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Abstract. Neural networks are increasingly used in safety-critical ap-
plications such as robotics and autonomous vehicles. However, the de-
ployment of neural-network-controlled systems (NNCSs) raises signifi-
cant safety concerns. Many recent advances overlook critical aspects of
verifying control and ensuring safety in real-time scenarios. This paper
presents a case study on using POLAR-Express, a state-of-the-art NNCS
reachability analysis tool, for runtime safety verification in a Turtlebot
navigation system using LiDAR. The Turtlebot, equipped with a neural
network controller for steering, operates in a complex environment with
obstacles. We developed a safe online controller switching strategy that
switches between the original NNCS controller and an obstacle avoidance
controller based on the verification results. Our experiments, conducted
in a ROS2 Flatland simulation environment, explore the capabilities and
limitations of using POLAR-Express for runtime verification and demon-
strate the effectiveness of our switching strategy.

1 Introduction

The increasing complexity of control strategies used in cyber-physical systems
(CPSs) [34], specifically those based on neural networks, has revolutionized
decision-making and control in several critical domains, including healthcare [58,
59], robotics [48, 49, 61], transportation [14, 39, 55], building control [53, 56, 57],
and industrial automation [9, 54]. These advanced control approaches excel at
handling complex and dynamic environments due to their ability to learn and
adapt from data. However, assuring the safety and stability of these systems for
the nonlinearity of control systems and their closed-loop formation with dynamic
systems remains a significant challenge [4, 42, 64, 66].

Literature in this domain primarily focuses on developing methodologies to
assess and guarantee the reliability and robustness of neural network decisions.
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Early approaches often relied on static analysis techniques that scrutinized net-
work structures and weights to predict behavior under various inputs [1, 26, 46].
Recent advancements have introduced more dynamic methods, such as for-
mal verification and reachability analysis [2, 18, 40, 50], which offer more nu-
anced insights into network behaviors across potential operational scenarios. The
Simplex-based Reachability Analysis [7, 16] guarantees system overall safety by
integrating a verified safety controller and decision logic that switches between
complex and safety controllers. While making significant contributions on real-
time reachability, the use of these verification tools in realistic environments
with machine-learning components remains largely unexplored. Our work uses
POLAR-Express [50], a state-of-the-art verification tool to perform online reach-
ability analysis for realistic robotic systems with neural network control and Li-
DAR sensing. We demonstrate the effectiveness of POLAR-Express for online
reachability analysis by safely navigating robots in complex environments with
obstacle constraints. The main contributions of this paper are as follows:

– We present a comprehensive study demonstrating the feasibility of perform-
ing runtime verification by POLAR-Express on Turtlebot for safe navigation.

– We provide a safe online controller switching strategy to avoid unknown
obstacles based on the runtime verification result.

2 Related Work

Runtime Verification for Control. Runtime Verification (RV) plays a cru-
cial role in the real-time operation of autonomous systems, such as autonomous
vehicles [25], transportation networks [41] and medical devices [35]. In con-
trol theory, techniques such as adaptive control and robust control are em-
ployed to manage uncertainties and ensure stability in real-time scenarios [5, 63].
From the formal methods perspective, model checking, which utilizes temporal
logic specifications like linear temporal logic (LTL) and signal temporal logic
(STL), forms the backbone of verification processes on the system’s trajecto-
ries [8, 15, 22, 30, 44, 60, 62]. Moreover, the integration of stochastic quan-
tification tools with temporal logic through conformal prediction frameworks
offers a formal statistical guarantee of system reliability under dynamic condi-
tions [10, 37]. These developments have fostered innovative hybrid approaches
that combine the strengths of control theory and formal methods to tackle com-
plex verification challenges in real-time systems [3, 45].

NNCS Verification. The verification of neural networks has emerged as a crit-
ical research area [65]. Tools like Reluplex [31], Marabou [32], and Sherlock [17]
employ techniques derived from formal methods to ensure that neural networks
adhere to specified safety and performance criteria. Others methods includes
optimization-based over-approximation [17, 46], and hybrid system approxima-
tion [29]. Alongside these, with the existing techniques for verifying dynamic
systems [11, 13], a series of works have attained considerable maturity, provid-
ing formal analysis for neural network controlled systems (NNCSs) [2, 18, 19, 20,
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24, 33, 38, 47, 50, 51, 52]. However, most of these approaches have not demon-
strated the capability to verify NNCSs in a runtime environment. [28] presented
the feasibility of Verisig [27, 29] using high-dimensional LiDAR measurements
as the NNCS input, albeit in a simplistic setting for runtime requirements.

3 POLAR-Express Case Study

3.1 Preliminary

NNCS. We consider the explicit dynamics of an NNCS as ṡ = f(s, a) where
the state variable is s ∈ S ⊆ Rn, control input is a ∈ A ⊆ Rm, and the dynamic
f : Rn×Rm → Rn is a Lipschitz continuous function, ensuring a unique solution
of the ODE. Such a system can be controlled by a feedback NN controller κnn, at
i-th (i = 0, 1, · · · ) sampling period iδ, κnn reads the system state siδ, generates
a control input a = κnn(siδ), and the system evolves according to ṡ = f(s, a)
within the period of [iδ, (i+1)δ]. The flowmap function φ(s0, t) : Rn×R≥0 → Rn

is to describe the solution of the NNCS, which maps the initial state s0 to the
system state φ(s0, t) at time t starting from s0. We call a state s′ reachable if
there exist s0 ∈ S and t ∈ R≥0 with s′ = φ(s0, t). A reachable set ST

r is a
collection of all reachable states within a time range T = R≥0 given an initial
space S0 = {s0}, i.e., ST

r = {φ(s0, t), | s0 ∈ S ∧ t ∈ T}. Intuitively, once the
reachable set ST

r is non-overlapping with the unsafe sets Su, safety is guaranteed
for such an NNCS throughout the time horizon T .

POLAR-Express. POLAR-Express [50] is a reachability analysis tool for NNCS
based on polynomial arithmetic, developed upon POLAR [23]. It uses Bernstein
polynomial interpolation to over-approximate the non-differentiable activation
functions to enable layer-by-layer Taylor-Models (TMs) propagation for general
feed-forward neural networks. The output over-approximation from the neural
network is combined with Flow* [12] for next-step reachable set computation.
This process repeats with the previous reachable set result as the input set for the
next step and thus rolls out the overall reachable set step by step within the en-
tire time horizon. Moreover, to tighten the over-approximation, POLAR-Express
stores the TM intervals symbolically with their linear transformation matrix and
only evaluates the remainder interval at the end. This approach is called sym-
bolic remainder, which reduces the accumulation of over-approximation error in
TM by avoiding the wrapping effect in linear mappings.

3.2 Task Specification X
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Fig. 1: Turtlebot Task Overview

We control the Turtlebot 3 Burger (Details in
Appendix A) in the ROS2 Flatland simulation
to execute a left turn via an NN controller in
a structured environment bounded by 5-meter
walls (Fig. 1). The Turtlebot is equipped with
LiDAR sensing capabilities, enabling it to lo-
calize and detect obstacles within its sur-
roundings. While the NN controller computes
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the desired speed and steering angle for the left turn, POLAR-Express runs in
real-time to verify the controller’s safety. To create dynamic and uncertain envi-
ronments, we introduced random obstacles during navigation, which do not exist
in the training phase of the NN controller. This scenario ensured that some of
the NN control signals would be unsafe, thereby requiring POLAR-Express to
capture unsafe maneuvers in real time and demanding a safe control adaptation
strategy.

3.3 Runtime Verification (POLAR-Express) based Safe Control

Fig. 2a outlines this case study’s safe closed-loop control framework. We use
POLAR-Express to compute reachable sets of NN controller κnn for Turtlebot
at runtime. In case of a potential collision, the Turtlebot is switched to a backup
obstacle avoidance controller κb for safety. We switch back to the NN controller
if it is verified to be safe after the obstacle avoidance controller takes over. We
introduce the details of each component in the following.

Global Map

Dynamics

Controllers

x
v

ω
y

θ

Localization

Obstacle Avoidance 
Controller κb

NN controller κnn

Reachability Analysis

true:  

false: 

state 
reachable set 

unsafe set

(a) (b)

Fig. 2: a. The case study framework. We use POLAR-Express to determine the
switch between an NN controller and an obstacle avoidance controller. b. The
obstacle avoidance controller design moves the Turtlebot counterclockwise while
keeping a safe distance.

Turtlebot Dynamics and localization. We model the Turtlebot’s dynamics
as ẋ = cos(θ)v, ẏ = sin(θ)v, θ̇ = ω [43]. where θ is the orientation angle around
x-axis and (x, y) is the localized position, s = [x, y, θ] ∈ S. a = [v, ω] ∈ A is the
control input signal, representing linear velocity and angular velocity, generated
by the controller. Given a global map of the environment and the laser scan data
from the LDS-01, the Turtlebot can localize its position by the Adaptive Monte-
Carlo Localization (AMCL) approach implemented in the Nav2 package [6].
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NN Controller κnn. We construct an NN controller κnn : R3 → R2 with two
hidden layers with a size of 64 neurons and ReLU activation functions. The
controller takes the localized (x, y, θ) as input and outputs the linear velocity
and angular velocity (v, ω) for the Turtlebot, i.e., ann = (v, ω) = κnn(x, y, θ).
To train the network, we collected 100 trajectories from expert demonstration
data at 20 Hz in a simulation environment using the Nav2 goal package, moving
the robot from a desired starting position to an end zone, and thus obtaining
a dataset of {(x, y, θ, v, ω)}. We then train the NN controller via supervised

learning to reduce an MSE loss as ∥κnn(x, y, θ)− (v, ω)∥2. It is worth noting
that there are no obstacles in the environment during offline training.

Obstacle Avoidance Controller κb. If the runtime verification result of κnn

is unsafe, we switch to the obstacle avoidance controller κb. Given the obsta-
cle position, κb move the Turtlebot around the obstacle counterclockwise while
keeping a constant distance d by adapting the algorithm in [36], as shown in
Fig. 2b. Let (x, y) be the robot’s localized position and (x0, y0) be the obstacle’s

center. The distance vector from the robot is um =

[
x0 − x
y0 − y

]
. To maintain a safe

distance d, we compute up = um − um

||um|| ∗ d, which points toward the obstacle if

∥um∥ ≥ d, and vice versa. To move in parallel with the obstacle, we rotate up by

90 degrees: where R=

[
0,−1
1, 0

]
. Combining both components, the desired motion

and angle for safe obstacle avoidance is u = up + uv and ϕ = arctan(ux, uy),
where ux and uy are the projections of u onto x- and y-axes, respectively. Con-
sidering Turtlebot’s physical limits (0.22m/s linear and 2.84 rad/s angular), we
cap the desired steering velocity v while setting it to ∥u∥. Similarly, we cap the
desired steering angle ω while setting it to the difference between ϕ and current
orientation θ. The control input of κb becomes

ab = (v, ω) = (min(0.22, ||u||),min(2.84, ϕ− θ))

It is important to note that κb is a fallback mechanism to steer the robot to
safety when κnn is deemed unsafe by runtime verification. For the scope of this
work, we assume that κb is guaranteed to safely navigate the robot around the
obstacle to a stable point where κnn can resume control.

Obstacle Detection as Unsafe Regions Su. We introduce obstacles of ran-
dom size and location on the NNCS trajectory for online navigation. Note that
the neural network does not have any knowledge of the random obstacle on the
map. Rather, these obstacles can be detected and localized by the sensing abil-
ity of the Turtlebot at runtime. The location of these obstacles is treated as
the unsafe region Su for the safety verification of the neural network controlled
Turtlebot by POLAR-Express.

Controller Switching Logic. As mentioned, Turtlebot can detect and local-
ize the obstacles’ locations as unsafe regions Su. At runtime, we use POLAR-
Express to compute an over-approximation of reachable set for κnn starting from
the current state s within a time horizon T ′ as ST ′

r . If Su overlaps with ST ′

r , this
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indicates a potential collision between Turtlebot under κnn and the obstacle
within time horizon T ′, and therefore we switch to κb producing ab for safety.
While operating under κb, the robot continues to perform online reachability
analysis for κnn. If Su is no longer overlapping with ST ′

r , i.e., ST ′

r ∩ Su = ∅, the
robot switches back to κnn, as its control input is verified to be safe. This syn-
ergistic approach leverages κnn for efficient task execution and relies on κb and
reachability analysis to guarantee safety in complex and cluttered environments;
the switching logic can be carried entirely online.

4 Experiments

The simulation was performed on a Dell XPS 15 with an i7 processor, per-
forming reachability analysis every 0.2 seconds in the callback function of the
ROS2 Flatland simulation. POLAR-Express can be customized by adjusting key
hyper-parameters such as the degree of the Taylor Model (TM), the order of the
Bernstein Polynomial approximation (BP), and the number of verification steps
(please see [11, 50] for more details of these hyper-parameters). By default, we
assign the order of TM as 2 and the order of BP as 2 with 10 verification steps.
With the default parameters, our framework operates effectively in both single
(Fig. 3b) and multiple obstacle avoidance scenarios (Fig. 3c). Our well-trained
κnn driving agent responds to obstacles detected with the reachable set computa-
tion by POLAR-Express timely and correctly activating the guarding condition,
which then switches to the κb controller, also shown in Fig. 4. The κnn resumes
control once the agent steers around the obstacle and the reachable set no longer
overlaps with unsafe areas (Fig. 3b, Fig. 4). In the multiple-obstacles scenario,
our runtime framework consistently manages several controller switches, ensur-
ing safety throughout the operation (Fig. 3c). To comprehensively evaluate the
case study, we then explore different parameter settings for POLAR-Express
in different runtime scenarios, which may affect the tightness and computation
efficiency of the reachable set.

Verification Time Steps. The verification time step determines the temporal
horizon over which POLAR-Express computes the reachable set of the robot’s
future states. As observed in Fig. 4a, longer verification time steps predict further
and react to obstacles further ahead, while shorter steps react closer to obstacles.
Although this predictive capability is desirable, increasing the verification time
step introduces several drawbacks, as shown below.

Longer verification time steps increase the computational cost and may not
satisfy the real-time verification requirement, as evidenced by the runtimes for
different time steps in Table 1. Fig. 4 demonstrates that we continue using κnn

if its runtime reachable set (green bounding boxes) does not overlap with the
obstacle, and switch to κb otherwise, indicated by the red runtime reachable set.
The visualization shows that controllers with longer verification time steps, such
as 30 (Fig. 4c), compute less frequently than those with shorter time steps, like
10 (Fig. 4b). Secondly, longer verification time steps can cause the controller to
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NN controller

(a) No Obstacle

NN controller
Backup controller

(b) Single Obstacle

NN controller
Backup controller

(c) Multi-Obstacles

Fig. 3: The navigation trajectory of Turtlebot with our runtime verification based
control by κnn (green) and κb (red) for a). No obstacles, b). navigating around
a single obstacle, and c). navigating through multiple obstacles. The connection
points of green and red are the controller switching points.

trajectory 10
trajectory 15
trajectory 20
trajectory 30

(a) trajectories (b) 10 time steps (c) 30 time steps

Fig. 4: Trajectories and runtime reachable set visualization by POLAR-Express
with varying verification time steps: green boxes and red boxes show runtime
reachable sets using the NN and the obstacle avoidance controller, respectively.

become more conservative and less task-critical, spending more time on obstacle
avoidance and delaying task completion (Table 1). Lastly, longer verification
steps may lead to an excessive accumulation of over-approximation error in the
reachable set. This can result in an overly conservative evaluation of κnn’s safety,
causing a premature switch to κb and consequent performance degradation.

Overall, trajectory planning systems face a trade-off between computational
complexity and safety considerations. Longer verification time steps ensure safer
navigation by exploring more potential paths and identifying obstacles earlier,
but this comes at the cost of increased computational time and data sparsity,
potentially causing delayed verification decisions and reduced task criticality.
Conversely, shorter verification time steps may be computationally more efficient
but risk overlooking potential obstacles or failing to plan adequately. Striking
the right balance between these factors is crucial for performance and safety.
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Verification Steps 10 15 20 30

Runtime (s) 0.18 0.26 0.35 0.53
Task Total Time Usage(s) 77.73 80.05 82.32 89.31

Obstacle Avoidance Controller Time Usage(s) 20.97 22.37 25.19 28.99
Obstacle Avoidance Controller Utilization (%) 26.97 27.94 30.6 32.46

Table 1: The verification time step vs. runtime (s)

Timing of Runtime Verification with POLAR-Express. In this section,
we evaluate the runtime performance of POLAR-Express by conducting experi-
ments with different combinations of Taylor Model (TM) degrees and Bernstein
Polynomial (BP) approximation orders, which determines the accuracy of NN
approximation and dynamic systems propagation. Intuitively, higher order de-
grees of the polynomials within POLAR-Express provide more powerful and
accurate approximations but come with more computation burden.

Fig. 5: The 10-step verification runtime
of POLAR-Express with different TM
and BP orders.

The bar graph in Fig. 5 represents
the runtime for various TM degrees
and BP orders. Each runtime data
is collected from the callback func-
tion and averaged for 10 trajectories.
The POLAR-Express setup is fixed at
10 verification steps. In our evalua-
tion, high TM degrees directly result
in longer runtimes. We found that an
increase in BP order does not drasti-
cally increase the time cost of the ver-
ification. Since the simulation is set
to run the callback function every 0.2
seconds, only combinations with an
average runtime of less than 0.2 sec-
onds are considered valid for real-time performance. Based on this criterion, the
valid combinations include TM degrees up to 3.

5 Conclusion and Future Work

This paper presents a runtime verification case study where an autonomous
Turtlebot, equipped with a neural network (NN) controller, navigates a struc-
tured environment using only LiDAR measurements and POLAR-Express for
runtime reachability analysis. Our research can expand in several directions: 1)
Adapting our framework to accommodate system uncertainties and stochastic
policies is a potential area for further development. 2) Incorporating scheduling
techniques from the real-time systems for runtime verification could enhance
system-level efficiency, where we can opportunistically call the verification en-
gine only when it is necessary. 3) The switching logic of this case study is static
and relatively simple, overlooking the fact that the obstacle avoidance controller
could enter states that are not recoverable by the NN controllers. This could
also be a future direction for improving this work.
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A Turtlebot Specification

To emulate real robot operations, we designed a robot testbed using the Flatland
simulation environment. This setup replicates the dynamics of the Turtlebot 3
Burger, a differential wheeled robot equipped with two independently driven
wheels and a LiDAR sensor [21]. Its maximum translational and angular veloci-
ties are 0.22 m/s and 2.84 rad/s, respectively. It has a 360-degree Laser Distance
Sensor (LDS-01) capable of scanning the environment at 300 rpm, with a dis-
tance range of 120 mm to 3600 mm and a sample rate of 1.8k Hz. Given the
Turtlebot’s LiDAR scanning distance range, we set up a simulation with 5-meter
bounded walls (Fig. 1) to ensure the robot receives appropriate laser scan values
for localization.
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