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Abstract— Existing multi-agent coordination techniques are
often fragile and vulnerable to anomalies such as agent
attrition and communication disturbances, which are quite
common in the real-world deployment of systems like field
robotics. To better prepare these systems for the real world,
we present a graph neural network (GNN)-based multi-agent
reinforcement learning (MARL) method for resilient distributed
coordination of a multi-robot system. Our method, Multi-
Agent Graph Embedding-based Coordination (MAGEC), is
trained using multi-agent proximal policy optimization (PPO)
and enables distributed coordination around global objectives
under agent attrition, partial observability, and limited or
disturbed communications. We use a multi-robot patrolling
scenario to demonstrate our MAGEC method in a ROS 2-
based simulator and then compare its performance with prior
coordination approaches. Results demonstrate that MAGEC
outperforms existing methods in several experiments involving
agent attrition and communication disturbance, and provides
competitive results in scenarios without such anomalies.

I. INTRODUCTION

Multi-agent systems surround us every day: vehicles on
the road, airplanes in the sky, and soon, robots in multi-
tudes. For truly useful autonomy in these systems, individual
agents must coordinate their actions with those around them.
However, current multi-agent coordination techniques are
often fragile, susceptible to both drastic changes such as
agent attrition or to the slightest disturbances such as poor
communications, especially given the inherent partial observ-
ability of our physical world. In this paper, we present new
work towards a novel graph-based reinforcement learning
approach to multi-agent coordination that is robust to such
disturbances.

A multi-robot system that depends on inter-agent coordi-
nation cannot be fielded in environments which are particu-
larly disturbance-prone or adversarial without robustness to
those disturbances. This problem was highlighted extensively
in the DARPA OFFSET program, which fielded nearly
two hundred autonomous ground and air vehicles in urban
combat scenarios [1]. Experimentation during the OFFSET
program revealed significant coordination deficiencies in the
presence of frequent agent attrition and a difficult commu-
nication environment. Most existing works do not address
these disturbances effectively or at all.

Many real-world environments (and associated problems)
can be naturally represented by graphs. For example, a
road network (route planning), dense forest (swarm motion
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planning), or warehouse (task assignment) are graph envi-
ronments at heart. These environments are then well suited
for modeling and analysis using Graph Neural Networks
(GNNs), which aggregate information from throughout the
graph using a “message-passing” process to learn an “em-
bedding”, or representation, of the graph. This allows GNNs
to capture the attributes of individual entities in the graph
and the complex relationships between them.

The combination of GNNs and multi-agent reinforcement
learning (MARL) is therefore a natural fit for solving many
multi-robot challenges. Until now though, GNNs have not
been heavily used in MARL and multi-robot coordination
tasks.

We aim to change this using MAGEC, the Multi-Agent
Graph Embedding-based Coordination algorithm. It is a
MARL framework based on multi-agent proximal policy
optimization (MAPPO) and inductive GNNs. Our approach
is capable of multi-agent coordination in the face of agent
attrition, poor or nonexistent communication, and partial
observability of the environment. It is applicable to the
general class of problems in which agents must traverse a
graph-based environment. In this paper, we apply MAGEC
to the multi-robot patrolling scenario, which we evaluate
using our custom multi-robot simulation environment. Our
evaluation includes comparison with benchmark algorithms
for the patrolling scenario and provides analysis of our
various design decisions. Our contributions are as follows:

• MAGEC, a robust GNN-based MARL method for
multi-agent coordination in the face of disturbances,
delayed rewards, and sparse actions.

• An inductive graph embedding method that accounts for
both node and edge features.

• A novel “neighbor scoring” GNN which enables navi-
gation in a graph-based environment.

• Training and simulation tools for MARL-based multi-
robot patrolling.

II. RELATED WORKS

A. Graph Neural Networks

Many multi-robot coordination problems, including ours,
can be easily represented by a graph. However, traditional
neural networks accept only fixed-size inputs such as bitmap
observations. In the case of a graph, the input size may
vary based on the graph structure. To handle this, the so-
called “message-passing” paradigm was developed first in
[2] and then in many later works such as [3] to learn graph
embeddings.



However, many of these prior works represent graphs in
a transductive manner and do not generalize well to graphs
different from those on which the embedding was originally
trained. To overcome this challenge, Hamilton et al. devise
an inductive embedding method called “GraphSAGE” [4].
This method was further improved upon by Xu et al. in [5]
with the addition of skip connections between GraphSAGE
convolutional layers.

Zhou et al. proposed a GNN framework [6] that integrates
node and edge features to boost long-distance information
transmission and enhance node embeddings. Our indepen-
dently developed research also adopts combined node and
edge embedding, though our method is inductive and may
be applied to graphs and nodes unseen during training.

B. Multi-Agent RL using Graph Neural Networks
Compared to other methods, the use of GNNs in MARL

has been minimal. In [7][8], a single-layer GNN is used to
interpret LIDAR observations. In [9], [10], a GNN is used
during the training stage of a MARL algorithm to perform
state-action value factorization. Hu et al. use a GNN for
learned multi-robot coordination, though they only consider
the agents and not the environment as part of the graph [11].

C. Algorithms for Patrolling
A series of studies have progressively enhanced under-

standing of and methodology for the multi-robot patrolling
problem. Portugal and Rocha proposed two Bayesian-based
strategies, namely the Greedy Bayesian Strategy (GBS) and
the State Exchange Bayesian Strategy (SEBS) [12]. GBS
emphasized immediate gains by making locally optimal
choices and SEBS extended this by integrating inter-robot
communication attrition robustness. Portugal and Rocha
later introduced the Concurrent Bayesian Learning Strat-
egy (CBLS) [13], which utilized reward-based learning.
Farinelli et al. developed two solutions for patrolling in
uncertain environments: DTA-Greedy and the more intricate
DTAP, an auction-based task allocation mechanism [14].
Wiandt et al. presented a self-organizing algorithm that could
autonomously partition a graph for agent patrolling [15].
Kobayashi et al. proposed the Local Reactive (LR) algo-
rithm [16], which focuses on patrolling while maintaining
base station situation awareness. More recently, ElGibreen
and Youcef-Toumi introduced an online DTA method for
uncertain environments, emphasizing heterogeneous agent
capabilities [17]. The Adaptive Heuristic-based Patrolling Al-
gorithm (AHPA) was introduced in [18] and was shown to be
robust to agent attrition while using minimal communication
resources.

D. Algorithms for MARL Patrolling
More recently, MARL has been used for multi-robot

patrolling. Guo et al. use graph attention networks with
MARL [19]. However, their method does not appear to
generalize to different environments without retraining. Tong
et al. present a MARL approach [20] for patrolling, though it
only uses simple grid environments with single-step actions
and immediate reward.

III. PROBLEM DEFINITION

We start by introducing the motivating scenario, multi-
robot patrolling, and then provide the mathematical formu-
lation for our multi-agent system (MAS).

In the following, we use subscript notation to indicate
a value pertaining to an agent, and superscript notation to
indicate an agent’s belief about some value. For example, sji
is agent j’s belief about the state of agent i, and si is the
true state of agent i. When necessary, we denote a value as
a function of time t, such as si(t).

A. The Patrolling Problem

Multi-Robot Patrolling is a common benchmark problem
for evaluation of multi-agent coordination algorithms such as
task allocation [12]. We use the patrolling formulation of [18]
and adapt it to this problem. In the patrolling problem, agents
of the MAS must repeatedly visit a set V of observation
points or nodes, attempting to minimize one of several
metrics such as ζ̄ = 1

m

∑
v∈V ζ(v), the average idleness

time or ζmax = maxv∈V ζ(v), the worst node idleness time.
Unlike in some other patrolling works, such as [12], we

assume that the last visitation time of nodes can be observed
from the environment (see Section IV-E.1).

B. Multi-Agent System Definition

Using the notation of [21], we formulate the multi-
agent system as a decentralized partially-observable Markov
decision process (Dec-POMDP) described by the tuple
⟨A, S,O,A, T,R, γ⟩. The set A is a finite set of agents. As
shorthand, we let n = |A|.

The environment is modeled as a graph G = {V,E} in
Euclidean space R2, where V is the set of vertices and E is
the set of edges. As shorthand, we let m = |V | indicate the
number of vertices. Graph G is known a-priori to all agents.

The set S is a finite set of possible system states and

s = {si}i∈A ∪ {sv}v∈V ∀s ∈ S

where si is the state of agent i and sv the state of node v. Due
to partial observability and communication disturbances, the
true state s of the system may not be known with certainty.
Rather, each agent only knows with certainty a subset of the
system state, si.

The set O is the joint observation space, where O =
{Oi}i∈A. The observation space Oi of each agent is de-
scribed as the state of all vertices and agents within some
radius r of the agent i.

Information is shared between agents by observation and
explicit communication. Agent i may observe the state sj of
other agents and vertices within radius r:

oi = {sj |j ∈ V ∪ A : dist(i, j) ≤ r}

Agents may only travel between nodes which are joined
by an edge in E, and travel is considered an action in Ai,
the set of available actions for agent i. The action space is
defined as Ai = {0, . . . ,∆(G) − 1}, where ∆(G) is the
maximum degree of graph G. We also define A = {Ai}i∈A
as the joint action space over all agents.



A transition function T : S × A × S → [0, 1] describes
the probability of transition from one system state to another
given some joint action. Finally, the function R : S → Rn

describes the reward to each agent for a particular system
state, and γ is a discount factor on the reward. We assume
that T and R are defined as part of the environment and are
unknown a priori.

The optimization objective of the agent is to find a policy
πi(s

i) which provides the agent’s best action given the
estimated system state si. We assume that spaces S,O,A
are known in advance by all agents and that the policy
πi may be shared such that it is the same on all agents:
πi = πj ∀i, j ∈ A. Then, we may train a policy using
centralized training and decentralized execution (CTDE).

IV. DESIGN METHODOLOGY

To overcome the serious and realistic limitations im-
posed by the problem formulation, including partial observ-
ability, disturbed communications, and agent attrition, we
present our Multi-Agent Graph Embedding-based Coordi-
nation (MAGEC) approach. MAGEC uses an actor-critic
architecture, with a custom k-convolution GNN serving as
the actor and a basic multi-layer perceptron as the critic.
Given graph-based inputs, the actor must select an edge of
the graph for the agent to next traverse.

Training of MAGEC is performed in an entirely inarcane
manner by means of the multi-agent proximal policy opti-
mization (MAPPO) algorithm [22], with some modifications.

A. Overall Architecture

We must enable distributed coordination while still op-
timizing towards a global objective. Therefore, we develop
a reinforcement learning architecture based on multi-agent
proximal policy optimization (MAPPO) [22]. We leverage
the centralized training and decentralized execution (CTDE)
paradigm to enable distributed coordination among the
agents. After training is complete, the actor network is used
as a policy mapping states to actions, while the critic is
discarded. Training uses a shared and omniscient critic V̂
for all agents, enabling optimization of agent policies based
on the global objective (see Section III-A). All agents use a
shared policy π, allowing for varying numbers of agents and
for adaptation to agent attrition.

The actor and critic networks have different architec-
tures, reflecting their distinct purposes. The critic network
is extraordinarily simple, consisting only of a multi-layer
perceptron (MLP). It takes as input the global informa-
tion necessary to judge overall performance, using feature-
engineered information such as the normalized idleness time
of all nodes and an adjacency matrix. Its output is merely
the value of the current state. This critic provides good
estimations of value, but its architecture is far too simple
to enable effective coordination for agents using the limited
(partially-observed) information available at execution time.

Therefore, we develop an actor neural network which is
far more capable than the critic. The actor is based on the
message-passing GNN paradigm, which we describe along

Fig. 1. The overall MAGEC training architecture is seen above. Note that
the critic is only used during training (CTDE). Please see Fig. 3 for details
of the GNN block.

with our GNN architecture in Section IV-C. First, a graph-
based observation of the agent’s surroundings (Section IV-
E.1) is passed into the GNN. Neighbor scoring is then
performed on the GNN output using an MLP (Section IV-D),
and the output of neighbor scoring is then passed through
another MLP, the “selector”. The “selector” MLP output
is interpreted as a categorical distribution over the discrete
action space. Each action represents a neighbor of the agent’s
current node to which the agent should travel (Section IV-B).

The overall architecture is presented in Fig. 1, and pro-
ceeding sections describe components in greater detail.

B. Discrete Wayfinding in a Graph

Fig. 2. An example of neigh-
bor indexing. Note that v3 is
neighbor 2 of v0, but v0 is
neighbor 1 of v3. Indexing is
enforced by the environment
observation mechanism.

Let N (v) be the neighbour-
hood of node v. By definition,
this set of neighbors has no par-
ticular order. However, to enable
generalizable discrete wayfind-
ing, we must enforce an order-
ing upon these neighbors. As
discussed in Section IV-E.1, we
ensure that neighbors of each
node are always presented in the
same (undefined) order in ev-
ery observation. Neighbors are
assigned identifiers in the range

0, . . . , |N (v)−1| as shown in Fig. 2. In order for each node’s
neighbors to use this same range of identifiers, the undirected
graph G must first be converted into a bidirected graph. This
process is described in more detail in Section IV-E.1.

The agent’s policy then outputs an edge index for the
neighbor to traverse which corresponds with the desired next
node to visit. We use action masking to ensure that the action
selected is never greater than the degree of the current node.
If an agent is already traversing an edge, we use masking to
ensure that the only option is to continue until complete.



C. Graph Neural Network Design

Our GNN is based on the GraphSAGE algorithm [4][5].
However, GraphSAGE does not account for edge attributes,
which are critical to wayfinding in a graph. The edge
attributes in our graph contain both the weight (length) of
the edge and an edge identifier as described in Section IV-B.

To enable consideration of these edge attributes in the
convolutional layers, we modify the GraphSAGE embedding
generation algorithm as shown in Algorithm 1. As each
“message” is passed between nodes, we concatenate the
transmitted node features xv with the features xu,v of the
edge that is being traversed to create an augmented feature
vector, x̊u,v . Message passing otherwise proceeds as normal
in GraphSAGE. This is an efficient and simple method which
enables our GNN to consider both node and edge features.
Our message-passing framework is shown in Fig. 3.

Algorithm 1 GraphSAGE Embedding Generation (Forward
Propagation) with Edge Attributes

1: Input: Graph G(V,E); input features {xv, ∀v ∈ V };
edge features {xu,v, ∀u, v ∈ V }; depth K; weight matri-
ces Wk, ∀k ∈ {1, . . . ,K}; non-linearity σ; differentiable
aggregator functions AGGREGATEk, ∀k ∈ {1, . . . ,K};
neighborhood function N : v → 2V

2: Output: Vector representations zv for all v ∈ V
3: h0

v ← xv, ∀v ∈ V
4: for k = 1 to K do
5: for all v ∈ V do
6: x̊u,v ← CONCAT(hk−1

v , xu,v) ∀u ∈ N (v)
7: hk

N (v) ← AGGREGATEk({x̊u,v}∀u∈N (v))

8: hk
v ← σ

(
Wk · CONCAT(hk−1

v , hk
N (v))

)
9: end for

10: hk
v ←

hk
v

∥hk
v∥2

, ∀v ∈ V
11: end for
12: zv ← hK

v , ∀v ∈ V

With each message-passing convolutional layer described
in Algorithm 1, the graph embedding hk

v gains information
about nodes an additional hop from v, for all nodes v ∈ V .
Therefore, to effectively embed a graph environment in
which many hops must be traversed, k must be greater than
one. This is in contrast with other GNN-based MARL works,
such as [7][8], where a value of k = 1 ensures that only
immediate neighbors are represented in the embedding. To
balance computational cost and effectiveness of the embed-
ding, we select a value of k = 10 which enables strong
performance in large graphs. As in previous works, we find
that skip connections must be included between message-
passing layers for efficient training, so we implement “jump-
ing knowledge” skip connections as described in [5].

In especially large graphs, this fixed value of k = 10 en-
sures that the environment is only partial observable, though
we find that our method is easily able to overcome such
limitation. We also enforce additional partial observability
mechanisms during evaluation, described in Section IV-E.1.

D. Neighbor Scoring

Existing works such as [23] and [7] combine graph neural
networks with MARL, but they do not attempt to solve the
discrete wayfinding problem described in Section IV-B. To
address those challenges involved in selection of an edge
to traverse, we devise a strategy which we term, “neighbor
scoring”.

In the forward propagation step of our algorithm, we first
create graph embeddings from the perspective of each node
using the GNN described in Section IV-C. We specify a node
of interest, v, which represents the agent for which we desire
to select an action (see Section IV-E.1 for more information
about agent representations). The graph embedding from the
perspective of each neighbor u ∈ N (v) is pulled from the
output of the GNN and passed through the neighbor-scorer
MLP, as seen in Fig. 1. This neighbor-scorer MLP provides
a single score for each neighboring node. All scores are then
passed to a “selection” MLP, the output of which forms a
categorical distribution over the available actions. We then
sample from that categorical distribution to select an action.
Borrowing from the notation of Algorithm 1, the neighbor
scoring mechanism may be seen as follows:

yv ∼ SELECTION(⟨SCORE(zu)⟩u∈N (v))

The neighbor scoring mechanism can be seen as a “choke-
point” which creates compact latent representations (in our
case, a single “score” value) of each neighbor’s graph
embedding. This enables the selection MLP to effectively
distinguish between different neighbors’ utilities.

We ensure that neighbor scores passed to the selection
MLP are always in order of their neighbor index. This
enables the selection MLP to effectively learn which em-
beddings correspond with which neighbor indices, and thus,
with which action.

To enable generalization to different numbers of nodes and
agents, we train the network with a fixed maximum number
of neighbors per node. For nodes with fewer neighbors, we
use padding to ensure that the input to the neighbor-scorer
MLP remains the same size.

Fig. 3. Illustration of GNN computing node embeddings through iterative
neighborhood aggregation. A scoring function is applied to the embeddings
for decision-making. Note that node and edge features are concatenated
during message-passing.



E. Training Environment

1) Observations: Agents may observe the state of other
agents and nodes within a limited observation radius. Any
other agents within the observation radius are added to graph
G as nodes, with edges indicating the agent’s current position
relative to other nodes, thus forming an augmented graph
G̊. Each node in G̊ is populated with features including an
encoded type (agent or observation point), normalized node
idleness time ζ, and node degree. Edges in G̊ are populated
with features including normalized distances and an identifier
as described in Section IV-B. The graph G̊ is then converted
to a digraph to enable edge indexing (see Section IV-B) and
fed into the GNN-based policy π to generate an action.

2) Actions: As described in Section III, the action space
for an agent i ∈ A is defined as Ai = {0, . . . ,∆(G) − 1},
where ∆(G) is the maximum degree of graph G. Agents will
move to the neighbor with the index of the selected action.

3) Reward: We must optimize for a global objective: the
minimization of average idleness time ζ̄. To achieve this, we
provide a global “terminal” reward rterminal,i(t) =

t
ζ̄
∀i ∈ A

to all agents at the end of every episode. We also use a local
reward which is awarded to individual agents upon reaching
a node v. This reward is based on the ratio between the
idleness of the visited node ζ(vi) and the average idleness
of all nodes such that rlocal,i(t) =

ζ(vi)

ζ̄+ϵ
∀i ∈ A, where ϵ is a

small value which avoids division by 0. The overall reward
function may be written as

ri =

{
α rlocal, i + β rterminal, i if t = T − 1

α rlocal, i otherwise

where T is the preconfigured episode length. This reward
ri is awarded to every agent i ∈ A at every step t =
0, . . . , T − 1. In testing, we use α = 1.0 and β = 0.5.

F. Training Algorithm

Training of the agents occurs in a centralized fashion
following a modified version of the MAPPO algorithm [22]
seen in Algorithm 2. The rewards provided by our patrolling
environment (see Section IV-E.3) are sparse; the agent is
only rewarded upon visiting nodes and upon termination of
the episode. Further, the patrolling problem described in Sec-
tion III involves sparse actions which require multiple time
steps to complete. Therefore, after sampling an action ai(t)
from the policy, agent i’s next action ai(t + ∆t) need not
be sampled from the policy until ∆t steps have passed from
t. We use this revelation to reduce the number of samples
stored in the replay buffer, greatly increasing the speed of
training. Unfortunately, due to technical limitations of our
implementation, we are unable to skip steps for each agent
asynchronously. Rather, we only skip steps synchronously;
when one agent needs to sample the policy for a new action,
all other agents must also take that step. However, the total
number of steps taken in an episode is still greatly reduced
thanks to the extremely sparse action nature of our problem.

To account for rewards which are given during skipped
steps, we further enhance the algorithm by adding the sum

of those rewards to the replay buffer.

Ri(s(t), t) =
t+∆t∑
k=t

Ri(s(k), k)

The cumulative reward Ri(s(t), t) is then associated with
ai(t) and added to the replay buffer. The rewards for skipped
steps t . . . t+∆t are not added to the buffer individually.

Similar modifications to the MAPPO algorithm were first
made by Yoshitake and Abbeel in [24], and we use their
adapted version of Generalized Advantage Estimation (GAE)
here to great success. Yoshitake and Abbeel modify GAE
equations to account for skipped steps as follows:

δi(t) = Ri(s(t), t) + γ∆tV̂ (s(t+ 1))− V̂ (s(t))

GAEi(t) = δi(t)+(γλ)∆tδi(t+1)+· · ·+(γλ)∆T −1δi(T −1)

As seen above, the discounting factors γ are merely
raised to the number of steps between samples ∆t. Without
skipping, ∆t is clearly 1 and the modified GAE and TD
equations are then equivalent to the originals.

Algorithm 2 Training Algorithm
1: Initialize Policy π to parameters θ
2: Initialize Critic V̂ to parameters ϕ
3: for all episodes e ∈ 0 . . . emax do
4: Initialize Rollout buffer B = ⟨s(0), o(0)⟩
5: for all t ∈ 0 . . . T do
6: ∆t← number of steps until next action required
7: a(t)← π(o(t))
8: Take ∆t steps in environment using action a(t)
9: s(t+∆t), o(t+∆t)← values from environment

10: r ←
∑∆t

τ=t R(s(τ))
11: v ← V̂ (s(t))
12: B += ⟨s(t), o(t), a(t), r, v,∆t⟩
13: end for
14: Compute returns Â using modified GAE over B
15: for all mini-batches b ∈ B do
16: Update ϕ using mini-batch data b.
17: Update θ using mini-batch data b and critic V̂ .
18: end for
19: end for

We find experimentally that use of agent attrition is
unnecessary during training and that agents will adapt to
attrition during execution nonetheless. This is likely because
the problem is formulated as a DEC-POMDP such that the
policy π(s) has no time dependency and only needs the
current state of the system.

G. Execution

Use of the trained policies in our patrolling scenario is
straightforward and is consistent with typical CTDE practice.
Since the critic was only used during training as a surrogate
of the value function Vπ(s), it is not required in the execution
phase. The policy trained provides a mapping from state
s(t) to appropriate action(s): π(s(t)) → a(t). Therefore,



the policy may be straightforwardly applied to agents during
execution. Since the policy is shared amongst all agents and
operates only on the agent’s belief about the global state
si(t), it may be executed by any number of homogeneous
agents regardless of the number of agents used in training.

H. Implementation

We implement the training and basic execution environ-
ment using PettingZoo [25], a multi-agent reinforcement
learning environment library based on OpenAI’s popular
Gym library. The PettingZoo environment is implemented
as a parallel environment (rather than agent-environment
cycle) in which all agents perform actions simultaneously
before any observations are taken. We call our environment
“patrolling zoo”, and release it as an open-source project1.

Our training code is heavily based on that used by Yu
et al. in their original MAPPO paper [22], though we
have performed extensive work to integrate it with our
“patrolling zoo” environment and modify as described in
Section IV-F, along with the implementation of new critic
and GNN-based actor networks.

V. EVALUATION METHODOLOGY

In this section, we describe our evaluation methodology
and test setup. Importantly, while the training and initial
evaluation of our approach was performed in a simple
graph environment using the PettingZoo library, we also
choose to evaluate our algorithm using a multi-agent robotics
simulator which better highlights our approach’s robustness
to disturbances and applicability to real scenarios such as the
multi-robot patrolling problem.

A. Experimental Setup

The primary tool used in evaluation is the Grex Machina
multi-agent framework2, developed by the IDEAS Lab at
Northwestern University for multi-agent research and based
on the Robot Operating System 2 (ROS 2) [26]. Grex allows
agents to be operated either in one of multiple available
simulators (Gazebo, Flatland, etc.) or on physical robots, all
without changing a single line of code. The simulator that we
select, Flatland, injects artificial Gaussian noise into sensor
readings, creating a more realistic test of our algorithm than
the PettingZoo training environment.

To test our algorithm on the patrolling scenario, we
integrate existing state-of-the-art and benchmark patrolling
algorithms and environments into the Grex framework. Many
such algorithms and environments are from a patrolling
simulator previously built by Portugal et al. [12], which we
have adapted and integrated into Grex3. Portugal’s original
patrolling simulator was used in a large number of patrolling
algorithms that are still considered to be state-of-the-art,
including [12][13][14][15][17][18].

Selection of appropriate algorithms for comparison with
this work is critical, but is highly difficult due to varying

1https://github.com/NU-IDEAS-Lab/patrolling_zoo
2https://github.com/NU-IDEAS-Lab/grex
3https://github.com/NU-IDEAS-Lab/patrolling_sim

assumptions and objectives between the previous approaches.
We compare with the AHPA algorithm [18], SEBS [12], and
CBLS [13]. All three benchmarks have strong performance
in the face of agent attrition. However, none of them make
use of environmental observations. To account for this, we
first perform an experiment using unlimited observations and
undisturbed communications, theorizing that this will show
the best performance of all algorithms. We also attempt to
find a middle ground with an observation radius of 40 m
for subsequent tests and a variety of communication success
rates. All algorithms are tested with and without attrition.

The primary metric that we use for performance com-
parison is the average idleness of all nodes ζ̂ over time,
as discussed in Section III-A. The use of this metric was
established by [12] and it has appeared in almost all related
works since that point. Therefore, we find it to be a suitable
metric for judging the overall efficacy of our algorithm.

B. Generalization

Fig. 4. Agents were trained
on the “Milwaukee” graph and
patrol on an entirely different
one, “Cumberland” (above),
demonstrating the generaliz-
ability of our approach. Above,
red dots indicate nodes and
green lines indicate edges in
the patrol graph. Black lines
indicate obstacles which agents
must navigate around.

To ensure that the learned
policy π is not overfit and
can generalize to different en-
vironments, we train and test
with entirely different graphs
and agent counts. For the re-
sults shown in this paper, train-
ing is performed on the “Mil-
waukee” graph with four agents.
Evaluation is performed with
six agents on the “Cumberland”
graph (see Fig. 4), the same
environment commonly used for
testing in previous works [12].

C. Disturbances
We model agent attrition

in the simplest way possible:
at two fixed points in time
throughout the experiments, we
choose an agent and remove it
from the simulation. This simplicity provides good per-
formance comparisons between algorithms by allowing the
moment of attrition to be seen as an inflection point, where
algorithms either suffer in performance or continue unfazed.

As with attrition, we keep the communication disturbance
as simple as possible, using a Bernoulli loss model with
fixed reception probability. We ensure that all algorithms
publish agent telemetry (positions, etc.) at a rate no more
than one Hertz. Other messages, such as attrition notifications
or goal-reached notifications, are sent on-demand. We apply
the communication disturbance to all of these messages.

VI. RESULTS

We find that our method is highly effective and suitable for
use in multi-agent systems that must be fielded in environ-
ments where the risk of agent attrition or of communication
disturbance is great. In this section, we present and analyze
the findings of our work.

https://github.com/NU-IDEAS-Lab/patrolling_zoo
https://github.com/NU-IDEAS-Lab/grex
https://github.com/NU-IDEAS-Lab/patrolling_sim


A. Training Performance

Fig. 5. Graphs showing the average
episode reward and evaluated average idle-
ness over training period. Training com-
pletes in a mere 350,000 environment steps.

The policy
was trained for
350,000 environment
steps, broken into
environment episodes
of 200 steps each,
with five copies of
the environment in
parallel, for a total of
350 PPO episodes. In
Fig. 5, both average
reward and average
idleness can be seen
to improve and converge over time. Our improvements to
MAPPO and the use of graph observations with a GNN
greatly improved training time and feasibility over our
previous (non-GNN) attempts. Experimentally, we found
that using hyperparameters α = 1.0, β = 0.5, and γ = 0.99
resulted in the best training performance, effectively
balancing global and local rewards.

Fig. 6. Test results using observation radius inf m and communication
success rate of 100%. Above is the test without attrition, and below is the
test with two attrition events. Our MAGEC algorithm is shown in green.

B. Simulation Performance

In evaluation of our algorithm’s performance in sim-
ulation, we focus on how the “average idleness” metric
described in Section III-A changes throughout the course
of a 30-minute evaluation run. Due to artificial sensor noise
in the simulator, we perform three evaluation runs of every
experiment and then average the results across runs.

Though direct comparison between algorithms that make
different assumptions is difficult, we believe that our method
performs well. MAGEC achieves stable standard deviations
of idleness throughout all tests, indicating that nodes in the
graph are visited with similar frequencies. To provide the

fairest comparison possible, we first test with an infinite
observation range and 100% communication success rate,
on the theory that all algorithms will be able to achieve
their maximum performance without being hampered by
differing assumptions. MAGEC performs far better than
the existing algorithms in this attrition scenario (Fig. 6),
especially after the second attrition event where MAGEC’s
steady performance degrades far less than the benchmarks.

It also outperforms the benchmark algorithms in terms of
average idleness, our primary metric, in attrition scenarios
such as the one shown in Fig. 7 which uses a 10% commu-
nication success rate and limited observation range.

Fig. 7. Test results using observation radius 40 m and communication
success rate of 10%. At top, the test without attrition, and at bottom, the
test with two attrition events. Our algorithm, MAGEC, is shown in green.

Other algorithms do not appear to handle attrition well
when faced with heavy communication losses. For example,
AHPA handles attrition very poorly when its attrition noti-
fication message is lost, resulting in extremely high average
idleness and standard deviation of idleness after attrition.
CBLS also struggles when faced with message losses and
attrition. However, SEBS fairs well and comes close to
MAGEC in some scenarios.

Fig. 8. Test results using observation radius 40 m and various communica-
tion success rates for MAGEC. Zero-communication performance is poor,
but MAGEC’s performance remains strong even with only 10% comms.

We also test MAGEC’s performance with various obser-



vation ranges and communication success rates. As seen
in Fig. 8, performance drops off significantly with zero
communications, but otherwise is minimally impacted.

In non-attrition scenarios, MAGEC is competitive, even
though it is sometimes outperformed by AHPA. We attribute
this to AHPA’s extremely deterministic patrol order, which
results in a lower standard deviation of idleness and thus
lower average idleness when attrition is not a factor. For
AHPA, communication losses are also only important when
attrition occurs, because AHPA does not use any messaging
other than an attrition notification method. This makes AHPA
a strong contender in the non-attrition, disturbed communi-
cations scenarios, but as expected, MAGEC performs best in
the experiments involving agent attrition.

VII. CONCLUSION

The performance of MAGEC, the Multi-Agent Graph
Embedding-based Coordination algorithm, provides evidence
that GNN-based MARL can be highly effective in an entire
class of graph-environment problems such as multi-robot
patrolling, vehicle routing, and swarm navigation. MAGEC
is shown to effectively coordinate robots even with agent
attrition, partial observability, and significant communication
loss. Further, MAGEC operates in an environment with
delayed rewards and sparse actions. These are realistic dis-
turbances and limitations that multi-robot systems must over-
come before they can be widely fielded. MAGEC provides
a solid foundation for future work in this critical direction.

However, MAGEC is not magic, and more problems
remain to be solved. Future work may attempt to integrate
better methods for prediction of unobservable state (such
as that performed by SEBS) which will enable far better
performance in limited-communication scenarios.

Regardless, our method is pioneering in its use of k-layer
GNNs paired with MARL for multi-robot coordination. It
represents a general solution for agents which must coordi-
nate movement in any environment representable as a graph,
and we hope that MAGEC will form the basis of many robust
multi-robot systems to come.
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