*°
norm of the collection of its argument’s values over samples X. Based on Definition 19, we

define the uniform covering number as follows:

Definition 20 (Uniform covering number, Section 10.2 of Anthony and Bartlett
Let F be a class of functions from R% to R. For any set of samples X = {xp}ir, C R?,
denote

]:‘X = {(f(xl)a ,f(Xm>) 1€ f} :

For any 6 > 0, the uniform covering number of F with m samples is defined as

N, F,m) = Xcég’?g({l:msr?(?)ﬂ‘sf()fﬂ : S§(X) is a 6-cover of F with respect to X}

(47)

This covering number is used to prove Theorem 4.

7.2 Proof of Theorem 3

To prove Theorem 3, we first decompose the squared L? error EsEuNVHD’J@ oI'nvo E%(u) —
\I/(u)Hg, into a network estimation error and a projection error. The network estimation
error can be further decomposed into a bias term and a variance term. The bias term
heavily depends on the approximation error of the network class (2). The variance term is
upper bounded in terms of the covering number of the network class.

Proof of Theorem 3. We first decompose the squared L? error as
2
EsEumn [ D% 0 T 0 B (1) — B(w)][3)
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<IBSEynr ||| DY 0 T 0 B (u) = D3 0 B 0 W(w) 3] + 2EsEuny || D3 0 B30 W(w) — w(w)]3] -

I II
(48)

Here I is the network estimation error in the ) space, Il is the empirical projection error,
which can be rewritten as

2
1T = 2B 5By e [HH&C@ (w) — wHy] . (49)

In the remaining of this subsection, we derive an upper bound of I. Note that I can be

bounded as
I =2BsE,e, [[|D% 0 Trx 0 B3 () = D o B 0 W(w)|3]
<213 BBy [HFNN o B (u) — B o U(u)| ] (50)
If the training samples in S; are fixed, we have the following conditioned on &;:

Es,Bunry | [T 0 B3 (w) = B30 W(w) 3]

2n
1
=2Es, - i:;rl [Ty 0 Bl (ui) — B3 o ‘I’(M)H;]
T,

2n
2
+ Es,Eunny [HPNNOEQ( ) — E3 oW (u)|; } —Es, [n Z |Txn © B (u;) — E% o ¥(u; H2
i=n-+1

To
(51)

In the decomposition of (51), the term T; consists of the bias of using neural network to
approximate the transformation I' and the projection error of II% , ~in the X" space. The
term Ty captures the variance. We next derive bounds for Ty and T respectively.

Upper bound of T;. The term T, is the expected mean squared error of the learned
transformation I'yy with respect to So. We will derive an upper bound using the network
approximation error and network architecture’s covering number. The network approxi-
mation error is the bias. We use network architecture’s covering number to bound the
stochastic error.

Define the transformation I'; : Rix — Ry

= EyoWo Dy, (52)

which maps the encoded vector E'y(u) in X' to the encoded vector E%(v) in ). The trans-
formation I} is the target transformation to be estimated by I'yn. It is straightforward to
show that I} is a Lipschitz transformation (see a proof of Lemma 21 in Appendix C).
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Lemma 21 Assume Assumption 2 and 3. I'Yj is Lipschitz with a Lipschitz constant LE;LD;; Ly.
Denote
€ = By (v;) — B} (¥(u;)). (53)
According to Assumption 3 and Assumption 4(iii)—(iv), we have
Ele;] = 0, and ||€i]|oo < 0.
We decompose T as
n i=n+1

B 2n

1

=3 |Tn o B (us) — B3 o W(uy) — € + &)
ni:n-‘rl

2n
1
Ty =2Eg, Z [T o Bl (u;) — B3y o "I’(ul)’@]

=2Es,

2n
1
=2Es, - Z,Zn_:H TN © B (u;) — B3 o U(u;) — GzH;]

2n 2n
1 1
-+ 4E52 [n E <FNN o E?(('LLZ) — ESL; ] \Il(uz) — €4, €i> + 2]E82 ﬁ E HG’LH%]

2n

1

=2Eg, [n E |Txn 0 B (ui) — ESL/(”Z)HEI
i=n+1

1 2n 1 2n
+4Es, [n > (Txno ER (), €) | — 2Es, [n > Hez'H%]
i=n+1 i=n+1
1 2n 2
=2 inf — To E%(u;) — E%(v;
s [Fg%mi;\\ i) y<vz>H2]
1 2n 1 2n
ris, |13 o Byt -2 |1 3 e
i=n-+1 1=n—+1
by the definition of I'yy in (6)
1 2n 1 2n
<2 inf Eg, |- T o E%(u;) — E%(w)|?| +4Es, |~ Ty © E%(u;), €
- FEHJ{—NN Sz TLZ:%;dH © X(uz) y(vl)HQ + S [nlzzn;rl< NN © X(UZ)7€Z>]
1 2n
—2Es, [n Z ||€z||%]
1=n-+1
1 2n
(338, B | 3 (I Bhu) - Byo o) al ||ezu2]]
1 2n
+4Es, [ > (Pano EX(wi), e)
ni:n+1
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2n
1
:2'fEN[F E%(u) — E% o 2} 4Es, |~ 3 (Tnwo ER(u), e
FEH‘}:NN u H ° X<u) A <u)H2 + S2 ni:n+1< NN © X(u>€z>

(54)

In (54), the first term is the neural network approximation error, and the second term is
the stochastic error from noise. To derive an upper bound of the first term, we use the
following lemma which shows that for any function f in the Sobolev space W**° when the
network architecture is properly set, FNN can approximate f with arbitrary accuracy:

Lemma 22 (Theorem 1 of (Yarotsky, 2017)) Let k > 0 be a positive integer . There
exists an FNN architecture Fxn(1, L, p, K, k, M) capable of approximating any function in
Wkioo ([—B,B]d), i.e., for any given € € (0,1) and if f € Wk ([—B,B]d), the network
architecture gives rise to a function f satisfying

o], <

The hyperparameters in FNn are chosen as
1 _d _d 1
L=0 <log€>, p:O(s k), K=0 (5 kloge), k=max{l,B,R}, M = R.
The constant hidden in O(-) depends on k,«a,d, B, R.

Remark 23 Lemma 22 is a variant of (Yarotsky, 2017, Theorem 1). In (Yarotsky, 2017,
Theorem 1), it is required that the input is in [0,1]P. For any input in [~B, B]P, one can
always rescale and shift the input to [0,1] and apply (Yarotsky, 2017, Theorem 1). Such
a transformation only affect the Sobolev norm of the target function and the upper bound
of weight parameters of Fxn. The statement of Lemma 22 has already incorporated such a
transformation.

Since I'}j is Lipschitz by Lemma 21, according to Lemma 22 with & = 1, for any 1 > 0,
there is a network architecture Fxn(dy, L, p, K, k, M), such that for any I'} defined in (52),
there exists a I'}; € Fnn(dy, L, p, K, k, M) with

L =0(oge1), p=0 (s;dX) L K=0 (s;dX log51> :
K = max {1, \/@LE;R)), \/ d)(LE;Rx,LESL}LD;L(L\p} , M = \/dyLES}Ry-

We bound the first term in (54) as

I T4

S €1.
oo

Such a network architecture has
(55)

3 e [P0 25 0]
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<E,., D Iy

()~ B0 vl

~ 2
<2Em[ 4o By (u) = Tao B (u) } + 2By [T 0 B3 (w) = B3 0 (w)|[3]
<2dyed + 2By [T 0 B (w) — B 0 (w)3]
=2dye? + 2B, [HE;oxImD}oEj{,( — B o W(u M by the definition of T'y in (52)
<2dye} + 2Ly Ly sy | ID% © E(w) = ull% |
2
=2dye} + 2Ly L3 Eyny MHX i () — | X}. (56)

An upper bound of the second term in (54) is provided by the following lemma (see a
proof in Appendix D):

Lemma 24 Under the conditions of Theorem 3, for any § € (0,1), we have

2n
1
Es, [n > <FNN°E7}5(U¢),€@'>]
1=n-+1

1 N 67~F s || 7 |loo 2
<2/2dyo <\/]E32HFNNOE%(UZ')—FgOEQ(ui)”%—i-\/dy(S) \/Og ( Nl; - lloo) + © dyos.
(57)

Let Fnn be the network architecture specified in (55). Substituting (56) and (57) into
(54), we have

T1 =2Es, [HFNN o By (ui) — Ey o \I’(“l)Hﬂ

<4dye? + 81/2d J<\/E32 T 0 B (us) — T 0 B2 (w) || + /d 5) \/logN(d,fNN,H-Hoo)Jr2

n

+ 4dyod + ALy L Eumry ||| g () — w3 ] (58)

Denote

) \/E52 [T o B2 () — B3 0 ()2

1 1) Nlso 2
0 = 2dy2} + 2y08 + 2Ly LB 4y (1) — uly] + 43y BN TN o) 2

n
1 d Noo) +2
b_zma\/ogN(,fNN,H o) +2
n

Inequality (58) can be rewritten as

p* < a+ 2bp,
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from which we deduce that
(p—0)? <a+b*=p? < 2a+4b°.

Therefore,

! " oo 2 1 ) s || 7 [Joo 2
Ty =2p% < 8dye? + 64dyo? OgN<57]:N1:L’H loo) + +16\/§dy0,5\/ og N'(6 J’Nl;l2 [ lloo) +

+ 8dyod + 8LEy LBy NHX 2 (1 uHi] . (59)

Upper bound of Ty. The term Ty is the difference between the population risk and the
empirical risk of the network estimator I'yn, while there is a factor 2 ahead of the empirical
risk. Utilizing a covering of Fnxn(dy,L,p, K,k, M) and Bernstein-type inequalities, we
establish a fast convergence of T9. The upper bound is presented in the following lemma
(see a proof in Appendix E).

Lemma 25 Under the conditions of Theorem 3, we have

35dy Ly R, N( 5

T -
2 4dyLgy Ry’

IN

FNN, || - Hoo> + 60. (60)

Substituting (59) and (60) into (50) gives rise to

1 <23 B, B [[|Tn 0 B () — B30 W(uw) 3]
=2L7yEs, [T1] + 2L]p Es, [T2]

o log N (&, Fan, || - [loo) + 2
Dy, -

<16dy Ly et +128dyo’L

+ 332dyo L 55\/ o N (6, P, |- Jlo) + 2

n
+ 16dyaL%§55 + 1613 ngngEuwHHhX (u) — ul|%

- A log N i
n

I |- Hoo> +12L70 0

4dyLES§Ry’
<16dy L3, ? Y Y v -
<16dy Dy€1+ " og N 4dyLE5;Ry’}—NN’” lloo
] 5, F :
—I—64dyaL2DSL}5\/ og N5 o [lleo) | (1640 + 12) L0
+ 16L%;L%;L%Euwllﬂ%dx (u) — ul%, (61)

when § < 1. The covering number of Fnn(dy, L, p, K, k, M) can be bounded in terms of its
parameters, which is summarized in the following lemma:
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Lemma 26 (Lemma 6 of Chen et al. (2022) ) Let Fxn(dy, L, p, K, k, M) be a class of
network: [—B, B]% — [~M, M]®™. For any§ > 0, the §-covering number of Fxn(L, p, K, k, M)
1s bounded by

(62)

2L2(pB + 2)kEpltl dy K
N6 Fs(dy,Lop. Ko M), | o) < (PECEL D)

Combining (55) and (62) gives

log N (6, Fx (dy, L, K, 1, M), |- o) < Crdy (7% log? 7! +logd + logdy) ,  (63)

where (7 is a constant depending on dx, Rx, Ry, Lgn, LE;, Lpr, and Lyg. Substituting (63)
into (61) yields

2 2 2
1280 + T0L}, RS

I <16dyLhye? + Crd3 Ly - (EIdX loge7! + log 6 + log dy)
+64dyoLd,d Crdy (e ( Tdx log® €] L 4 logé + log dy)
Dy, "
+ (16dyo + 12) Ly 8 + 161y Ly L Euery [HH;@M (u) — um . (64)
Setting

1 1
3+d — _
g1 =dy "*n *Tx . 5=n L

we get an upper bound of I

dtdy )
1 <Ci1(0® + R3)dsy, ¥ n” 779x log® n + Ca(0® + R3)d3 (log dy)n ™"
2
161 Ly L3Es, By ||| 4, (1) — ul[] (65)

for some constants C7,Cy depending on dy, Ry, Ry, LE; , LE§5, LD;L(, Ly. The constants
C1, Cy are the same ones as in Theorem 3. The resulting network architecture F(dy, L, p, K, k, M)
has

dx d dx d
L = O(logn +logdy), p= 0O <d i n2+fx> K=0 ( S log n) :

K = max {1, \/dyLEglij, AVA d)(LEQR;(, vV dXLE}LE;LDQL\I/RX} y M = vV dyLEgz)Ry.
(66)
Combining the bounds of I and II. Putting (64) and (49) together gives rise to
EsEu~y [HDyOFNNOEX (W) ]
<I+1II
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4+dy

2
<Ci(c? + Rg,)dffdx n” 2tix log® n + Cy(0? + R3)d3(log dy)n ™!

2 * *
+16Lg Ly LB, Bunry [ [T 1 (1) = ]3] + 2B, Eoe [Hng,,dy (") — v

)
(67)

where C'1,Csy are constants depending on dX,RX,Ry,LEg(,LE;,LDr;{,L\p. Substituting
oc=1L E;&, the theorem is proved. |

7.3 Proof of Theorem 4

Proof of Theorem 4. The main framework of the proof of Theorem 4 is the same as that

of Theorem 3, except special attentions need to be paid on bounding T and Ts in (51):

e For T, we establish a new result on the approximation error of deep neural networks
with architecture Fxn(dy, L, p, M).

e For Ty, we derive an upper bound using the uniform covering numbers. The moti-
vation to use Fnn(dy, L,p, M) is that it removes parameter upper bound, which is
appealing to practical training. However, removing parameter upper bound leads to
technical issues in bounding Ty. We address these issues using the uniform covering
numbers thanks to the boundedness of network outputs inspired by Jiao et al. (2021).

The first part of our proof is the same as that of Theorem 3 up to (51), which is omitted
here. In the following, we bound T and Tg in order.

Upper bound of T;. The upper bound of T; can be derived similarly as that in Section
7.2, except we make two changes:

e Replace Lemma 22 by the following one

Lemma 27 (Theorem 1.1 of Shen et al. (2020)) Let 0 < o < 1 be a real num-
ber. There exists a FNN architecture Fxn(1, L,p, M) with dy = 1 such that for any
integers L,p > 0 and f € CO*([—B, B]?) with || f||co.. < R, such an architecture gives
rise to an FNN f with

o =iy

(o]
for some constant C' depending on «,d, B, R. This architecture has
L=0(L), p=0(p), M =R.

The constant hidden in O(-) depends on «,d, B, R.

According to Lemma 27 with o = 1, for any ;1 > 0, there is a network architec-
ture Fnn(dy, L,p, M), such that for any I'%y defined in (52), there exists a fg €
FNN(dyv Lupa M) with

- rgHOO <er.
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Such a network architecture has
L=0(L), p=0 ), M = /dyLyyRy, (68)

where E,ﬁ > 0 are integers satisfying Eﬁ = [s;dx / 2-‘. The constant hidden in O(-)
depends on dX,LES;,LD;L(,Lq,,B and M.

e Replace Lemma 24 by

Lemma 28 Under the conditions of Theorem 4, for any § € (0,1), we have

2n
Es, [’}l Z <FNN OE?\,’(ui)vei>]

i=n-+1

log N'(6, Fan, 1) + 2
2050 (/BT 0 B ) ~ T Byl + /50 NG
(69)
Lemma 28 can be proved similarly as Lemma 24. We need to replace the §-cover F* =
{F*}N((S Fanilkllo) 1y 5 §-cover of Fan with respect to Sy F* = (T2 (5 FNm) where
N (8, Fxn, n) is the uniform covering number. Here the cover F* depends on the sam-

ples { E% (u;)}2", . 1. Then there exists I'* € F* satisfying [T o E%(u;) — I'nn 0 E% (us) ||, <
0 for any n + 1 < ¢ < 2n. The proof is omitted here.

Following the rest of the proof for T; in Section 7.2, we can derive that

\/log]\/'(é, FNN, n) + 2
n

Ty <8dye? + 64dyc> log N'(6, NN, n) + 2
mn

+16V2dyos
2 2
+ 8dy06 + 8Ly LyBuny | [T g, (1) — ul[3] - (70)
The network architecture of Fnn(dy, L, p, M) is specified in (68).

Upper bound of Ty. Using the covering number defined in Definition 20, we have the
following bound of Ts.

Lemma 29 Under the conditions of Theorem 4, we have

35dy R? )
T, < 2" S S 60. 71
2 > n OgN (4dyLE§Ry’ NN n) + ( )

Lemma 29 is proved in Appendix F using techniques similar to those in the proof of Lemma
25. Substituting (70) and (71) into (50) gives rise to

1 <2L3) B, By [||Dn 0 B () — B30 W(u) 3]
=2LyEs, [T1] + 2L Es, [To]
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log/\/(&, FNN, n) +2
n

log A(9 2
<16y Ly e? +128dyo® Ly og N6 Fan,m) + +32\f2dyaL2D§5\/
n

+ 16dyo L6 + 161Dy Ly L3 Fyny [HH}M (u) — um (72)

vy By 2
log N/ Ty Ly Ry’ NN, 20 | + 120500

128dyo? L}y + 70dy L, L. RS, 5
<16dyL%ne? Y Yy ¥ - 2
<16dy Lprer + 3 og N 4dyLE§Ry,]:NN, n

log N((S, JTNN, n)
n

_l’_

+ 64@0%5\/
+ (16dyo + 12)L%,5;5 + 16L%$L2E;L?PEUW [HH;@M (u) — uHi] : (73)

The covering number in (73) can be bounded using the pseudo-dimension of the network
class:

Lemma 30 (Theorem 12.2 of Anthony and Bartlett (1999)) Let F be a class of func-
tions from some domain Q to [—M, M]. Denote the pseudo-dimension of F by Pdim(F).
For any 6 > 0, we have

2eMm Pdim(F)
< I

NG Fym) < <6Pdim(F)>

for m > Pdim(F).

The next lemma shows that the pseudo-dimension of Fxn(1, L, p, M) can be bounded using

its parameters:

Lemma 31 (Theorem 7 of Bartlett et al. (2019)) For any network architecture FNN
with L layers and U parameters, there exists a universal constant C' such that

Pdim(Fan) < CLU log(U).

Now conciser the network architecture Fxn(1, L, p, M ), the number of parameters is bounded
by U = Lp?. Combing Lemma 30 and 31, we have

)
logN | —————, Fan(dy, L,p, M), 2n | < ngyp2L2 log (p2L) (logM +1logd~! + log n)
4dyLE§L;Ry
(74)
when 2n > Cop? L% log(p?L) for some universal constant Cg, Cy . Substituting (68) into (74)
gives rise to

) _d _ _
log N/ (4dy[zE‘Sl)_Ry7fNN7 2n> < Cgdye; “* log (e7") (log 6! +logn) . (75)
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Substituting (75) into (73) yields

12802 + 7T0L% R3,
Y al_d" log (51_1) (log 6 +log n)

I <16dyLDn€1 + ngyLDn
n

+ 64dyo L% 5\/08dy61d?< log (51_1) (logdo—1 +logn)
N

n
2 2 2 2

+ (16dy0 +12) Ly 0 + 16Lg Ly Ly Buny | [T, () — ul[3] - (76)

Setting
1
€1 = d;;’dx n_ﬁ,é =n"
we have
44dy 9 )
I <Ci(o® + R3S n” 7w log?n + 16L2DSL}L%§L Eunry [HHX ay (U uHX} . (77)

where Cy is a constant depending on dx, Rx, Ry, Lz, LE§5, Lpy,, Ly, the same constant in
Theorem 4. The resulting network architecture F(L,p, M) has

L=0(L), p=0(p),M = \/dyLgyRy, (78)

~ - dx dx
where Lp = d,, X pa2dx - Now we check the condition in Lemma 30. Under the choice

of L and p above, we have
2d x
L*p?log(p*L) = O <n4+2d2€ log n) <2n
when n is large enough. The condition is satisfied.
Combining the bounds of I and II. Putting (77) and (49) together gives rise to

EsEunry [||D 0 Tin 0 () — ¥(w)][5]

<I+1I
4+dy

2
<Cy(o? + Ry)d2+d’“ n~ #*x log?n

2 * *
+16L%g Ly LBy [[| T, () — 3] + 2B, B U’H&dy(v ) —v

O
vl
Substituting o = LE§L}5 finishes the proof. |

7.4 Proof of Corollary 10

Proof of Corollary 10. We only need to derive upper bounds of

Eumy (1T, () = ull}| and By s | [Ty (0) = o][3].

Then Corollary 10 is a direct result of Corollary 8. Our proof relies on the following lemma
which gives an approximation error of Legendre polynomials for Holder functions:
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Lemma 32 (Theorem 4.5(ii) of Schultz (1969)) Let k > 0 be an integer and o > 0.
For any f € C*([0,1)P) with ||f||ck.« < 00, there exists f € span(®™") such that
C
=7l <
where C' is a constant depending on D and || f||ck,a -

We first derive an upper bound of E,, [HHX’dx (u) — qu . For any u € Qy, according to

Lemma 32, there exists u € span(®™*) such that
|u—tlloo < Crory”,
where s = k + a, Cg is a constant depending on D and Cy, x. We deduce that
Iy g w) —ul|% = min a — ul?
Mgy ) ol = min i =l

<[|a — ull%

where in the last equality dy = r)D( is used. Therefore

_2s
Eune [Nty (w) = ull3] < G,

where (5 is a constant depending on D and (%, x. Similarly, one can show

_2s
Eutr gy [Ty (0) = ][5 < Cody”,

where Cp is a constant depending on D and (% y. The theorem is proved. |

7.5 Proof of Corollary 11

Proof of Corollary 11. Our proof relies on the following lemma which gives an approxi-
mation error of trigonometric bases for periodic Hélder functions.

Lemma 33 (Theorem 4.3(ii) of Schultz (1969)) Let k > 0 be an integer and 0 < a <
1. For any f € PNCke ([0,1}D) with || f||ck.e < 0o, there exists f € span(®17) such that

C
=7l <
00 r
where C' is a constant depending on D and || f||ck.o-
Corollary 11 can be proved by following the proof of Corollary 11 in which Lemma 32 is
replaced by Lemma 33. |
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7.6 Proof of Theorem 13

Proof of Theorem 13. Lemma 12 implies that E%, D%, EY;, DY, are Lipschitz with a
Lipschitz constant 1. Therefore Corollary 8 can be applied. We only need to bound

2
EsEy~y [HHX dx H } and EsEy~w [Hﬂy dy (W wHy} in (21). We use the fol-
lowing lemma:;:
Lemma 34 (Theorem 3.4 of Bhattacharya et al. (2021)) Let H be a separable Hilbert
space and p be a probabillity measure defined on it. Define the covariance operator G, =
Ey~pu®@u and its empirical estimation from n samples by Gﬁ = % E?:l u;@u; where {w; }1' 4
are i.i.d. samples sampled from p. For some integer d > 0, let Il 4 and H%d be the pro-

jectors that project any u € H to the space spanned by the eigenfunctions corresponding to
the largest d eigenvalues of G, and G, respectively. We have

cd
BB [ Thae) = ] < 4/ S0+ Euny [IMnatu) = ul

with C =Eg 30~ [HG” - GH%IS}, where || - ||us is the Hilbert-Schmidt norm.

2
We first bound EgsE,~ [HHX d (U UH)(] For any u ~ =, we have ||ul]|lx < Rx.

Therefore
Funn [IG% = Gullis| < 4Bunsy [ulld] < 4R

and Lemma 34 gives

" 2 4R%dx
ESEumy [ Wy (0) = ul3] </ =55 + Euny [Maar () — wl}] . (80)

2
An upper bound of EsEy~w [HHSL,’dy (w) — wHy] is given by the following lemma (see

a proof in Appendix G):

Lemma 35 Under the conditions of Theorem 13, we have

n 2 (Ry +0)*dy 7 g _
]ESEU)N‘I/#’Y |:H]:[y,dy ('U)) - 'U)Hy:| S4 " + 8 )\d — )\d UQ(R:)) + 0.)2
Y Y+1

+ 1067 + 8y, [Hny,dy (w) — w”i] . (81)

7.7 Proof of Corollary 14

Proof of Corollary 14. We only need to show that the eigenspace spanned by the
first dy principal eigenfunctions of Gy, is the same as that of G¢. Then Corollary
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14 can be proved by following the proof of Theorem 13 in which the upper bound of

Denote the eigenvalues of Gy, in non-increasing order by {Ay,~x}2;. Denote the

2 2
‘H&dy (w) — w”y} can be derived in the same manner as that of EsE, {HH}M (u) — uHX} .

eigenspace spanned by the first dy principal eigenfunctions of Gy~ by K, and its compli-
ment by K. Similarly, we define K¢ and IC&r for G¢. From our assumption, K is also the
eigenspace spanned by the first dy eigenfunctions of G,. We denote the eigenvalues of G,
in non-increasing order by {\, 1 }32,. We are going to show that K = K¢. From (100), we
have G¢ = Gy, + G, Note that for any ¢ € K and 5 € KT with unit length, we have

(Gt @)y =(Guynd, O)y + (Gud, o)y
>Ny dy T Apdy+1
>y dy+1 T Apdy+1
> (G gy, )y + (G, B)y
=(Gco, B)y-

Since both K and K¢ have dimension dy, we have K = K¢. The proof is finished. |

7.8 Proof of Theorem 15

Proof of Theorem 15. Theorem 15 can be proved by following the proof of Theorem 4
with the following changes:

e Replace £ by Ex.

e Under Assumption 2 and 8, our target function Ey o W o Dy is a Lipschitz function
on M. We replace Lemma 27 by the following one (see a proof in Appendix H):

Lemma 36 Suppose Assumption 8 holds. Assume for any a € M, ||al]|cc < B for
some B > 0. There exists a FNN architecture FxN(1, L,p, M) such that for any
integers L,p > 0 and f € COY(M) with || f|lcon < R, such an architecture gives rise
to a FNN f with

-1, seidr
[e.e]

for some constant C' depending on do, B, R, T and the surface area of M. This archi-
tecture has

L:O(E),pZO(dXﬁ),MZR. (82)

The constant hidden in O(-) depends on dy, B, R, T and the surface area of M.

43



Liu, YaANG, CHEN, ZHAO AND LiAaO

7.9 Proof of Theorem 16

Proof of Theorem 16 Theorem 16 can be proved similarly as Theorem 15 while special
attention needs to be paid on bounding log N (6, Fnn(dy, L, p, M), n). Note that the total
number of parameters of Fxn(dy, L, p, M) is bounded by U = Lp 4 dxp. Combing Lemma
30 and 31, we have

4dyLESL}Ry
<Chi1dy(p*L* + dxpL)log (p°L + dx Lp) (log M +log 6" +logn), (83)

1)
log N/ (,fNN(dy,Lm,M),?n)

where C1; is a universal constant. According to (68), one has Lp = O (517d“'Y /2 log? (5_1)).
Using this relation and substituting the choice of L, p in (68) to (83) gives rise to

)
log./\/ <7~FNN(d:)/7 Lap17p27 M)7 2n>

4dyLE§L)Ry
<Cyidy (sfd’f + d;gsl_d"ﬂ) log (¢7') (log 6" +1logn) . (84)
The proof can be finished by following the rest of the proof of Theorem 15. |

8. Conclusion and discussion

We study the generalization error of a general framework on learning operators between
infinite-dimensional spaces by two types of deep neural networks. With properly chosen en-
coders and decoders, our framework is discretization invariant. Our upper bound consists
of a network estimation error and a projections error, and holds for general encoders and
decoders under mild assumptions. The application of our results on some popular encoders
and decoders are discussed, such as those using Legendre polynomials, trigonometric func-
tions, and PCA. We also consider two scenarios where additional low dimensional structures
of data can be exploited. The two scenarios are: (1) the input data can be encoded to vec-
tors on a low dimensional manifold; (2) the operator has low complexity. In both scenarios,
we show that the generalization error converges at a fast rate depending on the intrinsic
dimension. Our results show that deep neural networks are adaptive to low dimensional
structures of data in operator estimation. In general, our results provide a theoretical jus-
tification on the successes of deep neural networks for learning operators between infinite
dimensional spaces.

As mentioned in Section 3.2, our network estimation error in Theorem 3 and 4 is optimal

up to a logarithmic factor with respect to the sample size n for a fixed dx. While our bound
d+4dy

has a factor d;;rdx , this term results from selecting the value of £; by balancing the two

terms dye? and d%,sl_d" /n, as in (64). It is an open question about whether our bound
is minimax optimal with respect to dy. In general, deriving a minimax rate for operator
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learning by deep neural networks is intrinsically challenging due to its infinite-dimensional
nature. In Lanthaler and Stuart (2023), the curse of dimensionality is revealed for learning
functionals by deep neural networks. To achieve an € approximation error of C” functionals,
the network size of PCANet, DeepONet, NOMAD and FNO is lower bounded in the order of
exp(ce”V/(@+140)7) (Lanthaler and Stuart, 2023, Theorem 2.15 and Proposition 2.22), with
a, 0 specified in Lanthaler and Stuart (2023). We will leave the investigation of minimax

rates as our future work.
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Appendix

Appendix A. The derivation for the error bound in Corollary 10 when
dX = dy = log% n

4+dy 2

__2 _2s
From Corollary 10, we need to balance the two terms d;;rd" n #dx logbn and d " . By

setting dy = dy = log% n, the first term decays faster than the second term as n increases.
We want to find a lower bound of n, denoted by ng, so that when n > ng, the error is

dominated by the second term. Note that ng should satisfy

Atdy ) o
d;fdx n” Zix log®n < d,P. (85)

Since

4+dy _ 9 o 2
d;fdx n~ #ix Jogbn < d%,n 2+dx Jogfn < dy”,

in the following, we consider solving
2 —araw -%
dyn *+ix logbn < dy”.
Substituting the expression of dy and dy, we deduce

2 . 9
n 2+g2n Jog"n <log"Dn = ———————logn + 7Tloglogn < —% log log n.

19
2+1log/"n

Denote a = logn. We have

2
A sufficient condition of (86) is
2 1 2
maz (7+%)loga:>a2 1(74— %) log? a. (87)

Note that loga < a'/? for a > 100. Therefore, it is sufficient to solve

>1(7+s)2§:> S 7+s 6
“=7 D) 7=\ 3p) -

Substituting a by logn, one has

7 s \°
> — 4 ,
n > exp (max{lOO, <2 + 2E) })
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Appendix B. Proof of Lemma 6

Proof of Lemma 6. We first prove (18):
~ (12 ~ ~ T2
1Bra(w) = Brea@)3 = |[(w = @ @) s (u = T b |

‘ 2

I
M&

B
Il
—

o0
< [u— 1, ¢k

kf
= |lu —all3,.

For (19), we have

| Dw.a(a) — Dya(@);, = —alf;

d
> (k= a)e
k=1

since {¢x}¢_, is an orthonormal set. [ |

Appendix C. Proof of Lemma 21
Proof of Lemma 21. Let a,a € R%. We have
IT%(2) = TG (@)]l, =||EY o ¥o Dy (a) — E} 0 ¥ o D3(a)
<Lpy|[¥ o Dy(a) —¥o Dy(a)ll,
<LpyLy||D%(a) — Dx(@)lly
gLEgz)LD;(Lq,Ha—ﬁHg.

I

|
Appendix D. Proof of Lemma 24
Proof of Lemma 24. We prove Lemma 24 using the covering number of Fyn. Let F* =
NG FNn - lloo)
{F}“} , = be a d-cover of Fnn, where N (8, FnnN, || - ||oo) is the covering number.
‘7:

Then there exists I'* G F* satisfying ||[I'™* — I'nn| o, < 6, where I'yy is our estimator in (6).
Denote ||[[o E%[? =1 372" |0 o E%(u;)||5. We have

2n

1

Es, [n Z (Ixn o B (uq), €)
i=n-+1

2n

1 * *

—Es, [n > (Tnwo Bp(ug) — T* o B (u;) + T* o E% (u;) — T o Ep(u;), €;)
i=n-+1
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2n 2n
1 N 1 %
<Es, [n Z ("o By (ui) = I'g o By (ui) &) | +Es, |~ Z w0 B (u;) =T OE?«(%‘)HM@\Q]
1=n+1 i=n+1
[“oE% —I7oFEY I'* o E%(u I'" o E%(u;), €
g, [! bl e (U 0 BYw) ~Tjo Ex ] |, o
Vi fHFoE ~Tio By,
T EY —ThoEY| + 0 (I'* o E%(u;) — T o E%(u;), €;
<V, [TNN © o E% |, + v/dyd |7, 41 : X(nl> d nx( i); €i) + dyos,
vn V||t o B =T o ER ||,

(88)
where the first inequality follows from Cauchy—Schwarz inequality, the third inequality holds
since

[T o EY —I'g o E%||,,
1 2n
== D |IT* o E%(u;) — Tnn o E%(u;) + T 0 B (u;) — T3 0 B (u; )|
\ " i=n+1
2 — 2
<\ = > 070 B (wi) — T 0 B (wi)| + [T © B (ws) = T 0 By ()|
\ n i=n+1
9 2n
<\ o D2 dyd? + [P o B (ui) — T o By (s )12
\ i=n+1
<V2|[Pxy o B — T o E%|, + 1/2dyd.
N(6.Fnns | lloo) n SoB% (u;)—TpoE% (u;),€;
Recall that {F}‘ }]:1 A is a d-cover of Fyn. Denote z; = E’_”J“\l/grrﬁ);g)mi%jﬁ‘:u i)

The expectation term in (88) can be bounded as

[Ty 0 ER — T o ERl, 4+ /dyd | 50 n+1<F*OEX(u1) I o B (u;), €)
Es o BT — 7o 7
vn \FH °cLy —1g©° XHn
I'nyo B — T o Bl + +/dyd
o [T
vn J

2 1
s%a& [(HFNN o B ~Tyo By, +/dyd) } Es, [n mex Izj|2]

< (VESQ (Ir o 23 - g 230,70 i i) Y

where the second inequality comes from Cauchy—Schwarz inequality, the third inequality
comes from the inequality va + b2 < y/a + b for a,b > 0.
Since €; € [—0,0]%, each component of €; is a sub-Gaussian variable with parameter o.

Therefore for given uy41, ..., U2, each z; is a sub-gaussian variable with parameter /dyo.
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The last term is the maximum of a collection of squared sub-Gaussian variables and is
bounded as

) -
Es, m]ax\zjﬂunﬂ,...,u%} :¥logexp (tE32 [m]ax\zj\Q]unH,...,ugn )

~_ "
| S

1
< logEs, [exp (tm?XIZjIQIUnH, ooy Ugp,

1
g; IOg ]ESQ ; eXp (t|zj|2‘un+lv ) u2n)

1 1
< 10N (6, P, | - o) + 7 1og B, [exp (#1211, v an) ]

Since z; is sub-Gaussian with parameter o2, we have

tk]ES Z Upo1y eoey U2
ESQ [exp (t‘31’2|un+1,-. u2n _1_|_Z 2 |~1 ‘ n-i- n]

:1+Zk|/ |z1’ >T2k|un+1,...,UQn) dr
k=1
X Lk 19 1/k
t T
e o)
k=1

o0
=1+2) (2tdyo?)¥,
k=1

where ' represents the Gamma function. Setting t = (4dyo?)~! gives rise to

Es, [max |z;]?|unyi1, - uzn] < 4dyo?1og N' (8, Fan, || - [loo) + 4dyo?log 3
J
< 4dy0’2 log N (8, Fans || - |loo) + 6dy0‘2. (90)

Substituting (90), (89) into (88) finishes the proof. [ |

Appendix E. Proof of Lemma 25

Proof of Lemma 25. Our proof follows the proof of (Chen et al., 2022, Lemma 4.2).
Denote g(u) = [Ty o By (u) — E o U(u)||3. We have ||glo < 4dyL2E§R§,. Then

2n
2
T2 =Es, |Eu~y [9(u)[S1] — o Z g9(ui)
i=n+1
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1 1 2n
=2Es, leuw lg@)lSi] =~ > g(uﬁ]

1=n+1
2n
1 1
=2Es, [Euw[g(u)\sl] - > 9(ui) = SEuny [9(u)|S)] (91)
i=n-+1
A lower bound of $E, [g(u)|S1] can be derived as
Ady Ly RS, 1
Eu~ S| =Eyry | —52L— Si| > ————FEuos [¢3(w)|S1] . 92
IS =By | a0l 2 e ] (0

Substituting (92) into (91) gives

2n
1 1
Ty < 2Es, !Euw[g(u)\sﬂ - > glwi) - mEuw [gz(u)\sl]] :
i=n-+1 SL; y

Define the set
R ={g(u) =T 0 E%(u) — E% 0 W(u)|3: T € Fan} -

Denote Sy = {u/}?", 41 as an independent copy of Sz. We rewrite Ts as

Te <2Egs, |sup | Eg/
geER 2

i=n+1 i=n+1 i=n-+1

2n

<2Egs, |sup | Egs:
gER 2

i=n—+1 i=n-+1
2n
1 _ 1 2 2,1
<2Es, s [_2272 (nz:;o—l ((Q(Uz‘) —g(w;)) — WESQ,SQ [9°(wi) + g (%)]))] :

(93)

Let R* = {gf}ﬁ(f’n’”"‘m) be a d-cover of R. Then for any g € R, there exists g* € R*
such that ||g — ¢*||lcc < 9.
We next bound (93) using ¢*’s. For the first term in (93), we have
9(ui) — g(ui) =g(wi) — g*(wi) + 9" (wi) — " (ui) + g" () — g(uj)
= (9(u;) = g"(w) + (9" (wi) — " () + (9" () — g(uj))
< (9" (ws) — g*(u})) + 26. (94)
We lower bound ¢2(u;) + g*(ul) as
g°(ui) + g% (uf) = (¢%(wi) = (9")*(wi)) + ((97)(ws) + (¢%)*(uh)) = ((9%)%(u}) — g°(uf)
>(9%) (i) + (9%)?(u}) — lg(wi) = g* (wi)| |g(ui) + g" ()]
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/

— | g (uf) — g(u)| g™ (i) + g(uj)]
>(9%)*(us) + (97)*(u )_16d37LE§L,R§75' (95)

Substituting (94) and (95) into (93) gives rise to

To
2n

<, s, L?‘é% (i 2, <<g*<uz-> o)) - WESQ’% (6" w) + (Q*P(um)) o
2n

2B, [m;xx (;; <<g;f<uz->—g;f<u;>> Ty “9”(”(9;)2(“;”)) "

Denote h; = (u;, u, &) = (g5 (ui) — g5 (u})). We have
Es, syl (ui, uj)] = 0,
Var|h; (u;, u})] [ (ui,u Z)]
= Es, s, [(9] (wi) — g5 (u7))?]
< 2Es, s [(97)% (i) + (97)* ()] -

Thus Ty can be bounded as

Ty < Ty + 66
. 1 & 1
Wlth T2 = 2E82,Sé [m]ax (n Z (hj(ul, U,/L) — m Var[h (uz,u;)]>>] .
1=n+1 Y
Note that ||h; ”oo < ddyL? ;R%,. We next derive the moment generating function of h;. For
any 0<t< m, we have

/ [ tkhk(ul’ z)
Es,.s; [exp(thj(ui,u;))] =Es, s |1+ th;(ui,u) + Z k:i

L k=2

I 0 (4dyL%n R%,)k_thh?(ui, u))
SESQ,Sé 1 + th](uz,u;) + Z 4 9 % 3k—2

L k=2

:]Es%sé ]_—l—th (Ul, Z)

o 2 P2 \k—24k—2
+t2h?(ui,u;-) (4dyL ;Ry) t ]
;2 3h—2

k=2

[ tzh?(ui,u;) 1
:ES%‘% 1+th (Uz> z)"’ 9 1—4dyL2nR§]t/3
L Y
1

=1+ t* Var[h; (u;, u})]

2 — 8dy Ly R3t/3
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32

where the last inequality comes from 1+ z < exp(z) for z > 0.
Then for 0 < t/n <

<th )
AP 5T

2n
1 1
=exp <tE52 s [max( Z hj (i, u;) —mﬁ Var[hj(ui,u’i)]>]>
v

= n+1

B 2n
1 1
SES%SQ exp <t max ( E h ’Un“ Z — W* E Var[h]‘(uz‘, U;)]))]

1=n+1

m, we have

[ 2n
t 1
<o [T (£ 3 hloent) = gt t 3 Vit )

i=n+1

A
g
@

S

2n
3t2/n? 1 t
3" Varlhy(ui, o] - = Var[h; (us, u!
<‘ aI'[ ](U’UZ)]ﬁ_sdyngL}Rg/t/n 32dyL%;§L)R§;TL ar[ J(’LL ul)]>

2n
t 3t/n 1
= — Var[h; (u;, — , 97
Zexp ( " ar(h;(u;, u;)] (6 deLQn %,t/n 32dyL%§R§)>> (97)

where the first inequality follows from Jensen’s inequality and the third inequality uses (96).

Setting
3t/n 1

6 —8dyLi, Ryt/n  32dyL3, 13,

=0

3n < 3n
52dy L2, R2 4dnyE§R§,‘

gives t = Substituting our choice of ¢ into (97) gives

Therefore

Ty < S log NG, R, | - [leo) = —10g/\f(5 R, lloo)
t 3n
and
104dyL%nR§, 35d L2nRy
TylogN((S,R, |+ [loo) + 60 < #log/\/(é R, [ lloo) + 64.

We next derive a relation between the covering number of Fyy and R. For any ¢g,9 € R,

Ts

IA

we have

u) = ||T o E%(u) — E% o ¥(u)| ’

2, Glu) = Hf o B (u) — Bl o \Il(u)HQ
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for some T, Tc FNN. We have
- 2 s 2
lo =3l =sup [T B (0 - Ep 0 W)} - [F o B30) - 25 0w
u

=sup (T 0 B(u) — T o B (u),T 0 E(w) + T o By (u) — 2E% o \Il(u)>’
u

<sup 1o By (u) ~ To Bx(w)||_ |00 B () + T o By (u) — 285 o w(u)|

u

2
<4dyLgyRy HF - f” .
[e.e]
As a result, we have

)
4d:)]LE£1}Ry, NN H Hoo>

and Lemma 25 is proved. |

Appendix F. Proof of Lemma 29

Lemma 29 can be proved similarly to Lemma 25. Denote g(u) = ||[T'xn 0 E%(u) — B350V (u) H;
and let 8§ = {u] ?gn 41 be an independent copy of Sz. Following the proof of Lemma 25 up

to (93) and replacing Eyy[g(u)|S1] by Eg; 1 Z?ﬁnH g(u;)], we can derive

2n 2n
Ty < QEsz,sg [ up <711 Z (g(u;) — g(ug)) - Wi Z (92(Uz‘) +92(U§)))] :

S
gER i=n+1 i=n+1
(98)

Let R* = {g;‘}ﬁ({s’n’%) be a d-cover of R with respect to the data set S = {u;}7-, U
{u[}1"_ ;. Then for any g € R, there exists g* € R* such that |g(u) — ¢*(u)| < d,Vu € S.
Lemma 29 can be proved by following the rest proof of Lemma 25.

Appendix G. Proof of Lemma 35

The proof of Lemma 35 replies on the perturbation theory of operators on separable Hilbert
spaces, which is stated in the following lemma:

Lemma 37 (Proposition 2.1 of Giulini (2017)) Let A, A be two compact self-adjoint
nonnegative operators on the separable real Hilbert space H. Denote the eigenvalues of A
and A in non-increasing order by {1, A2, ...} and {Xl, Xg, ...}, respectively. For some integer
d >0, let Iy 4 and ﬁ%d be the projectors that project any u € H to the space spanned by
the eigenfunctions corresponding to the largest d eigenvalues of A and ;L respectively. We
have

vala-4],

max {)\d — >\d+1, Xd - Xd—f—l} '

My g — 11 H <
H Hd Hd HS (99)
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Proof of Lemma 35. Denote w = ¥(u). Recall that ¢ is the probability measure of
v=P(u)+ ¢ We have

Ge =By g [GE] =Eonclv @ 0]
=Euwyyemn [(w+€) @ (w4 €)]
=Epnwyy [0 @ w] + Bz [€® €]
G+ G (100)

where the third equality holds since w and € are independent and Ee¢ = 0. Recall that
Iy 4, (resp. H&dy) projects any w € ) to the space spanned by the first dy principal
eigenfunctions of Gy, (resp. G’Z) We denote by 1Ly 4, as the projection that projects any
w € Y to the space spanned by the first dy principal eigenfunctions of G¢. Relation (100)
implies that

Efwi,~¢ [H$7dy:| = Ily.ay-
‘We have

2
ot [HG? B 1G] HH8:| <AE,¢ [[lV]3] < 4(Ry + )"
We deduce that

EEunsas 13,0 ]

)
Yy

2
<O sFe Byt 1 [Hnydy (w+7) — w+~)H }+2ESE€N“ [H NG e”u

=EsEew Buaw iy [Hﬂy (W +€) — (w+e) — [Hy dy (€) = e”

SQESEvNC {Hﬂ&dy(v) - UHy:| + 2E’€~u [Haﬁ)}

4R o)id ~ 2 ~
<2 (y—;(j)y +2E, ¢ [Hﬂyvdy(v) — va] + 252, (101)

where the last inequality comes from Lemma 34 and ﬁy’dy =Eyc[v®u] = Evyn  ~¢ [1_@ dy} .
We bound the second term on the right-hand side as

~ 2
Eyn¢ [Hnyydy (v) — UH)}]
- , 2
<2y ||y ay (0) = Ty, ()| ] + 2B [[[Tyay (v) = o3

<2Eu~g <ﬁy,dy - Hy,dy) (v) H ] + 2B By [Hﬂy,dy (w+€) —(w+e) H;}

Bt |||y, — Ty Hvuy]+4ﬁw#v 1MLy, () = w3 + 4B | [Ty, (&) 1[5
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~ 2
<OE, [Hny,dy ~ My Hng,} A iy [Ty () = w][3] + 4By, [[Ty0, (&) — &3

2
V2||Gyllns 2 21y
SQ ()\dy_)\dyH (Ry + (T) + 4Ew,\/\1}#7 |:HHy,dy (U)) — wHy:| + 40
~ 2
o 9 9 ) ~2
<4 <M> *(Ry +0)* + 4By .y [Hﬂy,dy(w) - wM + 452, (102)

where the fourth inequality follows from Lemma 37.
Substituting (102) into (101) gives rise to (81).

Appendix H. Proof of Lemma 36

Proof of Lemma 36. Our proof relies on concepts related to functions on manifolds,
such as charts, atlas, the partition of unity, and functions on manifolds. We refer the
readers to (Tu, 2011; Lee, 2006; Chen et al., 2022; Liu et al., 2021) for details. Following
(Chen and Chen, 1995, Proof of Theorem 1), we first construct an atlas of M in which all
projections projects any point on M to a tangent space of M. These projections are linear
functions that can be realized by a subnetwork. Then the function f is decomposed using a
partition of unity subordinates to the atlas we constructed. For each chart (U, ¢), we use a
subnetwork to approximate an indicator function that determines whether the input x € M
belongs to U. Another subnetwork is used to approximate f(x)o ¢~! on its tangent space.
Finally, we multiply both subnetworks together and sum over all chats. The multiplication

is approximated by another subnetwork. We prove Lemma 36 in four steps.

Step 1. In the first step, we show that there exists an atlas of M, denoted by {Uy, ¢k}g§1,
such that ¢,’s are linear projections. Denote B,(c) as the Euclidean ball in R%* centered
at ¢ with radius r. For any given r > 0, since M is compact, there exists a set of points
{ck}gg‘l such that M € UpB,(c). For each B,(cy), denote U; = M N B,(ci). By setting
r < 7/2, we have that U; is diffeomorphic to a ball in R% (Niyogi et al., 2008). The minimal
number of balls is upper bounded by

Cpm < {Area(M)Td/rd—‘ ,

where Area(M) is the area of M and Ty is the thickness of Uy’s (see Chapter 2 of (Conway
and Sloane, 2013)).
We next define ¢;’s. For each cg, let {Vf};lo:l be an orthonormal basis of the tangent
space of M at cg. Define the matrix Vi, = [v},..., v¥]. We set
Or(x) = V| (x —cp).

Note that ¢ is a linear function which can be realized by a single layer. Then {(Uy, qﬁk)}kci/‘l

form an atlas of M.
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Step 2. In the second step, we design a subnetwork that determines the chart that the
input x belongs to. To determine whether x € Uy, it is equivalent to check whether the
squared distance between x and c, is less than r2. It can be done by Lo,z © d2(x) where
19,2)(a) is an indicator function that outputs 1 if a € [0, 72], and outputs 0 otherwise. Here

d2(x) is the squared distance function defined as

dx

di(x) = |lx = ekl = Y (27— cy)”,
j=1

where the notations x = [z1, ..., de}T and ¢ = [ck1, ..., Ck.d,] are used.

We next approximate both functions by neural networks. To approximate dz, the key is-
sue is to approximate the square function by neural networks, for which we use the following
lemma:

Lemma 38 (Lemma 4.2 of Lu et al. (2021)) For any B > 0 and integers L,p > 0,
there exists a network x in Fnn(1,L,9p + 1, B%) with dy = 1 such that for any z,y €
[—B, B|, we have

% (z,y) — zy| < 24B%p~E.

According to Lemma 38, we approximate di(x) by

~ dX —~
dp(x) =Y X(x5 = cr gy — cry),
j=1

where X € Fnn(1,4sLq,9p1+1, B?). The approximation error is |]Jk—dk|]00 < 24dXB2pf4SL1.
For 1,2, we use the following function to approximate it
1 a <r?— A+ 24dy B2yt
~ 2 2, —4sly
11 _ o 1 r —24d)(B Py 2 o A 24 32 74SL1 2 _ 24 B2 748L1
ala) A ssdn iy " T Agsamrp o OC T +24dxBp; dxB7p, ;
0 a>r?— 24d;(BQpl_48L17

where A > 24dXB2pf4SL1 will be chosen later. We approximate 1 odi(x) by 1A oc?%(x) in
which the parameter A is the 'width’ of the error region: when x ¢ Uy, we have dz (x) > r?
and T o dj(x) = 0; when x € Uy and d?(x) < 7> — A, we have Ta o d2(x) = 1.

We then realize iA(a) by a subnetwork. Denoting my = ————————,mj =12 — A+
A—48dxyB2p, "t

24dx B?p;y 5 mg = r? — 24dx B?p; M, we rewrite 1a(a) as
1a(a) = —mo(min{max{a,m1}, ma}) + mamy.
The function above can be realized by a network with one hidden layer:

Ta(a) = —mg (mg — ReLU [mg — (ReLU(a — my) + my)]) + mamo.
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Step 3. In this step, we decompose f using a partition of unity of M and approximate
each component by a subnetwork. Let {hk}gg‘l be a partition of unity of M such that hy
is supported on Ug. We decompose f as

Cm
=Y mf
k=1

Note that for each k, hy f is a function defined on M supported on Uy, and (hyf) o ¢;1 is
a function defined in R% and supported on [-2B,2B]%. The following lemma shows that

hi f is in the same space as f:

Lemma 39 Suppose Assumption 8 holds. Let {Uy, d)k}lfi"l be defined in Step 1. For each
k, we have hyf € C%Y(M) and A fllco.1 Ay is bounded by a constant depending on do, hy., f
and ¢y.

Lemma 39 can be proved by following the proof of (Chen et al., 2022, Lemma 2). The
proof is omitted here. According to Lemma 39 and since ¢, is a linear projection, we have
(hif) o ¢ € C%'([-2B,2B]%). Lemma 27 implies that there exists a neural network

fr € Fnn(1, Lo, po, M) with
Ly=0(Ly), p»=0(p2), M =R

for any Lo, P2 > 0 such that

2 2

1fx = (hif) 0 8 Moo < CLLy Py ™

for some constant Cy depending on dy, B, R.
Step 4. We then assemble all subnetworks constructed in the previous steps and approx-
imate f by

F=Y % (FeoonTrod). (103)

k=1

In (103), according to Lemma 38, we set x € Fnn(1,4L3,9p3 + 1, M) as an approximation
of x with M = R and error 24R2pg ALs  The following lemma gives an upper bound of the
approximation error of f (see a proof in Appendix I):

Lemma 40 The error off can be decomposed as

Cm

I1f = flloo < ZAk,l + Apo+ Ars
=1

with

Ars = |[%(Foor" Taod) = (Foap") x (Taodp)|_ <24R%5%L3”,
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2 2

Ara = |[(Fodr") x Aaodd) — (hif) o 67" x (Ta o d)|| < Cray ™.
Ciz(m+1)

Ay = ()0 651)x (Ea o d) = () 0 65") x Loy < T,

for some constant Co depending on dy, T, B, R, and C13 depending on R.

According to Lemma 40, for any E, p > 0, we set
L4 ]?k € fNN(17L27p27M) with L2 =0 <E> yD2 = O(@:

o X € Fan(1,4L3,9p3 + 1, M) with Ly = O (E) 3 = O (p),

~ ~ 2 2 ~
° dz € Fnn(1,4L1,dx(9p1 +1), M) with A = L™ dp 4o, Ly = L+log(12dxB?),p1 = p
such that

24dy B2p7 = 24dXB2574E710g(48dXBZ) — 24dy B2~ log(48dXBQ)ﬁf4Z
— 24d B2(48d.x B2) 854 < 9244, B(24dx B2) 5L
Sﬁ_4z Sﬁ_Q(EH) < ﬁ—22—2i Sﬁ—Qz—Q <A,

where in the third equality, we used al°8® = b8 for a,b > 0,

o Ta € Fan(1,2,1,1).

The total approximation error is bounded by ngf%foﬁ i for some (3 depending on
do, R, B, T and the surface area of M. The constant hidden in O(-) depends on dy, R, B, T
and the surface area of M. The resulting network is in FxN(1, L, p, M) with L, p, M defined
in (82).

|
Appendix I. Proof of Lemma 40

Proof of Lemma 40. For A ;, since x € Fan(1,4L3,p3, R), by Lemma 38, we have
Ay < 24R%p; s < 24R?p; 2t < 94R?pr20720s < 24R2%p;2L;2

For Ay, 2, since 10 Ji € [0,1], we have

2 2

Ara < | Foort = tmp) oo | < |7— (|| < Couly ™5, ™.
The upper bound of Ay, 3 is proved in (Chen et al., 2022, Proof of Lemma 3). |
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