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We consider the problem of trajectory planning for optimal relative orbit determination in
the cislunar environment. The recent interest in cislunar space has created a need to develop
autonomous tracking technologies that can maintain situational awareness of this dynamically
complex regime. Optical sensors provide an ideal observation platform because of their low cost
and versatility in tracking both cooperative and non-cooperative space objects. The estimation
performance of an optical observer can be significantly enhanced through manuevering. This
work develops a trajectory planning tool, compatible with low-thrust propulsion, for tracking
one or multiple targets operating in proximity to the observer. We formulate an objective
function that is a convex combination of the mutual information between target states and
measurements, and the low-thrust control e!ort. The subsequent optimal control problem is
solved via direct collocation using the successive convexification algorithm which, we argue, is
well suited for a potential onboard trajectory planning application. We demonstrate the tool
for several relevant scenarios with one and multiple targets operating in periodic orbits in the
circular restricted three-body problem. A sequential estimator’s performance is evaluated
using the Cramer-Rao lower bound and, compared to a purely passive observer, we show
that optimizing the observer’s trajectory can decrease this bound by up to several orders of
magnitude within a planning window. This investigation provides an initial proof-of-concept to
future onboard planning technologies for relative tracking in the cislunar domain.

I. Introduction

T!" region between the Earth and the moon opens possibilities for many unique mission architectures, however,
the non-linear dynamics in cislunar space coupled with its vast volume make situational awareness infeasible with

solely Earth-based sensing resources. There is no shortage of both public and private organizations eager to establish a
presence in this domain and, inevitably, this growth will congest the environment in a manner similar to Earth orbit.
Moreover, tracking in cislunar space is only tangible with exquisite Earth-based facilities such as the Deep Space
Network (DSN), and the expected growth will far out-pace its current capacity. For these reasons, there is a critical need
to develop technologies for autonomous tracking and navigation that can operate in cislunar space. Sensing platforms
will need to perform mission planning with little operator intervention to achieve mission objectives. For instance, it is
desirable for a spacecraft to receive an abstract goal (e.g., maintain a desired definition of custody for an object catalog)
and then autonomously determine and execute a mission profile that can achieve such an objective [1].

Electro-optical sensors are an ideal measurement mode for their utility in tracking both cooperative and non-
cooperative space objects. They rely solely on reflected light from the sun so are not power limited, and can operate
at greater ranges. Optical sensors map pixel coordinates from the sensor plane into angular bearings either in a local
or inertial frame of reference. The measurements provide partial state information, but taken individually, do not
fully observe the state of the system. Series of angular bearings observed from a sensing platform and processed
by sequential filters are e!ective for orbit determination and navigation in astronautical applications (e.g., [2], [3]).
More recent work has investigated their feasibility in the cislunar domain. In [4] the authors investigate optical-only
navigation with features including lunar landmarks, lunar asteroids, and artificial satellites. [5] conducts a comparison
between di!erent combinations of observation modalities for navigation in a near-rectilinear halo orbit (NRHO). In [6]
the authors characterize the performance of an optical observer located at di!erent periodic orbits for cislunar Space
Situational Awareness (SSA).
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Reconfiguring a mobile optical sensor can significantly enhance the observability of the system. Early work such as
[7] evaluated the e!ect of course maneuvers on state estimation performance using the Cramer-Rao lower bound (CRLB).
Both [8] and [9] develop analytic expressions for optimal maneuvers based on geometric definitions of observability
for optical navigation applications in Earth orbit. These definitions, however, do not fully encapsulate the e!ect of
a maneuver on a state estimator over extended time intervals. Alternatively, there has been considerable work in
optimizing motion planning with respect to measures that directly relate to an estimator’s performance. Among these,
the Fisher information matrix (FIM) is extensively utilized in the literature (e.g., [10], [11], [12]). The FIM is the inverse
of the CRLB which, for a linear/Gaussian system, provides the asymptotic error covariance for an unbiased estimator.
For a nonlinear system, the FIM however is only a local estimate of the information. On the other hand, the mutual
information, defined as the Kullback-Leibler (KL) divergence between a prior and posterior state distributions, provides
a consistent information measure for nonlinear/non-Gaussian systems that is a function of the entire probability density
function (PDF) [13].

This work develops a mutual information-based trajectory planning algorithm for the purpose of relative target
tracking around periodic orbits in the circular restricted three-body problem (CRTBP) compatible with a low-thrust
mobile observer. We formulate an objective that is convex combination of the control e!ort and the mutual information
for one or multiple space objects acquired over a finite time horizon. The associated optimal control problem is
solved with direct collocation using sequential convex programming (SCP). More specifically, we use the successive
convexification (SCvx) algorithm [14, 15]. State-of-the-art SCP algorithms are appealing because they are robust to a
coarse initial solution guess, require very few solver iterations, and are amenable to o!-the-shelf convex programming
solvers. Moreover, unlike sequential quadratic program (SQP) solvers, they do not require the computation of second
order derivatives which can be computationally expensive. For these reasons, SCP algorithms can be employed in
real-time for tasks such as powered descent guidance [16, 17] and model predictive control for spacecraft swarms [18].
Related to this work, [19] employs an SCP algorithm for mission planning in transferring between a halo orbit and
NRHO. The authors show that their SCP algorithm can successfully converge to an optimal solution, despite the highly
nonlinear and unstable dynamics.

The rest of this work is organized as follows: In Section II we describe the derivation of the mutual information
objective used for optimizing the motion of the sensing platform. We also summarize the equations of motion and the
measurement model of the observer. Section III details our implementation of the SCvx algorithm. In this, we formulate
an optimal control problem where the objective is to minimize a convex combination of the mutual information and
control e!ort, and we provide a necessary description for implementation. Additionally, we describe a regularization for
spacing collocation nodes that better facilitates solution convergence. We demonstrate several numerical simulations
in Section IV for NRHO and DRO periodic orbits for single and multiple target tracking and compare a spectrum of
solutions by varying the homotopy parameter controlling the relative importance of control e!ort and mutual information.
The estimation performance is evaluated by comparing the CRLB with a passive observer. Finally, in Section V we
summarize our main contributions in this work and suggest ideas future investigations.

II. Problem Formulation

A. Formulating the Objective Function
In this section, our goal is to formulate an objective function that properly encapsulates a sequential estimator’s

performance in tracking 𝐿T objects from a mobile platform over an entire planning window. The transitional dynamics
for each of the targets, indexed by the superscript 𝑀, between discrete measurement time steps 𝑁 and 𝑁 + 1 is given by

𝜴
(𝐿)
T,𝑀+1 = 𝜶

(𝐿)
𝑀

(𝜴 (𝐿)
T,𝑀) + 𝜷

(𝐿)
𝑀

, for 𝑀 = 1, 2, · · · , 𝐿T. (1)

Note that in this work we use the subscript “T” to explicitly denote variables that are associated to a target. This
is to mitigate any confusion with variables belonging to the sensing platform. Additionally, the discretization used
in Section III does not correspond to the measurement time steps, 𝑁 = 1, 2, · · · , 𝐿meas, used in this section, where
𝐿meas is the number of measurements collected. 𝜴

(𝐿)
T,𝑀 → R𝑁𝐿 is the state of the 𝑀

th target at time step 𝑁 , 𝜶
(𝐿)
𝑀

(·) is a
discrete time representation of the system dynamics between step 𝑁 and 𝑁 + 1, and 𝜸

(𝐿)
𝑀

is the process noise, where
𝜷
(𝐿)
𝑀

↑ N(𝜷 (𝐿)
𝑀

; 0,𝑂 (𝐿)
𝑀
). Here, N(· ; 𝜹, 𝑃) denotes a Gaussian distribution with mean 𝜹 and covariance 𝑃.

We assume measurements of all targets are obtained synchronously from the mobile sensing platform and are given
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by
𝝐
(𝐿)
𝑀

= 𝜻(𝜴 (𝐿)
T,𝑀 , 𝜴𝑀) + 𝜼𝑀 , for 𝑀 = 1, 2, · · · , 𝐿T, (2)

where 𝝐
(𝐿)
𝑀

→ R𝑁𝑀 is the measurement of target 𝑀 at time step 𝑁 . In the above, we explicitly include the dependence of
the mobile sensor’s state, 𝜴𝑀 , in the measurement function, 𝜻(·, ·), to highlight that this dependence is exploited to
maximize the performance of the observer. 𝜼𝑀 is the measurement noise, where 𝜼𝑀 ↑ N(𝜼𝑀 ; 0, 𝑄).

The objective of the observer is to plan a trajectory such that the mutual information between the targets’ measurements
and states is maximized. Each of the targets are assumed independent and so the mutual information for each can be
calculated independently. For a given step 𝑁 , the mutual information for target 𝑀 is

𝜽
(𝐿) (𝜴 (𝐿)

T,𝑀 ; 𝝐 (𝐿)
𝑀
) = DKL

(
𝑅(𝜴 (𝐿)

T,𝑀 , 𝝐
(𝐿)
𝑀
)↓𝑅(𝜴 (𝐿)

T,𝑀)𝑅(𝝐
(𝐿)
𝑀
)
)

, (3)

where DKL (·| |·) is the KL divergence defined as

DKL (𝑅(𝑆) | |𝑇(𝑆)) =
∫ ↔

↗↔
𝑅(𝑆) ln

(
𝑅(𝑆)
𝑇(𝑆)

)
𝑈𝑆, (4)

for arbitrary continuous distributions 𝑅(𝑆) and 𝑇(𝑆), where the distribution 𝑇(𝑆) has full support. The KL divergence is
commonly interpreted as measure of dissimilarity between probability distributions. Inspecting Eq. 3, maximizing the
mutual information amounts to maximizing the dissimilarity between the joint and product of conditionally independent
distributions for the state and measurement. Additionally, by marginalizing the joint distribution, Eq. 3 is equivalent to

𝜽
(𝐿) (𝜴 (𝐿)

T,𝑀 ; 𝝐 (𝐿)
𝑀
) = E

𝜴 (𝑁)
𝑂

[
DKL

(
𝑅(𝜴 (𝐿)

T,𝑀 |𝝐
(𝐿)
𝑀
)↓𝑅(𝜴 (𝐿)

T,𝑀)
)]

= E
𝜶(𝑁)

T,𝑂

[
DKL

(
𝑅(𝝐 (𝐿)

𝑀
|𝜴 (𝐿)

T,𝑀)↓𝑅(𝝐
(𝐿)
𝑀
)
)]

. (5)

Therefore, maximizing the mutual information is the same as maximizing the expected dissimilarity between a prior and
posterior distribution when the expectation is taken with respect to the data variable. This has a rather nice intuitive
explanation as any conditional distribution will contain the same or greater information content for a parameter than the
conditionally independent distribution of the parameter. For this reason, the mutual information between the state and
measurement variables is sometimes referred to as the information gain [20].

Rather than maximizing the mutual information at one time step, we would like to maximize it along the entire
trajectory. We assume that the states and measurements for target 𝑀 along the trajectory is jointly Gaussian so that

𝑅

(
𝜾

(𝐿)
T ,𝜿

(𝐿)
)
= N

([
𝜾

(𝐿)
T

𝜿
(𝐿)

]
;

[
𝜾̂

(𝐿)
T

𝜿̂
(𝐿)

]
, ω̃ (𝐿)

)
(6)

where,
𝜾

(𝐿)
T = [𝜴 (𝐿)↘

T,1 , 𝜴
(𝐿)↘
T,2 , · · · , 𝜴 (𝐿)↘

T,𝑂meas
]↘, (7)

𝜿
(𝐿) = [𝝐 (𝐿)↘1 , 𝝐

(𝐿)↘
2 , · · · , 𝝐 (𝐿)↘

𝑂meas
]↘, (8)

and,

ω̃ (𝐿)
= E



([
𝜾

(𝐿)
T

𝜿
(𝐿)

]
↗
[
𝜾̂

(𝐿)
T

𝜿̂
(𝐿)

]) ([
𝜾

(𝐿)
T

𝜿
(𝐿)

]
↗
[
𝜾̂

(𝐿)
T

𝜿̂
(𝐿)

])↘
. (9)

Here, 𝜾̂ (𝐿)
𝑃

and 𝜿̂
(𝐿) are the augmented predicted state and measurements along the trajectory arc, respectively. There

are several ways to compute the expectation integral in Eq. 9. In [13] the authors use sigma points with the conjugate
unscented transform. In this work, we choose to approximate the expectation using a first order Taylor series expansion
so that

ω̃ (𝐿)
=

[
𝑃̃
(𝐿) ε̃ (𝐿)

ε̃ (𝐿)↘
𝑉
(𝐿)

]
=

[
ϑ̃(𝐿)

T 𝑂̃
(𝐿)ϑ̃(𝐿)↘

T ϑ̃(𝐿)
T 𝑂̃

(𝐿)
𝑊̃

(𝐿)↘

𝑊̃
(𝐿)
𝑂̃

(𝐿)ϑ̃(𝐿)↘
T 𝑊̃

(𝐿)
𝑂̃

(𝐿)
𝑊̃

(𝐿)↘ + 𝑄̃

]
. (10)
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The block matrices that form Eq. 10 are given as

𝑂̃
(𝐿) =



𝑃
(𝐿)
1 0𝑁𝐿≃𝑁𝐿

· · · 0𝑁𝐿≃𝑁𝐿

0𝑁𝐿≃𝑁𝐿
𝑂

(𝐿)
1 · · · 0𝑁𝐿≃𝑁𝐿

.

.

.

.

.

.

.
.
.

.

.

.

0𝑁𝐿≃𝑁𝐿
0𝑁𝐿≃𝑁𝐿

. . . 𝑂
(𝐿)
𝑂meas↗1


, (11)

𝑄̃ =



𝑄 0𝑁𝑀≃𝑁𝑀
· · · 0𝑁𝑀≃𝑁𝑀

0𝑁𝑀≃𝑁𝑀
𝑄 · · · 0𝑁𝑀≃𝑁𝑀

.

.

.

.

.

.

.
.
.

.

.

.

0𝑁𝑀≃𝑁𝑀
0𝑁𝑀≃𝑁𝑀

. . . 𝑄


, (12)

ϑ̃(𝐿)
T =



𝑋𝑁𝐿≃𝑁𝐿
0𝑁𝐿≃𝑁𝐿

0𝑁𝐿≃𝑁𝐿
· · · 0𝑁𝐿≃𝑁𝐿

ϑ(𝐿)
T (𝑌2, 𝑌1) 𝑋𝑁𝐿≃𝑁𝐿

0𝑁𝐿≃𝑁𝐿
· · · 0𝑁𝐿≃𝑁𝐿

ϑ(𝐿)
T (𝑌3, 𝑌1) ϑ(𝐿)

T (𝑌3, 𝑌2) 𝑋𝑁𝐿≃𝑁𝐿
· · · 0𝑁𝐿≃𝑁𝐿

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

ϑ(𝐿)
T (𝑌𝑂meas , 𝑌1) ϑ(𝐿)

T (𝑌𝑂meas , 𝑌2) ϑ(𝐿)
T (𝑌𝑂meas , 𝑌3) · · · 𝑋𝑁𝐿≃𝑁𝐿



, (13)

and,

𝑊̃
(𝐿) =



𝑊
(𝐿)
1 0𝑁𝑀≃𝑁𝐿

0𝑁𝑀≃𝑁𝐿
· · · 0𝑁𝑀≃𝑁𝐿

𝑊
(𝐿)
2 ϑ(𝐿)

T (𝑌2, 𝑌1) 𝑊
(𝐿)
2 0𝑁𝑀≃𝑁𝐿

· · · 0𝑁𝑀≃𝑁𝐿

𝑊
(𝐿)
3 ϑ(𝐿)

T (𝑌3, 𝑌1) 𝑊
(𝐿)
3 ϑ(𝐿)

T (𝑌3, 𝑌2) 𝑊
(𝐿)
3 · · · 0𝑁𝑀≃𝑁𝐿

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

𝑊
(𝐿)
𝑂meas

ϑ(𝐿)
T (𝑌𝑂meas , 𝑌1) 𝑊

(𝐿)
𝑂meas

ϑ(𝐿)
T (𝑌𝑂meas , 𝑌2) 𝑊

(𝐿)
𝑂meas

ϑ(𝐿)
T (𝑌𝑂meas , 𝑌3) · · · 𝑊

(𝐿)
𝑂meas



. (14)

The matrices ϑ(𝐿)
T (·, ·) → R𝑁𝐿≃𝑁𝐿 and 𝑊

(𝐿)
𝑀

→ R𝑁𝑀≃𝑁𝐿 are the state transition matrix and measurement partials, defined as

ϑ(𝐿)
T (𝑌𝑀+1, 𝑌𝑀) =

𝑍 𝜶
(𝐿)
𝑀

(𝜴T,𝑀)
𝑍𝜴

(𝐿)
T,𝑀


𝜶T,𝑂=𝜶̂T,𝑂

, (15)

and,

𝑊
(𝐿)
𝑀

=
𝑍𝜻(𝜴 (𝐿)

T,𝑀 , 𝜴𝑀)
𝑍𝜴T,𝑀


𝜶T,𝑂=𝜶̂T,𝑂

, (16)

respectively. 𝜴̂T,𝑀 is the predicted target state at time step 𝑁 . In Eq. 11, 𝑃 (𝐿)
1 is the initial state error covariance associated

to the target. The process noise covariance matrices are defined as

𝑂
(𝐿)
𝑀

= 𝑂
(𝐿) (𝑌𝑀+1, 𝑌𝑀) =

∫
𝑄𝑂+1

𝑄𝑂

ϑ(𝐿) (𝑌, 𝑎)𝑏𝑂𝑏
↘ϑ(𝐿) (𝑌, 𝑎)↘𝑈𝑎, (17)

where 𝑂 is the process noise power spectral density (PSD), and 𝑏 = [03≃3, 𝑋3≃3]↘ is the process noise gain matrix. In
practice, we jointly compute the predicted target state, state transition matrix, and process noise covariance matrix by
numerically integrating

𝛚 (𝐿) (𝑌) =



𝜴̂
(𝐿)
T (𝑌)

flat
(
ϑ(𝐿)

T (𝑌, 𝑌𝑀)
)

flat

𝑂

(𝐿) (𝑌, 𝑌𝑀)



, (18)

where,

⇐𝛚 (𝐿) (𝑌) =



𝜶

(
𝜴̂
(𝐿)
T , 𝑌

)
flat

(
𝑐(𝑌)ϑ(𝐿)

T (𝑌, 𝑌𝑀)
)

flat
 ⇐
𝑂

(𝐿) (𝑌, 𝑌𝑀)



, 𝛚 (𝐿) (𝑌𝑀) =



𝜴̂
(𝐿)
T,𝑀

flat(𝑋𝑁𝐿≃𝑁𝐿
)

0𝑁𝐿𝑁𝐿≃1


. (19)
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In the above, the operator flat(·) stacks the columns of a matrix into a vector. 𝜶 (·) is the continuous time dynamics
equations. We note that previously we used discrete-time to naturally express the transitional dynamics in a filtering
problem, however, the discrete time transition function 𝜶

(𝐿)
𝑀

(·) involves numerically integrating 𝜶 (·). 𝑐(𝑌) is the
continuous time dynamics Jacobian matrix, and

⇐
𝑂(𝑌, 𝑌𝑀) = 𝑐(𝑌)𝑂(𝑌, 𝑌𝑀) +𝑂(𝑌, 𝑌𝑀)𝑐↘ (𝑌) + ε(𝑌)𝑂ε↘ (𝑌). (20)

Now, we are ready to provide the form of the mutual information used in this work. Because we assume 𝜾
(𝐿)
T and 𝜿

(𝐿)

are jointly Gaussian, the mutual information in Eq. 3 possesses the close form expression,

𝜽
(𝐿) (𝜾 (𝐿)

T ;𝜿 (𝐿)
T ) = 1

2
ln

(
|𝑃̃ (𝐿) | |𝑉 (𝐿) |

|ω̃ (𝐿) |

)
. (21)

Similarly, using the Kalman filter covariance update, the conditional form of the mutual information in Eq. 5 can be
expressed as

𝜽
(𝐿) (𝜾 (𝐿)

T ;𝜿 (𝐿) ) = 1
2

ln

(
|𝑉 (𝐿) |

|𝑉 (𝐿) ↗ ε̃ (𝐿)↘ 
𝑃̃
(𝐿) ↗1 ε̃ (𝐿) |

)

=
1
2

ln

(
|𝑃̃ (𝐿) |

|𝑃̃ (𝐿) ↗ ε̃ (𝐿) 
𝑉
(𝐿) ↗1 ε̃ (𝐿)↘ |

)
. (22)

Then, because we have assumed the targets are independent, the total mutual information between all targets and all
target states is simply the sum of its individual constituents, given as

𝜽(𝜾T;𝜿) =
𝑂T
𝐿=1

𝜽
(𝐿)

(
𝜾

(𝐿)
T ;𝜿 (𝐿)

)
, (23)

where,
𝜾T =

[
𝜾

(1)
T , 𝜾

(2)
T , · · · , 𝜾 (𝑂T )

T

]
, (24)

𝜿 =
[
𝜿

(1)
,𝜿

(2)
, · · · ,𝜿 (𝑂T )

]
. (25)

For our application, the first form of the mutual information provided in Eq. 22 is preferable because, as described in
Section III, we require repeated evaluations to determine its sensitivity with respect to the observer’s position along the
trajectory. This is only explicitly related through the measurement Jacobian matrices, which are solely contained to the
block matrices 𝑉 (𝐿) and ε̃ (𝐿) . Therefore, the matrix inverse


𝑃̃
(𝐿) ↗1 needs only to be computed once. Furthermore, the

matrix dimension in the numerator and denominator are significantly smaller than the other forms, so the determinant
evaluation is more e"cient and exhibits better numerical stability.

B. System Dynamics and Measurements
In this work, we use the CRTBP to model the natural motion of the targets and observer in the cislunar environment.

The Earth and the moon are the primary bodies and revolve in circular arcs around the system barycenter. The CRTBP
assumes that the e!ect of the third body (i.e., target or observer platform) is negligible on the first two bodies. Expressed
in a synodic frame where the 𝑆-axis points from the system barycenter to the moon, the 𝑑-axis is oriented with the
system’s angular momentum vector, and the 𝑒-axis completes the right-hand-rule, the system is conservative and we can
define a pseudo-potential function 𝑓 as

𝑓 =
1 ↗ 𝑔

𝑕1
+ 𝑔

𝑕2
+ 1

2
(𝑆2 + 𝑒

2). (26)

In the above, 𝑔 = 𝑅𝑃

𝑅𝑃+𝑅𝑄

, where 𝑖𝑅 is the mass of the moon and 𝑖𝑆 is the mass of the Earth. 𝑕1 is the distance of the
third body from the Earth and 𝑕2 is the distance of the third body to the moon, which are

𝑕1 =

(𝑆 ↗ 𝑔)2 + 𝑒

2 + 𝑑
2, (27a)

𝑕2 =

(𝑆 ↗ 𝑔 + 1)2 + 𝑒

2 + 𝑑
2. (27b)
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The equations of motion for the third body can then be expressed as

⇒𝑆 ↗ ⇐𝑒 ↗ 𝑆 =
𝑍𝑓

𝑍𝑆

, (28a)

⇒𝑒 + 2 ⇐𝑆 ↗ 𝑒 =
𝑍𝑓

𝑍𝑒

, (28b)

⇒𝑑 = 𝑍𝑓

𝑍𝑑

, (28c)

and stated explicitly as vector of di!erential equations,

𝜴(𝑌) = [𝑆, 𝑒, 𝑑, ⇐𝑆, ⇐𝑒, ⇐𝑑]↘, (29a)
𝜶 (𝜴, 𝑌) = [ ⇐𝑆, ⇐𝑒, ⇐𝑑, ⇒𝑆, ⇒𝑒, ⇒𝑑]↘. (29b)

The the continuous time dynamics Jacobian matrix is

𝑐(𝑌) =
[
03≃3 𝑋3≃3

𝑊 2𝑗

]
, (30)

where,

𝑊 =



𝑇
2
𝑈

𝑇𝑉
2

𝑇
2
𝑈

𝑇𝑉𝑇𝑊

𝑇
2
𝑈

𝑇𝑉𝑇𝑋

𝑇
2
𝑈

𝑇𝑊𝑇𝑉

𝑇
2
𝑈

𝑇𝑊
2

𝑇
2
𝑈

𝑇𝑊𝑇𝑋

𝑇
2
𝑈

𝑇𝑋𝑇𝑉

𝑇
2
𝑈

𝑇𝑋𝑇𝑊

𝑇
2
𝑈

𝑇𝑋
2


, 𝑗 =



0 1 0
↗1 0 0
0 0 0


. (31)

It is sometimes convenient to formulate the distance and time scales for the CRTBP in normalized units and we
interchange between normalized and SI units throughout the remainder of this paper. The distance between the two
primary bodies (Earth and moon) is the distance unit (DU), and time unit (TU) is 𝑃

2𝑌 where 𝑘 is the period of the system
around the barycenter.

Measurements from the optical sensor platform are modeled as angular longitude and latitude coordinates expressed
in the synodic frame. These are given as

𝝐 =

[
𝑙

𝑚

]
=

tan↗1

(
𝑍𝑀

𝑍𝐿

)
sin↗1

(
𝑍𝑅

↓𝜷↓

)
, (32)

where,
𝝀 = 𝝁𝑃 ↗ 𝝁. (33)

Here, 𝝁𝑃 is the position of the target spacecraft and 𝝁 is the position of the observer. The measurement Jacobian matrix
in Eq. 16 is

𝑊 =


↗ 𝑍𝑀

𝑍
2
𝐿𝑀

𝑍𝐿

𝑍
2
𝐿𝑀

0 0 0 0

↗ 𝑍𝐿𝑍𝑅

↓𝜷↓2
𝑍𝐿𝑀

↗ 𝑍𝑀𝑍𝑅

↓𝜷↓2
𝑍𝐿𝑀

𝑍𝐿𝑀

↓𝜷↓2 0 0 0


, (34)

where,
𝑛𝑉𝑊 =


𝑛

2
𝑉
+ 𝑛

2
𝑊
. (35)

III. Methodologies

A. Optimal Control Problem
In this section, we describe the form of the optimal control problem and the solution method used to solve it. For

much of the discussion we adopt the notation used in [15] to describe our implementation of the SCvx algorithm; an
SCP approach with global convergence and a superlinear convergence rate [14]. We find it a more natural progression to
first introduce the problem in continuous time, and then illustrate how this continuous time optimal control problem is
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transformed to discrete-time through direct collocation. At its core, this work solves a fixed-time, nonlinear, two-point
boundary value problem:

min
𝜸 (𝑄 )

𝑗 (𝜴(𝑌), 𝝂(𝑌)) (36a)

s.t. ⇐𝜴(𝑌) = 𝜶 (𝜴(𝑌), 𝝂(𝑌), 𝑌), (36b)
𝝃ic (𝜴(0)) = 0, (36c)
𝝃tc (𝜴(𝑌 𝑎 )) = 0, (36d)
↓𝝂(𝑌)↓2 ⇑ 𝑜max. (36e)

In the above, 𝜴(𝑌) is the continous time representation of the state of the observer platform, 𝝂(𝑌) = [𝑝𝑉 (𝑌), 𝑝𝑊 (𝑌), 𝑝𝑋 (𝑌)]↘
is the continuous time control input vector, and 𝝃ic (·) and 𝝃tc (·) are the initial and terminal boundary conditions given
as

𝝃ic (𝜴(0)) = 𝜴(0) ↗ 𝜴ref (0), (37a)
𝝃tc (𝜴(𝑌 𝑎 )) = 𝜴(𝑌 𝑎 ) ↗ 𝜴ref (𝑌 𝑎 ). (37b)

𝜴ref is the reference trajectory for a passive (i.e., no thrust) observer, which, for this work, is selected as a periodic orbit
in the CRTBP. The boundary conditions in Eq. 37 ensure the observer returns to the same periodic orbit after a fixed
time interval, 𝑌 𝑎 . Eq. 36e sets an engineering constraint for the maximum thrust acceleration. We do not consider
the e!ect of mass loss on the thrust acceleration during the planning window. However, the high specific impulse of
low-thrust propulsion coupled with the relatively short (e.g., 1 – 3 period) planning interval considered make this e!ect
negligible in this study. The continuous time objective function used in this work is given as

𝑗 (𝜴(𝑌), 𝝂(𝑌)) = (1 ↗ 𝑞𝑏)
∫

𝑄 𝑆

0
↓𝝂(𝑌)↓2𝑈𝑌 ↗ 𝑞𝑏 𝜽(𝜾T;𝜿). (38)

By varying the homotopy parameter, 𝑞𝑏 → [0, 1], we can control the relative weight placed between minimizing the
control e!ort and maximizing the information gain of the observer. Note the negative sign distributed to the mutual
information term in Eq. 38 which transforms its maximization into a minimization, consistent with Eq. 36a.

B. Dynamics Linearization and Discretization
We solve the nonlinear optimal control problem provided in Eq. 36 with a sequence of convex programs. For each

iteration to be compatible with a convex solver, we must linearize the objective function and dynamics of the system
around the previous iteration’s solution. Let 𝜴̄(𝑌) and 𝝂̄(𝑌) denote a continuous time reference solution, then define a set
of linearization variable as

𝑐(𝑌) ϖ 𝑍 𝜶 (𝑌, 𝜴̄(𝑌), 𝝂̄(𝑌))
𝑍𝜴(𝑌) , (39a)

𝑟(𝑌) ϖ 𝜶 (𝑌, 𝜴̄(𝑌), 𝝂̄(𝑌))
𝑍𝝂(𝑌) , (39b)

𝝁 (𝑌) ϖ 𝜶 (𝑌, 𝜴̄(𝑌), 𝝂̄(𝑌)) ↗ 𝑐𝜴̄(𝑌) ↗ 𝑟𝝂̄(𝑌). (39c)

At each convex iteration, a local approximation of Eq. 36 is given as

min
𝜸

𝑗 (𝜴, 𝝂) (40a)

s.t. ⇐𝜴(𝑌) = 𝑐(𝑌)𝜴(𝑌) + 𝑟(𝑌)𝝂(𝑌) + 𝝁 (𝑌), (40b)
𝝃ic (𝜴(0)) = 0, (40c)
𝝃tc (𝜴(𝑌 𝑎 )) = 0, (40d)
↓𝝂(𝑌)↓2 ⇑ 𝑜max, (40e)
↓𝑠𝜴(𝑌)↓2 + ↓𝑠𝝂(𝑌)↓2 ⇑ 𝑡. (40f)

Linearization is only accurate in a local neighborhood of the reference solution, so Eq. 40f bounds each step where,

𝑠𝜴(𝑌) = 𝜴(𝑌) ↗ 𝜴̄(𝑌), (41a)
𝑠𝝂(𝑌) = 𝝂(𝑌) ↗ 𝝂̄(𝑌). (41b)
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The bound 𝑡 is iteratively adjusted at each iteration with a trust-region update discussed in Subsection III.D.
Using direct collocation involves transforming the corresponding infinite dimensional continuous-time optimal

control problem into a finite dimensional static optimization. In this work, we a use first-order hold interpolation to
discretize the problem at the time nodes {𝑌𝑀}𝑂

𝑀=1. The continuous time control input and linearized continuous time
dynamics are then approximated between time nodes as

𝝂(𝑌) = 𝑌𝑀+1 ↗ 𝑌

𝑌𝑀+1 ↗ 𝑌𝑀

𝝂𝑀 +
𝑌 ↗ 𝑌𝑀

𝑌𝑀+1 ↗ 𝑌𝑀

𝝂𝑀+1

= 𝑢
↗
𝑀
(𝑌)𝝂𝑀 + 𝑢

+
𝑀
(𝑌)𝝂𝑀+1, (42a)

⇐𝜴(𝑌) = 𝑐(𝑌)𝜴(𝑌) + 𝑟(𝑌)𝑢↗
𝑀
(𝑌)𝝂𝑀 + 𝑟(𝑌)𝑢+

𝑀
𝝂𝑀+1 + 𝝁 (𝑌), (42b)

where 𝝂𝑀 and 𝝂𝑀+1 are control impulse vectors at times 𝑌𝑀 and 𝑌𝑀+1, respectively. Following this, the corresponding
discrete time state update is

𝜴𝑀+1 = 𝑐𝑀𝜴𝑀 + 𝑟
↗
𝑀
𝝂𝑀 + 𝑟

+
𝑀
𝝂𝑀+1 + 𝝁𝑀 , (43)

where,

𝑐𝑀 = ϑ(𝑌𝑀+1, 𝑌𝑀), (44a)

𝑟
↗
𝑀
= 𝑐𝑀

∫
𝑄𝑂+1

𝑄𝑂

ϑ(𝑎, 𝑌𝑀)↗1
𝑟(𝑎)𝑢↗

𝑀
(𝑎)𝑈𝑎, (44b)

𝑟
+
𝑀
= 𝑐𝑀

∫
𝑄𝑂+1

𝑄𝑂

ϑ(𝑎, 𝑌𝑀)↗1
𝑟(𝑎)𝑢+

𝑀
(𝑎)𝑈𝑎, (44c)

𝝁𝑀 = 𝑐𝑀

∫
𝑄𝑂+1

𝑄𝑂

ϑ(𝑎, 𝑌𝑀)↗1
𝝁 (𝑎)𝑈𝑎. (44d)

In practice, we jointly compute the discrete-time variables in Eq. 44 by numerically integrating the following system of
ordinary di!erential equations:

𝛆(𝑌) =



𝜴(𝑌)
flat


ϑ(𝑌, 𝑌𝑀)


flat


𝑟
↗
𝑀
(𝑌)


flat


𝑟
+
𝑀
(𝑌)


𝝁𝑀 (𝑌)



, (45)

where,

⇐𝛆(𝑌) =



𝜶 (𝜴(𝑌), 𝝂̄(𝑌))
flat


𝑐(𝑌)ϑ(𝑌, 𝑌𝑀)


flat


ϑ(𝑌, 𝑌𝑀)↗1

𝑢
↗
𝑀
(𝑌)𝑟(𝑌)


flat


ϑ(𝑌, 𝑌𝑀)↗1

𝑢
+
𝑀
(𝑌)𝑟(𝑌)


ϑ(𝑌, 𝑌𝑀)↗1

𝝁 (𝑌)



, 𝛆(𝑌𝑀) =



𝜴̄𝑀

flat(𝑋𝑁𝐿≃𝑁𝐿
)

0𝑁𝐿𝑁𝑇≃1

0𝑁𝐿𝑁𝑇≃1

0𝑁𝐿≃1



. (46)

As discussed in [15], one feature of SCP algorithms is the phenomenon known as artificial infeasibility where the
linearized path constraints do not admit a feasible solution, despite the original nonlinear problem being feasible. To
handle this e!ect, SCvx makes the algorithmic choice to add a slack variable to each linearized constraint, which we
denote 𝝅 𝑀 . The slack variables are termed “virtual controls” and act to soften the constraint to allow dynamics feasibility
until solution convergence. With this, the final form of the local convex optimization problem is

min
𝜶,𝜸,𝜹

L(𝜴, 𝝂, 𝝅) (47a)

s.t. 𝜴𝑀+1 = 𝑐𝑀𝜴𝑀 + 𝑟
↗
𝑀
𝝂𝑀 + 𝑟

+
𝑀
𝝂𝑀+1 + 𝝁𝑀 + 𝑣𝑀𝝅 𝑀 , (47b)

𝝃ic (𝜴(0)) = 0, (47c)
𝝃tc (𝜴(𝑌 𝑎 )) = 0, (47d)
↓𝝂𝑀 ↓2 ⇑ 𝑝𝑅𝑐𝑉,𝑀 , (47e)
↓𝑠𝜴𝑀 ↓2 + ↓𝑠𝝂𝑀 ↓2 ⇑ 𝑡. (47f)
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Here, L(·) is the linearized objective function which is further discussed in Subsection III.C. 𝜴, 𝝂, and 𝝅 denote the
augmented discrete states, control inputs, and virtual controls along the trajectory arc, respectively. 𝑣𝑀 is the discrete
time virtual control gain matrix where its continuous time counterpart is 𝑣 (𝑌) = 𝑋𝑁𝐿≃𝑁𝐿

. 𝑣𝑀 is computed by augmenting
𝛆(𝑌) so that

𝛆̃(𝑌) =
[

𝛆(𝑌)
flat


𝑣𝑀 (𝑌)


]

, (48)

where,
⇐̃𝛆(𝑌) =

[
⇐𝛆(𝑌)

flat

ϑ↗1 (𝑌, 𝑌𝑀)𝑣 (𝑌)


]

, 𝛆̃(𝑌𝑀) =
[
𝛆(𝑌𝑀)

0𝑁𝐿𝑁𝐿≃1

]
. (49)

One of the primary computational bottlenecks in computing the terms in Eq. 49 is matrix inversion of the state transition
matrix. As recognized in [16] this can be carried out e"ciently with Gaussian elimination via LU decomposition, and
we employ the same approach in this work.

C. Linearized Objective Function
For the final converged solution to be dynamically feasible, the virtual control variables, 𝝅 , must be driven to zero. To

accomplish this, SCvx adds a penalty for the virtual control variables to the original objective. A trapezoid integration
approximation jointly penalizes the control e!ort and virtual control variables which is given by

U(𝝂, 𝝅 ,𝑞𝑏) =
𝑂↗1
𝑀=1

ϱ𝑌𝑀
2

(
(1 ↗ 𝑞𝑏)


↓𝝂𝑀 ↓2 + ↓𝝂𝑀+1↓2


+ 𝑤


↓𝑣𝑀𝝅 𝑀 ↓1 + ↓𝑣𝑀+1𝝅 𝑀+1↓1

 )
. (50)

In the above, ϱ𝑌𝑀 = 𝑌𝑀+1 ↗ 𝑌𝑀 and 𝑤 is a scalar chosen to be su"ciently large as to drive the virtual control variables
to zero. Note that we only distribute the homotopy parameter, 1 ↗ 𝑞𝑏, to the control e!ort term to ensure the virtual
control penalty is not a!ected by this design choice.

It is necessary to linearize the problem’s objective function so that each SCvx iteration is compatible with a convex
program solver. To do this, the mutual information is approximated at each iteration step using a first-order Taylor series
expansion around the reference solution:

𝜽(𝜾T;𝜿) = 𝜽(𝜾T;𝑥 ) + 𝑍𝑋 (𝜾T;𝜿)
𝑍𝜴

𝑠𝜴, (51)

where 𝑥 are the measurements obtained from a sensing platform following the previous solution’s trajectory, 𝜴̄. The
partial derivatives in Eq. 51 do not permit an analytic expression, but can be e"ciently computed with automatic
di!erentiation (AD). The choice of the AD approach can significantly a!ect the stability and computation time required
in computing the gradient. Here, we use a reverse-mode AD algorithm implemented in the Zygote [21] package with
Julia programming language. The final convex objective in Eq. 47 is then

L(𝜴, 𝝂, 𝝅) = U(𝝂, 𝝅 ,𝑞𝑏) + 𝑞𝑏
𝜽(𝜾;𝜿). (52)

D. Trust Region Update
At each convex iteration, SCvx updates the trust region region radius, 𝑡, by comparing the linearized objective

improvement in Eq. 52 with the true nonlinear objective improvement. To do this, a linearization defect vector is defined
as

𝝆𝑀 = 𝜴𝑀+1 ↗ 𝜶
𝑀
(𝜴𝑀 , 𝝂𝑀 , 𝝂𝑀+1), (53)

where 𝜶
𝑀
(·) here is the true discrete time transitional dynamics between nodes 𝑁 and 𝑁 + 1 with control input, and is

found by numerically integrating Eq. 42b. A zero defect indicates that the converged solution is dynamically feasible.
The true nonlinear cost is then

J (𝜴, 𝝂, 𝝆) = U(𝝂, 𝝆,𝑞𝑏) + 𝑞𝑏 𝜽(𝜾;𝜿), (54)

and the expected improvement is compared with the actual improvement through a linearization accuracy metric defined
as

𝑛 =
J (𝜴̄, 𝝂̄, 𝝆̄) ↗ J (𝜴⇓, 𝝂⇓

, 𝝆
⇓)

J (𝜴̄, 𝝂̄, 𝝆̄) ↗ L(𝜴⇓, 𝝂⇓
, 𝝅⇓)

. (55)
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The variables with the superscript (⇓) denote those produced by each convex solver iteration. Depending on the accuracy
metric, we update the reference states and trust region accordingly. These conditions are listed in Table 1 and correspond
to those provided in [15]. The bounds 𝑛0, 𝑛1, and, 𝑛2 are user defined variable in [0, 1] and 𝑦sh, 𝑦gr are a trust region
shrinkage and growth factors, respectively.

Table 1 Trust region update protocol

Case Update Rule
𝑛 < 𝑛0 𝑡 ⇔ 𝑡/𝑦sh 𝜴̄ ⇔ 𝜴̄ 𝝂̄ ⇔ 𝝂̄

𝑛0 ⇑ 𝑛 < 𝑛1 𝑡 ⇔ 𝑡/𝑦sh 𝜴̄ ⇔ 𝜴
⇓

𝝂̄ ⇔ 𝝂
⇓

𝑛1 ⇑ 𝑛 < 𝑛2 𝑡 ⇔ 𝑡 𝜴̄ ⇔ 𝜴
⇓

𝝂̄ ⇔ 𝝂
⇓

𝑛2 ⇑ 𝑛 𝑡 ⇔ 𝑦gr𝑡 𝜴̄ ⇔ 𝜴
⇓

𝝂̄ ⇔ 𝝂
⇓

E. Selection of Discrete Nodes
An important component relating to the reliability of SCvx for our problem is the e!ective spacing of collocation

nodes. A simple but naive approach is to place nodes equally in time, however, in highly nonlinear intervals of the
reference trajectory, the linear approximations used by SCvx begin to break down. There are several more informative
options. In [19] the authors choose an adaptive discretization using a variable step numerical integrator. In this work,
we follow the procedure used in [22], employing the generalized Sundman transformation [23]. This acts as a physically
informed step-size regulator by transforming the time variable to a new variable, 𝑎, defined here as

𝑈𝑌 = 𝑕
𝑑

𝑅
𝑈𝑎. (56)

In the above, 𝑕𝑅 is the distance of the observer from the moon, and 𝑧 is a user-defined parameter. When 𝑧 = 0 we see
that the time variable is indeed equivalent to 𝑎, but increasing 𝑧 e!ectively dilates time in regions closer to perilune, as
shown in Fig. 2a.

In implementation, we determine the time node spacing by numerically integrating

𝑈𝝈

𝑈𝑎

= 𝑕
𝑑

𝑅

[
𝜶 (𝜴, 𝑎)

1

]
, (57)

where,
𝝈(𝑎) = [𝜴↘ (𝑎), 𝑌]↘, (58)

and output the time variable at equally spaced {𝑎𝑀}𝑂
𝑀=1. In Fig. 1 we show the e!ect of the Sundman transformation

in spacing the collocation nodes for an NRHO reference orbit with initial conditions defined in Table 5. The top
panels show the projected orbit when nodes are spaced equally in time, 𝑧 = 0.0, and the bottom show the orbit with a
regularization parameter where 𝑧 = 1.1. In regions closer perilune, regularization ensures that nodes are spaced more
uniformly to capture the true motion of the observer. Because the time is not equivalent between nodes, to correctly
model the thrust constraint in Eq. 47e we must find 𝑝max,𝑀 consistent with the obtainable impulse between collocation
points. For each point, this can be written as

𝑝max,𝑀 + 𝑝max,𝑀+1

2ϱ𝑌𝑀
= 𝑜max, (59)

and can be solved at all nodes with,



1/ϱ𝑄1 1/ϱ𝑄1 0 · · · 0 0
0 1/ϱ𝑄2 1/ϱ𝑄2 · · · 0 0
.
.
.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

0 0 · · · 0 1/ϱ𝑄𝑈↗1
1/ϱ𝑄𝑈↗1





𝑝max,1

𝑝max,2
.
.
.

𝑝max,𝑂


= 2𝑜max



1
1
.
.
.

1


. (60)

Eq. 60 is an underdetermined linear system of equations and its minimum norm solution can be found e"ciently with a
QR factorization.
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Fig. 1 E!ect of the variable transformation on position node spacing for a reference NRHO.

(a) (b)

Fig. 2 E!ect of the variable transformation on time spacing and 𝑝max,𝑀 for a reference NRHO.

F. Selection of Measurement Nodes
As noted previously, the measurement times for the observer do not directly correspond to all discrete time nodes.

Ideally, we would like to model the measurements evenly in time. If the discretization is su"ciently dense, then a
nearest neighbors approximation is adequate for finding the measurement times as a subset of all discrete time nodes.
We employ this approach in this study. Let 𝛥meas correspond to the measurement cadence frequency of the observer.
Then, a uniform grid spacing of measurements is

{𝑌𝑒 }𝑂meas
𝑒=1 = [0, 1/ 𝛥meas, 2/ 𝛥meas, · · · , 𝐿meas/ 𝛥meas], (61)

where,

𝐿meas = floor
(

𝑌 𝑎

𝛥meas

)
, (62)

and the floor(·) operator returns the greatest integer less than the argument. The measurement time selected for each
grid point index, 𝛩, is then given as

𝑌𝑀↖ = arg min
𝑄𝑂

|𝑌𝑒 ↗ 𝑌𝑀 |, for 𝑌𝑀 → {𝑌𝑀}𝑂
𝑀=1, (63)

11

D
ow

nl
oa

de
d 

by
 "U

ni
ve

rs
ity

 o
f T

ex
as

, A
us

tin
" o

n 
Ju

ne
 2

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

24
-0

62
6 



so that the full set of measurement times as a subset of the discretization nodes are

{𝑌𝑀↖ }𝑂meas
𝑀
↖=1 . (64)

IV. Numerical Simulations
In this section, we demonstrate several numerical simulations to evaluate our approach. The software in written in

the Julia programming language. For each SCvx iteration, we use the embedded conic solver (ECOS) [24] which is an
interior-point solver for second-order conic programming. To interface with the solver we use Convex [25], which is a
Julia package for Disciplined Convex Programming (DCP). For each test case, one or two targets are initially placed in
close proximity to the reference orbit of the observer. For all of the test cases, we use the hyperparameters listed in Table
2 including those informed by the scenario (i.e., thrust constraint, measurement cadence, etc.) and those relating our
SCvx implementation. The initialization of decision variables for all test cases is taken to be a purely passive observer
along the reference trajectory.

Table 2 Algorithm parameters used for all simulations

Parameter Symbol Value
Discrete nodes 𝐿 300
Sundman Regularization 𝑧 1.1
Distance Unit DU [km] 384400.0
Time Unit TU [days] 4.34
Maximum Thrust 𝑜max [km/s2] 1 ≃ 10↗7

Measurement Cadence 𝛥meas [1/day] 1.0
Process Noise PSD 𝑂 [km/s3] 1 ≃ 10↗10

𝑋3≃3

Measurement Noise Covariance 𝑄 [rad2] 1 ≃ 10↗10
𝑋2≃2

Virtual Control Penalty 𝑤 1 ≃ 106

Convexification Accuracy 𝑛0 0.0
𝑛1 0.1
𝑛2 0.7

Initial Trust Region 𝑡0 0.1
Trust Region Shrinkage 𝑦sh 1.5
Trust Region Growth 𝑦gr 1.5

Our first test case considers a single-target tracking problem in which an observer is placed on a DRO. The test case
properties are listed in Table 3. In the CRTBP, a DRO is a planar orbit with little nonlinearity when compared to other
periodic orbits. Its stability and geometric properties make it ideal for a variety of cislunar mission architectures. The
observer is placed at the conditions corresponding to the reference DRO and must return to those after two orbit periods.
The target has a small in-plane and out-of-plane deviation with respect to the reference orbit in position and no deviation
in velocity. We assume that the observer collects one angular bearing measurement per day. The target has an initial
uncertainty of 100.0 km standard deviation in each position coordinate and 0.001 km/s in velocity.

In Fig. 3a we show the flight path of an optimized observer. Here, and in all following figures, we are plotting in a
frame centered at the target with coordinates in the same basis as the synodic frame. Additionally, the green and red
markers correspond to the initial and terminal positions of the observer, respectively. The blue quivers indicate the
thrust magnitude and direction. The flight path is also projected onto each plane of the reference frames, indicated by
the gray curves.

In Fig. 3b we plot individually the projection of the observer’s flight path for a spectrum of convex objective
functions, where a purely passive observer corresponds to 𝑞𝑏 = 0.0. These figures elucidate the e!ect of the mutual
information objective on the observer spacecraft. Intuitively, when 𝑞𝑏 = 0.0, the optimal solution is to perform no
maneuvering, as this corresponds to the minimum control e!ort solution. Increasing the homotopy parameter directs
the observer spacecraft to “loiter” around the target. This also has an intuitive interpretation because, in this case, the

12

D
ow

nl
oa

de
d 

by
 "U

ni
ve

rs
ity

 o
f T

ex
as

, A
us

tin
" o

n 
Ju

ne
 2

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

24
-0

62
6 



Table 3 Parameters for the first DRO test case

Parameter Symbol Value
Observer Initial Conditions [𝑆, 𝑒, 𝑑]↘ [DU] [0.80566, 0.0, 0.0]↘

[𝛬𝑉 , 𝛬𝑊 , 𝛬𝑋]↘ [DU/TU] [0.0, 0.51947, 0.0]↘
Reference Period 𝑘 [TU] 3.20642
Time Interval 𝑌 𝑎 [TU] 6.41284
Number of Targets 𝐿T 1
Target Initial Deviation [ϱ𝑆,ϱ𝑒,ϱ𝑑]↘ [km] [200.0, 200.0, 100.0]↘

[ϱ𝛬𝑉 ,ϱ𝛬𝑊 ,ϱ𝛬𝑋]↘ [km/s] [0.0, 0.0, 0.0]↘
Target Initial Uncertainty [𝑞𝑉 ,𝑞𝑊 ,𝑞𝑋]↘ [km] [100.0, 100.0, 100.0]↘

[𝑞𝑓𝐿
,𝑞𝑓𝑀

,𝑞𝑓𝑅
]↘ [km/s] [0.001, 0.001, 0.001]↘

(a) (b)

Fig. 3 Flight path of the optimized and passive observers for the DRO test case described in Table 3.

same change in the relative position between target and observer results in a larger amplification of geometric diversity
in angular bearing measurements, increasing the system’s observability.

Fig. 4 shows the thrust acceleration profile of the observer spacecraft in each direction and magnitude of the thrust
acceleration over the observation window. The left-hand side shows the profile for 𝑞𝑏 = 0.14 and the right for the case
where 𝑞𝑏 = 0.17. The profile closely resemble that from a minimum thrust targeting problem, excluding the portion
between 12 and 15 days for 𝑞𝑏 = 0.14 case. The resemblance can be attributed to the inclusion of the thrust acceleration
magnitude in our objective function which incentivizes this type of solution. Increasing the 𝑞𝑏 from 0.14 to 0.17 places
more emphasis towards the information gain, and as a result, increases the cumulative control e!ort of the observer over
the flight duration, 0.112 km/s versus 0.189 km/s.

While the mutual information provides a mechanism in formulating an objective function based on the performance
of a sequential filter, it is valuable to evaluate the performance of the optimized observer over the course of the
entire planning window. The Cramer-Rao lower bound (CRLB) provides a sequential estimators theoretical optimal
performance along the entire trajectory, and we use it in this section to evaluate the e"cacy of the mutual information
as objective function for our information collection problem. For a nonlinear system where both the process noise
and measurement noise are Gaussian, the extended Kalman filter covariance propagation and update equations, when
linearized around the true state of the target, provide the CRLB [26]. In Fig. 5 we show the CRLB of the optimized
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Fig. 4 Thrust acceleration profile for the DRO test case described in Table 3. The left- and right-hand sides
correspond to a 𝑞𝑏 = 0.14 and 𝑞𝑏 = 0.17, respectively.

observer with increasing 𝑞𝑏 for each of the position coordinates. By increasing the relative weight of the mutual
information in our objective, on average, we see a smaller theoretical lower bound for the RMS error of a sequential
estimator. For this test case, in particular portions of the trajectory, the CRLB is reduced up to two orders of magnitude.
One can note the similarities in the CRLB between all observers during the start and terminal sections of the trajectory.
As stated, for our problem formulation, the boundary conditions enforce the observer to begin and terminate along the
passive reference trajectory and so the geometry of the observer with respect to the targets is quite similar between all
values of 𝑞𝑏 for these portions.

Fig. 5 CRLB analysis over a variety of homotopy parameters for the DRO test case in Table 3.

The second test case that we demonstrate, the observer is again placed on the DRO described in Tab. 3, but we
consider the problem of simultaneously tracking two targets. The conditions for this case are listed in Table 4. Like the
first test case, in Fig. 6 we show the flight path of the observer, but with the left- and right-hand sides shown centered
around the flight path of the first and second target, respectively. Similarly, Fig. 7 shows the projected flight path
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Table 4 Parameters for the second DRO test case

Parameter Symbol Value
Observer Initial Conditions [𝑆, 𝑒, 𝑑]↘ [DU] [0.80566, 0.0, 0.0]↘

[𝛬𝑉 , 𝛬𝑊 , 𝛬𝑋]↘ [DU/TU] [0.0, 0.51947, 0.0]↘
Reference Period 𝑘 [TU] 3.20642
Time Interval 𝑌 𝑎 [TU] 6.41284
Number of Targets 𝐿T 2
Target #1 Initial Deviations [ϱ𝑆,ϱ𝑒,ϱ𝑑]↘ [km] [175.0, 10.0,↗30.0]↘

[ϱ𝛬𝑉 ,ϱ𝛬𝑊 ,ϱ𝛬𝑋]↘ [km/s] [0.0, 0.0, 0.0]↘
Target #2 Initial Deviations – – [25.0, 400.0, 30.0]↘

– – [0.0, 0.0, 0.0]↘
Target #1 Initial Uncertainties [𝑞𝑉 ,𝑞𝑊 ,𝑞𝑋]↘ [km] [100.0, 100.0, 100.0]↘

[𝑞𝑓𝐿
,𝑞𝑓𝑀

,𝑞𝑓𝑅
]↘ [km/s] [0.001, 0.001, 0.001]↘

Target #2 Initial Uncertainties – – [100.0, 100.0, 100.0]↘
– – [0.001, 0.001, 0.001]↘

(a) (b)

Fig. 6 Flight path of the optimized and passive observers for the DRO test case described in Table 4. The left-
and right-hand sides correspond to the first and second target, respectively.

solution in each of the principal coordinate planes. Like the first test case, in the 𝑆 ↗ 𝑒 plane, it is apparent that the
observer tends to linger around each of the targets. However, the out-of-plane motion exhibits an interesting behavior.
Unlike the solutions shown in the first test case, increasing the homotopy parameter does not transition towards closer
inspection of either target. We postulate that the inclusion of multiple targets into the tracking problem is well balanced
by the mutual information objective which prefers a less optimal solution for either target in order to maximize the
mutual information of the entire system. In Fig. 8 we show the thrust acceleration profile of two solutions, 𝑞𝑏 = 0.18
and 𝑞𝑏 = 0.28. Like before, during much of the flight path, the profile mimics that of a minimum thrust targeting
problem. Increasing the homotopy parameter commensurately increases the cumulative control e!ort over the entire
trajectory. The cumulative impulse for 𝑞𝑏 = 0.18 and 𝑞𝑏 = 0.28 cases is 0.066 km/s and 0.111 km/s, respectively. Fig.
9 shows a CRLB analysis for the first (left) and second (right) with increasing 𝑞𝑏. As before, improved performance is
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Fig. 7 Projected flight path of the optimized and passive observers for the DRO test case described in Table 4.
The left- and right-hand sides correspond to the the first and second target, respectively.

Fig. 8 Thrust acceleration profile for the DRO test case described in Table 4. The left- and right-hand sides
correspond to a 𝑞𝑏 = 0.18 and 𝑞𝑏 = 0.28, respectively.

achieved by increasing the relative weight placed on maximizing the mutual information.
The third test case that we consider is a single target tracking scenario where the observer is situated on a NRHO

reference trajectory with the scenario conditions listed in Table 5. Here, the observer is tasked with planning over a
three period window. Like DROs, NRHOs exhibit favorable stability conditions and are well suited for future cislunar
missions. However, unlike the previous DRO test cases, here the test case contains a close perilune passage. In this
region, the reference trajectory exhibits stronger nonlinearities so it constitutes a more challenging test case for the
SCvx algorithm. Fig. 10 again shows the flight paths for the passive and optimized observers. Unlike previously, the
relative motion exhibits a large out-of-plane components, however, the overall behavior of the observer is similar; by
increasing the importance of mutual information, the observer tends to linger closer to the target. Fig. 11 shows the
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Fig. 9 CRLB analysis over a variety of homotopy parameters for the two-target DRO test case in Table 4. The
left- and right-hand sides correspond to the estimation performance for the first and second target, respectively.

Table 5 Parameters for the NRHO test case

Parameter Symbol Value
Observer Initial Conditions [𝑆, 𝑒, 𝑑]↘ [DU] [1.02202, 0.0,↗0.18210]↘

[𝛬𝑉 , 𝛬𝑊 , 𝛬𝑋]↘ [DU/TU] [0.0,↗0.10326, 0.0]↘
Reference Period 𝑘 [TU] 3.20642
Time Interval 𝑌 𝑎 [TU] 6.41284
Number of Targets 𝐿T 1
Target Initial Deviation [ϱ𝑆,ϱ𝑒,ϱ𝑑]↘ [km] [200.0, 100.0, 0.0]↘

[ϱ𝛬𝑉 ,ϱ𝛬𝑊 ,ϱ𝛬𝑋]↘ [km/s] [0.0, 0.0, 0.0]↘
Target Initial Uncertainty [𝑞𝑉 ,𝑞𝑊 ,𝑞𝑋]↘ [km] [100.0, 100.0, 100.0]↘

[𝑞𝑓𝐿
,𝑞𝑓𝑀

,𝑞𝑓𝑅
]↘ [km/s] [0.001, 0.001, 0.001]↘

thrust acceleration profile for two cases where 𝑞𝑏 = 0.15 and 𝑞𝑏 = 0.3, corresponding to a cummulative impulse of
0.145 km/s and 0.215 km/s, respectively. Unlike the previous test case, there is a strong out-of-plane acceleration
commanded throughout the duration of the planning window. In Fig. 12 we show the CRLB analysis for this case.

V. Conclusions
In this work, we introduce a trajectory planning tool for optimal relative orbit determination in the cislunar

environment compatible with a low-thrust optical observer platform. Our approach uses a mutual information-based
objective to optimally plan a trajectory that maximizes the targets’ information gain conditioned on angular bearing
measurements. We first derived a form of the mutual information using linearized/Gaussian assumptions. We also
summarize the equations of motion and the measurement model for an optical observer operating in cislunar space.
Following this, we described our implementation of the SCvx algorithm: a direct collocation method for solving our
optimal control problem. We formulate the scenario as a fixed-time two point boundary value problem, where the
objective of an observer spacecraft is to optimize a convex combination of the control e!ort and the mutual information.
The necessary steps for implementation are provided. A physically-informed method for spacing collocation nodes
based on the generalized Sundman transformation is also included in this discussion. This discretization scheme better
facilitates convergence of our SCvx approach. Finally, we demonstrate the performance of our algorithm for several
synthetic numerical case studies. These include single- and two-object tracking scenarios situated around DRO and
NRHO period orbits. We point out salient features in the behavior of the observer spacecraft and demonstrate that the
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(a) (b)

Fig. 10 Flight path of the optimized and passive observers for the NRHO test case described in Table 5.

Fig. 11 Thrust acceleration profile for the NRHO test case described in Table 5. The left- and right-hand sides
correspond to a 𝑞𝑏 = 0.15 and 𝑞𝑏 = 0.3, respectively.

theoretical estimation performance can be improved by several orders of magnitude in particular regions of a trajectory
arc with respect to a purely passive observer.

There are several potential avenues for follow-up work. For simplicity, in this study we assumed that measurements
are collected synchronously for all targets, however this assumption is only an approximation of the true information
collection problem. Future work should address methods for jointly scheduling measurements while maneuvering.
Furthermore, while we propose that our approach may be applicable to on-board planning operations, this study does
not su"ciently address its feasibility. The compatibility of this approach with the computational resources of real flight
hardware should be investigated. The CRTBP provides a convenient test-bed that captures the dominate dynamical
modes in the cislunar environment, however our approach should be transitioned to a full ephemeris model as well.
Finally, while we only consider the single-agent optimization problem, it would be useful to adapt our methods to
multiple sensing agents through the lens of a cooperative game theoretic approach.
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Fig. 12 CRLB analysis over a variety of homotopy parameters for the single target NRHO test case in Table 5.
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