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Abstract— Trajectory generation and trajectory prediction
are two critical tasks in autonomous driving, which generate
various trajectories for testing during development and predict
the trajectories of surrounding vehicles during operation, re-
spectively. In recent years, emerging data-driven deep learning-
based methods have shown great promise for these two tasks
in learning various traffic scenarios and improving average
performance without assuming physical models. However, it
remains a challenging problem for these methods to ensure
that the generated/predicted trajectories are physically realistic.
This challenge arises because learning-based approaches often
function as opaque black boxes and do not adhere to phys-
ical laws. Conversely, existing model-based methods provide
physically feasible results but are constrained by predefined
model structures, limiting their capabilities to address complex
scenarios. To address the limitations of these two types of
approaches, we propose a new method that integrates kinematic
knowledge into neural stochastic differential equations (SDE)
and designs a variational autoencoder based on this latent
kinematics-aware SDE (LK-SDE) to generate vehicle motions.
Experimental results demonstrate that our method significantly
outperforms both model-based and learning-based baselines
in producing physically realistic and precisely controllable
vehicle trajectories. Additionally, it performs well in predicting
unobservable physical variables in the latent space.

I. INTRODUCTION

Trajectory prediction and generation are two critical tasks
for autonomous vehicles. First, as a key component in the
autonomous driving pipeline, the trajectory prediction mod-
ule predicts the future trajectories of surrounding vehicles
based on their recent trajectory histories (as observed by the
ego vehicle) and the map information. The prediction result
provides a safe operation space for downstream behavioral-
level decision-making and motion planning [1]–[4] and is
critical for vehicle safety during operation. Then, given the
long-tailed nature of real traffic scenarios, the important
trajectory generation task generates additional synthetic but
realistic trajectories to augment the trajectory dataset col-
lected in operation, for testing and optimizing the down-
stream planning module [5], [6]. For instance, as shown in
Fig. 1, we can convert a common and simple scenario to
various challenging scenarios in the simulation by generating
diverse trajectories and using them to test the reaction of the
autonomous vehicle.
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In the literature, most works focus on improving the
average accuracy for trajectory prediction and enumerating
various scenarios for trajectory generation. However, the
predicted/generated trajectories may not be realistic or even
physically feasible in real traffic scenarios, and could lead
to inferior training of the planning module and reduced ca-
pability of addressing safety-critical scenarios in practice. It
is thus very important to ensure that the predicted/generated
trajectories not only reflect the rich contextual factors, in-
cluding other vehicles and HD maps but also conform to
traffic rules and fundamental laws of physics.
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Fig. 1: Generating diverse, physically realistic, and control-
lable trajectories is important for critical scenario augmenta-
tion and vehicle motion prediction.

It is, however, challenging for the trajectory predictor and
generator to learn the representation of high-dimensional
context while aligning with physical constraints. Traditional
model-based techniques leverage simplified kinematic mod-
els, e.g., bicycle models, for trajectory generation. However,
these methods often provide a very rough estimation of
the vehicle’s real motion and oversimplify the environ-
ment model without considering the surroundings, leading
to coarse-grained and maladaptive generated trajectories in
complex traffic scenarios. On the other hand, learning-
based generative models may effectively perceive the high-
dimensional environment by learning from trajectory data
and map context, as shown in recent advancements in trajec-
tory prediction [7]–[9] and generation [10]–[13]. However,
due to the lack of consideration of physical models, these
generative techniques have little control over finer-grained
vehicle-level kinematics and may produce physically unreal-
istic trajectories in real traffic scenarios.

In this paper, we aim to address the fundamental challenge
in simultaneously considering the complex surrounding
environment and the vehicle physical model for trajectory
generation and prediction. The major difficulty is from the
conflict between high-dimensional environment (captured by
deep learning) and low-dimensional physics. To address
this, we utilize latent kinematics-aware neural stochas-



tic differential equations (LK-SDE) to bridge the model-
based kinematics and high-dimensional representations for
road contexts in the latent space of a variational autoen-
coder (VAE) [14]. Specifically, we first extract the graph
convolutional network (GCN) representation from the HD
maps and environment, which convey the information of
the environment contexts. Together with a physical model,
the GCN representation is then used to train a neural SDE.
Such kinematics-aware SDE is optimized and calculated in
the latent space of the VAE, providing additional critical
information for prediction and precise control for decoding
the trajectory generation. It is worth noting that this archi-
tecture can be added to various scenario augmentation and
trajectory prediction frameworks to enhance physical realism
and controllability.

Our contributions in this work are summarized as follows:
• We design a trajectory generator based on kinematics-

guided SDE in the latent space, which effectively embeds
physical constraints into deep learning models.

• For the trajectory generation task, compared with pure
deep learning-based and model-based methods, our
method can generate more physically realistic and con-
trollable augmented trajectories by manipulating the
kinematics-aware latent space.

• For the trajectory prediction task, our method can jointly
predict realistic trajectories and important kinematic
states that are difficult to observe directly.

• Extensive experiments show that our method outperforms
baseline methods across various metrics. These improve-
ments will benefit the augmentation of safety-critical
scenarios and the prediction of future motions.
This paper is organized as follows. Section II introduces

the background of trajectory generation and prediction and
neural SDE. Section III presents the design of our LK-
SDE based VAE for trajectory generation and prediction.
Experiment results are shown in Section IV and Section V
concludes the paper.

II. BACKGROUND

A. Trajectory Generation and Prediction

Trajectory generation or augmentation plays an impor-
tant role in evaluating and optimizing the decision-making
module in autonomous driving. Many works use various
deep learning methods to generate trajectories and scenarios.
For instance, the work in [11] proposes a VAE-conditioned
method to bridge safe- and collision-driving data to generate
the whole risky scenario, but it cannot control agent-level
trajectories. The work in [10] designs a GAN-based method
– RouteGAN to generate diverse trajectories for every single
agent, and the trajectory is controlled by a style variable.
Some recent approaches [12], [13], [15] further utilize do-
main knowledge such as causal relations and traffic priors
to generate useful traffic scenarios. However, these methods
mainly focus on scenario-level generation. For trajectory
generation of a single vehicle, these works still rely on pure
deep learning methods or model-based methods. The latent

spaces of these generative methods are not well modeled or
explained for a single vehicle, especially at the kinematics
or dynamics level. The models only have coarse and limited
control over the generated trajectories, which often lead to
physically unrealistic and uncontrollable trajectories.

Recent works applied advanced deep learning techniques
to learn the representations of agents’ trajectories and road
contexts. Graph neural networks [7], [16], transformer [9],
[17], and diffusion models [18] are used to extract context
features. The approach in [19] adds a bicycle model after the
neural feature extractor to decode the trajectories but their
pure model-based decoder still suffers from the oversimplifi-
cation of the vehicle motion. In this work, we aim to combine
the powerful representations from deep learning models with
kinematics knowledge in the latent space.

B. Neural Stochastic Differential Equation

The physical dynamics of many real-world systems can be
modeled as a discrete-time SDE [20] with the consideration
of uncertainty and stochasticity.

Definition 1: (Stochastic Differential Equation (SDE)):
An SDE is a differential equation that contains stochastic
processes, which can be expressed as

st+1 = f(st) + g(st)∆Wt, (1)

where st ∈ Rn is the system state, f : Rn → Rn denotes
a drift function, and g : Rn → Rn×d represents a diffusion
function. ∆Wt = W (t + 1) −W (t), where W (t) ∈ Rd is
the Brownian Motion (also known as Wiener Process) [21]
for encoding the stochasticity in the systems. The Brownian
Motion has the following properties:

• W (0) = 0,
• W (t) is almost surely continuous,
• W (t1) −W (t0) ∼ N (0, t1 − t0), where N (0, t1 − t0)

is the Gaussian distribution with 0 mean and t1 − t0
variance.

Definition 2: (Neural SDE): A neural SDE is an SDE
with its drift function f(st) and diffusion function g(st)
expressed and parameterized by deep neural networks, e.g.,
fθ0(st), gθ1(st) [22]:

ŝt+1 = fθ0(ŝt) + gθ1(ŝt)∆Wt. (2)
To learn such neural network representations, a typical

way is to sample the real physical environment as Eq. (1)
and neural SDE as Eq. (2) to generate the trajectory data
τ = {s0, s1, · · · , sT } and τ̂ = {ŝ0, ŝ1, · · · , ŝT }, respectively.
Then fit the real-world trajectory τ to the neural networks
by reducing the following loss function:

min
θ0,θ1

L(τ, τ̂) = min
θ0,θ1

−
T∑

t=0

log (P (st | N (ŝt, gθ1(ŝt))) ,

where L is the maximum likelihood loss, T is the time
length, and P (st | N (ŝt, gθ1(ŝt)) is the likelihood prob-
ability of the observed st under the normal distribution
N (ŝt, gθ1(ŝt)) of the neural SDE at time t.
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Fig. 2: The overall design of our kinematics-aware trajectory generator. The GCN and two individual encoders consume the
driving historical trajectories oi−k:i and map information M. They extract and generate the latent initial state z0, global
semantic feature sem, and context feature per step ctxt for the latent space. Within the latent space, we learn a kinematics-
aware neural SDE guided by a physical bicycle model and then decode the latent vectors zi(i = 0, · · · , T ) to the output
vehicle motion trajectory ôi:i+T . Our neural LK-SDE is guided by the kinematic bicycle model during training to learn
physical knowledge for physically feasible and controllable trajectory generation and prediction.

III. OUR LK-SDE METHODS

A. Overall Design

Problem Set Up: We study the trajectory prediction and
generation tasks that aim to predict and generate future two-
dimensional trajectory waypoints given the driving histories
of the driving cars as well as the map information. We are
given a dataset of trajectory observations and map informa-
tion as (oi,M)(i = 0, · · · , N). Assuming at timestamp i,
the input for our entire model is a k-length two-dimensional
history trajectories oi−k:i of vehicles (including both target
and surrounding vehicles) and the M graph of HD maps.
The output of the model is the generated or predicted future
trajectories ôi:i+T , where T is the prediction and generation
horizon in the future.

Overview: Our method is a learning-based VAE approach
with kinematics-aware latent space guided/constrained by the
kinematics knowledge from a bicycle model. The overall
architecture of the proposed method is shown in Fig. 2.
We first feed the trajectories of vehicles oi−k:i and map
contexts M into a GCN-based feature extractor to learn
representations of HD maps and interactions between ve-
hicles. The extracted features are further processed by two
encoders – one encoder converts the representations to a
four-dimensional latent initial state, and the other encoder
will generate a global semantic vector and finer-grained
time-series contexts for future steps in the latent space.

As a model-based approach, our neural LK-SDE takes the
semantic vector, corresponding context, and the initial state
from learning as inputs and rolls out the latent states step
by step via learned latent dynamics. The neural LK-SDE
states are guided to be close to the bicycle-model latent
states and thus we embed the kinematics knowledge from
the bicycle model into the latent dynamics. Finally, a simple
fully-connected neural network will decode the latent states
into vehicle trajectory space. The bicycle model guided
latent dynamics in our VAE-like approach contribute to more
physically feasible and controllable trajectory learning due to
the latent space constraints, compared to existing learning-
based approaches.

The algorithm of our approach is shown in Algorithm 1.
We introduce the details of each submodule in the following.

B. Encoders for Context Extraction and Embedding

Similar to [7], we use a one-dimensional convolutional
network to model history trajectories, for its effectiveness
in extracting multi-scale features and efficiency in parallel
computing. Multiple graph neural networks G are utilized
to learn the interactions among agents and lane nodes [7].
After fusing the features x of graphs and agents, we have two
encoders (Es, Ec) to generate contexts and the initial state
z0(s0) for our LK-SDE, as shown in Fig. 2. A ResNet [23]
is applied in the context encoder to further generate global
semantics sem and time-series local contexts ctx1:T for



Algorithm 1: Optimization Pipelines

1: Initialize: feature extractor G, initial state encoder Es,
context encoder Ec, decoder D, LK-SDE(fθ0 ,gθ1 ), and
bicycle-model SDE(h(·, π),gθ1 )

2: Input: past trajectories oi−k:i and map graph M.
3: for each batch do
4: Let features x = G(oi−k:i,M).
5: Let initial kinematic vectors z0 = s0 = Es(x).
6: Let global semantics and time series contexts

sem , ctx1,2,...,T = Ec(x).
7: Update the G and Es by the regularization loss Lreg

in Eq. (3).
8: for t in range(T ) do
9: LK-SDE computes zt+1 = fθ0(zt, ctxt, sem) +

gθ1(zt)∆Wt.
10: Bicycle model SDE computes st+1 = h(st, π) +

gθ1(st)∆Wt.
11: end for
12: Update the LK-SDE (fθ0 , gθ1 ) by the kinematic loss

Lkin in Eq. (6).
13: The decoder projects latent vectors into trajectory

space ôi:i+T = D(z0, z1, · · · , zT ).
14: Update the G, Es, Ec, LK-SDE (fθ0 ,gθ1 ) and π by

the prediction loss Lpred in Eq. (7).
15: end for

future time steps i+ (1, · · · , T ), which is expressed as:

x = G(oi−k:i,M), z0 = Es(x),

sem, ctx1:T = Ec(x).

Therefore, for each time step in the prediction horizon
t ∈ [1, T ], we will have eight-dimensional local contexts
ctxt and four-dimensional global semantics sem. The latent
initial state z0 by the initial state encoder in Fig. 2 serves as
the starting point for our neural LK-SDE and bicycle model
within the latent space. z0 is regularized to follow a Gaussian
distribution by minimizing the Kullback–Leibler divergence
as shown in Eq. (3):

Lreg = KL(q(z0|x)||p(z0)), (3)

where x is the input features, p(z0) represents the targeted
Gaussian distribution of the latent initial state, and q repre-
sents the posterior distribution from the initial state encoder.
The initial latent states z0 will be the input for the following
LK-SDE, and the global semantics sem as well as local
context per step ctxt will be the condition.

C. Latent Kinematics-Aware SDE Modeling

The generation and prediction of vehicle trajectories rely
on understanding the inherent dynamics and physical laws
governing these trajectories. Consequently, this compels us
to focus on acquiring a latent space attuned to the kinematics.
Specifically, within the scope of this work, our objective is to
acquire a LK-SDE for motion prediction and generation. This
involves not only optimizing the loss function based on the

ground truth label but also incorporating supervision from
an explicit bicycle model [24], to serve as a constraint and
guidance for the LK-SDE. Specifically, the kinematics-aware
latent space modeling involves two SDEs during training –
one is a learnable bicycle-model-based SDE to generate the
kinematics based on the most recent states, and the other
is the neural LK-SDE that we optimized to both learn from
the loss function of the output and learn the kinematics from
the bicycle model SDE. The detailed kinematics-guided dual
SDE learning process is illustrated in Fig. 3.
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Fig. 3: During the training, in the latent space, the bicycle
model SDE guides our neural LK-SDE to follow the kinemat-
ics by minimizing the KL divergence between the solutions
of two SDEs. The kinematic loss function Lkin is explained
in Eq. (6). fθ0 , gθ1 are the neural networks for LK-SDE that
are optimized from the bicycle model in Eq. (6) and output
loss function in Eq. (7), while π in the bicycle model is
optimized by the output loss function in Eq. (7).

1) Learnable Bicycle Model SDE: The bicycle-model-
based SDE is designed to infuse a comprehensive under-
standing of physics into our neural LK-SDE. Over time, the
latent state evolves according to this SDE, enabling us to
capture a series of kinematics in the latent space of the VAE.
This latent trajectory is subsequently decoded to produce
the final task output, thereby increasing the likelihood of
adhering to the specified physical constraints.

We assume that the bicycle model SDE has h(st, π) as
its drift function, where we differentiate by using st, rather
than zt in LK-SDE, gθ1(st) as the diffusion coefficient matrix
which is diagonal and shared by our LK-SDE. Therefore,
the bicycle model could be expressed as st+1 = h(st, π) +
gθ1(st)∆Wt, where the drift function h(st, π) is shown in
the following Eq. (4):

xt+1 = xt + δ · vt cos(ψt + β(u2)),

yt+1 = yt + δ · vt sin(ψt + β(u2)),

vt+1 = vt + δ · u1
ψt+1 = ψt + δ · vt

lr
sin(β(u2)),

β(u2) = arctan

(
tan(u2)

lr
lf + lr

)
,

(u1, u2) = π(st),

(4)



where the state vector st = (xt, yt, vt, ψt) represents the
latent representation of lateral position, longitudinal position,
velocity, and yaw angle, respectively. β is the slip angle, and
lf , lr are the distances between the car center and the front,
and rear axle, respectively. δ > 0 is a small sampling period.
The control inputs correspond to the acceleration u1 and
front wheel steering angle u2. A detailed illustration of the
model is shown in Fig. 4.
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Fig. 4: Illustration of the bicycle model [24].

With the bicycle model dynamics h(·) fixed, we implement
a learnable feedback neural controller π to generate the
control inputs as u1, u2 = π(st), where π is learned from the
output loss function as in Eq. (7). With a learned π, the bicy-
cle model SDE in Eq. (4) can be viewed as an autonomous
system evolving with the dynamics h(·, π), gθ1(·) within
the latent space representation, and providing kinematics
guidance for our LK-SDE.

2) Bicycle Model Guided LK-SDE: For our LK-SDE, the
inputs for the neural network drift function fθ0(·) are the
latent states from the last time step, the global semantics, and
local contexts. Following the transition function as shown
in Eq. (5), our LK-SDE will generate the kinematics-aware
vectors z for every time step in the latent space of the VAE:

zt+1 = fθ0(zt, sem, ctxt) + gθ1(zt)∆Wt. (5)

To embed the kinematic knowledge from the bicycle
model SDE to LK-SDE, we minimize the KL diver-
gence between the solutions (rolled latent trajectories)
(zt, st), t ∈ [0, · · · , T ] of two SDEs (similar to the Eq. 10
in torchsde [22] and the Appendix B in [25]):

Lkin =
T∑

t=0

KL(zt||st) =

T∑
t=0

E∆Wt

[
1

2

∥∥∥∥(g−1
θ1

(fθ0(zt, sem, ctxt)− h(st, π))

)∥∥∥∥2
2

]
,

(6)
where T is the time length of the prediction and generation
task. Same as the previous definition, gθ1 is the diagonal
and shared diffusion coefficient matrix in our LK-SDE and
bicycle model SDE. Basically, we enforce the neural drift
function fθ0(zt, sem, ctxt) to get close to the bicycle model
h(zt, π) for kinematics knowledge, as shown in Fig. 3. In

the training, we compute and minimize this loss function for
every batch of samples.

Besides the kinematics loss function shown above, the
LK-SDE is also optimized by the output loss function as
in Eq. (7), by learning directly from the dataset. Therefore,
two gradient backpropagations with kinematic knowledge
and data knowledge jointly improve the learning performance
of LK-SDE for more accurate, physically realistic, and con-
trollable trajectory prediction and generation.
Discussions: We summarize several key points regarding our
design of LK-SDE in the following.
• Choice of SDE: Rather than using other dynamical models

such as ordinary differential equation (ODE), we choose
SDE-based latent space, as inspired by the Gaussian-
distribution-based latent space in [14], [25]. This is be-
cause SDE is able to encode stochasticity in the model (the
random variable at a specific timestamp of SDE follows
a Gaussian distribution), which is beneficial to effectively
learning real-world data with random noises.

• Going beyond a single bicycle-model SDE in the latent
space: This is due to two reasons: 1) Real-world data can
exhibit a wide range of behaviors and uncertainties that
a single over-simplified and fixed bicycle model may not
be able to account for. Introducing variability in the latent
space dynamics, such as using a more flexible model or
allowing parameters to change over time, can enhance the
model’s ability to capture diverse patterns and adapt to
different scenarios. This is why we use the bicycle model
to serve as a soft constraint (loss function) for the LK-
SDE. 2) The bicycle model solely considers the latent
state, leading to a loss of information regarding global
semantics and per-step local context, which hinders the
model’s learning capability.

• Choice of a learnable π in the bicycle model for guidance:
This design aims to introduce variability and flexibility
into the latent space dynamics, addressing the limitations
of the naive and over-simplified bicycle model when
handling real-world data.

D. Decoder for Output and the Optimization Pipeline

Decoder: Decoder D is designed as a fully-connected neural
network. The decoder network D takes the latent vectors
(z0, · · · , zT ) produced by LK-SDE and outputs the way-
points of trajectory prediction and generation as

ôi:i+T = D(z0, · · · , zT ).

For the output waypoints, we reduce the following loss in
Eq. (7) to minimize the distance between output trajectories
ô and the ground truth o collected in the real world:

Lpred (oi, ôi) =

{
0.5(oi − ôi)

2 if ∥oi − ôi∥ < 1

∥oi − ôi∥ − 0.5 otherwise
(7)

As a global loss function, the gradient from Eq. (7) will back-
propagate to every learnable sub-module including the GCN
feature extractor, individual encoders, learnable controller in
the bicycle model, LK-SDE and the decoder.



Optimization Pipeline: Overall, the training process of our
approach is shown in Algorithm 1. We optimize and balance
several loss functions to regularize the latent space and
generate the final trajectories. We update the feature extractor
and initial state encoder by the VAE regularization loss as
shown in Eq. (3). The LK-SDE is optimized to embed the
kinematic knowledge into latent vectors by Lkin in Eq. (6),
and output loss function in Eq. 7 optimizes all components.

Limitations: The computation complexity of our approach
is higher than that of existing approaches because our dual
SDE design in the latent space involves optimization and
calculation of both kinematic and data-driven models. This
may limit the scalability to more complex kinematics models.

IV. EXPERIMENTS

we conduct extensive experiments to evaluate the proposed
methods. The experimental settings are introduced in Sec. IV-
A. We demonstrate that our methods can generate physi-
cally realistic and more controllable augmented trajectories
than baselines via visualized and statistical comparisons
in Sec. IV-B. In Sec. IV-C, we further demonstrate the
prediction accuracy of our approach and its ability to estimate
unobservable variables with kinematic latent space.

A. Experiment Settings

We train our model on the Argoverse motion forecasting
dataset [26] and evaluate the prediction performance on its
validation set. The benchmark has more than 30K scenarios
collected in Pittsburgh and Miami. Each scenario has a graph
of the road map and trajectories of agents sampled at 10 Hz.
In the motion generation and prediction tasks, we use the first
2 seconds of trajectories as input and generate the subsequent
3-second trajectories.

B. Physically Realistic and Controllable Trajectory Gener-
ation

As a generative model, our approach can generate diverse
trajectories by tuning the latent space of our LK-SDE. We
compare our methods with the learning-based generative
model TAE [15] and the bicycle-model-based DKM [19]. We
measure the metrics of jerk violation rate and the Wasser-
stein distance of distribution of acceleration to evaluate the
physical realism of generated trajectories.

The jerk is the rate of change of an object’s acceler-
ation over time (the definition is in Eq. (8) below) and
the magnitude of jerk is commonly used to represent the
smoothness of trajectories [27], [28]. According to [27],
the jerk threshold for discomfort presents about 0.3 m/s3,
ranging up to 0.9m/s3. In our work, we consider trajectories
with jerks exceeding 0.9 m/s3 as violations.

j(t) =
da(t)

dt
=

d2v(t)

dt2
=

d3x(t)

dt3
. (8)

As shown in Table I, our LK-SDE based model has the
lowest average jerk value and lowest jerk violation rate [19],
indicating our methods can generate smoother and more
realistic trajectories than DKM and TAE. Specifically, in

Fig. 5, TAE generates trajectories with sparse and unstable
jerks – about 26% trajectories are with jerk magnitude above
the discomfort threshold (0.9 m/s3), showing the difficulty
of physically realistic trajectory generation by pure deep
learning (DL)-based methods. For DKM, 8.7% of generated
trajectories have higher jerk values than the threshold. Our
LK-SDE based model generates the smoothest and phys-
ically realistic motions with only a 5.0% violation rate.

We also evaluate the realism of generated motion by
measuring the acceleration distribution in the thrid column
of Table I. Previous work [29] shows that the forward
acceleration of vehicles can be precisely described by a
generalized Pareto distribution by analyzing over 100 million
real-world realistic data points from more than 100,000
kilometers. We evaluate the Wasserstein distance between
the motion accelerations of generated trajectories and the
reference Pareto distribution. Our approach has the smallest
Wasserstein distance, indicating again that our approach
can generate the most physically realistic trajectories.

TABLE I: Comparison between our LK-SDE based method
and baselines including TAE and DKM on the smoothness
and physical realism of generated trajectories.

Model
Metrics Average

Jerk
Jerk

Violation Rate
Acc. Wasserstein
Distance to Ref.

TAE (DL-based) [15] 0.64 26% 2.20
DKM (Model-based) [19] 0.43 8.7% 0.52

LK-SDE (Ours) 0.40 5.0% 0.45
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Fig. 5: The distribution of the jerk magnitude of different
generative methods. The red dashed line represents the dis-
comfort threshold for jerk value. We notice that our proposed
LK-SDE can augment the smoothest trajectories.

Fig. 6 illustrates a few concrete examples. The top row
shows that our LK-SDE model can accurately augment
realistic vehicle motions in a physically feasible and control-
lable manner. We tune the initial states for lateral direction,
longitudinal direction, and yaw angle, respectively, which
can generate the corresponding diverse trajectories. We find
that many trajectories generated by the baseline TAE method
(bottom row in Fig. 6) have unrealistic and physically
infeasible motions such as sharp turns and sudden offsets.

C. Accurate Prediction with Physics-informed Latent Space
The accuracy of trajectory prediction is a suitable metric

to measure the ability to learn the representation of the
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Fig. 6: Visualization of the augmented trajectories. The top row shows the trajectories generated by our LK-SDE model. We
manually tune the initial values in the latent space (lateral for (a), longitudinal for (b), and yaw angle for (c)). The bottom
row shows trajectories generated by the pure deep learning method TAE, by tuning its behavior latent space (lateral for (d),
longitudinal for (e), random for (f)). In all the subplots, the orange lines are history trajectories, the red lines are ground
truth for future motion, green lines are augmented trajectories. The black arrows point to the parts of trajectories that are
obviously physically infeasible or unrealistic by TAE. The generated trajectories in (a)(b)(c) visually align with the physical
knowledge from the bicycle model, showing the effectiveness of our LK-SDE design.

environment and generate realistic trajectories. Generally, the
average performance of trajectory prediction or regression is
measured by the average displacement error (ADE, defined
as the average of the root mean squared error between the
predicted waypoints and the ground-truth trajectory way-
points) and the final displacement error (FDE, defined as the
root mean squared error between the last predicted waypoint
and the last ground-truth trajectory waypoint). We compare
our methods with the DL-based GRIP++ [30], LaneGCN [7],
and TPCN [8], domain knowledge aware generative methods
TAE [15], and bicycle-model-based DKM [19]. The results in
Table II show that our LK-SDE model outperforms GRIP++,
DKM, and TAE, and achieves close performance to the state-
of-the-art LaneGCN and TPCN in prediction accuracy (note
that LaneGCN, TPCN, and GRIP++ do not have trajectory
generation capability).

TABLE II: Trajectory prediction comparison between our
LK-SDE based method and baselines.

Model
Metrics ADE FDE

GRIP++ [30] 1.77 3.91
LaneGCN [7] 1.35 2.96

TPCN [8] 1.34 2.95
TAE [15] 1.42 3.08
DKM [19] 1.46 3.14

LK-SDE (Ours) 1.39 2.98

Besides, our kinematics-aware latent space can estimate
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Fig. 7: The distribution of the normalized steering angles
estimated in the latent space. The red dashed line represents
the one-sigma threshold. Our kinematics-aware method can
estimate unobservable variables such as steering angle, which
is useful for understanding target vehicles’ behavior.

some variables that are crucial for understanding the target
vehicle’s behavior but cannot be observed directly by per-
ception or prediction modules. In our design, the bicycle-
model-based LK-SDE can estimate the normalized steering
angles (u2) and slip angles (β) without explicit training on
ground truth data. Fig. 7 shows the distribution of normalized
steering angles on the Argoverse dataset, estimated by the
kinematics-aware latent space. The normalized steering angle
and its distribution can help us discern the steering directions
as well as the sharpness of the turns. For instance, when



the estimated steering angle of a vehicle is larger than a
threshold (such as the one-sigma range in Fig. 7), it suggests
the possibility of an aggressive turning maneuver.

Combining the results from trajectory generation and
augmentation, we can conclude that our latent kinematics-
aware SDE can learn the representation of trajectories and
environments more effectively than the model-based meth-
ods and generate more physically realistic and controllable
motions than the DL-based generative models. In addition
to the average accuracy, our methods can also give detailed
and accurate kinematics prediction (e.g., steering angle)
along with the waypoints, which provide more explainable
information for safety-critical decision-making.

V. CONCLUSION

In this work, we propose a vehicle motion generator with
the latent kinematics-aware stochastic differential equation
(LK-SDE). We embed the physics knowledge into the latent
space of a VAE by the dual SDE design. The method can
bridge the high-dimensional features from the environment
and the low-dimensional kinematics to generate fine-grained,
physically realistic, and controllable trajectories, and to pro-
vide accurate prediction of unobservable physical variables.
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