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Abstract—Federated learning (FL) has emerged as a promising
paradigm for enabling the collaborative training of models
without centralized access to the raw data on local devices. In the
typical FL paradigm (e.g., FedAvg), model weights are sent to and
from the server each round to participating clients. Recently, the
use of small pre-trained models has been shown to be effective
in federated learning optimization and improving convergence.
However, recent state-of-the-art pre-trained models are getting
more capable but also have more parameters, known as the
“Foundation Models.” In conventional FL, sharing the enormous
model weights can quickly put a massive communication burden
on the system, especially if more capable models are employed.
Can we find a solution to enable those strong and readily available
pre-trained models in FL to achieve excellent performance while
simultaneously reducing the communication burden? To this
end, we investigate the use of parameter-efficient fine-tuning
in federated learning and thus introduce a new framework:
FedPEFT. Specifically, we systemically evaluate the performance
of FedPEFT across a variety of client stability, data distribution,
and differential privacy settings. By only locally tuning and
globally sharing a small portion of the model weights, significant
reductions in the total communication overhead can be achieved
while maintaining competitive or even better performance in a
wide range of federated learning scenarios, providing insight into
a new paradigm for practical and effective federated systems.

Index Terms—federated learning, parameter-efficient fine-
tuning, vision transformers, image classification, action recog-
nition

I. INTRODUCTION

Federated learning (FL) [1] has become increasingly preva-
lent in the research community, having the goal of enabling
collaborative training with a network of clients without need-
ing to share any private data. One key challenge for this
training paradigm is overcoming data heterogeneity. The par-
ticipating devices in a federated system are often deployed
across a variety of users and environments, resulting in a
non-1ID data distribution. As the level of heterogeneity in-
tensifies, optimization becomes increasingly difficult. Various
techniques have been proposed for alleviating this issue. These
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primarily consist of modifications to the local or global ob-
jectives through proximal terms, regularization, and improved
aggregation operations [2, 3, 4, 5, 6]. More recently, some
works have investigated the role of model initialization in
mitigating such effects [7, 8]. Inspired by the common usage
of pre-trained models for facilitating strong transfer learning
in centralized training, researchers employed widely available
pre-trained weights for initialization in FL and were able
to close much of the gap between federated and centralized
performance.

Still, while pre-trained initializations are effective for alle-
viating heterogeneity effects in FL, another key challenge is
left unaddressed; that is, communication constraints. This is
often the primary bottleneck for real-world federated systems
[9]. In the standard FL framework [10], updates for all
model parameters are sent back and forth between the server
and participating clients each round. This can quickly put a
massive communication burden on the system, especially if
more capable models beyond very small MLPs are used.

When employing strong pre-trained models, the number
of parameters can be large, such as for current state-of-the-
art transformers. For example, ViT-Base (ViT-B) [11] has 84
million parameters, let alone the current significant progress
in large foundation models (e.g., GPT-4 [12] has more than
1 trillion parameters). Those large models would simply
exacerbate the communication overhead to insurmountable
levels. As a compromise, most existing FLL work focuses on
the performance of smaller Convolutional Neural Networks
(e.g., ResNet [13]) on smaller datasets (e.g., CIFAR-10 [14],
EMINIST [15]). Considering the thriving progress in large
pre-trained Foundation Models [16], an efficient framework
enabling these large pre-trained models will be significant for
the FL community.

Based on the previous study on centralized training [17,
18, 19, 20], we note that pre-trained models have strong
representations, and updating all the weights during fine-tuning
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Fig. 1: Process in a federated learning communication round
with M participating clients. We use ViT-Base as an instance
to analyze the communication costs. (a) Conventional federated
learning framework, where the entire model will be sent during
the communication. (b) FedPEFT, which is our proposed parameter-
efficient framework for federated learning.

is often not necessary. Various parameter-efficient fine-tuning
methods (e.g., fine-tuning only a subset of the parameters or
the bias terms) for centralized training have been proposed in
the literature and show that successful and efficient adaptation
is possible, even under domain shift [18, 17, 19]. We reason
that such insight is applicable to FL, where each client can be
thought of as a shifted domain on which we are fine-tuning. By
leveraging pre-trained weights, it may be possible to simply
update a small portion of the weights for each client. This will
significantly reduce the communication burden on the system,
as the updates communicated with the server will consist of
just a fraction of the total model parameters.

Can we reap these potential communication benefits while
still achieving strong performance in FL? Unfortunately, op-
erating conditions in FL are difficult, requiring successful
convergence under varying data heterogeneity levels, random
client availability, and differential privacy procedures. There-
fore, we are unable to properly assess this possibility of
benefit based on existing literature, as diverse parameter-
efficient fine-tuning methods have not been systematically
explored in such situations in FL. To fill this gap, we explore
the viability of a Federated Parameter-Efficient Fine-Tuning
(FedPEFT) framework with a systemic empirical study on a
comprehensive set of FL scenarios including communication
analysis about communication cost for each method to enable
pre-trained models, capability analysis of each method with
unlimited communication budget, and robustness analysis of
each method when additional constraints (i.e., differential
privacy or data scarcity) applied. The framework is illustrated
in Fig. 1. We deploy parameter-efficient fine-tuning methods
to adapt pre-trained models and enable massive reductions in
communication overheads.

The contribution of this paper is summarized as follows:

o We explored several PEFT methods in FL as the FedPEFT
framework to simultaneously addresses data heterogeneity
and communication challenges. FedPEFT allows for the uti-
lization of powerful pre-trained models in federated learning
while keeping communication costs extremely low.

o We present a systematic study of the FedPEFT framework
with various fine-tuning methods under heterogeneous data
distributions, client availability ratios, and increasing de-
grees of domain gap relative to the pre-trained represen-
tations on both image and video domains, showing the
capability of FedPEFT. (Sections IV-B and IV-C)

o To ensure FedPEFT is practical for the complex environ-
ments of FL, we further analyze the robustness of FedPEFT
among low-data regimes and differential privacy operations.
(Sections IV-D)

II. RELATED WORK

Federated Learning. FL is a decentralized training paradigm
composed of two procedures: local training and global aggre-
gation. Therefore, most existing work focuses on either local
training [4, 21, 2] or global aggregation [22, 23] to learn a bet-
ter global model. Another line of work cuts into this problem
by applying different initializations to help both procedures.
[8] shows that initializing the model with pre-trained weights
can make the global aggregation of FedAvg more stable, even
when pre-trained with synthetic data. Furthermore, [7] presents
the effectiveness of pre-training with different local and global
operations. However, these works focus purely on the effect
of initialization in a standard FedAvg framework and do not
consider the communication constraints of the system. Our
work pushes the envelope further by leveraging strong pre-
trained models (even large, capable transformers) in FL while
effectively handling the communication issue via parameter-
efficient fine-tuning.

Communication in Federated Learning. Communication
constraints are a primary bottleneck in federated learning.
To reduce the communication cost, several previous work
leverage model compression techniques [24, 25]. Such works
do not change the training paradigm but rather post-process
the local model to reduce communication costs. For instance,
[24] proposes approaches that parameterize the model with
fewer variables and compress the model in an encoding-
decoding fashion. However, the minimal requirement to main-
tain all the information is still high when facing today’s
large models. Meanwhile, another line of work changes the
training paradigm by learning federated ensembles based on
several pre-trained base models [26]. In this way, only the
mixing weights of the base models will be communicated
in each round. This approach aims to reduce the burden of
downloading and uploading the entire model in each round.
However, the base models are not directly trained, and the final
performance is highly related to the base models. Meanwhile,
model ensembles will take more time and space, which is often
limited on the client side. Our framework follows the strategy
of this line of work that does not transmit the entire model,
but we use only one pre-trained model instead of several base



models and only transmit a subset of the parameters instead of
the model ensembles. Therefore, no additional time or space
is required.

Parameter-Efficient Fine-tuning. Fine-tuning is a prevalent
topic in centralized transfer learning, especially in this era
of the “Foundation Model” [16]. A significant line of work
is to reduce the trainable parameter number, i.e., parameter-
efficient fine-tuning (PEFT) [20, 27, 28, 29, 30, 31, 17, 32].
PEFT has emerged as a pivotal area of research in the field
of natural language processing (NLP) [19, 33, 34, 35] and
further adapted into more fields such as computer vision
(CV) [18, 36, 37, 38, 39, 40, 41]. With different focuses,
PEFT methods can be divided into three categories: 1) Input
Adaptation methods such as prompt-tuning [18, 30] focusing
on adding learnable context to the input data, 2) Backbone
Adaptation methods such as adapter-tuning [38, 19, 33], and
3) Specification methods such as bias-tuning [17, 31]. PEFT
enables easier access and usage of pre-trained models by
reducing the memory cost needed to conduct fine-tuning due
to fewer computed gradients. In federated learning, PEFT
has an additional benefit that is not salient in centralized
training: reducing communication costs. By introducing PEFT
to federated learning, our work can take advantage of a strong
(and even large) pre-trained model while significantly reducing
communication costs. Several works study the PEFT methods
under FL settings in NLP [42, 43, 44, 45]. Complementarily,
our work provides a comprehensive study of PEFT in various
FL settings in computer vision under both image and video
tasks and insights on various scenarios, including more pri-
vacy requirements or under limited data.

III. FEDERATED PARAMETER-EFFICIENT FINE-TUNING

A. Problem Formulation

In this section, we formally describe the federated learning
objective and federated parameter-efficient fine-tuning. Using
a classification task as an example, K samples in a dataset
D = {(z,yr)E } = UY_,D,, where x is the input and
y € {0,1,...,C — 1} is the label, are distributed among N
clients. Each client has a local model {¢;}Y¥ , parameterized
by {6; U;} Y, where 6 is the pre-trained weights and § is
the trainable parameters. The goal of federated learning is o
learn a global model ¢ parameterized by @ U § on the server
from M sampled client models in 7' communication rounds
by minimizing the global objective F' as
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on a hold-off test set Dy.s; with a loss function ¢. Compared
with traditional FL updating the entire ¢, only ¢ is updated
in FedPEFT.

At the beginning of training, 8(®)in the global model ¢(°)
is initialized with pre-trained weights, and 6(?) is randomly
initialized, where the superscript ¢ indicates the model at
round t. In each round ¢, M clients will be selected for
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Fig. 2: Methods to fine-tune each layer in a pre-trained backbone,
where h means the input, ¢ means the pre-trained layer, and ¢, ¢p
mean its weight and bias parameters, respectively.

communication, and {d),gt)}f\il will be initialized by ¢(*) and
updated by
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for F/ epochs, where Fj is the local objective. After the local
updates, the server will receive and aggregate the trainable
parameters {61@ M. with the FedAvg algorithm to a new
global model

M

D) = Z

st il I
This procedure is repeated from ¢ = 0 to ¢ = T'—1. During the
client-server communication, we only take the communication
cost for the model into consideration, assuming the remaining
communication costs are fixed. Therefore, the communication
cost C' is proportional to the transmission parameters number,
thus can be formulated as

", 3)
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We take the one-way communication cost (i.e., upload or
download) as the metric. The final goal of this problem is
to minimize the C while maintaining server accuracy.

B. FedPEFT

In conventional federated learning, updates for the entire
model need to be repeatedly sent to and from the server,
resulting in significant communication costs, especially when
larger, more capable modern neural network architectures are
employed. To reduce this heavy burden, we deploy parameter-
efficient fine-tuning methods to adapt pre-trained models to
the local clients rather than fully fine-tuning all parameters,
which is described in Algorithm 1. In the FedPEFT framework,
illustrated in Fig. 1, only a small amount of parameters in the
local model will be downloaded, trained, and uploaded in each
communication round. For instance, FedPEFT reduces the size
of communication each round from 328MB (85.88M parame-
ters)/Client to 0.68MB (0.17M parameters)/Client when using
a pre-trained ViT-Base as the backbone in our default setting
introduced in Section IV-A.



Algorithm 1: Algorithm of FedPEFT framework

Input: N clients indexed by ¢, participating-client number
M, communication rounds 7', trainable parameters ¢ of the
model where 6] << |¢|, pre-trained model weights 6,
random initialized 6(°, and local epoch number E.

Server executes:
initialize ¢(* and {¢{”}¥; with @ and 5
for each round t =0,2,...,7 — 1 do
St < (random set of M clients)
for each client 7 € S; in parallel do
5 6®
5T« ClientUpdate (5", )

s — oM D] 5(t+1)
Lim1 S 5

¢(t+1) i {975(t+1)}
return ¢
ClientUpdate (9, 7):
6 < perform local training on § with D; for E epochs
return §

To implement FedPEFT, we provide a canonical baseline ap-
proach (Head-tuning) and three prototypes leveraging different
representative parameter-efficient fine-tuning methods (Bias,
Adapter, and Prompt), which are detailed in the following.

To reduce the number of trainable parameters, one intuitive
method, Head-tuning, is to freeze the backbone ¢ and only
train the head c. This method is historically the most common
fine-tuning procedure, and therefore we use it as a baseline
for FedPEFT. However, the adaptation ability of this method is
limited, as no adjustment is made to the network representation
prior to the final output head. This can be problematic in
the presence of a more intense domain shift. Therefore, we
consider the following approaches as primary prototypes for
FedPEFT:

FedPEFT-Bias. Bias-tuning [17] aims to adapt the pre-
trained backbone by only fine-tuning a specific group of
parameters, the bias term. In this way, the backbone can be
trained with moderate adjustments to prevent damaging the
upstream representation. We show the output of each layer ¢'
given hidden states h as h := ¢Zh + ¢, where ¢ and ¢F
are weight and bias of ¢, blue parameters are frozen, while
red parameters are trainable.

FedPEFT-Adapter. Instead of directly tuning existing pa-
rameters in the backbone like Bias-tuning, Adapter-tuning [19]
adds a few parameters called adapters inside the backbone ¢
instead. Usually, adapters will be deployed in each layer of
the backbone to perform transformations on different levels of
the pre-trained feature while the backbone stays frozen. We
show the output of each layer ¢! given hidden states h as
h := ¢, (¢%(h)),where ¢, is the adapter.

FedPEFT-Prompt. Prompt-tuning [18] takes a slightly dif-
ferent approach from the other fine-tuning methods. Specif-
ically, it concatenates trainable parameters, called prompt
embeddings, to the input embedding and hidden states in each
layer. We show the output of each layer ¢' given hidden states
h as h := ¢ (¢}, h]), where ¢ is the prompt for layer L

P

and [+, -] is the concat operation.

We illustrate the differences between all baseline and pro-
totype methods in Fig. 2. Besides the above prototypes, our
framework is compatible with other PEFT methods such as
LoRA [29].

C. Convergence Guarantee

Based on the convergence of FedAvg in [1, 3, 46], in this
section, we will comment on the convergence of FedPEFT.
For ease of notation, we consider, at each round, S to be
the number of clients sampled. We require the following
assumptions.

Assumption 1: (Global minimum) For the global objective
F, there exists ¢* such that, F'(¢*) = F* < F(¢), for all
¢ € R4.

Assumption 2: (3-Smoothness) The loss function f; : R —
R at each node is B-smooth, i.e. f;(y) < fi(z)+V fi(z)" (y—
x)+ §||y — 2|2 for all 2,y € R%.

Remark 1: (PEFT-FT gap) The above assumption implies
that F' is S-smooth. Therefore, the gap between PEFT and Full
Fine-tuning can be proved as |F(8(TU§©)—F (0T Us0)) =
0516 = 0O2 + [|5(T) — 5 12)).

Assumption 3: There exist constants G > 0, B > 1, such
that for all € R?, the stochastic noise, &+ follows

N

1

v 2 IV fi@)|* < 6%+ B2|[F()]*
i=1

Assumption 4: (Bounded variance) Let g;(¢) =
V fi(, zi(x)) be the unbiased stochastic gradient of f; with
bounded variance. That is, there exists, ¢ > 0 such that,
E.., [19:(¢) = VFi(9)|I] < o, for all ¢4, where 2 is
the k*" sample data at the i*" client.

Based on the vanilla FedAvg framework, we can give our
main convergence result as

Theorem 1: Let F satisfies Assumptions 1-4. Then

(T)y )12 BV (F (o) — F¥)
EMVH¢T>}so< et )

where P = £([|0) — 0©) |2 + ||5™) — 5(©)]2).

D. Privacy Discussion

Federated learning inherently ensures data privacy, as it
keeps the training data localized. Consequently, our proposed
FedPEFT framework, by design, does not introduce any addi-
tional risk of privacy leakage beyond what is intrinsic to FL
itself. However, it is crucial to acknowledge the vulnerability
of FL systems to gradient inversion attacks [47, 48], where an
adversary could potentially reconstruct original training data
from shared gradients. This type of attack typically requires
smaller batch sizes to be effective, as the precision of the
information contained within the gradients diminishes with
larger batch sizes, significantly reducing the feasibility of such
attacks [49]. In light of this, FedPEFT inherently encourages
the use of larger batch sizes compared to conventional full
fine-tuning methods, as FedPEFT requires gradients for much



fewer parameters and, therefore, very little memory cost during
training. Enabling larger batch sizes not only optimizes the
training efficiency but also fortifies the privacy-preserving
nature of the federated learning framework, further mitigating
the risks associated with gradient inversion attacks.

IV. EXPERIMENTS

The capability of full fine-tuning in terms of accuracy has
been illustrated in recent work [7, 8]. Thus we regard it as a
competitive baseline for FedPEFT. To verify the performance
of FedPEFT comprehensively, we evaluate the server accuracy
with each method from three perspectives and aim to answer
the following questions:

Communication Analysis: When faced with a limited
communication budget, there are several solutions to reduce
costs, e.g., sampling fewer clients each round or using a
lightweight model. Can FedPEFT outperform other solutions
in terms of communication cost and accuracy? (RQ1)

Capability Analysis: When the communication budget is
amply sufficient for all approaches, we want to evaluate the
trade-off of training fewer parameters with FedPEFT. Can
FedPEFT outperform full fine-tuning and training from scratch
within various federated learning settings and increasing
levels of downstream domain gap? (RQ2)

Robustness Analysis: In a lot of application scenarios,
there will be additional challenges for FL, such as privacy-
preserving requirements (i.e., differential privacy) and data
scarcity (i.e., very small amount of data on each client). We
want to evaluate the robustness of each method under such
scenarios. Can FedPEFT outperform full fine-tuning in terms
of robustness? (RQ3)

A. Experiments details

Dataset. For our study, we focus on computer vision (CV)
applications as our testbed. Specifically, we investigate the
performance of each method on the Image and Video domains
with image classification and action recognition tasks. For
the image classification, we employ ImageNet-21K [52] as
the pre-training dataset. Then we select three datasets for the
downstream tasks that have increasing degrees of domain gap
compared to ImageNet-21k, and we visualize and quantify the
domain gap in Section IV-C: Resisc45 [53], CIFAR-100 [14]
and PCam [54]. For video domain analysis, we take video
action recognition task for evaluation. we employ Kinetics-
400 [55] as the pre-training dataset and select three datasets
with varying degrees of domain gap as compared to Kinetics-
400: UCF101 [56], HMDB51 [57] and UCF-CRIME [58].
Experimental Setting. Our default experimental setting is to
split the dataset across N = 64 clients and sample M = 8
clients each round. The global aggregation will be performed
after ' = 10 local epochs. A total of 7' = 50 rounds of
communication will be performed. To simulate heterogeneous
data, we partition samples in each class to all clients following
a Dirichlet distribution, as common in the literature [4, 5, 21],
with a = 0.1 for CIFAR-100 and Resisc45 and o = 0.5 for
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Fig. 3: Server accuracy given the total communication budget.
The communication cost is computed with 4B/parameter, and the max
number of communication rounds is 50. The number in the bracket
next to the method indicates the number of participating clients m.
The transparency of the line indicates the ratio between m and total
client number N = 64. The horizontal dashed line shows a target
accuracy of 85%.

PCam based on the class number. Any modifications to this
setting in subsequent experiments will be clearly noted.

For each action recognition experiment, the data is split
across N = 32 clients and sample M = 4 clients each round
with constant o = 0.1 across all three video datasets.
Implementation Detail. We choose ViT-B [11] with image
size 224 and patch size 16 as our backbone. For the image
domain, the backbone is pre-trained on ImageNet-21K [52],
as available in the timm library [59]. The images for the down-
stream datasets are resized to 224 x 224. Images from CIFAR-
100 are augmented by random cropping with a padding of 4
and random horizontal flipping, and Resisc45 and PCam are
augmented only with random horizontal flipping. For the video
domain, we choose vanilla ViT-Base (ViT-B/16) [11] with
joint space-time attention as our backbone model [60] using
VideoMAE [61] pre-trained weights on Kinetics-400 [55]. We
perform the experiments on 8 Nvidia RTX A5000 GPUs with
a batch size of 64. All reported main results are run under 3
random seeds and averaged.

B. RQI: Communication Analysis

To verify the effectiveness of FedPEFT and answer the
first research question (RQ1, Section IV), we compare it
with three baselines while monitoring the communication
budget: a) Full fine-tuning of our default model (ViT-B). We
vary the number of participating clients to show different
levels of communication requirements. b) Head-tuning. The
communication cost of head-tuning is naturally lower than
other methods, so we increase the participating clients to make
it a stronger baseline. c) Fully fine-tune a light-weighted model
(ShuffleNet V2 0.5x [50] for images and X3D-S [51] for
videos) with a similar communication overhead.

As demonstrated in Table I, all FedPEFT methods achieve
better results in many cases compared with other approaches,
even with significantly fewer communicated parameters. We



TABLE I: Communication analysis on the image (upper) and video (lower) domains. The communication cost is computed with
4B/parameter. The averaged final accuracy, i.e., t = T" = 50, and the standard deviation of three different random seeds are reported for each
data set. The number of tuned parameters is computed based on CIFAR-100, but it may be slightly different for each dataset. The first section
shows the change in accuracy when decreasing the participating client number. The gray numbers indicate the baseline performance with no
decrease in the participating client number. The second section shows the change in accuracy when we reward the low communication cost
of head-tuning by increasing the number of participating clients. The third section shows the accuracy when we fully fine-tune a lightweight
model, ShuffleNet V2 0.5x [50] for image domain or X3D-S [51] for video domain. The fourth section shows the performance of each

prototype of FedPEFT.

Model Method # Tuned Params x Clients Comm. Cost \ Resisc45 CIFAR-100 PCam
ViT-B Full Fine-tuning 85.88M x 8 2.56GB 91.49+£0.82 91.73+0.43 85.41+2.41
ViT-B Full Fine-tuning 85.88M x 4 1.28GB 92.13+0.87  89.69+0.30 81.93+3.54
ViT-B Full Fine-tuning 85.88M x 2 656MB 87.68+1.32  87.03+0.18 82.20+1.22
ViT-B Full Fine-tuning 85.88M x 1 328MB 73.38+1.95  74.79+0.77 80.18+1.83
ViT-B Head-tuning 0.08M x 8 2.44MB 77.30£1.03  72.454+0.08 74.824+2.40
ViT-B Head-tuning 0.08M x 64 19.53MB 83.58+0.45 75.45+0.16 77.82+0.37
ShuffleNet  Full Fine-tuning 0.44M x 8 13.43MB \ 63.52+0.50 49.81+1.94 76.5243.35
ViT-B FedPEFT-Bias 0.18M x 8 5.49MB 89.04+0.80  90.79+0.25 85.51+0.66
ViT-B FedPEFT-Adapter 0.23Mx 8 7.02MB 87.20+£0.78  87.7440.55 78.67+1.85
ViT-B FedPEFT-Prompt 0.17Mx 8 5.19MB 83.35+0.76  89.78+0.84 86.50+0.85
Model Method # Tuned Params x Clients Comm. Cost \ UCF101 HMDBS51 UCF-CRIME
ViT-B Full Fine-tuning 86.30M x 4 1.29GB 94.22+0.23  70.34+0.28 34.374+0.76
ViT-B Full Fine-tuning 86.30M x 2 656MB 93.85+0.33  69.06+0.48 32.03+0.26
ViT-B Full Fine-tuning 86.30M x 1 328MB 92.61£0.16  59.88+0.27 24.214+0.26
ViT-B Head-tuning 0.08M x 4 1.22MB 88.57+£0.30  64.98+0.32 32.03+0.76
ViT-B Head-tuning 0.08M x 32 9.76MB 89.74+£0.45 63.87+0.66 32.81+0.76
X3D-S Full Fine-tuning 3.07M x 4 47.96MB \ 36.68+1.67 27.74+0.24 21.4240.76
ViT-B FedPEFT-Bias 0.18M x 4 2.75MB 92.344+0.30  69.37+0.32 34.38+0.52
ViT-B FedPEFT-Adapter 0.23Mx 4 3.51MB 92.824+0.44  69.96+0.24 33.76+0.26
ViT-B FedPEFT-Prompt 0.17Mx 4 2.60MB 93.82+0.66 70.87+0.16 34.38+0.26
find that full fine-tuning needs several orders of magnitude Dataset
® ImageNetlK (0) 1.00

of communication to achieve a comparable result with Fed-
PEFT. For instance, it needs at least 187x and 477 x more
parameters to reach and outperform FedPEFT on CIFAR-100.
Interestingly, full fine-tuning performs well on Resisc45 where
the domain gap is smaller, even when the participating-client
number is low. However, when the domain gap increases, more
participating clients will be needed to outperform FedPEFT,
and finally it fails to outperform FedPEFT even without
reducing the participating-client number on PCam where a
large domain gap exists. Meanwhile, head-tuning lags behind
most other approaches, but the performance is stable with
different levels of domain gap, while the ShuffleNet model
only achieves 71%, 55%, and 89% of accuracy on Resisc45,
CIFAR-100, and PCam with 2.4x the communication cost
compared with FedPEFT-Bias. Besides, the standard deviation
of FedPEFT is lower than most other solutions, especially
when the domain gap is large, showing the stability of Fed-
PEFT. For the video domain, the conclusion is consistent.

In Fig. 3, we also report the server accuracy that can be
achieved for each method given the communication budgets
using CIFAR-100 as an example. The communication cost
per communication round for full fine-tuning is even higher
than the total communication cost for FedPEFT to converge
to similar final server accuracy. Meanwhile, all FedPEFT
prototypes only require megabytes level communication, while
full fine-tuning requires gigabytes level communication to
reach a given target accuracy (e.g., 85% in Fig. 3), showing
the efficiency of FedPEFT. For the inter-prototype comparison,
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(b) Relative accuracy of each
method compared with full fine-
tuning with different domain gaps.

(a) Extracted feature. The number in
the bracket is the domain gap to the
pre-training dataset.

Fig. 4: Visualization and analysis of domain gap.

FedPEFT-Bias stands out for its highest efficiency. We provide
further discussions on the performance of each prototype in
Section IV-C.

C. RQ2: Capability Analysis

To study and understand our second research question
(RQ2, Section IV), we analyze the impact of the domain
gap between the model pre-training dataset and the dataset
for FL (Section IV-C) and systemically perform experiments
on CIFAR-100 across different federated learning scenarios by
varying client status and data distribution (Section IV-C).
Capability with Domain Gap. Domain gap is a realistic
concern when deploying pre-trained models for downstream
tasks. As shown in Tab. I, the performance on different datasets
varies a lot. Besides the difference in the difficulty between
all datasets, the domain gap to the pre-trained dataset is
also a key concern here since Resisc45 is a remote sensing
dataset, and PCam is a medical dataset. To further discuss



TABLE II: Capability analysis for different federated learning settings on CIFAR-100 and UCF-101. Training from scratch in more
complicated settings will lead to a lower result than in the first setting, which is omitted here. Bold-style shows the best performance among

all methods or among prototypes in FedFEFT.

Client  Method Image Video
# Tuned Params Homogeneous Heterogeneous | # Tuned Params Homogeneous Heterogeneous
Scratch 85.88M 38.44 35.72 86.30M 27.34 22.57
Full Fine-tuning 85.88M 93.70 93.50 86.30M 95.32 95.17
N =16  Head-tuning 0.08M 78.11 77.59 0.08M 89.90 85.44
M =16 RedpEFT-Bias 0.18M 91.89 90.25 0.18M 93.14 92.88
FedPEFT-Adapter 0.23M 90.21 88.77 0.23M 93.73 93.48
FedPEFT-Prompt 0.17M 92.09 90.37 0.17M 94.23 94.09
Full Fine-tuning 85.88M 93.32 87.01 86.30M 95.12 94.78
N — 16 Head-tuning 0.08M 76.65 62.80 0.08M 89.68 84.32
M FedPEFT-Bias 0.18M 91.35 86.18 0.18M 93.05 92.64
FedPEFT-Adapter 0.23M 89.48 80.08 0.23M 93.53 93.27
FedPEFT-Prompt 0.17M 91.60 85.54 0.17M 94.11 93.89
Full Fine-tuning 85.88M 93.66 92.81 86.30M 79.21 78.78
N — g4  Head-tuning 0.08M 78.45 75.51 0.08M 59.56 52.74
M = 64 FedPEFT-Bias 0.18M 92.71 91.71 0.18M 78.21 75.33
FedPEFT-Adapter 0.23M 90.50 89.26 0.23M 78.41 75.88
FedPEFT-Prompt 0.17M 91.87 90.96 0.17M 78.69 76.11
Full Fine-tuning 85.88M 93.50 92.09 86.30M 78.78 76.66
N — g4 Head-tuning 0.08M 77.59 72.55 0.08M 56.54 46.62
M =8  FedPEFT-Bias 0.18M 92.49 91.02 0.18M 77.19 74.42
FedPEFT-Adapter 0.23M 90.39 88.05 0.23M 77.69 75.18
FedPEFT-Prompt 0.17M 92.00 89.90 0.17M 78.56 75.38

the impact of the domain gap for each method, we use our
default setting shown in Section IV-A on the image domain
as an instance to visualize and quantify the domain gap
between each downstream dataset and the pre-training dataset.
Specifically, we adapt Linear Discriminant Analysis (LDA) for
all extracted features for the test samples in each dataset from
the pre-trained backbone to reduce the dimension. We compute
the center of each dataset and then compute the distance to
the center of the pre-training dataset as the quantifying result
of the domain gap, as shown in Fig. 4a.

In Fig. 4b, we present the performance of all approaches
with an increasing degree of domain gap compared to the
ImageNet-21k pre-training dataset. Interestingly, full fine-
tuning falls further behind as the data domain gap widens
in the PCam scenario, largely unable to keep up with Fed-
PEFT despite requiring a massive communication budget. This
phenomenon when a pre-trained model meets out-of-domain
data has been studied under centralized settings [62]. It was
found that the pre-trained upstream representations are still
meaningful even with a domain gap. Therefore, fully fine-
tuning the backbone with out-of-domain data can damage the
high-level semantics inside these upstream representations due
to overfitting, especially when the data size is small. This is
particularly relevant in FL, where overfitting and subsequent
client drift [63, 4, 3] are prone to occur.

On the opposite end of the spectrum, by not fine-tuning
the backbone at all, head-tuning maintains similar accuracy
despite the domain gap. This shows the robustness of the
pre-trained high-level semantics across domains, supporting
the conclusion that there is meaningful high-level semantics
inside of the upstream representations.

Still, the tight restriction on head-tuning is perhaps a bit
too far, as the accuracy on all datasets is still low overall.

Between the two extremes of head-tuning and full fine-
tuning, FedPEFT approaches may be able to suitably adapt the
upstream representations without excessively damaging them.
Specifically, FedPEFT-Bias operates with parameter-level con-
trol for each parameter pair containing weight and bias terms.
The representation can then preserve the high-level semantics
by freezing the weight term (maintaining the direction in the
feature space) and still adapting via the bias term (shifting
in the feature space). FedPEFT-Adapter and FedPEFT-Prompt
have slightly different mechanisms, controlling the backbone
by transforming the intermediate hidden representations via
adapters and prompts. Specifically, FedPEFT-Prompt adds ad-
ditional hidden states before the original hidden states without
changing the original representation, while FedPEFT-Adapter
transforms hidden states into a new space. Consequently,
FedPEFT-Prompt shows stronger robustness in handling larger
domain gaps than FedPEFT-Adapter. Of these approaches,
FedPEFT-Prompt is the most stable under the domain gap,
surpassing full fine-tuning by 1.1% on PCam. Overall, we
hypothesize that more fine-tuning freedom will be better
when the domain gap is minor, but moderate fine-tuning
is needed to maintain, as well as control, the high-level
semantics when the domain gap is large.

Capability with Different FL Settings. In application scenar-
ios, the setting of federated learning can vary substantially. It is
important to show the capability to maintain high performance
in diverse settings. We present results for all approaches
with different client availability ratios and data distributions
in Table II and draw the following conclusions from the
experiments:

First, we see that fine-tuning the pre-trained model shows
a significant improvement over training from scratch,
especially in heterogeneous scenarios. This finding is in agree-



TABLE III: Robustness analysis for privacy-preserving. The red
number indicates the performance difference.

Image Video
Method ‘ wioDP  w/DP ‘ wioDP  w/ DP
Full Fine-tuning | 92.00  77.61 (-1448) | 9422  86.34 (-7.88)
Head-tuning 7255 6220 (-10.35) | 8857  83.09 (-5.48)
FedPEFT-Bias 9102 8498 (6.04) | 9234 8661 (-573)
FedPEFT-Adapter | 8805  79.05 (9.00) | 9282  85.57 (-7.25
FedPEFT-Prompt | $9.90  78.35 (-11.55) | 9382  87.64 (-6.18)

ment with other very recent works [8, 7], which note the
stabilization effect of pre-trained initialization in federated op-
timization. When only fine-tuning the head, the performance is
still much better than training the entire model from scratch but
remains low in comparison to other methods across all settings.
We again find that head-tuning simply lacks adaptation ability,
holding too closely to the upstream representation.

On the other hand, we find that FedPEFT achieves com-
parable results (> 95%) to full fine-tuning with less than
0.3% of the trainable parameters. This ability to maintain
accuracy performance in various scenarios is crucial for FL, as
oftentimes, the exact setting and distributions are not known
ahead of time. Meanwhile, for inter-prototype comparison, we
find that FedPEFT-Bias outperforms other prototypes in
almost all settings in the image domain, while FedPEFT-
Prompt shows leading performance among all prototypes
in the video domain. This provides guidance in application
to choose the prototype.

D. RQ3: Robustness Analysis

In this section, we further investigate our third research

question (RQ3) in two critical FL scenarios evaluated by
CIFAR-100 and UCF-101.
Differential Privacy. A fundamental property of federated
learning is privacy protection. However, various works [47, 48]
have demonstrated how the client data can be reconstructed
from the raw gradient updates received by the server in
some scenarios. To protect client data privacy from such
attacks, differential privacy (DP) [9, 64, 65, 66] has become
standard practice. Therefore, we first study FedPEFT and other
baselines under DP.

To integrate DP, we apply a Gaussian mechanism within
the local optimization of each iteration [66] with ¢ = 5 and
0 = 0.001. We maintain the remaining FL settings as described
in Section IV-A, and show the results in Table III. Interestingly,
when comparing all methods, full fine-tuning experiences the
sharpest drop with DP. This causes its accuracy to fall lower
than all the FedPEFT prototypes. To understand this effect, we
note that DP applies noise to all trainable parameter gradients.
Full fine-tuning, therefore, requires such noise on all model
parameters, resulting in a more pronounced negative effect on
final performance. On the other hand, the other fine-tuning
methods maintain some part of the backbone frozen and have
significantly fewer trainable parameters on which adding noise
is necessary, limiting the performance drop. Overall, FedPEFT
allows for stronger accuracy in DP-enabled federated systems
than even full fine-tuning while still maintaining extremely
low communication needs.

TABLE IV: Robustness analysis for data scarcity. K indicates
the total sample number of all clients.

Method K = 1000 K = 1500 K = 2000
Image Video | Image Video | Image Video
Full Fine-tuning 66.52  87.50 | 67.47 8834 | 77.67 90.54
Head-tuning 52.13  83.46 | 56.52 8556 | 60.15  86.76
FedPEFT-Bias 7640 8534 | 81.14 8736 | 83.83 88.85
FedPEFT-Adapter | 71.34  86.17 | 76.91 88.12 | 79.22  90.28
FedPEFT-Prompt 63.77 8746 | 7194 8822 | 7689  90.45

Data Scarcity. We explore another common yet challenging
robustness condition in FL; that is when very little data is
available on individual clients. Such data scarcity scenarios are
even a tricky problem in centralized training. Fewer training
data will incur damage to the pre-trained representation due
to overfitting. In our evaluation for FL, we reduce the total
sample number K to 1000, 1500, and 2000. As shown in Ta-
ble IV, we find that FedPEFT outperforms full fine-tuning and
head-tuning under such low-data scenarios, further revealing
its capability to appropriately adapt pre-trained representations
to the FL task at hand.

For the inter-prototype comparison, FedPEFT-Bias and
FedPEFT-Prompt remain leading the performance in image
and video domains, consistent with the conclusion in common
scenarios, showing their robustness.

E. Insights and Takeaways

Our research findings contribute significant insights to
leverage parameter-efficient fine-tuning in federated learning,
aiming at reducing communication costs.

o FedPEFT stands out under stringent communication bud-
gets by offering significant advantages over traditional ap-
proaches, such as reducing the number of participating
clients, utilizing smaller models, or solely training the
classification head. Remarkably, the total communication
overhead for 50 rounds in the FedPEFT framework is less
than that of a single round in a conventional FL setting.

e In scenarios without communication limitations, FedPEFT
can achieve server accuracies exceeding 95% while only
requiring less than 0.3% of the parameters to be trainable.

e The continuum of fine-tuning freedom, ranging from
Full fine-tuning through FedPEFT-Bias, FedPEFT-Adapter,
FedPEFT-Prompt, to Head-tuning, varies across different
scenarios. Typically, FedPEFT-Bias and FedPEFT-Prompt
emerge as the top performers in image and video process-
ing tasks. Notably, FedPEFT-Prompt demonstrates superior
adaptability when bridging larger domain gaps between pre-
trained models and downstream tasks.

o The effectiveness of FedPEFT is further illustrated in real-
world applications characterized by stringent privacy re-
quirements or data scarcity. Even under such conditions,
FedPEFT-Bias and FedPEFT-Prompt maintain exceptional
performance across image and video domains.

V. CONCLUSION

In this paper, we introduce FedPEFT, a new federated
learning framework leveraging strong pre-trained models and
massively reducing communication costs. We integrate three



effective prototypes within the FedPEFT framework: Bias,
Adapter, and Prompt. With a thorough empirical study, we then
evaluate FedFEFT and other baselines in three key areas: com-
munication, capability, and robustness. We find FedPEFT to be
a promising approach for practical FL systems, capable of han-
dling many of the harsh conditions in FL while alleviating the
critical communication bottleneck. As a general framework,
FedPEFT can also be leveraged with other PEFT methods and
in application domains other than computer vision. We hope
this work can inspire new perspectives in federated learning
through the combined innovation of strong pre-trained models
and parameter-efficient fine-tuning methodologies.
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