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Abstract. Federated learning (FL) enables multiple clients to train
models collectively while preserving data privacy. However, FL faces chal-
lenges in terms of communication cost and data heterogeneity. One-shot
federated learning has emerged as a solution by reducing communication
rounds, improving efficiency, and providing better security against eaves-
dropping attacks. Nevertheless, data heterogeneity remains a significant
challenge, impacting performance. This work explores the effectiveness
of diffusion models in one-shot FL, demonstrating their applicability in
addressing data heterogeneity and improving FL performance. Addition-
ally, we investigate the utility of our diffusion model approach, FedDiff,
compared to other one-shot FL methods under differential privacy (DP).
Furthermore, to improve generated sample quality under DP settings,
we propose a pragmatic Fourier Magnitude Filtering (FMF) method,
enhancing the effectiveness of generated data for global model training.

1 Introduction

Federated learning (FL) is a distributed machine learning technique that enables
multiple clients to participate in the training process in a privacy-preserving
manner. In FL, each client trains a local model on its own data and sends the
model to a central server. The server combines these updates to improve the
global model, which is then sent back to the clients. This approach ensures that
the clients’ data is kept private while enabling the central server to learn from
the collective knowledge of all participating users [16].

However, FL poses significant challenges in terms of communication cost and
data heterogeneity across clients. Communication cost is a major bottleneck
in FL systems, as clients need to communicate frequently with the server over
multiple rounds during the training process [3,16,28]. This leads to a high com-
munication overhead, making the process slow or simply infeasible. To overcome
this challenge, one-shot federated learning has recently gained traction in
the research community [10, 29, 35, 36]. In this setting, clients only communi-
cate once with the server during the training process, significantly reducing the
communication requirements. This approach not only improves the efficiency of
the training process but also provides a better framework for privacy and appli-
cation. Specifically, one-shot FL provides better security against eavesdropping
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attacks, where adversaries attempt to steal or tamper with the information be-
ing sent between clients and the server [22]. By only requiring one round of
communication, one-shot FL significantly reduces the likelihood of such attacks.
Furthermore, traditional multi-round training may not be a practical option in
some cases, such as that of model markets [20]. In these scenarios, models are
trained to convergence by a participating user, and simply made available as a
pretrained model to potential buyers, without any option for iterative commu-
nication.

However, another significant challenge in federated learning still remains, and
that is, the data heterogeneity problem [16, 17, 21, 25]. In FL, clients often have
very different data distributions, making optimization particularly challenging
across the federated system. In the one-shot setting, this is especially detrimen-
tal to performance. Without the luxury of multiple communication rounds, the
resulting models will be significantly biased towards their narrow data distribu-
tion and difficult to reconcile into a global model. Knowledge distillation-based
approaches have been studied in the literature in an attempt to address these
problems [10,20,35]. Nonetheless, these methods still struggle immensely under
high heterogeneity, resulting in large drops in performance.

Yet, another class of model is potentially well-suited for such heterogeneous
distributions at the clients. Rather than simply employing discriminative models
to train on the clients, one could instead leverage generative models. These
generative models can then be gathered from the clients and inferenced on the
server to form a dataset for global model training, eliminating the need for
the challenging reconciliation process required for discriminative models. [13]
conducted a preliminary study of such a framework with conditional variational
autoencoders (CVAEs) [30] for one-shot FL, but there is still much to investigate
in this paradigm. Specifically, we consider two primary research questions (RQ)
in this work.

RQ1. First, we explore the utility of diffusion models in federated learning
and their potential for improving the performance of the one-shot FL process.
Diffusion models [14] have recently emerged as prominent approaches for image
generation, inspiring our investigation. We suggest that specific traits of diffusion
models could provide advantages for one-shot FL, as discussed in Section 3.
We then validate this hypothesis through comprehensive experiments with our
approach, FedDiff, across various settings.

RQ2. Second, we investigate one-shot FL methods under provable privacy
budgets with differential privacy (DP), as this aspect is not addressed by ex-
isting state-of-the-art (SOTA) one-shot FL works. Safeguarding model privacy
is critical in this setting, as the client models obtained in one-shot FL can be
reused multiple times or even traded in a model market. Furthermore, in light
of recent work [5], we examine the potential memorization of diffusion models
within our FedDiff approach and the effectiveness of DP as a mitigation strategy.

After studying these research questions, we further explore a simple tech-
nique for improving the performance of our FedDiff method under DP settings.
We observe that the quality of generated samples may deteriorate under DP con-
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straints, rendering some samples counterproductive to the training of the global
model. To improve the quality and consistency of the synthetic data, we pro-
pose a straightforward filtering approach, termed Fourier Magnitude Filtering
(FMF). FMF leverages sample magnitudes derived from the Fourier transform
to guide the selection of valuable samples. The resulting filtered dataset sub-
stantially improves the utility of the generated data, particularly in challenging
conditions, as detailed in Section 5.3. Therefore, in this work, our contributions
are summarized as follows:
– We contribute to the FL literature with the first study exploring diffusion

models in one-shot federated learning. Our comprehensive investigation un-
veils the unique advantages inherent to diffusion models, which enhances the
overall performance of one-shot FL while also addressing the significant chal-
lenges of data heterogeneity. We therefore establish a novel approach, FedDiff,
that not only ensures superior model performance but also aligns with the core
requirements of one-shot FL.

– We further study the privacy and utility of both discriminative and generative-
based SOTA one-shot FL methods with DP guarantees under heterogeneous
settings. We find that our FedDiff approach outperforms all other methods by
a significant margin (from ∼5% to ∼20% across many datasets and settings),
even when differential privacy is employed.

– While FedDiff performs very well, we note that sample quality is affected
under DP. Therefore, to improve performance in such conditions, we propose
a simple Fourier Magnitude Filtering (FMF) approach, which improves the
effectiveness of the generated data for global model training by removing low-
quality samples.

2 Background and Preliminaries

2.1 One-shot Federated Learning

Federated learning (FL) has emerged as a promising paradigm for collabora-
tive machine learning across decentralized devices while preserving data privacy.
The seminal work by McMahan et al. [24] introduced the concept of FL, where
model updates are computed locally on user devices and aggregated on a cen-
tral server. However, in the standard FL process, many iterative communication
rounds are required for convergence. One-shot FL, therefore, studies how to ef-
fectively learn in this distributed setting in a single round, thereby mitigating
the need for many communication rounds. Several approaches have been pro-
posed to tackle the unique characteristics of one-shot FL. [10] introduce the one-
shot federated learning framework and study several baseline approaches. In [10]
and [20], distillation approaches are studied using the ensemble of client models
to the global model, and assume a public dataset for this purpose. However,
such an assumption is limited, as public data related to the domain of interest
is often not available. A data-free method within the distillation methodology
was proposed by [35], where a generative adversarial network (GAN) is trained
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at the server level to generate the data for distillation, and iteratively optimized
between distilling to the server model and training the GAN with the ensemble
of client models.

Nonetheless, these methods still struggle with heterogeneous environments,
as we find in Section 3. Generative models on the client are well-suited for better
undertaking in such settings, as they can focus on the narrow client distributions
and simply generate data at the central location. [13] introduce the use of CVAEs
in highly heterogeneous one-shot FL. However, CVAEs exhibit suboptimal sam-
ple quality, a limitation that becomes markedly exacerbated with more complex
datasets and when subjected to the constraints of DP, which are not explicitly
addressed in the study by [13]. In this work, we investigate diffusion models in
one-shot FL and leverage their unique characteristics for the task, illustrating
their potential in a variety of difficult FL settings and privacy guarantees.

Diffusion model training

Client C

Client 0

Local data

…Client 2

Single round 
communication …

Server

Noise inputs
Noise inputs

Generate synthetic data from client models Server training with generated samples

Server classifier

Gather , …, 
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Fig. 1: Our one-shot FL approach, FedDiff. We first train a class-conditioned diffusion
model on local data x at the clients. After completing training, the local diffusion
models D0, D1, ..., Dc are gathered by the server, where they are used to generate
data z0, z0, ..., zc, which are combined to form the global training data G. The global
model is then trained on this synthetic dataset G.

2.2 Diffusion Probabilistic Models

Diffusion probabilistic models [6,14], or simply diffusion models as they are now
commonly referenced (DM), have gained traction for application in generative
vision tasks. Simply put, DMs aim to learn the backward process that can it-
eratively denoise an image corrupted with Gaussian noise back to the original.
Specifically, as detailed in [14], noise is introduced to a given sample via a Marko-
vian chain forward process

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1), (1)

where T is the total number of iterations (or timesteps) applied, and q(xt|xt−1)
is parameterized by N (xt;

√
1− βtxt−1, βtI). β is a value between (0,1), and

increases with timestep t, essentially making the final q(xT |x0) approximately
a simple Gaussian N (0, I). This forward process is fixed, and the goal of the
diffusion model is to learn the reverse process. During training, we simply opti-
mize for predicting the noise ρ from an arbitrary step t in the forward process,
forming a loss function [14]

L = Et,x0,ρ

[
∥ρ− ρθ (xt, t)∥

2
]
. (2)
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The process can also be conditioned on another variable y in ρθ (xt, y, t). For
example, the diffusion model can be class conditioned [15], with y being a variable
representing the class of the sample from a classification dataset. We utilize the
class-conditioning approach of [15] in our diffusion models for FL.

2.3 Differential Privacy

Differential privacy (DP) [7–9] is a framework for ensuring that the output of
a computation, such as machine learning model training, does not reveal sen-
sitive information about any individual data point in the training dataset. A
computation is said to be differentially private if the probability of obtaining
a particular output is roughly the same whether a particular individual’s data
sample is included in the computation or not. Formally [9],

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ, (3)

where A is a randomized algorithm, D and D′ are a pair of datasets that differ in
at most one record, and S is any subset of the output space of A. (ϵ, δ) control the
level of privacy protection provided by the algorithm, essentially determining the
maximum allowable amount of information that can be harnessed from the data.
Larger values of (ϵ, δ) correspond to weaker privacy guarantees, while smaller
values of (ϵ, δ) correspond to stronger guarantees.

To train deep learning models with such guarantees, differentially private
stochastic gradient descent (DPSGD) is typically employed [1]. In DPSGD, two
main mechanisms are used to protect the privacy of individual data points:
per-sample gradient clipping and the addition of random noise to the clipped
gradients. Per-sample gradient clipping involves setting a maximum threshold
on the norm of the gradient computed for each data point, so that if the norm
of a gradient exceeds the threshold, it is rescaled. This step is necessary to limit
the sensitivity of the loss function, which measures how much the loss function
changes when a single data point is removed from the training dataset. After
the gradients have been clipped, random noise is added to them before they are
used to update the model parameters. The amount of noise added is calibrated
based on privacy budget parameters (ϵ, δ).

3 Diffusion Models for Federated Learning

Before delving into the underlying motivation for our research questions RQ1
and RQ2, it is essential to provide a brief exposition of the one-shot FL process
when integrating generative models. The core premise of this approach departs
from the traditional method of client-side discriminative model training. Instead,
it advocates for the training of generative models on the client devices. These
client-side generative models are aggregated and used offline on the server side to
synthesize data, which, in turn, facilitates the training of a global discriminative
model. Within the scope of our study, we undertake an investigation into the
viability of leveraging diffusion models in this paradigm.



6 Mendieta et al.

Why diffusion models? In [32], a generative learning trilemma is shown
with model types, trading off sample quality, diversity, and fast sampling. CVAEs
(as employed in [13]) are typically identified to excel in diversity and fast sam-
pling, but lacking in sample quality. However, for one-shot federated learning,
fast sampling is not a concern, as the sampling can be done offline at the server
(Figure 1). Therefore, high sample quality and diversity are more valuable
properties in one-shot FL, as these will positively impact the performance
of the trained global model with the synthetic data. In this trilemma, diffusion
models excel in sample quality and diversity [32], but are not as quick to
sample. This motivated us to investigate the potential of DMs in this setting, as
the inherit strengths of DMs align with the needs of one-shot FL.

Furthermore, while CVAEs and diffusion models share a common origin in
terms of their objective, they differ in their approach to achieving this objective.
The optimization task of the diffusion model is simplified to learning a Markov
process to reverse a fixed forward process. The training is structured such that
the model only needs to learn how to denoise a small step in the generation pro-
cess, breaking down the problem. In contrast, CVAEs must simultaneously learn
both the forward process to encode the image to a latent space, and the decoding
process from that latent vector. We reason that the simplified objective of DMs
helps achieve superior performance when dealing with complex data within the
challenging FL environment (data heterogeneity, class imbalance, and limited
sample sizes). Moreover, in the FL setting, privacy is of critical importance. To
ensure privacy, training is done with DP, which introduces noise to the training
process and increases the difficulty of optimization. In these settings, the simpler
training paradigm of diffusion models is potentially advantageous.

Overview. To provide a contextual foundation for our research inquiries,
we start by laying out the settings of our study and approach in Section 3.1.
With this groundwork, we investigate RQ1 in Section 4, where we delve into
the effectiveness of diffusion models in one-shot FL with our FedDiff approach.
In Section 5, we address RQ2 through a systematic exploration of one-shot FL
methods within provable privacy budgets. Specifically, we evaluate FedDiff and
other SOTA approaches under DP constraints, as well as investigate the viability
of DP in mitigating memorization. In Section 5.3, we also introduce our Fourier
Magnitude Filtering approach, aimed at enhancing the efficacy of generated data
for global model training by selectively eliminating low-quality samples.

3.1 FedDiff and Experimental Setup

The basis of our approach, FedDiff, is illustrated in Figure 1. We begin by train-
ing class-conditioned diffusion models using the local data x on the clients. After
training, the server collects these local models, denoted as D0, D1, ..., Dc, which
are then used to generate data z0, z1, ..., zc. The label distributions from the
clients are used to condition the generative models during generation, as in [13].
The combination of these synthesized samples forms our global training dataset,
G. Subsequently, the global model is trained on the synthetic dataset G and
evaluated in our experiments.
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Comparison Methods. We compare with key baselines and the most recent
state-of-the-art one-shot FL methods throughout our investigation.

FedAvg [24] is a standard baseline, which simply trains discriminative clas-
sifiers at the clients and averages their parameters, typically weighted by the
number of samples at each client, to form a single server model.

DENSE [35] is a one-shot FL approach that first trains the discriminative
classifiers on the clients to convergence. Once the client models are collected,
it performs two stages of training in an interactive manner, switching between
training a GAN-based network for generating synthetic data and using the syn-
thetic data to distill the ensemble of client models to a single server model.

OneShot-Ens. We also include an idealized variant of DENSE, where rather
than attempt to distill the ensemble of client models to a single server model, we
simply employ the ensemble as the final model, as shown in [10] and similarly
compared to in [13]. We term this approach OneShot-Ens throughout the paper.

FedCVAE [13]. This recently proposed method employs conditional varia-
tional autoencoders (CVAEs) for one-shot federated learning. Their approach
has two variants, FedCVAE-KD and FedCVAE-Ens, which differ in how they
operate at the server level. FedCVAE-KD distills all generative models from
the clients to a single CVAE, and then generates data for training the global
model. On the other hand, FedCVAE-Ens employs each client model to gener-
ate data, contributing to the final dataset for training the server model. The
latter variant always shows significantly better performance than the other in
their paper; therefore, we compare with this FedCVAE-Ens variant and refer to
it as FedCVAE in the rest of the paper.

Datasets. We employ three datasets, FashionMNIST [31], PathMNIST [33],
and CIFAR-10 [18], which provide a range of domains and complexities. More
details on the datasets are provided in the Supplementary Material. For
our experiments, we divide the training set among C clients with a Dirichlet
distribution Dir(α), as commonly done in FL literature [4, 12,13, 25]. This par-
titioning approach creates imbalanced subsets, where some clients may not have
any samples for certain classes. As a result, a significant number of clients will
only encounter a small subset (or potentially only one) of the available class
instances. We visualize data distributions with Dir(0.1) and Dir(0.001) across
10 clients in the Supplementary Material.

Federated Learning Settings. We reproduce DENSE and FedCVAE for
our settings with their respective official code repositories. For all experiments,
we perform 3 independent runs with different seeds and report the mean and
standard deviation. For all approaches, we train client models for 200 local
epochs, as in [35]. For DENSE, FedCVAE, and FedDiff, we train the final global
model for 50 epochs. For the generator of FedCVAE, we employ their CVAE
variant with residual blocks, which has approximately 5.9M parameters. For our
diffusion model, we employ a basic U-Net structure with residual blocks [14,27]
and class-conditioning, with similar parameters to FedCVAE (∼5.8M). We em-
ploy a ResNet16 architecture for the discriminative models with approximately
6.4M parameters. For experiments with differential privacy, we employ the Opa-
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cus [34] library in PyTorch [26] to track privacy budgets. Further training details
and additional experiments can be found in Supplementary Material.

4 RQ1 : FedDiff for One-Shot FL

We investigate RQ1 by exploring the efficacy of our FedDiff approach and other
SOTA one-shot FL methods across important FL scenarios, including different
data heterogeneity levels, number of clients, and resource requirements.

4.1 Data Heterogeneity

Table 1: Data heterogeneity results with
various Dir(α) partitions. Smaller alpha
values indicate higher levels of heterogene-
ity. Typical approaches leveraging discrim-
inative models rapidly degrade in perfor-
mance as heterogeneity increases. However,
generative approaches are more robust to
such conditions. Our FedDiff shows su-
perior performance to all, particu-
larly in the most challenging scenarios
(CIFAR-10, high heterogeneity).

Method α = 0.1 α = 0.01 α = 0.001

FashionMNIST

FedAvg 57.11±3.64 29.50±10.6 25.89±4.78
DENSE 65.20±3.55 28.92±17.3 27.68±4.08

OneShot-Ens 67.35±1.19 33.79±17.9 32.01±3.35
FedCVAE 78.08±2.69 78.81±3.25 81.53±0.23
FedDiff 87.21±0.74 86.81±0.54 86.59±0.69

PathMNIST

FedAvg 28.10±4.60 22.05±8.20 21.92±4.95
DENSE 50.97±3.19 29.26±10.7 27.69±4.52

OneShot-Ens 34.62±3.61 34.94±9.32 34.49±5.30
FedCVAE 41.60±0.82 44.81±1.41 47.35±3.21
FedDiff 74.58±1.02 70.61±1.37 69.43±1.30

CIFAR-10

FedAvg 19.64±2.39 19.01±3.76 18.16±5.49
DENSE 36.04±7.75 21.40±2.73 17.91±3.18

OneShot-Ens 39.38±7.53 23.38±3.62 20.15±9.11
FedCVAE 34.40±1.04 36.06±3.27 36.92±1.38
FedDiff 57.69±2.07 56.57±2.42 55.75±1.55

Data heterogeneity is a critical chal-
lenge in FL, particularly with one-
shot settings. Even in the standard
FL scenario of multiple communica-
tion rounds, client models often fit
to very different distributions, and ef-
fectively reconciling their learnings is
daunting. This is exacerbated in the
one-shot setting, as we no longer have
the luxury of getting many iterations
to progressively steer the learning pro-
cess towards an ideal encompassing
representation.

In Table 1, we analyze the
performance of all methods un-
der moderate (Dir(0.1)) to extreme
(Dir(0.001) heterogeneity. Interest-
ingly, FedDiff outperforms all other
methods by a significant margin, from
∼5% to up to ∼20% in different
scenarios. In the case of CIFAR-10,
which is the most complex of the datasets, we find that FedDiff provides the
most improvement. As discussed in our initial motivations (Section 3), we rea-
son that the focus on sample quality and diversity that is provided by the DM
objective enables much improved performance. Intuitively, this becomes increas-
ingly evident in more complex settings. To verify this observation, we conduct
a comparative analysis of generated samples produced by FedCVAE and our
FedDiff approach, illustrated in Figure 2. The discernible disparity is evident,
with the samples generated by our method exhibiting significantly enhanced
sharpness and overall quality.

4.2 Number of Clients
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(a) FedCVAE (b) FedDiff (ours)

Fig. 2: Random sets of generated samples from FedCVAE and our FedDiff approach.
By leveraging the intrinsic properties of diffusion models (DMs), which are well-aligned
with the requirements of one-shot FL, we achieve substantial benefits in sample quality
and subsequent global model performance.

Table 2: Results with varying number of
clients C with Dir(0.01). As a fixed-size
dataset is used in all experiments, increas-
ing the number of clients also decreases
the number of samples per client. We find
that the SOTA discriminative approaches
quickly degrade as the data is distributed
across more clients. On the contrary, our
FedDiff maintains strong performance
in all settings.

Method C = 5 C = 10 C = 20

FashionMNIST

FedAvg 43.73±2.37 29.50±10.6 28.38±3.17
DENSE 48.24±6.25 28.92±17.3 20.72±9.82

OneShot-Ens 49.53±6.08 33.79±17.9 31.36±8.01
FedCVAE 78.45±2.44 78.81±3.25 78.33±2.45
FedDiff 86.89±0.34 86.81±0.54 87.24±0.57

PathAMNIST

FedAvg 29.18±3.54 22.05±8.20 19.83±3.16
DENSE 33.39±6.14 29.26±10.7 20.79±5.77

OneShot-Ens 36.95±5.30 34.94±9.32 24.59±6.19
FedCVAE 46.16±1.17 44.81±1.41 41.25±1.68
FedDiff 72.74±0.63 70.61±1.37 69.11±0.99

CIFAR-10

FedAvg 29.14±5.15 19.24±3.77 15.79±2.64
DENSE 30.48±2.30 21.40±2.73 12.60±2.33

OneShot-Ens 36.17±3.21 23.38±3.62 13.23±2.96
FedCVAE 32.34±2.59 36.06±3.27 37.63±1.87
FedDiff 57.68±1.86 56.57±2.42 58.45±0.73

Deepening our investigation, we also
study the effect of the number of
clients C in Table 2. Note that, as we
employ the same total number of sam-
ples in all experiments, the number of
samples per client will increase with
smaller C, and decrease with larger
C. This allows us to observe the effect
of increasing the distributed nature of
the data across the client network.

One question arising from the
adoption of generative models in
FL settings pertains to their ability
to maintain satisfactory performance
when trained on a limited number
of samples. Interestingly, when ana-
lyzing the results, we find that Fed-
Diff is capable of handling a much
smaller number of client training sam-
ples with little to no performance degradation. On the other hand, the discrim-
inative model approaches quickly experience a collapse in performance when
expanding to 20 clients. In the heterogeneous environment of federated learning,
the local optimization of a discriminative model on a highly-imbalanced and
small dataset proves challenging. Rather than being an overwelming burden,
such a situation is handled well by FedDiff, as its sole focus is to capture the
subsequently smaller distribution. Furthermore, we again find that FedDiff out-
performs FedCVAE in all settings, further illustrating the potential for diffusion
models in one-shot FL.
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4.3 Resource Requirements

To further explore the efficacy of our method, we also examine resource fac-
tors, including FLOPs and parameter count, for each method deployed on a
single client. Notably, our FedDiff approach consistently delivers superior accu-
racy with comparable computational resources to other methods. We extend this
assessment to a reduced model size (FedDiffs in Table 3), reaffirming its strong
performance relative to alternative methods. This analysis underscores the effec-
tiveness of FedDiff, even when deployed on hardware with modest computational
capabilities.

Table 3: Accuracy versus FLOPs and pa-
rameter count (Params) for each method on
a single client. Our FedDiff approach con-
sistently attains heightened accuracy levels
while maintaining very reasonable resource
demands on par with other methodologies.
We also evaluate our method with a scaled-
down model variant (FedDiffs), further con-
firming its performance relative to alterna-
tive approaches. This analysis underscores
the realistic feasibility of our FedDiff frame-
work.

Resources Accuracy

Method MFLOPs ↓ Params ↓ FashionMNIST PathMNIST CIFAR-10

FedAvg 479.92 6.44M 29.50±10.6 22.05±8.20 19.24±3.77
DENSE 479.92 6.44M 28.92±17.3 29.26±10.7 21.40±2.73

OneShot-Ens 479.92 6.44M 33.79±17.9 34.94±9.32 23.38±3.62
FedCVAE 79.00 5.97M 78.81±3.25 44.81±1.41 36.06±3.27
FedDiff 301.14 5.81M 86.81±0.54 70.61±1.37 56.57±2.42
FedDiffs 77.43 1.46M 85.90±0.92 70.53±5.61 50.08±1.87

It is pertinent to emphasize that
training diffusion models within the
FedDiff framework is no more intri-
cate than conventional methodologies
and remains highly viable for FL. The
computational complexity aligns with
training a conventional CNN model
with a modest number of parameters,
and we employ the same number of
local epochs as previous work with
CNNs [35]. Importantly, the train-
ing process entails selecting random
steps in the diffusion process at any
given training iteration, eliminating
the necessity for sequential steps dur-
ing training. During inference, the
generation process involves sequential
denoising steps; however, this poses no issue for the clients, as generation occurs
at the server in FedDiff. Therefore, FedDiff is an effective and practical approach
for providing strong performance.

5 RQ2 : Privacy Considerations

Privacy holds paramount importance in one-shot FL. The trained client model
may be repeatedly utilized, or even exchanged in a model market context, and
therefore safeguarding the privacy of the model before it leaves the client is
imperative. However, other SOTA works have not experimented with DP con-
straints, nor have they thoroughly explored this aspect, often leaving privacy
discussions simply as a possibility for future work [13, 35]. In the subsequent
sections, we meticulously investigate privacy from various perspectives and delve
into our research question RQ2.

5.1 Differential Privacy

Differential privacy is the widely accepted standard for ensuring privacy of a
model, as it offers a provable guarantee of privacy [1,7–9,11]. Utilizing (ϵ, δ) dif-
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ferential privacy during model training guarantees comprehensive privacy protec-
tion, encompassing not only the model’s parameters and activations, but also ex-
tending to all subsequent downstream operations such as inferences, fine-tuning,
and distillation. It is important to note that a model trained under (ϵ, δ) DP
safeguards the privacy of every training sample, regardless of its qual-
ities or uniqueness [34]. Specifically, we train all approaches under (ϵ, δ) DP
at the clients for various privacy levels of ϵ = 50, 25, and 10, with δ = 10e−5,
C = 10, and α = 0.01. Lower ϵ values correspond to a tighter privacy budget,
and the stated budget is for the entire training of each local model. We employ
the Opacus [34] library for implementing DP. Further DP training details are
provided in Supplementary Material, along with additional ϵ experiment. We
present the results for all approaches in Table 4.

Table 4: Differential privacy (DP) results
under various ϵ budgets. We set C = 10
and α = 0.01 as the default setting. Even
under DP constraints, FedDiff is a
particularly viable approach, outper-
forming all other SOTA one-shot FL
methods.

Method ϵ = 50 ϵ = 25 ϵ = 10

FashionMNIST

FedAvg 21.04±12.1 20.82±12.3 20.39±12.6
DENSE 26.34±9.03 26.29±9.81 24.29±15.6

OneShot-Ens 31.27±10.9 31.32±10.1 29.99±16.7
FedCVAE 44.40±1.70 43.89±2.53 41.65±3.19
FedDiff 75.92±1.86 75.08±2.13 73.43±1.50

PathMNIST

FedAvg 16.98±8.93 15.30±6.44 14.85±4.19
DENSE 20.56±6.59 19.19±3.76 18.41±1.86

OneShot-Ens 24.59±7.63 23.38±2.60 22.23±2.02
FedCVAE 24.06±1.57 22.15±2.68 20.51±1.29
FedDiff 54.98±2.04 51.51±1.85 47.85±3.68

CIFAR-10

FedAvg 16.35±1.52 15.39±1.87 15.07±2.12
DENSE 16.97±2.35 15.68±2.27 14.98±1.25

OneShot-Ens 17.73±2.71 17.34±2.35 15.72±1.34
FedCVAE 16.29±1.55 16.08±2.19 15.86±2.83
FedDiff 32.93±1.93 31.76±2.68 27.78±1.66

As expected, all methods expe-
rience a drop in performance when
trained under DP settings. Nonethe-
less, FedDiff still stands out, outper-
forming all other methods by a signifi-
cant margin. Particularly for Fashion-
MNIST, FedDiff experiences compar-
atively less accuracy drop under DP
than FedCVAE. As articulated in our
initial motivations outlined in Sec-
tion 3, DP training introduces noise
into the training process, exacerbat-
ing the complexity of optimization. In
such scenarios, the simplicity of the
training paradigm employed by diffu-
sion models becomes notably advan-
tageous. Overall, we show that Fed-
Diff is a strong approach even when
DP is employed.

5.2 Addressing Memorization

In a recent study, [5] explored diffusion models and identified their ability to
memorize samples under certain conditions. They acknowledge differential pri-
vacy as the gold standard defense strategy, but did not provide completed exper-
iments to this end. Therefore, we evaluate the effectiveness of DP to this end,
assessing memorization within our DP-trained models to investigate whether
inadvertent reproduction of the training data can be eliminated.

To conduct this study, we adopt the evaluation methodology established
by [5] to scrutinize the occurrence of memorization. Specifically, from each DP-
trained diffusion model, we generate a vast number of samples (five times the
size of the training set). Subsequently, for each generated image, we assess poten-
tial memorization compared to the original training samples using the adaptive
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distance metric introduced by [5],

ℓ (x̂, x;Sx̂) =
ℓ2(x̂, x)

α · Ey∈Sx̂ [ℓ2(x̂, y)]
. (4)

Here, Sx̂ denotes the set comprising the n nearest elements from the training
dataset to the example x̂. The resulting distance metric yields a small value if the
extracted image x exhibits significantly closer proximity to the training image x̂
compared to the n closest neighbors of x̂ within the training set. The idea is to
find generated images that are unusually close to an original training image as
indication of memorization. We set α = 0.5 and n = 50 as in [5].

[5] did not define the specific threshold for Equation 4 for marking when a
sample is considered memorized. Therefore, we consider the intuitive threshold
to be less than 1, as this would indicate that the distance from the extracted
image to the training image is less than half of the average distance to the closest
n neighbors. Upon conducting this assessment, we do not find any instances of
memorized samples for all datasets under such definition, even at an elevated
privacy parameter of ϵ = 50, with the closest distance values being ∼1.3. We
show the histogram of scores for all samples on each dataset in Figure 3.

(a) FashionMNIST (b) PathMNIST (c) CIFAR-10

Fig. 3: Histogram of distance scores for all generated samples at ϵ = 50 to correspond-
ing closest training image by Eq. 4 on each dataset. Note that the y-axis in in log scale,
as there are very few samples with lower scores.

Because the threshold definition for memorization could vary, we also qual-
itatively show the samples with the lowest distances for all datasets at ϵ = 50
in Figure 4. Notably, the training versus the generated samples have discernible
differences, in contrast to the nearly identical samples uncovered in [5] when
training large diffusion models without DP. Also, given the nature of FL, the
choice of diffusion model size will typically be small (for example, ours is ∼5.8M
parameters), and therefore will be less likely to memorize compared to the larger
DMs evaluated in [5]. As DP algorithms improve, we anticipate that even bet-
ter final accuracy can be achieved while maintaining guaranteed privacy in the
future with FedDiff.
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(a) FashionMNIST (b) PathMNIST (c) CIFAR-10

Fig. 4: Qualitative comparison of original training samples and generated samples at
ϵ = 50. We show the closest 30 samples via the similarity metric in Equation 4. In each
stacked row, the original samples are on top, with the corresponding nearest generated
image immediately below. Even under the loosest privacy guarantee of ϵ = 50, we do
not see blatant memorization.

5.3 Fourier Magnitude Filtering

While FedDiff performs comparatively well against other SOTA one-shot FL
methods under DP constraints, we further investigate a simple approach to im-
prove our method, particularly for complex data most affected by DP. As shown
in Figure 4, we note that the generated samples under DP can lack details, ex-
hibiting reduced structure. Therefore, it may be advantageous to sort out and
remove such poor quality samples from the final synthetic dataset prior to con-
ducting the training of the global model.

In order to understand the impact of prioritizing data quality on performance,
we conducted an initial experiment. For the CIFAR-10 dataset, we leverage a
centralized pretrained classifier as an oracle to discern high and low quality
samples. Specifically, we selectively retain samples for which the oracle accurately
classifies and discarded those it misclassifies. This provides a way to filter out
samples that are likely irrelevant or misleading for training a model. We then
train the global model exclusively on the curated dataset of accurate samples
and evaluate. This investigation yields a discernible improvement ranging from
approximately 2% to 4% in final global model accuracy compared to training
with all generated data, verifying an importance for data quality. Therefore,
a critical question arises from this observation: how can we conduct sample
filtration in the absence of an oracle?

To do so, we look to the Fourier domain for a potential source of information.
As inspiration, we note that the use of the magnitude of local client images has
been utilized in FL to assist in domain generalization across clients by provid-
ing low-level “style" information without the high-level semantics encoded in the
phase [23]. In our case, we propose to leverage the Fourier magnitude informa-
tion as a potential referenceable indicator to guide the sample filtering process.
Furthermore, we are able to do so under very tight DP guarantees.

Specifically, on the client, we take the Fourier transform of the local samples
and extract the magnitude information. For each client c, we gather the average
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sample magnitude with

M̄c =
1

nc

nc∑
i=1

|ψ(xi)|, (5)

where ψ is the 2D Fourier transform operation, xi is a sample, and nc is the total
number of samples in client c. M̄ is bundled with the model and transmitted by
the client to the relevant global party.

As in our standard global training procedure, samples are generated with
the client-trained diffusion models to form a synthetic set. Prior to conducting
global training, we calculate a sample score s for the generated data z from each
diffusion model from the clients, szi

c
= ∥|ψ(zic)|−M̄c∥2. We can then leverage this

information to guide the removal of irrelevant samples, forming the final training
set G by removing γ percent of the generated data with the highest s (larger
magnitude difference). To continually ensure privacy guarantees, we apply DP
in the FMF calculation. We do so by employing the DP bounded mean [19] from
PyDP1 to calculate the average magnitude M̄c at each client. This allows us
to precisely manage any degree of privacy leakage for M̄c and include it in the
overall privacy budget.

(a) FashionMNIST (b) PathMNSIT (c) CIFAR-10

Fig. 5: Results with our Fourier Magnitude Filtering under DP. FedDiff is in green
and FedDiff+FMF in orange. Our FMF approach provides a simple way to boost
accuracy, especially in more challenging scenarios such as lower ϵ budgets and more
complex datasets. We plot the mean across three runs with different seeds for each
setting. Additional γ ablations are provided in the Supplementary Material.

In Figure 5, we show the results of applying our FMF approach with Fed-
Diff for the same overall DP budgets as Table 4. FMF is particularly effective in
the most difficult scenarios, helping to mitigate the performance drop in harsh
FL environments. For example, FMF provides over 3.5% and 2% improvements
with PathMNIST and CIFAR-10 in the challenging ϵ = 10 setting. Overall, FMF
is a simple way to boost performance in one-shot FL under DP.

6 Conclusion

In conclusion, our work addresses two valuable research questions in one-shot
FL. Firstly, we investigate the potential of diffusion models for one-shot FL, and
1 https://github.com/OpenMined/PyDP
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present the pioneering effort in this direction. In our investigation, we unveil the
unique advantages that DMs offer, showcasing their potential to enhance the
overall performance and tackle heterogeneity across diverse settings with our
proposed approach, FedDiff. Secondly, we study privacy in SOTA one-shot FL
and contribute a thorough investigation under provable privacy budgets, as well
as address memorization concerns. Furthermore, to enhance performance under
harsh DP conditions, we propose a novel and pragmatic solution, Fourier Magni-
tude Filtering, to boost the efficacy of generated data for global model training
by eliminating low-quality samples. More discussions, including limitations and
broader impact, are included in the Supplementary Material. We hope our
work will inspire the community and foster further research in this direction to
improve one-shot FL with generative models.
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7 Supplementary Material

7.1 Additional Training Details

The FashionMNIST dataset is an alternative to the original MNIST dataset, pro-
viding a more challenging task by replacing the handwritten digits with grayscale
images of various fashion items. The dataset consists of 60,000 training images
and 10,000 test images. The PathMNIST dataset is a medical dataset of colon
pathology images in RGB, with a training set of 89,996 images and a test set
containing 7,180 images with 9 classes. The CIFAR-10 dataset consists of 60,000
color images equally distributed into ten different classes. The dataset is com-
posed of a training set containing 50,000 images and a test set comprising of
10,000 images. CIFAR-10 is natively sized at 32×32 pixels. We upsample Fash-
ionMNIST and PathMNIST from 28×28 to 32×32. A visualization of the dataset
partitioning across clients is shown in Figure 6.

We train with a batch size of 128 for all methods and use the AdamW opti-
mizer. For local (and global training were applicable), we searched learning rates
from [3e−3, 1e−3, 3e−4, 1e−4] for each method using the CIFAR-10 dataset to
find the optimal settings. For DP experiments, we set the max gradient norm
clipping threshold to 1.0 for all experiments and methods. In accordance with
the recommendations of the Opacus [34] library, we employ their Poisson batch
sampling to ensure privacy guarantees.

As mentioned in Section 3.1 of the main paper, our diffusion model is a basic
U-Net structure with residual blocks [14,27] and class-conditioning. For sampling
at the server, we perform 1000 iterations as in [14] to generate each batch. The
total number of generated samples is set equal to the size of the original dataset.
Code will be made available upon acceptance.

7.2 Additional ϵ Experiment

To demonstrate the feasibility of FedDiff under more stringent budget con-
straints, we conduct an experiment with an even tighter privacy budget of ϵ = 1
in Table 5. Despite facing such stringent privacy constraints, FedDiff maintains
a higher level of performance at ϵ = 1 than all other methods in Table 4 of the
main paper at ϵ = 50.

7.3 FMF γ Ablation

In Figure 7, we present the outcomes obtained using FedDiff+FMF under ϵ = 10
across a range of γ values, encompassing data filtering percentages spanning from
1% to 12%. Our findings indicate that, in general, data filtering within the 1% to
10% range yields favorable results and leads to performance enhancements, with
around 5% being a great default. Interestingly, the the degree of improvement
provided by FMF becomes more pronounced and consistent as the dataset be-
comes more challenging. This phenomenon aligns with the anticipated trends, as
more intricate datasets inherently pose a greater challenge, making it less likely
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(a) α = 0.1 (b) α = 0.001

Fig. 6: Dir(α) data partitioning for 10 clients on
CIFAR-10. We show moderate (α = 0.1) to se-
vere (α = 0.01) data heterogeneity levels. Data het-
erogeneity poses a significant challenge for many
one-shot FL methods, as reconciling various mod-
els trained on widely different distributions is non-
trivial. Our FedDiff approach rather trains diffu-
sion models on the simple client distributions, which
can then generate useful synthetic data for training
global models.

Table 5: Differential privacy
results under ϵ = 1. Even in
this case, FedDiff outperforms
all other methods with the
much larger budget of ϵ = 50
in Table 4 of the main paper.

Privacy ϵ = 1 FedDiff

FashionMNIST 65.53±0.70

PathMNIST 44.38±3.35

CIFAR-10 21.48±1.53

(a) FashionMNIST (b) PathMNSIT (c) CIFAR-10

Fig. 7: Ablation study of γ in FMF under the ϵ = 10 setting. The accuracy of FedDiff is
in green and FedDiff+FMF for various γ in blue. Generally, data filtering within the
range of 1% to 10% produces positive outcomes, resulting in improved performance,
with approximately 5% serving as an effective default choice. We plot the mean across
three runs with different seeds for each setting.

for the generators to consistently produce high-quality samples. Consequently,
the need for data filtering becomes more pronounced in such scenarios to en-
hance sample quality. This trend is also favorable since it addresses the specific
need for improvement, especially in cases where performance is suboptimal and
the challenges are more pronounced.

7.4 Discussions, Limitations and Broader Impact

Model Heterogeneity. In real FL systems, model heterogeneity may often oc-
cur [13, 35]. For instance, some clients may have architecture variations in their
models or have smaller or larger models depending on their computing capa-
bilities. Therefore, clients may have different architectures of similar generation
capability, or even differing capabilities depending on the requirements of each



20 Mendieta et al.

client. Our approach allows for flexibility to accommodate such system diversity
across clients. In FedDiff, we generate data from the client models and employ
that synthetic data for global training, and therefore can leverage varying models
without the worry of reconciling the weights themselves.

Limitations and Broader Impact. One downside of our method is that
the generated data, particularly under DP constraints, still lacks in quality and
effectiveness for global model training versus using true data. For instance, with
DP on CIFAR-10 as shown in Figure 4 in the main paper, the data loses a
substantial amount of structure. An interesting direction for future work would
be to study how to further improve the quality of the generated data and its
usefulness for global model training while maintaining privacy.

Looking at the broader impact of our work, FL depends on the diversity of
data contributed by different participants. If biases exist in the local datasets,
they can be propagated and amplified during the model training process. This
could lead to unintended algorithmic biases and discrimination in the resulting
models. Ensuring diversity and fairness in the data used for FL is an important
research direction to mitigate this risk and promote equitable outcomes [2], par-
ticularly in the highly data heterogeneous environments explored in this work.
Furthermore, as we have discussed throughout our paper, the privacy of client
data is important in FL. To mitigate risks in this regard, we take many precau-
tions to preserve privacy of the clients participated in the FL process though
the use of DP, and operating within the one-shot setting to reduce the chance
of eavesdropping.
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