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Abstract

Nonlinearities from complicated robot systems and harsh contact dynamics have long impeded
the effectiveness of optimal control strategies for legged robots. In this work, we present a
linearized simple walking model using Koopman Operator Theory, and its usage in Linear
Model Predictive Control (L-MPC). Various walking and contact models were evaluated, but
ultimately the rimless wheel was selected due to its inherent stability and low dimensionality,
and a nonlinear viscoelastic model was used to accurately capture floor contact and impact
dynamics. Koopman models were developed using both Radial Basis Functions (RBFs) and
neural network-generated observables for the passive rimless wheel. A novel actuation method
with linear actuators, combined with the Control Coherent Koopman methodology, resulted in
accurate linear models that effectively enabled L-MPC to control the wheel on flat ground. This
model outperformed those created using the more traditional Dynamic Mode Decomposition
with Control method.

This work demonstrates the power of Koopman linearization to produce a unified set of linear
dynamical equations that encompass various contact and non-contact configurations and
demonstrates the effectiveness of the Control Coherent Koopman methodology in generating
an accurate input matrix across these different contact modes.
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Chapter 1

Introduction

1.1 Legged Locomotion

The field of legged locomotion has experienced significant growth over the last few
years, largely due to advancements in optimization-based control strategies. In a world designed
for humans, the ability to robustly navigate unstructured terrain enables the application of legged
robots to factories, homes, urban environments, and even natural settings. Recent improvements
to online optimization strategies have enabled the synthesis and execution of complex
maneuvers, such as barrel rolls on the MIT Mini-Cheetah and energy-efficient bipedal walking
on Cassie [1], [2] . From advances in reinforcement learning to improved Model Predictive

Control (MPC) algorithms, real-time optimal control may soon be within reach.

Most of the legged locomotion community has converged on generating motions based
on the formulation of an Optimal Control Policy (OCP). An OCP generates trajectories of state,
control, and contact forces while minimizing a user-defined cost function. The trajectories must
satisfy several constraints: the states must evolve according to the nonlinear whole-body robot
dynamics, joint angles must stay within an allowable range, and additional constraints can be
encoded to ensure stability and robustness. However, increases in the number or complexity of
constraints, the dimensionality of the OCP, and the nonlinearities and stiffness of the dynamics
can greatly increase the computational load of solving the OCP [3]. Furthermore, nonconvex
dynamics lead to optimizations that are sensitive to initial conditions and locally optimal
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solutions [3]. Nevertheless, the OCP framework enables the planning and execution of

impressive trajectories for legged robots.

The general idea of Model Predictive Control (MPC) is to run the OCP at every iteration
of the control loop and apply only the control from the first part of the trajectory. However, due
to computational challenges, there are delays between sensor measurements, OCP calculations,
and control implementation [4]. Templates are low-dimensional, simplified walking models that
capture the essential elements of walking while eliminating unnecessary complexity, greatly
increasing the speed of MPC. Common template models, such as the Linear Inverted Pendulum
Model, the Spring-Loaded Inverted Pendulum Model, the Single Rigid-Body Model, and the
centroidal model, can be readily solved online [3]. While template MPC is fast due to the low-
order dynamics and, in the case of the linear inverted pendulum, convexity, it must rely on a low-
level controller to translate the optimized trajectory into whole-body commands, typically via
quadratic programming, inverse kinematics, or inverse dynamics [3], [4], [5]. Furthermore, these
optimized trajectories are only as accurate as the template model; simplifications in the low-level
dynamics, contact, and constraints yield infeasible or inefficient motions [3]. This is represented
in Figure 1, where most template models yield feasible motions that do not perfectly overlap

with those generated using the full-body dynamics.
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In contrast, Whole-Body MPC always produces feasible trajectories but faces significant
computational challenges when optimizing with high-dimensional, nonlinear, and non-convex
dynamics [3]. Whole-body MPC is often used to generate optimal trajectories offline to create a
motion library, where the motion is then executed via closed-loop feedback control. However,

following offline trajectories requires the robot to start sufficiently close to the trajectory’s initial

Figure 1. Feasible motions according to different models. The whole-body model is fully

contained within the centroidal dynamics model, meaning any feasible motion for the whole-
body model is also feasible for the centroidal model. However, due to a lack of torque and
kinematic constraints, the centroidal dynamics produce unphysical, unachievable motions. The
point mass model enforces ground reaction forces (GRF) limits as well as restricts angular

momentum, making its feasible motions a subset of those produced by the centroidal

dynamics model. From Figure 5 of [3].
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condition and a carefully tuned tracking controller, not to mention the limitation of operating

within a predefined set of motions [3].

A difficult aspect of legged locomotion is repeated high-impact ground contact, which
introduce segmented dynamics, poor conditions for gradient-based optimization, and inhibit the
study of global behaviors. These contacts are typically modeled as rigid or viscoelastic.
Viscoelastic contact models allow contacting bodies to intersect and generate spring-damper-like
repulsive forces based on material properties and the position, velocity, and penetration depth of
the contacting bodies. With the proper framework, a viscoelastic contact model can yield

continuous, differentiable dynamics [3].

Rigid contact models (or infinitely stiff viscoelastic models) yield hybrid dynamics, or
dynamics that alternate between continuous and discrete regimes. When two bodies make
contact, impulsive forces are immediately applied, resulting in an instantaneous jump in velocity.
Hybrid dynamical OCPs can be represented as a Linear Complementarity Program or a Mixed
Integer Program, but both methods are non-differentiable and less efficient than smooth
optimization strategies. Fixing a contact mode sequence beforehand yields time-varying system
dynamics, enabling the use of smooth optimization strategies, but limiting the ability to find new

contact modes [3].

Overall, optimal control problems for complicated robot systems undergoing contact
have slow computation speeds due to the nonlinear dynamics, high dimensionality, and inability
of gradient-based optimization to handle contact. The use of templates is viable for online use

but suffers from infeasible or suboptimal solutions.
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1.2 Lifting Linearization

Lifting linearization, underpinned by Koopman Operator Theory, transforms nonlinear
dynamical systems into higher-dimensional linear systems, enabling the application of linear
control techniques to complex, nonlinear problems. Koopman Operator Theory states that a
nonlinear autonomous system can be represented, without approximation, as a linear dynamical
system in an infinite dimensional state. Consider a system with discrete-time, nonlinear
dynamics x;,; = F(x;). By augmenting the state space with additional observable functions
g(x) = [g91(xt), g2(x¢), ...] that lie in a Hilbert space, a linear model may be constructed that

evolves linearly with the Koopman operator, K.

Kg2goF - Kg(xy) = g(xps1)

The state evolution matrix A can either be obtained through data-driven methods (e.g., Dynamic
Mode Decomposition) or by leveraging the underlying dynamics, as seen in Koopman Direct
Encoding [6], [7]. The observables oftentimes consist of time series data and function families
(RBF, Fourier series, etc.) or can be generated using neural networks. This approach offers
significant advantages by simplifying analysis and control design, but it also presents challenges

in terms of model construction and the choice of observables.

1.3 Prior Works

Traditionally, the Koopman Operator only applied to autonomous systems without

control. However, the Koopman community has developed numerous methods to incorporate
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control into the linear models. One popular method to extend Koopman Operator Theory to
control is Dynamic Mode Decomposition with Control (DMDc), which approximates the control
input term as a linear term with constant coefficients via least squares estimation. While DMDc
has been useful, it assumes a constant B matrix, which rarely reflects reality [8]. Nevertheless,
DMDc MPC has been used on Koopman models ranging from cable suspension systems to soft
robotics [9], [10]. Alternatively, bilinear control matrices more accurately capture control that is
affected by both state variables and control variables, but a bilinear formulation is more complex

and restrictive in terms of available control strategies [11].

The proposed method by Asada et al. in 2024 presents a solution by constructing a
Koopman operator for a class of control systems without approximating the input matrix B. The
Control-Coherent Koopman (CCK) methodology ensures that the control matrix retains its
correct structure by leveraging the causality of physical system modeling applied to actuator
dynamics. This approach bridges the theoretical and technical gap between Koopman Operator

Theory and practical control engineering needs [11].

Prior work has had success in applying Koopman Operator theory to hybrid systems, but
despite promising results, there is not yet rigorous theoretical support for the applicability of the
theory to systems with discontinuous jumps in state. However, with the use of a viscoelastic

contact model, a Koopman contact model may be constructed [12].

Finally, various methods have been developed to create controllers with control
objectives or augmented dynamics that are impact invariant. These enhancements provide a more
robust control strategy that remain effective despite the nonlinearities associated with impact

events [13], [14].
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1.4 Project Overview

Koopman Operator Theory emerges as a potential methodology to solve many of the
problems faced by the legged locomotion field. An accurate linear Koopman model would have
the same fast computation as linear template MPC without the shortcomings of inefficient or
infeasible trajectories. Furthermore, a globally linear unified representation of walking dynamics,
one that subsumes the contact/non-contact dynamics, would enable linear model predictive

control with the ability to plan through contact.

The goal of this work is to apply Koopman Operator theory to enable Linear MPC for
complex hybrid dynamics found in legged locomotion, potentially leading to online trajectory

optimization in the future. The work is organized as follows...

Chapter 2 explores the key challenges and design decisions related to the project.

Chapter 3 covers the Rimless Wheel modeling and MATLAB simulation

Chapter 4 discusses the creation and performance of the passive Koopman models.

Chapter 5 focuses on the actuation method and the creation and performance of the

actuated Control Coherent Koopman model.

Chapter 6 focuses on MPC using both Control Coherent Koopman models and a

comparison Dynamic Mode Decomposition with Control Koopman model.

Lastly, Chapter 7 concludes the work and discusses future directions for the project.
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Chapter 2

Approach

2.1 Key Problems

In the application of Koopman Operatory Theory to legged locomotion, there are a number
of design decisions to be made regarding model type, contact model, and actuation. The first
attempt utilized the simple compass walker due to its simplicity and ability to exhibit passive
dynamic walking. Passive walkers do not require motors to move; they are powered by inertia
and gravity. Thus, they are a good starting point for creating a linear Koopman model for both
autonomous and dynamic walking. Given the novelty of the application, it was important to
select as simple a walking model as possible. Furthermore, a current limitation of common
Koopman Operator methodologies is the curse of dimensionality, so a low-dimensional model
was especially desirable. However, through this first attempt, three important hurdles were

identified for the project:

1. Discrete Dynamics from Impacts

Capturing energy loss from collisions is especially important for passive walkers,
where energy is finite. However, hybrid dynamics and Koopman Operator Theory are

incompatible. Koopman Operator Theory assumes that the lifted system’s dynamics, and
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by extension the composition of the observables and the state transition must lie in the

Hilbert space.

(g 0 F)(x) = g(F(x)) e H.

This assumption is not guaranteed for hybrid systems with discontinuous states [12].

Unstable System Identification

There are very few configurations where a passive walker will walk down a ramp
indefinitely. A limit cycle is a closed trajectory that represents a periodic solution. Points
near a stable limit cycle that converge onto the limit cycle are said to be within the
envelope of convergence. With a complex, high DOF walking model, the envelope of
convergence is oftentimes found via numerical simulation, and the limit cycle is found
with optimization methods. For our Koopman model to be useful for MPC, it must be
accurate on and around the limit cycle while still capturing unstable modes. However,
unstable modes tend to dominate, resulting in inaccurate predictions. In fact, the majority
of the work for unstable modes in Koopman models involves suppressing or projecting
them onto the stable unit circle [15], [16]. Previous attempts were made to generate
individual orthogonal Koopman models for each subspace associated with the simple
compass walker. In this way, a point on the limit cycle would only stimulate the
marginally stable subspace, thereby preventing the unstable modes from dominating.
However, it was unclear how to enforce orthogonality between the subspace-specific

Koopman models.

20



Koopman Operators and Control

Previously, it was thought that Koopman Operator Theory was only applicable to
passive systems. However, a Koopman model of walking dynamics used only for
characterization/analysis is redundant due to the added effort needed to capture the stable,
unstable, and marginally stable modes of the system. An initial idea was to use impulses
to actuate the walker, which would be applied instantaneously, without the need for a
control B matrix. With the Control-Coherent Koopman methodology, utilizing the
actuator dynamics can enable linear actuation by introducing a delay between the
actuation and the main system [11]. However, not all systems are suitable for the Control-

Coherent actuation formulation.
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2.2 Simple Walking Model Summary

A number of common simple walking models and templates were evaluated for use in the
project. Based on the problems identified above, walking models with no reset map or some

method by which to absorb the impact from foot strike were of special interest.

Figure 2. a) Rigid Compass Walker and 2. b) Kneed Walker Models as defined in [17] and [18].

The rigid compass walker was one of the first examples of passive dynamic walking, where
stable walking is achieved with no actuation or control. It consists of two legs, a hip mass, and
two leg masses [19]. It is commonly assumed that the hip mass is much larger than the leg
masses to further simplify dynamics. The rigid compass walker assumes that the stance foot is
attached to the ground via a pin joint. When the swing leg hits the ground, the collision is
inelastic and instantaneous, and the stance and swing legs are also switched. Thus, the reset map
encodes both the collision and coordinate change. Furthermore, the compass walker model

ignores foot scuffing, which is when the swing leg briefly makes contact with the ground. The
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continuous dynamics are derived using Euler-Lagrange equations, and the discrete dynamics are

obtained via the conservation of angular momentum.

Rigid Compass Walker [17]

Parameters
Ramp angle 0<y<m/2
Leg length >0
Hip mass M
Leg masses m

States x = [6, ¢, 0, P]
0: angle of the stance leg relative to the slope normal
¢: angle between the stance and swing legs

| Continuous Dynamics (m << M) ‘
6(t) —sin(8(t) —y) =0

6(t) — $(t) + 6(t)? sin(d)(t)) —cos(B(t) —y) sin(d)(t)) =0

| Guard Function ‘

P(t) —26(6) =0

| Discrete Dynamics ‘
o(tt) = —0(t")

dT) = —26(t7)
6(t*) = cos(20) * 6(t™)

Pt = cos(260) (1 — cos(20)) * 8(t7)

Key Assumptions
Collisions with ground are inelastic/impulsive

Stance foot is attached to the ground via pin-joint
Weight transfer between legs occurs instantaneously

Foot scuffing is ignored
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Similar to the rigid compass walker, the kneed walker is a more complicated passive walking
model with the ability to clear the floor. Given the correct initial conditions, the swing leg will
bend at the hinge during the forward swing and straighten out before touching the ground. The
kneed walker consists of two legs and a hip mass, only now the legs consist of two links attached
with a hinge. Each link has an associated mass, yielding a total of five masses. When the links
are aligned, knee strike occurs and the knee is locked. This is modeled as a discrete inelastic
collision. Thus, the kneed walker circumvents the foot scuffing issue but has more complex
dynamics and two instances of discrete dynamics per walking cycle [19]. The full equations of

motion for this model can be found in [18].

3.b)

Figure 3. a) The Spring-Loaded Inverted Pendulum (SLIP) model in both flight and
stance [19]. 3. b) The bipedal spring mass model as defined in [20].

The spring-loaded inverted pendulum (SLIP) model is a commonly used template for
running. The SLIP model consists of a point mass and a massless, spring leg. Unlike the previous

two models, the SLIP model uses different dynamics to govern the flight phase and the stance
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phase. Furthermore, the coordinates used for each phase are different, yielding a piecewise
holonomic dynamical system. Finally, the massless leg allows for the instantaneous repositioning
of the leg during flight such that the control input u directly defines leg angle 8. During stance,
the leg end point is fixed to the ground via a pin joint. Despite its simplicity, the SLIP model can

accurately describe experimental data from humans, to cockroaches and crabs [21].

The bipedal spring-mass model is an extension of the SLIP model that includes two legs. In
this model, there are two massless spring-like legs and a central mass. The bipedal spring-mass
model is capable of different periodic walking patterns including both walking and running.
Unlike the SLIP model, the bipedal spring-mass model has a single set of states, x = [x, z, x, Z].
Furthermore, the equation of motion is given simply by mi = F; + F, — mg, where forces F4
and F, are the forces of legs 1 and 2 respectively when they are in stance. These forces become
zero when the leg is not in contact with the ground. The force is a function of the leg tip and

center of mass (COM),

F,= k(L— 1) (r—rpp1)
|7 — TEpal
Note that this force becomes zero when the spring becomes fully uncompressed. The transition
between swing to stance occurs when a leg fulfills the landing condition zyp = Lg sin(a,) and
the vertical velocity is negative [20]. The model assumes a constant angle of attack, a,. Thus,
there are no swing dynamics and the equations of motion require knowledge of the foot point

position rgpq and rgp,.
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Spring Loaded Inverted Pendulum [19]

Parameters
Leg rest length Iy
Hip mass m
Spring constant k

States Xfiighe = [, 2, %, Z], Xstance = [, 0,7, 0]

x: horizontal position of the hip mass
z: vertical position of the hip mass
r: radial distance between stance foot and hip mass
0: angle of leg relative to z-axis

Flight Dynamics
=0
i=-g
0=u

Flight to Stance Transition

z—1lycos(6) <0

Stance Dynamics

mit — mré? + mgcos(8) —k(ly—1r) =0

mr26 + 2mri- — mgrsin(8) = 0

Stance to Flight Transition

TZZO

Key Assumptions

Piecewise dynamics
Massless leg, no leg dynamics

Stance foot is attached to the ground via pin-joint
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Figure 4. Rimless Wheel Model as defined in [19].

Finally, the rimless wheel was first introduced in Passive Dynamic Walking by Tad McGeer
[22]. The rimless wheel emulates the heel strike and associated energy loss without the
instability of the previous hybrid models. It consists of rigid legs attached to a central mass and
assumes inelastic, impulsive collisions with the ground. Furthermore, the stance foot is attached
to the ground via a pin joint, and the transfer of support between legs is instantaneous. Thus, the
mode has hybrid dynamics, where the reset map encodes both the impulse from the collision as
well as the coordinate change when the stance leg is redefined. The wheel exhibits a steady
rolling cycle when the system has sufficient kinetic energy to vault the mass over the stance leg

following a collision event [19].
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Rimless Wheel [19]

Parameters
Ramp angle 0<y<m/2
Spoke angle 0<a<m/2
Central mass m
Leg length 1

| States x =[6, 0] ‘
0: angle of the stance leg relative to the vertical axis

| Continuous Dynamics ‘
6= %sin(@)

| Guard Function ‘
O=yv+ta

| Discrete Dynamics ‘
o(tt) = 0(t7) — 2a

6(t*) = 6(t7)cos (2a)

Key Assumptions
Collisions with ground are inelastic/impulsive

Stance foot is attached to the ground via pin-joint

Weight transfer between legs occurs instantaneously

Below is a table describing the key features of each walking model when determining
suitability for Koopman modeling (Table 1). From the previous section, key problems include
the curse of dimensionality and difficulty capturing stable and unstable modes. Furthermore,
walking models that do not have discrete dynamics are preferred, since Koopman Operator
Theory lacks guarantees for accurate modeling for systems with discrete jumps in state. Finally,
all dynamics must be a function of state. Both the rigid walker and the kneed walker have

unstable behaviors and discrete dynamics. SLIP and Bipedal SLIP have no discrete jumps in
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state, but the massless leg assumption, the switching between states, and the fixed angle of
attacks (Bipedal SLIP) make these models difficult or undesirable for linearization. The rimless
wheel has low dimensionality and no unstable behaviors, but the original formulation has

discrete dynamics.

Rigid Walker Kneed Walker SLIP Bipedal SLIP Rimless Wheel
Num. States 4 6 4 4 2
Discrete Impacts 1 2 - - 1
Instability Yes Yes Yes Yes No

Additional Notes Ignores foot Knee locks into Switches between | Dynamics a Instantaneous

scuffing place cartesian and polar | function of foot swap of stance

Instantaneous Instantaneous No leg dynamics location spoke

swap of stance and | swap of stance and | No slip No leg dynamics

swing legs swing legs No slip No slip

No slip No slip

Table 1. Summary of walking model suitability for use in Koopman lifted linearization. Key features

include low dimensionality, stability, non-discrete dynamics and state-dependent dynamics

With the initial choice of the rigid compass walker, significant effort was made to create

a viable model with the rigid walker with springs and dampers attached to the feet. However,

there was no clear way to differentiate foot scuffing from heel strike without several

assumptions. Furthermore, even with the presence of a linear spring, the walker would still

experience a discrete jump in state when the leg impacts the ground if the foot’s velocity before

landing included a component normal to the stance/spring axis [23]. Thus, a single linear spring

oriented along the axis of each leg was insufficient in preventing discrete dynamics. A multi-

directional spring or shock absorbing element could be employed, but this would necessitate
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additional position and velocity variables to monitor spring deflection in both the parallel and
perpendicular directions, which could lead to a significant increase in complexity. Finally, it is
not possible to artificially extend the duration of the discrete contact because the dynamics no

longer become a function of state.

2.3 Collision Model

Another important choice is that of the collision model. In the rigid contact model, it is
assumed there is no penetration between the feet and the ground surface. When two bodies make
contact, their relative velocities immediately become zero, resulting in hybrid dynamics. The

original rimless wheel formulation falls under this category.

In the viscoelastic model, objects are allowed to intersect, and the ground reaction forces
are computed at each contact point as a spring damper force. These forces are a function of the
objects’ penetration depth and relative velocity. Oftentimes, these forces are modified to ensure
unilaterality. Viscoelastic models can apply to either point contact or hydroelastic contact, where
the intersection of bodies creates a repelling force based on the objects' associated strain
deformation [23]. To model friction, two common solutions are to model friction as a spring
damper force in the horizontal direction or to utilize a modified Coulomb model to better relate

friction forces to normal force [24].
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Figure 5. Normal and Friction Forces for a Point-Mass. The ground reaction forces,
based on the floor contact model from Khadiv et al., are nonlinear functions of the point
mass’s floor penetration (8,,), and its velocity in the floor’s reference frame (8, 6,,) [24].

In Compliant Floor Contact from Rigid vs compliant contact: An experimental study on
biped walking by Khadiv et al., a viscoelastic floor model is presented:

Fy = —k, tan (L(Sy) - b, |6y| Sy

21max

Fr=— %tan‘1 (%) uFy

The normal force is composed of a spring and damper term, with k,, and b,, representing floor
stiffness and floor damping respectively. Benefits of this contact model include normal force
unilaterality, the ability to specify a maximum penetration depth (1,4, ), and zero ground

reaction forces when leaving or coming into contact with the ground (i.e. §,, = 0 — Fy, Fr = 0)

[24].

The friction force depends on the normal force. When A approaches zero, the friction force
becomes equal to that of the Coulumb model. A larger A yields a smoother friction model to help

generate non-oscillatory friction forces (Figure 6).
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This contact model is shown to properly model the impact of a bouncing ball and the

empirical measurements of the SURENA II bipedal robot [24].
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Figure 6. Variation of the Pseudo Coulomb Friction Model with respect to A. A higher A
value smooths the discontinuity at §x = 0, yielding better numerical results. At A = 0,
the Coulomb Friction Model is obtained. From Figure 3 of [24].
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Chapter 3

Dynamics Modeling and Simulation

3.1 Rimless Wheel Modeling

For the passive Rimless Wheel model, there are only three generalized coordinates, q = [X, y,
0], and a total of nine states, z = [q, ¢]. Coordinates x and y give the location of the central mass
in the ramp reference frame. Model parameters include the central mass (M), spoke length (1),
wheel inertia (I), ramp angle (y), floor height (y.) and additional floor parameters such as
ground stiffness (k, ), ground damping (b, ), maximum penetration depth (I;,4x), pseudo-
Coulomb parameter (1), and coefficient of friction (¢). The spoke tip locations are functions of
the central mass location and wheel rotation angle. There are six spokes in total, with the angle

between spokes 2a = m/3.
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Figure 7. Rimless wheel model. The model has a ramp angle (y), central mass (M),

spoke length (1), and six evenly spaced spokes separated by angle 2a. The central mass

position, 7, is measured relative to the ramp’s reference frame. The wheel orientation

angle 6 is the angle between spoke A and the ramp’s vertical axis. In this figure, only
spoke tip rp is in contact with the ramp.

The spoke tip locations (14, g, r¢, T'p, T'E, T'r) are a function of the central mass
location, 1, and the rotation angle 6. Then, the spoke tip velocities (v4, Vg, V¢, Vp, Vg, VF) are
obtained by taking their derivatives.

Positions:

To=xé,+yeé,
ra=1o+(+1)é = 1o+ (1+1y) (cos(B) é +sin(6) &,)
rp=7o+(1+1g) ég = 1o + (1+1p) (cos(6 + %) &, +sin(6 + 2) &)

rp="o+ (1+1o) 8 =19 + (1 + o) (cos(6) &, +sin(f + ) &,)

Velocities:

d A A
Vo= ——Tog=Xeéy+ye,

dt
d d d . d .. N : A
Vo= —ra=1o+ (4 lg) -8, ==-1g + (1+ L) (~0 sin(6) &, + 6 cos(6) &,)
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vp =21 =70+ (+1g) 3-8 =70 + (1+ o) (=0 sin(8 + ) & + 6 cos(d + 5)

é,)
d d d . d .. 5 n .

vp= —1p=—To+(+1lg) =& =—1¢ +(1+1) (—6 sin(6 + ?") &, + 0 cos(6 +

57, A

?) ey)

This model does not have spoke masses, so the kinetic energy term consists of the central
mass and the rotational inertia of the wheel. However, the addition of spoke masses could be

subsumed within a larger rotational inertia parameter value using the same formulation:

T =M (vg - o) + 5162

V=Mg(rg- éramp) =Mg (1o (—sin(y) &, + cos(y) éy))

We derive the equations of motion using the Euler-Lagrange equations. Note that the

resulting terms are all functions of q orz =[q, q].

L(z) = T-V
8@ =2(2) - (£)-%(Z) Fi= M@i+V(@d)+6@-Q=0

A@ = (3£) = M@

b(z)=AGg—g= —(V(q,9) + G(q) — Q)
~§=A"b

The ground contact is incorporated into the equations of motion via the generalized

6rl-

T
aq) - F;. Recall the following floor contact parameters: ground

forcesterm Q = Y,; Q; = Zi(

stiffness (k,,), ground damping (b, ), maximum penetration depth ({4, ), pseudo-Coulomb

parameter (A1), and coefficient of friction (u).
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1

Contact forces at spoke tip 1y

Figure 8. Ground Reaction Forces for Spoke D. Ground reaction forces only exist for
spoke tips below the ground

For a generic spoke 1, the generalized force contributions for ground reaction forces at the spoke

tip 1; is given below:

8yi=Ti"é,-yc

if5y_i <0
6x,l =V e
Oy, =i &y
Vs

Fyi = —kytan (s7=8,,) = by |6,,:] 6,

Zlmax

2, _1/(5
Fp;=—_tan ! (%) UFy,i

ari

Qi =(2)"* [Fe Fud
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3.2 MATLAB Simulation

The Rimless Wheel model with a viscoelastic contact model is implemented in
MATLAB. For each time step t in our simulation, we obtain the accelerations at time t using the
manipulator equations and calculating the generalized forces. Then, we advance using the semi-

implicit Euler method for integration. The simulation is run with time steps of At =

0.001 seconds.

fort = 1:1:tf
Z: = [q¢ q¢]
Q=2,0;

4. = (b(zy) + Q)/A(qy)
9ev1 = qc + At q,
Qi1 = qc + At Ge4q

A variety of different floor stiffnesses and ground damping constants were tested for the
rimless wheel, but the parameters chosen in Table 2 led to numerical stability while still having a
reasonably stiff floor. Despite the high maximum ground penetration depth (1,4, = 0.2 m), the
largest depths for the two trajectories shown in Figure 9 and Figure 11 were 0.0166 m and

0.0089 m respectively.
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Parameter Symbol Value
Central Mass [kg] M 1.0
Spoke Length [m] 1 1.0
Wheel Inertia [kg - m?] I 0.1
Ramp Angle [°] 14 20.0
Floor Height [m] Yc -1.0
i i k 1.0 x 103
Ground Stiffness Coefficient y .
i i b 1.0 x 10*
Ground Damping Coefficient y .
Maximum Penetration Depth [m] Lmax 0.2
-3
Pseudo-Coulomb Parameter A 1.0 x10
Coefficient of Friction u 0.5

Table 2. Parameter Values for Rimless Wheel MATLAB Simulation.
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Figure 9. Rimless wheel MATLAB model passive rolling trajectory. Model shown at t = 2.50, 5.00, and

7.50 seconds. Dots represent past center of mass locations, each separated by 0.1 seconds. The initial
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Figure 10. Rimless wheel MATLAB model passive rolling trajectory states vs time.
Wheel converges to a stable periodic solution after ~1.5 seconds. Collisions with

condition for this trajectory was z, =[0,—0.01, 3,0, 0, —5].

Rimless Wheel MATLAB Model: Passive Rolling Trajectory

ground produce sharp but continuous spikes in velocity.
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Figure 11. Rimless wheel MATLAB model stance trajectory. Model shown at t =2.50, 5.00, and 7.50 seconds.
Dots represent past center of mass locations, each separated by 0.1 seconds. The small white dot on the model
represents the center of mass location from 2 seconds ago, indicating that the model is gradually slipping

down the ramp. The initial condition for this trajectory was z; = [0, —0.0 1,%, 0,0,0].

Rimless Wheel MATLAB Model: Stance Trajectory
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Figure 12. Rimless wheel MATLAB model stance trajectory states vs time. Small oscillations in
velocity occur due to repeated ground contact. The x-position plot shows the model slipping down
the ramp.
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Chapter 4

Passive Koopman Models

4.1 Passive Koopman Models Using Radial Basis Functions

Following the construction of the passive MATLAB model, data was collected for use in
the passive Koopman model Specifically, a region of space centered around the origin was
randomly sampled. To ensure that floor contact was properly modeled, at least 20% of every
trajectory started with ground contact. The trajectories were capped with maximum initial energy
(including the potential energy stored in the viscoelastic springs due to ground penetration), and
trajectories that deviated too far from the origin were removed. Each trajectory lasted a total of
two seconds with data sampled at a rate of dt = 0.05 seconds. Data sets were compiled from 100

and 1000 trajectories. A third validation data set was created of 50 trajectories.

The first Koopman models were obtained with RBF observables. The Gaussian RBFs
were placed in the state space of the 100 and 1000-trajectory data sets, with the k-means++
clustering algorithm determining center placement. The equation for the Gaussian radial basis
function is given below:

=\’
i) = exp | - ——2

€
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Important hyperparameters include the dilation factor (€), the center locations (c;), and the
number of radial basis functions (N). Too many observables can lead to overfitting and poor
estimation performance, while too few will fail to capture the dynamics of the system. All six

passive RBF Koopman models in this section, used € =0.4.

Trajectory Data for Rimless Wheel COM

147 - Ground Truth
: x  RBF Centers

1.3 4
1.2 1
1.1 4

1.0 1 ) ,g"x’

0.9 4

Y-Pos [m]
X

0.8

0.7 T T T T T T
-5.0 2.5 0.0 2.5 5.0 15 10.0
X-Pos [m]

Figure 13. Placement of RBF Centers Using kmeans++. Depicted are 1000 RBF centers
based on the 1000-trajectory data set. The Rimless Wheel COM positions are shown in
red while the RBF centers are shown in black. The RBF centers are also functions of
wheel angle 6 and velocities, but these dimensions are not plotted for simplicity.

Once the radial basis functions were obtained, the data set was lifted such that for each
data point z;, we obtain y; = [z, ¢1(2.), 2 (2:), ..., dn(2:)]. We included the original states z;
in the lifted space for ease of use when implementing MPC. In this formulation, the A matrix
was obtained using a least squares regression of the y; and y,,, lifted data sets: A = y;44 )(t#.
Larger data sets should yield better results, assuming that the data is uniformly distributed, as

they reduce the effects of randomness.
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It is beneficial to have the x-position as a state when implementing MPC. However, since
the dynamics of the rimless wheel are invariant with respect to the x-position, the system
behaves identically whether at x = 0 m or x = 100 m. Consequently, when constructing the
Koopman Operator model, it is advantageous to remove the x-position from the training data to
enhance model accuracy. The passive Koopman models presented below were initially
developed with a dependency on x, but we found that performance issues only emerge when the

x-position is far from the origin. This issue is explored in further detail in Section 685.5.

Mode power is a method to determine the relative importance of a given mode within a
data set. Mode powers are evaluated for each data point within a training set and then averaged.
Eigenvalues with low mode power are typically associated with noise and can be removed with
little consequence [25]. To calculate the mode power, the eigenvalues and eigenvectors of the

linearized model are obtained. For each element in the dataset n the lifted state x, is projected
onto the eigenvectors such that Z, = y/ V. The element Z,,; shows the contribution of the
eigenvector V; for the input data z,. Finally, the mode power of the eigenvector V; is given by
%Zﬁzl Zy ;. Figure 14 shows the Mode Power plots for Koopman Models with 10, 100, and 1000

RBFs. We see the emergence of oscillatory behaviors with greater number of observables.
However, the more “important” poles belong to lower frequencies or are oriented along the x-
axis. It is difficult to read the mode power plots when the number of observables is high, as the

many poles overlap.
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Eigenvalues for 10 RBF, 1000 Trajectory Passive Model Eigenvalues for 100 RBF, 1000 Trajectory Passive Model
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Figure 14. Mode Power Plots for 10, 100, and 1000 RBF Passive Koopman Models. For
10 RBF, the poles are mostly aligned along the x-axis. More imaginary poles/oscillatory
behaviors appear with more observables. All three models use the 1000-trajectory
training set.

Mean Squared Error (MSE) is a common metric used to evaluate Koopman prediction

accuracy. For a test data set with N total data points, the MSE is given by
N
1 £ )2
MSE = ﬁzl(Zi - Zi)
=

Figure 15 depicts the MSE vs. time of a Koopman Model for predictions of different time
horizons. The training data is centered around the origin where the trajectories are initialized. As

the trajectories evolve, they disperse, resulting in more varied data over time. This dispersion
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suggests that the Koopman model might be more accurate at the beginning of a trajectory
compared to the end. However, the figure indicates that higher errors actually occur at the start of
a trajectory, possibly due to the increased likelihood of ground contact, resulting in more

unpredictable movement.

MSE vs. Time for a Passive Koopman Model

— 1dt

5dt
— 10 dt
— 15dt
—— 30dt
10°
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0.00 0.25 0.50 0.75 1.00 125 1.50 175
Time [s]

Figure 15. Mean Squared Error vs. Time for a Passive Koopman Model. MSE calculated for 50
trajectories not including in training/model creation There is seemingly a downwards trend between
trajectory time and prediction accuracy. The Koopman model was created with the 1000-trajectory
training set and 1000 RBFs.

Finally, Figure 16, Figure 17, and Figure 18 depict the tracking performance for different
time horizons. Figure 16 shows the Koopman model's predictions for different time horizons for
a passive rolling trajectory. While the model captures the rolling motion accurately initially, its
performance degrades for the 10- and 15-time step predictions. Figure 17 examines prediction
performance on the same trajectory with ground truth updates every 1, 5, 10, and 15 steps.
Unsurprisingly, accuracy is improved with more frequent updates, as the model is corrected

often and errors are not allowed to accumulate. Figure 18 tests the Koopman model on a
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challenging backward, uphill trajectory, demonstrating worse performance due to the trajectory's
rarity in the training data, with accuracy declining markedly over longer time horizons. All
figures use the same model, trained on the 1000-trajectory data set with 1000 radial basis

functions (¢ = 0.4).
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Figure 16. Passive Koopman Model Tracking Performance for Different Time Horizons.
At every time step, the model is given the ground truth (depicted by the blue dot) and
then blindly predicts the next N time-step (depicted by the orange line going off each

blue dot). The Koopman Model is capable of capturing the ground truth rolling motion

but with decreasing accuracy over time. This is exemplified by the smoothing out of the

peaks and valleys in the 15 Time Step Prediction plot. The Koopman model was created
with the 1000-trajectory training set and 1000 RBFs.
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Passive RBF Koopman Model with Ground-Truth Updates Every Time-Step Passive RBF Koopman Model w/ Ground Truth Updates Every 5 Time-Steps
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1.20 A 1.20 A
'7 /_//—\ ~—— Ground Truth '7 T ~— Ground Truth
| —— Koopman Model \.‘ —— Koopman Model
1154 1154
1.10 1.10
F 1051 E 105
o n
g g
* 100 > 100
0.95 0.95
0.90 0.90
T T T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
X-Pos [m] X-Pos [m]

Figure 17. Passive Koopman Model Tracking Performance with Updates Every 1, 5, 10,
and 15 Time-Steps. The blue dot depicts data points fed into the model as the ground
truth. If the model is very incorrect, these updates will result in a sharp change in state.
We see better performance when the update rate is high. The Koopman model was
created with the 1000-trajectory training set and 1000 RBFs.
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Figure 18. Passive Koopman Model Tracking Performance for a Challenging Trajectory
with Updates Every 1, 5, 10, and 15 Time-Steps. Using the same Koopman model as
Figure 17, the model is tested for a trajectory that travels backward, up the ramp. The

tracking performance is visibly worse, as such trajectories are not common in the training

data set.
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4.2 Passive Koopman Models Using Neural Net Generated Observables

A second batch of Koopman models was made using Neural Net generated observables. The
network structure is shown in Figure 19. The state z; is fed into the encoder and outputs
observables g;. Then, the states are concatenated to create the lifted state y, and fed into the
linear layer, which outputs the lifted state y;,,. The A matrix is obtained by taking the weight
matrix from the final linear layer. The encoders have two hidden layers with rectified linear unit

(ReLu) activation units. The encoder and linear layer structure is essentially that of [26].

Input z,

Zt

Enc

9 Xe =90 (]

Linear Layer
}

Xe+1 = [Ger1 Zesa]

Output g, Output z, , 4

Figure 19. Neural Network Structure. The fully-connected encoder network generates the
observable functions g; based on the input data z,. Then, the original states are appended
to the observables to obtain the lifted state y;. The final linear layer advances the lifted
state one-time step. In this figure, orange denotes states and blue denotes observables g.
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The Neural Network was trained on the 100- and 1000- trajectory data sets defined in
Section 3.2. The network was trained on the standard Deep Koopman loss function that takes the

sum of the MSE for the state prediction and the MSE for the observable prediction [27].

L = MSE(Zt41,Zt41) + YMSE (41, 9t+1)

The parameter y weights the observable prediction accuracy relative to the state prediction

accuracy. For the generated models, y is kept fixed at 1.

Four models were made using Neural Net generated observables. The Mode Powers for
the 30-observable models are shown in Figure 20. Table 3 shows the relative performance
between all ten models generated in this chapter. Mean squared error is obtained over a 50-
trajectory validation data set. We see the best performer was the 1000 observable RBF model
generated with the 1000-trajectory data set. Generally, the Koopman models using RBFs that
were trained with more observables and the larger data set performed best. The Neural Net
Koopman models had the lowest MSE for 1-time step predictions, but were poor at predicting for
longer time horizons. In the future, additional terms could be added to the loss function to help
improve long term accuracy by calculating the MSE of future predictions [27]. The Neural Net
models with a high number of observables and low amounts of training data performed the

worst, perhaps due to overfitting.
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Figure 20. Mode Power Plots for 30 NN Generated Observable Koopman Models.
Models were trained with the 100-trajectory data set (left) and the 1000-trajectory data
set (right). The 100-trajectory model has more oscillatory poles at higher frequencies.
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1dt S dt 10 dt 15 dt 30 dt
10 1.55 0.92 0.91 1.08 2.73
100 1.72 1.37 1.23 1.36 3.68
100 1000 0.66 0.53 0.59 0.69 1.87
10 0.66 0.78 0.80 0.91 2.17
100 0.61 0.72 0.78 0.88 2.16
RBF 1000 1000 0.46 0.48 0.60 0.69 1.81
30 0.39 1.00 1.27 1.63 4.25
100 100 0.45 1.26 1.36x 101 7.77x 104 3.55 % 108
30 0.34 0.96 1.81 2.81 7.09
NN 1000 100 0.32 0.78 1.13 1.40 3.51

Table 3. Comparison of Different Passive Koopman Models. The leftmost column
describes the type of observables used in the model, followed by the number of
trajectories in the data set, and finally the number of observables. The MSE is evaluated
fora 1-, 5-, 10-, 15-, and 30-time step prediction over the course of 50 trajectories. The
Koopman models trained on the largest dataset performed consistently better than those
trained on the smaller one. We see clear overfitting with the 100 trajectory, 100 neural
net generated observable model, despite reasonable 1-time step MSE.
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Chapter 5

Actuated Koopman Models

5.1 Actuation of the Rimless Wheel

In recent years, the study of the Rimless Wheel has garnered significant attention,
particularly in the design of spring-like, impact-reducing rimless wheels. However, despite these
impact-absorbing elements, these rimless wheel models typically utilize discrete dynamics. The
viscoelastic wheel developed by Kawamoto et al. exhibits discrete impacts both when the spoke
contacts the ground and when the spoke leg returns to its free length [28]. Similarly, the models
proposed by Sanchez et al. and Hanazawa et al. utilize rimless wheels with telescoping, spring-
loaded legs with discrete dynamics upon contact with the floor. Interestingly, these three models
do not control the leg length but rather the angle between a torso and the ground [28], [29], [30].
While the integration of a torso into the model presents an interesting avenue for future research,
the primary objective of this thesis is to develop a model with interesting ground interaction

dynamics.

The model presented in this section is designed with a prismatic actuator at the tip of each
spoke (Figure 21). For a six spoke model, we add a total of twelve states for the actuators so q =
[X,V,0, b, O, ¢, Pp, Pr, dr] and z = [q, q]. These actuators are allowed to expand or retract
a maximum set limit, and have a maximum control input of |u,| < 1 m/s. As before, model

parameters include the central mass (M), spoke length (1), wheel inertia (I), ramp angle (y), floor
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height (y.) and now actuator refence length (l,). Additional floor parameters such as ground
stiffness (k,, ), ground damping (b, ), maximum penetration depth ({4, ), pseudo-Coulomb
parameter (1), and coefficient of friction (¢). The model and floor contact parameter values are
carried over from the passive model case. Crucially, we assume the actuators are controlled with

a high-fidelity control loop, so the actuator dynamics are directly defined by the control input:

d)'n () = up(8).

Figure 21. Rimless Wheel with Prismatic Actuators. The spokes have length [ as well as
the actuator reference length [,. Actuator states ¢,, are measured relative to this reference
length. In this figure, all actuators are set to ¢, = 0 except for ¢pp = —0.1 and ¢, = 0.1.
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5.2 Control Coherent Koopman Formulation

The Control Coherent Koopman requires a linear actuation subsystem. In other words, we
seek an actuation method that is linear in control and that separates the input from the other state
variables. Below, we show how the actuator subsystem is separated for the actuated rimless

wheel:

t=0:
» Obtain states z;—g = [qr=0, G¢=0]
* Calculate GRF and convert to generalized forces

* Fy(zt=0) and Fp(zt—o) 2 Qc(Zt=0)
* Obtain acceleration

* Ge—o = (b(zt=0) + Qc )/M(qt=0)
* Implement control

@N, t=0 = Un, t=0
t=0.05:

* (Integrate) Obtain z;—g 05 = [9r=0.05 Gt=0.05]-
* Calculate GRF and convert to generalized forces

* Fy(2zt=00s) and Fr(Zt—00s) 2 Qc(Zt=0.05)
* Obtain acceleration

* Ge=0.05 = (b(Zt=0.05) + Qc )/M(q¢=0.05)

* Implement control...
Where q =[x, y, 8, @4, @5, --- ¢r] and the text in red denotes variables that have been affected by
control input u;—q. Depending on when the input is incorporated, we are able to quarantine the
effects of the control input u;=o to @y +=¢ and future time steps. However, this method requires
implementing the control after the ground reaction forces are calculated, which is an important
modeling decision. We leverage the viscoelastic floor to separate the velocity of the prismatic
joint and the location/velocity of the central mass [x, y 8]. If the floor was implemented as a hard

constraint (i.e. actuator tip ry is pinned to the floor like in the original rimless wheel hybrid
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model), the velocity of the prismatic would directly result in a change in velocity of the central
mass in the same time step. With a rigid contact model, a spring and mass on each spoke is

necessary to separate the actuator from affecting the other state variables.

5.3 Three-Actuator Model

The three-actuator model is motivated by the curse of dimensionality. With an actuator
attached to every spoke, there is a total of 18 states. To keep the dimensions low, the symmetry
of the rimless wheel model is leveraged. Koopman models are accurate for relatively short
periods of time, so if the constructed Koopman model is expected to be accurate for up to 20-
time steps (one second), it should experience about one to two impacts with the ground in that
time. Thus, we can create a model where the spokes closest to the ground have actuators (7 4(x,
Y, 0,94), Tp (X,Y, 0, p), Tr (X, Y, 8, ¢r)), and those near the top are passive (r¢ (x,y, 8), rp
(x,y, 0), rg (X,y, 0)). By removing the actuator states for half of the spokes, the number of

states decreases from 18 to 12.

A change of coordinates is required to utilize the three-actuator Koopman model due to
the decreased number of spokes and the training data’s limited range of initial conditions. For
example, to predict the motion of a fully actuated, 18-dimensional rimless wheel we first

determine which three spokes are closest to the ground, change the angle to lie within 8 = [0, g],

and change the x-value to start at 0 (Figure 22). By limiting the range of 8, we reduce the state
space needed for sampling while still producing a useful model. We assume the spokes not in

contact with the ground do not greatly affect the dynamics of the system.
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To find the three spokes closest to the ground, we ignore the actuator states ¢;. In other
words, the positions we evaluate are not the actuator tips: r; =1, + (1+ [y + ¢;) é;, but rather the

spoke tips: 15 g =79 + (1 + 1) é;.

Coordinate
Transfer

—

Fully Actuated Model Reduced State Model

Figure 22. Coordinate Transformation between Fully Actuated and Reduced State
Models. Changes include remapping the angle to fit within 8 = [0, g], setting the x-

coordinate of the center of mass to zero, and making the spokes furthest from the ground
passive (shown here in black)

Below is the pseudo code for how the coordinate transformation is implemented:

control_law(z = [X,y, 6, 91, 92, 93, Vs, Ps, P, X%, ¥, 0]):

Onew = mod(0, g)
if 0,0, = %z // breaks ties when the rimless wheel is in stance
if 6 > 0:

[nl, n2, n3] = return_lowest three spokes(z; =[x,y,8 + 0.01,y,8])
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// where [nl, n2, n3] indicates spoke_tip,; is closest to the ground,
spoke_tip,, is second closest, etc. Note these are calculated
without ¢;

else:

[nl, n2, n3] = return_lowest three spokes(z; =[x,y,8 — 0.01,y,8])

else:
[nl, n2, n3] = return_lowest three spokes(z, =[x,y,6,V,6])
ba=Dn1 //the lowest spoke is assigned as spoke A
if nl ==6: //if the lowest spoke is 6, then the clockwise order of spokes is [5, 6, 1]
¢ =1
br=bs
elif nl == 1.  //if the lowest spoke is 1, then the clockwise order of spokes is [6, 1, 2]
b5 =2
br = b6
else: //if the lowest spoke is neither 1 or 6, then the clockwise order of spokes is
[min(n2, n3), nl1, max(n2, n3)]
b5 = ¢max(n2,n3)
b= ¢min(n2,n3)
2o = [0,, Gpow» Par P, Pr %V, 0] //new state vector with only three actuators
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5.4 Actuated Koopman Models (RBF, NN)

A dataset was generated from the three-actuator Rimless Wheel simulation for the
actuated Koopman model. Just as before, a region of space centered around the origin was
randomly sampled. To ensure that floor contact was properly modeled, at least 20% of every
trajectory started with ground contact. The trajectories were capped with maximum initial energy
(including the potential energy stored in the viscoelastic springs due to ground penetration), and

trajectories that deviated too far from the origin were removed.

The data sets used to generate the Koopman models consisted of purely passive data, that
is u, = 0 for all time t. The actuator states were randomly initialized with ¢,, € [-0.1, 0.1] and
held constant throughout the trajectory. Each trajectory lasted a total of two seconds with data
sampled at a rate of dt = 0.05 seconds. Trajectories were ended prematurely if any spokes other

than A, B or F touched the ground. Data sets were compiled from 100 and 1000 trajectories.

A validation data set was created of 100 trajectories created in the same manner as the
training sets. A second, actuated validation data set was created of 2,000, trajectories with
constant input u, = C and a duration ¢y = 0.8 seconds. In this section, the actuators had a
maximum extension of |¢, | < 0.1 m. Due to the randomized actuator states and the constant
control input, many trajectories lasted only one- or two-time steps before reaching the actuator

state limit. Data collection was ended prematurely before the actuators could exceed this limit.

Four RBF Koopman models were generated in the same manner as in Section 3.2. The
training set was truncated to remove actuator velocities, so the states used for these Koopman

model were z = [X, 7,0, $4, Pg, Pr, X, ¥, 0]. This was done to prevent the model from estimating
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the control inputs (¢; = u;). Some models were trained on similarly generated datasets but

without the x-position data. This practice is further discussed in Section 5.5.

As before, the RBF centers are calculated via kmeans++ and the A matrix obtained via
least squares estimation. In addition, two models were made with Neural Net generated
observables with the same training data sets. All hyperparameters were kept the same as before.
The six models were evaluated for the passive dataset in Table 4. The best performing model
was the Koopman Model with 1000 RBF, trained on the 1000-trajectory data set, but the neural

net models also had low MSE, especially for the 1-time step prediction.

Trajectory Data for Actuated Rimless Wheel COM

144 +  Ground Truth _
x  RBF Centers X
1.3~

1.2

L1~

Y¥-Pos [m]

1.0

0.9 1

0.8

Figure 23 Placement of RBF Centers Using kmeans++ for the Actuated Rimless Wheel
Model. Depicted are 1000 RBF centers based on the 1000-trajectory data set. The
Rimless Wheel COM positions are shown in red while the RBF centers are shown in
black. The RBF centers are also functions of wheel angle (8), actuator states
(¢4, D5, D), and velocities (x, y, 8), but these dimensions are not plotted for simplicity.
While this model has actuators, the training data sets are entirely passive (u,, = 0).
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Figure 24. Mode Power Plots for 100, and 1000 RBF Actuated Koopman Models. For
100 RBF, the poles are mostly aligned along the x-axis. Both models use the 1000-
trajectory training set.

MSE vs. Time for an Actuated Rimless Wheel (No Control)

1
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Figure 25. Mean Squared Error vs. Time for an Actuated Koopman Model for Passive
Trajectories. MSE calculated for 2,000 trajectories not included in training/model
creation. Once again, there is seemingly a downwards trend between trajectory time and
prediction accuracy. The Koopman model was created with the 1000-trajectory training
set and 1000 RBFs.
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Figure 26. Actuated Koopman Model Tracking Performance for a Passive Trajectory and
for Different Time Horizons. At every time step, the model is given the ground truth
(depicted by the blue dot) and then blindly predicts the next N time-step (depicted by the
orange line going off each blue dot). The Koopman model was created with the 1000-
trajectory training set and 1000 RBFs.
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1 dt Sdt 10 dt 15 dt 30 dt

100 0.52 0.51 0.72 1.01 2.92

100 | 1000 0.62 0.41 0.68 0.82 2.88

100 0.53 0.50 0.69 0.93 2.52

RBF 1000 | 1000 0.48 0.31 0.42 0.64 2.05
100 30 0.49 1.09 3.35 1.68x 101 3.62x 103

NN 1000 30 0.38 0.58 0.92 1.40 5.35

Table 4. Comparison of Different Actuated Koopman Models for Passive Trajectories.
The leftmost column describes the type of observables used in the model, followed by the
number of trajectories in the data set, and finally the number of observables. The MSE is
evaluated for a 1-, 5-, 10-, 15-, and 30-time step prediction over the course of 100 passive

trajectories. The RBF Koopman model with the 1000 trajectory data set performed the

best. The Neural Net models had low 1-time step predictions but very high MSE for

longer time horizons.

Following the evaluation of the Actuated Rimless Wheel Koopman models on the passive

dataset, the models were tested on an actuated dataset. As previously mentioned, the actuated

dataset was derived from simulations of the actuated rimless wheel with a constant control input

(u, = C,) and time steps of dt = 0.001 seconds. In contrast, the Koopman model was generated

using data sampled at a rate of dt = 0.05 seconds and is therefore only capable of predictions of

that scale.

Recall the Koopman models with only have three actuated spokes. With the control

coherent Koopman formulation, the control input only affects actuator velocities.

Dirr1 = Pir +dtu;,

Thus, the B matrix is effectively empty, except for the dt term in the rows corresponding to the

actuator states.
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When provided with a control input, the Koopman model tends to overestimate the
ground reaction forces at the actuator tip, resulting in higher MSE (See Figure 27 and Table 5).
This discrepancy arises because the simulation, which updates more frequently, calculates
ground reaction forces before the actuator tip penetrates too deeply into the ground, allowing for
some degree of repulsion. On the other hand, the Koopman model, updating at a slower rate,
pushes the actuator tip further into the ground, resulting in higher estimated ground reaction

forces.

Since the Koopman model is trained on passive data, it lacks information about actuators
pushing off the ground, and therefore cannot correct the overestimation. An alternative approach
could involve updating the Koopman model at the same rate as the simulation. However,
considering that Koopman models generally struggle with long-term prediction accuracy, this

solution would limit the model's overall utility.
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Figure 27. Actuated Koopman Model Tracking Performance for an Actuated Trajectory
and for Different Time Horizons. Plots generated using the same model as those in Figure
23. The control input is kept constant throughout the trajectory. The tracking is worse for

the actuated trajectories, but the model is able to predict the general shape of the

trajectory.
1 dt 5 dt 10 dt 15 dt
100 1.01 0.71 0.68 0.89
100 | 1000 1.35 0.88 2.13 1.43
100 | 8.30x 102 0.67 0.63 0.79
RBF | 1000 | 1000 0.97 0.62 0.56 1.03
100 30 1.04 0.78 0.83 9.42
NN | 1000 30 0.81 0.79 1.10 1.85

Table 5. Comparison of Different Actuated Koopman Models for Actuated Trajectories.
The leftmost column describes the type of observables used in the model, followed by the
number of trajectories in the data set, and finally the number of observables. The MSE is

evaluated for a 1-, 5-, 10-, 15-time step prediction over the course of 100 passive
trajectories. The relative performances are similar to that of Table 4, with the same
general trends. The MSE is on average higher for the actuated trajectories, perhaps due to
the time-scale discrepancy between the simulation data and Koopman model.

67



5.5 Impact of X-Position Data on Model Fidelity

In this section, we will investigate how incorporating x-position data in the creation of the Koopman
models effects their performance both near and away from the origin. As mentioned in Section 3.3, the
rimless wheel dynamics are invariant of the location of the origin on the x-axis. That is, the rimless
wheel will behave the same whether it is far up or far down the slope. Furthermore, when ramp angle

y = 0, the x-position becomes an ignorable coordinate.

Model A was created with RBFs whose centers were placed along all states (including x) while
Model B was created with RBFs centers that do not depend on x. The models in this section were
created with e = 0.4, y = 20°, 100 observables and a 1000 trajectory data set. In addition, the actuator
bounds are increased from —0.1 m < ¢y < 0.1 m to —0.25 m < ¢y < 0.25 m. All other model,
ground contact, and inertial parameters were kept consistent with the previous sections. Figure 28 shows
that Models A and B perform similarly when near the origin, but surprisingly, both perform poorly when
x =~ 100 m. While Model B’s RBFs are independent of the x-position, the least squares regression was
done with x-position data, resulting in an inaccurate model. An analysis of Model B's A matrix reveals
that the x-position state has the greatest influence on the dynamics of the x-velocity and angular velocity

(Figure 29).
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Figure 28. Time Prediction Accuracy Comparison at x = 0 m and x = 100 m. Model A
(top row) employs RBF centers that vary with x, while Model B (bottom row) uses RBFs
independent of x. The same trajectory was used across all four plots, with only the x-
position modified. Both models show poor performance when x = 100 m, suggesting that
incorporating x-position data in the least squares regression introduces an x-dependency.
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Heatmap of A Matrix Values for Model B
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Figure 29. Heatmap of A Matrix Values for Model B. The first column corresponds to the
effect of the x-position in the time-evolution of the state variables and observables. The
largest value on the first column is at (0,0) = 0.9995, corresponding to the preservation of
the x-position. The second largest is at (6, 0) = -0.0195, and the third largest values is at
(8,0)=0.0167 corresponding to the x-velocity and angular-velocity respectively. This
indicates that the A matrix incorrectly attributes the x-position as influencing the
dynamics of both the x-velocity and angular velocity.

Models B.1 and B.2 were constructed to compare different methodologies for eliminating
x-dependency from the A matrix. Model B.1 simply sets all values in the first column of the A
matrix to zero, except at (0,0). Model B.2, on the other hand, is generated using the same
datasets but modified to exclude the x-position. In this case, z = [y, 0, 4, Pg, P, %, ¥, 0], and
x(2) =(z,91(2),9,(2), ..., gy (2)]. The x-position is obtained by integrating x is integrated over
the trajectory (£; = xo + Y.i—g X; * dt). Table 6 displays the MSE of the Models B, B.1, and B.2
for trajectories at x = 0 m and x = 100 m. The best performing model was Model B.2, the only
model fully independent of the x-position. The accuracy of Model B.1 had higher error at x =

100 m then at x = 0 m. This model was initially trained with the x-position included, so simply
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zeroing out the first column of the state matrix A, while the model had already learned to

compensate for the x-position data, resulted in generally inaccuracies.

Table 6. Model Comparison for Trajectories Centered at x = 0 m and x = 100 m. MSE
was calculated using a validation dataset with a shifted x-position. All three models
performed similarly near the origin. Model B showed extremely poor tracking

x-pos [m] 1dt 5dt 10 dt 15 dt
0 0.52 0.54 0.63 0.71
Model B)
7.62 122.87 313.33 476.32
100
0 0.52 0.53 0.62 0.74
Model B.1)
100 0.52 0.59 0.84 1.22
0 0.52 0.53 0.62 0.72
Model B.2)
100 0.52 0.53 0.62 0.72

performance at x = 100 m. Model B.1’s accuracy decreased at x = 100, likely because the

model initially learned to estimate dynamics with the x-position included; thus, simply
zeroing out the first column still left an inaccurate dynamics model. Furthermore, the x-
position dynamics for Model B.1. may also be inaccurate. In contrast, Model B.2’s MSE
was identical for trajectories centered at x =0 m and x = 100 m, as it was designed to be
fully independent of x-position data, making it the best performer at x = 100 m.
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Chapter 6

Control Methods

6.1 L-MPC on a Ramp

Finally, the actuated Koopman models were used for Linear Model Predictive Control on the
fully actuated Rimless Wheel simulation. Using the Gurobi Optimizer, a control input was
calculated every 0.05 seconds. Since the simulation was running with a 0.001 second time step,
the control input was held constant between MPC calculations. The linear control problem was

formulated as the following:

tf—l

min Z (X[£] = Xre) TQUALE] — Xrer) " + u[t] " Ru[t])

Subject to x[t + 1] = Ax[t] + Bu[t],V ¢ € [0, ¢ — 1]

x[0] = xo
Upin < U[t] < Upax
actpin < x[t,3:5] < actpyay
Where both the control input and actuator states [¢,, ¢g, P] are bounded. We used the lifted

states for the positional error and the Koopman A matrix to advance the dynamics between time

steps. The time horizon t; was tuned for the different Koopman models for best results. The Q

and R matrices were also varied for each reference point z,..5. For example, Figure 25 shows the
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use of MPC to stop the rimless wheel from rolling down the ramp. To achieve this behavior, we

used z;..5 = 0 and diagonal matrix,

where diagonal elements associated with the x-position, theta, and actuator states were set to 0,
elements associated with y-position and velocities were nonzero, and elements associated with
RBF observables were set to 0.1. With this Q matrix, the cost function penalizes nonzero
velocities and decreases the relative importance of observable errors compared to state error.
This Q matrix also ensures the rimless wheel stays in contact with the ground by penalizing

deviations in y-position. Errors in x-position, 6, and actuator states were ignored.

All Q values associated with the observables were given the same small weighting. The
RBFs for the reference point are functions of the entire state, but not all these states are relevant.
For example, if the goal is to stop the wheel on the ramp, the RBFs are evaluated with reference

state z,.f = 0. Overemphasizing observables errors could inadvertently drive the rimless wheel

to & = 0, when the intended behavior is to decrease velocities [x, y, 9] = 0. However, lowering
the weights on observable error limits the usefulness of the observables. A more effective
method would be to use trajectory tracking with lifted states, better leveraging the information

encoded in the observables (Section 6.2).

Figure 30 and Figure 31 demonstrate cases where MPC is successful in bringing the
rimless wheel to a stop on a ramp from a rolling trajectory and initiating motion from a position
about to enter stance. However, the MPC was not consistently successful. Even with saturated

inputs, there were several initial conditions under which the wheel could not achieve its desired
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behavior. For example, when the rimless wheel was fully stopped on the ramp, the actuators
could not generate enough force to start a rolling motion. For the ramp angle y = 20°, the
actuator bounds —0.1 < ¢ < 0.1 were too restrictive to enable these behaviors. Similarly, the

rimless wheel is unable to push itself up the ramp.
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Figure 30. MPC to Stop a Rolling Trajectory. Figure A) shows the trajectory with no

control input and initial conditions z, = [0.1, 0.5, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -
5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]. Figures B) and C) show the wheel is successfully stopped
using MPC with the 100 RBF, 1000 trajectory Koopman model, and the 1000 RBF, 1000

trajectory Koopman model. The time horizons (p) for the two models were 9-time steps

and 12-time steps, respectively. While both models succeed, the MPC for figure C) took

longer to compute due to the larger A matrix requiring significantly more computations.
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Unactuated Rimless Wheel COM vs. Time
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Figure 31 MPC to Start a Stopping Trajectory. Figure A) shows the trajectory with no
control input and initial conditions z, = [0.1, 0.2, % +0.001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]. Figure B) shows the wheel is successfully pushed

into a rolling trajectory using MPC with the 100 RBF, 1000 trajectory Koopman model.
The positional error was heavily weighted, resulting in fully saturated control inputs.
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6.2 L-MPC on Flat Ground

Up to this point, all Koopman models had been created with a ramp angle of y = 20°.
While constructing Koopman models on ramps was useful for validating prediction accuracy in
passive rolling, it is more compelling to study the motion of the rimless wheel when it is entirely

driven by the actuators.

There are three behaviors that a rimless wheel can achieve on flat ground: rolling
forwards, rolling backwards, and settling into a stance. As before, the stance behavior can be
implemented by tracking a zero-velocity reference point. However, when attempting to get the
rimless wheel to move forwards or backwards, we found better results when tracking a reference
trajectory. A well-designed reference trajectory allows for the incorporation of additional
information through the observables, potentially enhancing performance. Trajectory tracking

MPC was implemented with the following formulation:

L‘f—l

min > (X[t] = Xeer[EDTQXIE] — Xrer[EDT + u[t Ru[e])

Subject to x[t + 1] = Ax[t] + Bu[t],V ¢ € [0, 7 — 1]

x[0] = xo
Umin < u[t] < Umax

actpyin < x[t,3:5] < actyay
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The reference trajectory was generated using data from passive rolling simulations of the
rimless wheel. A key challenge when using a reference trajectory is determining the appropriate
segment to track at any given moment, or choosing to follow a set trajectory regardless of the
rimless wheel’s current state. In this implementation, the point on the reference trajectory closest
to the current state, in terms of 8 and 6, is identified. The next p time steps from this “closest

point” form the reference trajectory, where p denotes the time horizon.

The Q matrix for trajectory tracking heavily penalizes deviations in x-velocity and x-
position. There are also penalties, though less heavily weighted, for errors in y, 8, y, and 6. A
smaller penalty is assigned to errors in the observables g; and no penalty is imposed for actuator

state errors.

The models presented in the following sections were generated without x-position data
(see Section 5.5) and datasets were generated to capture more collisions. Specifically, data was

generated with at least 20% of all trajectories starting with ground contact and at least 20%

starting near a contact mode change (i.e. initial angles near 6 = g, — g).

# observables € 1dt 5dt 10 dt 15 dt
100 0.9 0.51 0.37 0.49 0.53
500 1.0 0.49 0.25 0.31 0.40
1000 0.8 0.57 0.20 0.25 0.35

Table 7. Comparison of Flat, DMD + CCK Models for Passive Trajectories. MSE calculated
using the same validation dataset for all models. Epsilon was tuned to minimize MSE for each
model. Models with a greater number of observables generally produced more accurate
predictions, especially for longer time horizons.
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Three Koopman models were generated for this section, with their relative performances
enumerated in Table 7. However, with the current formulation, the 1000-observable MPC
computations regularly take more than 100 times longer than the 100-observable MPC, without a
significant improvement in performance. In Korda and Mezic (2018), the method described in
the appendix transforms the higher order linear MPC problem into a dense form, thereby
eliminating the dependence on the lifting dimension [31]. In the future we aim to implement this
formulation and close the gap between the computation loads of the three models, enabling the
use of the 1000-observable model in online MPC and reducing computation time across the
board. Finally, dimension reduction via SVD is commonly employed in DMD-based Koopman

models [8].

Figure 32 depicts the mechanism by which the rimless wheel achieves rolling on flat
terrain. The MPC aggressively commands the leg that is about to make contact with the ground
to retract (see the orange spoke retracting at t = 4.25 and 4.50 s). Simultaneously, the MPC
extends the stance leg (see the blue spoke extend from t =4.25 to 4.75 s). The extension effort is
maximized when the leg is positioned behind the wheel’s COM, which pushes the wheel off the
back spoke, injecting energy into the system without impeding the rolling motion. This
combination of a lengthened back spoke and a shortened front spoke creates a pseudo-ramp
effect, encouraging the wheel to roll forward. The rimless wheel’s x and y velocities experience
sharp changes when the wheel lands on a new spoke. Note that the wheel will continue to extend

the back leg beyond contact, indicating potential inaccuracies in the model.
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Actuated Rimless Wheel States vs. Time
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Figure 32. Mechanism of Forward Rolling in the Rimless Wheel. Snapshots are taken
every 0.25 seconds, starting at t = 4.0 seconds. In the first snapshot, the wheel maintains
ground contact with the light blue spoke (marked by an x), while the control command
retracts the dark blue spoke and extends the light blue one (control inputs are represented
by colored arrows, with the arrow’s length denoting magnitude). The wheel is rolling
clockwise, as indicated by the gray circular arrow. The 100 RBF Koopman model was
utilized for this figure, tracking the y = 20° passive rolling trajectory.
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Figure 33 demonstrates the underlying logic behind the Linear MPC optimization. The
MPC rollout shows optimization through multiple instances of the spokes making and breaking
contact. This demonstrates the power of the Koopman operator in successfully encoding these
changes in contact modes within a linear model, and the control coherent Koopman formulation

in generating a B matrix that is accurate through these different contact modes.

Full Dynamics Simulation  swswicoewion T -MPC Roll Qut Using Three-Actuator Koopman Model

simulation

t=2.80 [\ Xevs = Axe + Bug

4
8 MPC t=2.80 MPC t=2.90 MPC t=3.00 s MPC t=3.10 s MPC t=3.20
15 15 15 [
2 1 1 1 \ 1 \ 1 I
1 \ / 05 \\ / 05 \\ / 05 ~ / 05 [ ~ / 05 \ e
L — - > 0 —— >~ 0 ~ = 0 ~_ > 0 > 0
0 ; i 05 7& 05 /i 05 /Y 705‘ ~ 05 ~N
-1 8 El % A l 4 ‘ 4‘ El
2 Py 4 0 1 AR K] 3 1 2 15 A 0 1 2 5, 4 0 1 5 "2 1 0 1 2
x x p x X
3 . )
5 0 5 10
X
At t=2.80. only the vell Kei MPC retracts the green spoke ~ Koopman model predicts the yellow spoke will lose Koqpman model MPC command weakly
At t=2.80, O'thltl € ye o(\ixz sptl) e :js and extends the purple spoke  contact with the ground at t = 2.90 ~Even though the predicts the purple extends the green spoke. No
mn C(_}K;:am :’ 1t1 t © %foun l(clo(‘olre (control inputs depicted as rimless wheel is briefly airborne, green and purple spoke will make commands sent to the yellow
x). The wheel is rolling clockwise colored arrows; length reflects ~ spokes are still actuated in anticipation of the future contact at t =3.10 and purple spokes

(gray circular arrow) magnitude) collision

Figure 33. The MPC Rollout using the Three-Actuator Koopman Model. The state at t =
2.80 seconds is copied over from the simulation, but modified to fit the Three Actuator
Model (Section 5.3). Future states are predicted using the linear model with control
inputs. The Koopman model predicts multiple contact mode changes within the 8 time-
step (0.4 second) period. Although the model does not anticipate ground contact with the
green spoke, it retracts the green spoke, potentially indicating a learned association
between shorter front spokes and forward motion. MPC snapshots are taken two time
steps apart, with dt = 0.05 seconds.

81



To achieve rolling at different speeds, reference trajectories were generated using data
from various ramp slopes. Table 8 presents the different rolling speeds achieved with MPC using
these reference trajectories. To roll backwards, the same trajectories are used but with the x and

the 6 values negated.

Reference Ramp Angle [°] Refere.nce Avg. Forwar(.l Sim Backwar.d Sim
Velocity [m/s] Avg. Velocity [m/s] Avg. Velocity [m/s]
10 1.0 0.96 -0.49
15 1.6 1.42 -0.01
20 2.4 1.49 -0.59
23 3.0 1.44 -0.61

Table 8. Rolling Velocities Achieved in Simulation. Reference trajectories were generated
from passive rolling data of the fully actuated rimless wheel at various slope angles. The
MPC struggled to increase the average speed beyond 1.5 m/s when rolling forwards,
likely due to actuation limitations and the less aggressive nature of contour trajectory
tracking. The model was also less successful in achieving high velocities when rolling
backwards. Simulation were run for 10 seconds using the 100-observable model with a
12-step time horizon (0.6 seconds) and aggressive inputs (R = 0.1 I).

The rimless wheel struggled to surpass a forward speed of 1.5 m/s. This limitation is
likely due to constraints on the control input (|u| < 1 m/s) and actuator states (|¢;| < 0.25 m),
which restrict the maximum force the rimless wheel can exert to push off the ground and limit
the length differential between spokes respectively. This length differential is crucial for
simulating the ramp effect, so the limit on actuator states limits the maximum pseudo-ramp

angle.
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The wheel is less successful in rolling backwards, a surprising result given that there
should not be a forwards/backwards bias in the formulation of the model. Figure 34 shows the

states and control commands when tracking the y = 20° trajectory both forwards and backward.

In the forward trajectory, we observe that during actuation, adjacent spokes receive
opposite inputs—specifically, the middle spoke extends while the front spoke retracts. This
action facilitates both a push-off from the ground and creates a pseudo-ramp effect, aiding in

forward motion.

In the backward trajectory, however, the front and back spokes are activated. Since the
wheel is moving backward, the back spoke retracts while the front spoke extends. Crucially,
because the front spoke extends instead of the middle spoke, the overall movement is slower,
missing out on the earlier push-off potential that contributes to more efficient forward motion.

This behavior remained consistent with different R values and time horizon.
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Figure 34. Comparison of Forward and Backward Rolling States and Control. Both
figures generated from symmetric initial conditions, and the same weights and reference
trajectory.
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Finally, there are several ways to fine-tune trajectory tracking. The relative weights of Q

and R can significantly impact performance. Figure 35 illustrates the effects of varying R when

tracking a forward rolling trajectory. When R is small, the penalty on control inputs is minimal,

leading to an aggressive strategy with purely saturated inputs. As R increases, control input

saturation decreases. In fact, the wheel rolls further with R = 0.4 1, better tracking the reference

trajectory. However, when R becomes too large, performance declines, and the wheel takes

longer to reach a stable rolling pattern. The total control effort was evaluated over the course of

the simulation (Upor = Yz ||ue]|2 * dt), with the total effort per rotation for the three

simulations as 5.3, 5.7, and 4.8, respectively.
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Figure 35. Effect of Input Weight on Rolling Trajectory. Each plot shows the rimless
wheel tracking the same 20° trajectory from the same initial condition. In Plot A, where
R =0.1L, inputs are lightly penalized, leading to fully saturated control inputs. Plot B,
with a higher input penalty (R = 0.4 I), shows less saturated control and more irregularity
between steps, yet it traveled the farthest and best tracked the reference trajectory. Plot C,
with an input penalty 8 times that of Plot A, traveled the shortest distance. The total
command input per rotation for the three simulations was 5.3, 5.7, and 4.8, respectively.
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6.3 DMDc Comparison

In the Dynamic Mode Decomposition with control (DMDc) methodology, the B matrix is
approximated using least squares regression. Unlike for the Control Coherent Koopman method,
generating the B matrix requires actuated datasets. The dataset for this model was generated with
the same simulation parameters as those in Section 6.2, but with randomized control commands
(within the actuation bounds) that remained constant throughout the trajectory. Due to the
constraint that trajectories are terminated once actuator states exceed their limits, many
trajectories in this dataset were cut short. To mitigate this, the dataset includes 5,000 trajectories,
which contains approximately the same number of data points as the 1,000 trajectory non-

actuated dataset.

As before, the radial basis functions are placed in the state space, so the centers are
functions of z = [y, 0, P4, P, Pr, X, y, 8]. Then, the dataset is lifted such that for states z,, we
obtain y; = [z;, $1(2¢), P2 (2¢), ..., Pn(2:)]. We also obtain the lifted dataset for the next time

step (X¢4+1)- Finally, we construct ; = [, u;]. The A and B matrices are obtained using a least

squares regression of the (1, and y,,4 lifted data sets: [4, B] = x¢41 Qt# [8].

DMDc offers a significant advantage over Control Coherent Koopman by incorporating
actuated data into the model formulation, potentially improving the model's understanding of
floor interactions. As discussed in Section 5.4, the Control Coherent Koopman model tends to
overestimate ground reaction forces at the actuator tip due to its slower update rate compared to
the simulation. Since it is trained on passive data, it lacks the ability to correct this
overestimation. With DMDc, by including actuation data, the models may provide more accurate

predictions of actuation effects. However, there are additional states to fit, which leads to

86



physically incoherent dynamics, similar to how the inclusion of x-position data led to unphysical

dynamics for those Koopman models.

The DMDc models were constructed using 100 RBFs placed with kmeans++. After
tuning, the optimal € value for the DMDc Koopman model was € = 6.0, which achieved lower
MSE for passive trajectory prediction than the 100 RBF DMD model. However, using this € =
6.0 Koopman model in MPC caused numerical issues due to the model's extreme matrix
coefficient range. To avoid these issues, we used a DMDc model with € = 2.0 for MPC. While
this model's tracking accuracy was relatively worse, it had a more manageable matrix range.

These values are summarized in Table 9.

Model Type € 1dt 5dt 10 dt 15 dt Max A Value | Avg. A Value
DMDc 2.0 0.49 0.39 0.51 0.58 75 0.020
DMDc 6.0 0.48 0.36 0.47 0.52 29,700 0.057

DMD (+ CCK) | 0.9 0.51 0.37 0.49 0.53 1,900 0.10

Table 9. Comparison of Flat DMDc Koopman Models for Passive Trajectories. The MSE
values are calculated using the same validation dataset for all models. The table also lists
maximum and average value for each model’s A matrix. Generally, higher epsilon values
will result in larger ranges in the A matrix values, as the RBFs can capture the volatility
of floor contact.

Both DMDc models correctly captured the actuator dynamics, represented by ¢; ;41 =

¢;+ + u; * dt. As aresult, the rows in the B matrix corresponding to the actuator states are

nearly zero (around 10716), except for the dt term. However, when implementing MPC, the
DMDc models performed very poorly, which was surprising given their decent passive tracking

performance.
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An examination of the MPC rollout revealed nonsensical predictions (illustrated in Figure

36). The model incorrectly predicts the wheel’s future states, so inefficient and oftentimes

unhelpful control commands are implemented, impeding the wheel from rolling trajectory. An

examination of multiple MPC rollouts shows the DMDc model generally predicts the wheel will

roll forward, despite their being no physical basis for this behavior.
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MPC retracts orange spoke and weakly extends the dark blue spoke. Surprisingly, despite starting with positive angular

velocity, the MPC roll out incorrectly predicts the wheel with start rolling counter clockwise by t = 2.50 seconds. This error

results in the wheel settling into stance in the full dynamics simulation.

Figure 36. The MPC Rollout using the DMDc, Three Actuator Koopman Model. The state at t = 2.45
seconds is copied over from the simulation, but modified to fit the Three Actuator Model (Section 5.3).
Future states are predicted using the linear model with control inputs. Almost immediately, the MPC roll
out predicts the rimless wheel will turn clockwise. Due to the incorrect prediction, the wheel settles into a
stance for the remainder of the simulation. MPC snapshots are taken two time steps apart, with dt = 0.05

seconds.
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Furthermore, replacing the B matrix in the DMDc model with the B matrix from the
control-coherent Koopman model also failed to yield success. This is likely because the model
had learned to predict trajectories where the actuators influence all the states. This situation is
similar to training the model with x-dependency. Even zeroing the values in the A matrix
associated with the x-position was insufficient to achieve an accurate model, as the model had
been trained to account for the effect of the x-position influencing the dynamics of the other

states.
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Chapter 7

Conclusion and Future Work

In this thesis, we have detailed the creation of a linear model for an actuated rimless
wheel, and evaluated its use for prediction and control. The primary contribution of this work is
the linear model’s usage in linear model predictive control, and the ability to plan through
contact using a single set of linearized dynamics—a powerful technique that enables globally
optimal online optimization through impact events. This is an exciting result with the potential to

revolutionize control methods for contact-rich dynamical systems.

However, developing a contact-heavy system necessitated careful selection of the model,
particularly for this initial implementation. Limitations of the rimless wheel model, as well as the
methods discussed in this thesis, are linked to ongoing questions within the Koopman Operator
community. To extend this model to legged robots (i.e. higher-order, unstable systems), we must
address challenges related to dimensionality and the ability to capture unstable modes within a
linear model. Potential future work could involve investigating how to model unstable models

without allowing them to dominant, or generating models built solely for specific subspaces.

Currently, we are working on implementing the rimless wheel model in hardware. As we
transition to hardware, a key question arises: Will the control-coherent Koopman model and the
time-delayed effects of inputs and ground reaction forces be sufficient for estimating real-world
dynamics? We anticipate that generating data-driven models based on real hardware data will be
necessary. Furthermore, error due to the control time delay effect can be mitigated with shorter
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time steps. Images of the initial hardware setups are shown in Figure 37. Challenges in the
hardware implementation include improving computation time for both MPC and image
processing (for state estimation) to enable 20 Hz control inputs, and the need for actuators that

are both fast and capable of generating sufficient force to enable rolling behaviors.

Figure 37. Rimless Wheel Hardware Plans. Figure A) shows the gantry schematic to
keep the rimless wheel fixed in-plane. Figure B) shows a prototype of the actuator
housing and micro stepper linear actuators

Other areas of interest include utilizing ground reaction forces and other physically
meaningful variables as observables, as well as improving Koopman predictions over longer
time horizons. Additionally, there is potential to extend the rimless wheel model to more
complex motions, such as overcoming uneven terrain, navigating obstacles, or synchronizing
motion with another wheel. The application of Koopman operator theory to robot control and
contact dynamics is a highly promising area, offering numerous exciting directions for future

research.
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