
1 
 

Application of Koopman Operator Theory to Legged Locomotion 
 

by 

Jasmine G. Terrones 
B.S. 

California Institute of Technology (2022) 
 

Submitted to the Department of Mechanical in partial 
fulfillment of the requirements for the degree of 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING  

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

SEPTEMBER 2024 

©2024 Jasmine G. Terrones. All Rights Reserved. 
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to 

exercise any and all rights under copyright, including to reproduce, preserve, distribute and 
publicly display copies of the thesis, or release the thesis under an open-access license. 

 
 

Authored by: Jasmine G. Terrones 

  Department of Mechanical Engineering 

  August 12, 2024 

Certified by:  Harry H. Asada 

  Ford Professor, Department of Mechanical Engineering 

  Thesis Supervisor 

Accepted by:  Nicolas Hadjiconstantinou 

  Chairman, Department Committee of Graduate Theses 

 

 

 

 

 



3 

Application of Koopman Operator Theory to Legged Locomotion 

by 
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Abstract 

Nonlinearities from complicated robot systems and harsh contact dynamics have long impeded 
the effectiveness of optimal control strategies for legged robots. In this work, we present a 
linearized simple walking model using Koopman Operator Theory, and its usage in Linear 
Model Predictive Control (L-MPC). Various walking and contact models were evaluated, but 
ultimately the rimless wheel was selected due to its inherent stability and low dimensionality, 
and a nonlinear viscoelastic model was used to accurately capture floor contact and impact 
dynamics. Koopman models were developed using both Radial Basis Functions (RBFs) and 
neural network-generated observables for the passive rimless wheel. A novel actuation method 
with linear actuators, combined with the Control Coherent Koopman methodology, resulted in 
accurate linear models that effectively enabled L-MPC to control the wheel on flat ground. This 
model outperformed those created using the more traditional Dynamic Mode Decomposition 
with Control method.  

This work demonstrates the power of Koopman linearization to produce a unified set of linear 
dynamical equations that encompass various contact and non-contact configurations and 
demonstrates the effectiveness of the Control Coherent Koopman methodology in generating 
an accurate input matrix across these different contact modes. 

Thesis Supervisor: Haruhiko Harry Asada 
Title: Ford Professor of Engineering, Department of Mechanical Engineering 
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Chapter 1  

Introduction 

1.1 Legged Locomotion 
The field of legged locomotion has experienced significant growth over the last few 

years, largely due to advancements in optimization-based control strategies. In a world designed 

for humans, the ability to robustly navigate unstructured terrain enables the application of legged 

robots to factories, homes, urban environments, and even natural settings. Recent improvements 

to online optimization strategies have enabled the synthesis and execution of complex 

maneuvers, such as barrel rolls on the MIT Mini-Cheetah and energy-efficient bipedal walking 

on Cassie [1], [2] . From advances in reinforcement learning to improved Model Predictive 

Control (MPC) algorithms, real-time optimal control may soon be within reach. 

Most of the legged locomotion community has converged on generating motions based 

on the formulation of an Optimal Control Policy (OCP). An OCP generates trajectories of state, 

control, and contact forces while minimizing a user-defined cost function. The trajectories must 

satisfy several constraints: the states must evolve according to the nonlinear whole-body robot 

dynamics, joint angles must stay within an allowable range, and additional constraints can be 

encoded to ensure stability and robustness. However, increases in the number or complexity of 

constraints, the dimensionality of the OCP, and the nonlinearities and stiffness of the dynamics 

can greatly increase the computational load of solving the OCP [3]. Furthermore, nonconvex 

dynamics lead to optimizations that are sensitive to initial conditions and locally optimal 
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solutions [3]. Nevertheless, the OCP framework enables the planning and execution of 

impressive trajectories for legged robots.  

The general idea of Model Predictive Control (MPC) is to run the OCP at every iteration 

of the control loop and apply only the control from the first part of the trajectory. However, due 

to computational challenges, there are delays between sensor measurements, OCP calculations, 

and control implementation [4]. Templates are low-dimensional, simplified walking models that 

capture the essential elements of walking while eliminating unnecessary complexity, greatly 

increasing the speed of MPC. Common template models, such as the Linear Inverted Pendulum 

Model, the Spring-Loaded Inverted Pendulum Model, the Single Rigid-Body Model, and the 

centroidal model, can be readily solved online [3]. While template MPC is fast due to the low-

order dynamics and, in the case of the linear inverted pendulum, convexity, it must rely on a low-

level controller to translate the optimized trajectory into whole-body commands, typically via 

quadratic programming, inverse kinematics, or inverse dynamics [3], [4], [5]. Furthermore, these 

optimized trajectories are only as accurate as the template model; simplifications in the low-level 

dynamics, contact, and constraints yield infeasible or inefficient motions [3]. This is represented 

in Figure 1, where most template models yield feasible motions that do not perfectly overlap 

with those generated using the full-body dynamics.  
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In contrast, Whole-Body MPC always produces feasible trajectories but faces significant 

computational challenges when optimizing with high-dimensional, nonlinear, and non-convex 

dynamics [3]. Whole-body MPC is often used to generate optimal trajectories offline to create a 

motion library, where the motion is then executed via closed-loop feedback control. However, 

following offline trajectories requires the robot to start sufficiently close to the trajectory’s initial 

Figure 1. Feasible motions according to different models. The whole-body model is fully 

contained within the centroidal dynamics model, meaning any feasible motion for the whole-

body model is also feasible for the centroidal model. However, due to a lack of torque and 

kinematic constraints, the centroidal dynamics produce unphysical, unachievable motions. The 

point mass model enforces ground reaction forces (GRF) limits as well as restricts angular 

momentum, making its feasible motions a subset of those produced by the centroidal 

dynamics model. From Figure 5 of [3]. 
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condition and a carefully tuned tracking controller, not to mention the limitation of operating 

within a predefined set of motions [3].   

A difficult aspect of legged locomotion is repeated high-impact ground contact, which 

introduce segmented dynamics, poor conditions for gradient-based optimization, and inhibit the 

study of global behaviors. These contacts are typically modeled as rigid or viscoelastic. 

Viscoelastic contact models allow contacting bodies to intersect and generate spring-damper-like 

repulsive forces based on material properties and the position, velocity, and penetration depth of 

the contacting bodies. With the proper framework, a viscoelastic contact model can yield 

continuous, differentiable dynamics [3]. 

Rigid contact models (or infinitely stiff viscoelastic models) yield hybrid dynamics, or 

dynamics that alternate between continuous and discrete regimes. When two bodies make 

contact, impulsive forces are immediately applied, resulting in an instantaneous jump in velocity. 

Hybrid dynamical OCPs can be represented as a Linear Complementarity Program or a Mixed 

Integer Program, but both methods are non-differentiable and less efficient than smooth 

optimization strategies. Fixing a contact mode sequence beforehand yields time-varying system 

dynamics, enabling the use of smooth optimization strategies, but limiting the ability to find new 

contact modes [3]. 

Overall, optimal control problems for complicated robot systems undergoing contact 

have slow computation speeds due to the nonlinear dynamics, high dimensionality, and inability 

of gradient-based optimization to handle contact. The use of templates is viable for online use 

but suffers from infeasible or suboptimal solutions.  
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1.2 Lifting Linearization 
 

Lifting linearization, underpinned by Koopman Operator Theory, transforms nonlinear 

dynamical systems into higher-dimensional linear systems, enabling the application of linear 

control techniques to complex, nonlinear problems. Koopman Operator Theory states that a 

nonlinear autonomous system can be represented, without approximation, as a linear dynamical 

system in an infinite dimensional state. Consider a system with discrete-time, nonlinear 

dynamics 𝑥𝑥𝑡𝑡+1 = 𝐹𝐹(𝑥𝑥𝑡𝑡). By augmenting the state space with additional observable functions 

𝒈𝒈(𝑥𝑥𝑡𝑡) = [𝑔𝑔1(𝑥𝑥𝑡𝑡),𝑔𝑔2(𝑥𝑥𝑡𝑡), … ] that lie in a Hilbert space, a linear model may be constructed that 

evolves linearly with the Koopman operator, K. 

𝐾𝐾𝒈𝒈 ≜ 𝒈𝒈 ∘ 𝐹𝐹 → 𝐾𝐾𝒈𝒈(𝑥𝑥𝑘𝑘) = 𝒈𝒈(𝑥𝑥𝑘𝑘+1)  

The state evolution matrix A can either be obtained through data-driven methods (e.g., Dynamic 

Mode Decomposition) or by leveraging the underlying dynamics, as seen in Koopman Direct 

Encoding [6], [7]. The observables oftentimes consist of time series data and function families 

(RBF, Fourier series, etc.) or can be generated using neural networks. This approach offers 

significant advantages by simplifying analysis and control design, but it also presents challenges 

in terms of model construction and the choice of observables. 

 

1.3 Prior Works 
 

Traditionally, the Koopman Operator only applied to autonomous systems without 

control. However, the Koopman community has developed numerous methods to incorporate 
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control into the linear models. One popular method to extend Koopman Operator Theory to 

control is Dynamic Mode Decomposition with Control (DMDc), which approximates the control 

input term as a linear term with constant coefficients via least squares estimation. While DMDc 

has been useful, it assumes a constant B matrix, which rarely reflects reality [8]. Nevertheless, 

DMDc MPC has been used on Koopman models ranging from cable suspension systems to soft 

robotics [9], [10]. Alternatively, bilinear control matrices more accurately capture control that is 

affected by both state variables and control variables, but a bilinear formulation is more complex 

and restrictive in terms of available control strategies [11]. 

The proposed method by Asada et al. in 2024 presents a solution by constructing a 

Koopman operator for a class of control systems without approximating the input matrix B. The 

Control-Coherent Koopman (CCK) methodology ensures that the control matrix retains its 

correct structure by leveraging the causality of physical system modeling applied to actuator 

dynamics. This approach bridges the theoretical and technical gap between Koopman Operator 

Theory and practical control engineering needs [11]. 

Prior work has had success in applying Koopman Operator theory to hybrid systems, but 

despite promising results, there is not yet rigorous theoretical support for the applicability of the 

theory to systems with discontinuous jumps in state. However, with the use of a viscoelastic 

contact model, a Koopman contact model may be constructed [12]. 

 Finally, various methods have been developed to create controllers with control 

objectives or augmented dynamics that are impact invariant. These enhancements provide a more 

robust control strategy that remain effective despite the nonlinearities associated with impact 

events [13], [14]. 
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1.4 Project Overview 

Koopman Operator Theory emerges as a potential methodology to solve many of the 

problems faced by the legged locomotion field. An accurate linear Koopman model would have 

the same fast computation as linear template MPC without the shortcomings of inefficient or 

infeasible trajectories. Furthermore, a globally linear unified representation of walking dynamics, 

one that subsumes the contact/non-contact dynamics, would enable linear model predictive 

control with the ability to plan through contact. 

The goal of this work is to apply Koopman Operator theory to enable Linear MPC for 

complex hybrid dynamics found in legged locomotion, potentially leading to online trajectory 

optimization in the future. The work is organized as follows… 

Chapter 2 explores the key challenges and design decisions related to the project. 

Chapter 3 covers the Rimless Wheel modeling and MATLAB simulation 

Chapter 4 discusses the creation and performance of the passive Koopman models. 

Chapter 5 focuses on the actuation method and the creation and performance of the 

actuated Control Coherent Koopman model. 

Chapter 6 focuses on MPC using both Control Coherent Koopman models and a 

comparison Dynamic Mode Decomposition with Control Koopman model.  

Lastly, Chapter 7 concludes the work and discusses future directions for the project.  
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Chapter 2 

Approach 

2.1 Key Problems 
 

In the application of Koopman Operatory Theory to legged locomotion, there are a number 

of design decisions to be made regarding model type, contact model, and actuation. The first 

attempt utilized the simple compass walker due to its simplicity and ability to exhibit passive 

dynamic walking. Passive walkers do not require motors to move; they are powered by inertia 

and gravity. Thus, they are a good starting point for creating a linear Koopman model for both 

autonomous and dynamic walking. Given the novelty of the application, it was important to 

select as simple a walking model as possible. Furthermore, a current limitation of common 

Koopman Operator methodologies is the curse of dimensionality, so a low-dimensional model 

was especially desirable. However, through this first attempt, three important hurdles were 

identified for the project: 

 

1. Discrete Dynamics from Impacts 

 Capturing energy loss from collisions is especially important for passive walkers, 

where energy is finite. However, hybrid dynamics and Koopman Operator Theory are 

incompatible. Koopman Operator Theory assumes that the lifted system’s dynamics, and 
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by extension the composition of the observables and the state transition must lie in the 

Hilbert space. 

    (g ○ F)(x) = g(F(x)) ϵ H.  

This assumption is not guaranteed for hybrid systems with discontinuous states [12].  

 

2. Unstable System Identification 

 

There are very few configurations where a passive walker will walk down a ramp 

indefinitely. A limit cycle is a closed trajectory that represents a periodic solution. Points 

near a stable limit cycle that converge onto the limit cycle are said to be within the 

envelope of convergence. With a complex, high DOF walking model, the envelope of 

convergence is oftentimes found via numerical simulation, and the limit cycle is found 

with optimization methods. For our Koopman model to be useful for MPC, it must be 

accurate on and around the limit cycle while still capturing unstable modes. However, 

unstable modes tend to dominate, resulting in inaccurate predictions. In fact, the majority 

of the work for unstable modes in Koopman models involves suppressing or projecting 

them onto the stable unit circle [15], [16]. Previous attempts were made to generate 

individual orthogonal Koopman models for each subspace associated with the simple 

compass walker. In this way, a point on the limit cycle would only stimulate the 

marginally stable subspace, thereby preventing the unstable modes from dominating. 

However, it was unclear how to enforce orthogonality between the subspace-specific 

Koopman models.  
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3. Koopman Operators and Control 

Previously, it was thought that Koopman Operator Theory was only applicable to 

passive systems. However, a Koopman model of walking dynamics used only for 

characterization/analysis is redundant due to the added effort needed to capture the stable, 

unstable, and marginally stable modes of the system. An initial idea was to use impulses 

to actuate the walker, which would be applied instantaneously, without the need for a 

control B matrix. With the Control-Coherent Koopman methodology, utilizing the 

actuator dynamics can enable linear actuation by introducing a delay between the 

actuation and the main system [11]. However, not all systems are suitable for the Control-

Coherent actuation formulation.  
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2.2 Simple Walking Model Summary 
 

  

A number of common simple walking models and templates were evaluated for use in the 

project. Based on the problems identified above, walking models with no reset map or some 

method by which to absorb the impact from foot strike were of special interest.  

 

 

Figure 2. a) Rigid Compass Walker and 2. b) Kneed Walker Models as defined in [17] and [18]. 

 

The rigid compass walker was one of the first examples of passive dynamic walking, where 

stable walking is achieved with no actuation or control. It consists of two legs, a hip mass, and 

two leg masses [19]. It is commonly assumed that the hip mass is much larger than the leg 

masses to further simplify dynamics. The rigid compass walker assumes that the stance foot is 

attached to the ground via a pin joint. When the swing leg hits the ground, the collision is 

inelastic and instantaneous, and the stance and swing legs are also switched. Thus, the reset map 

encodes both the collision and coordinate change. Furthermore, the compass walker model 

ignores foot scuffing, which is when the swing leg briefly makes contact with the ground. The 
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continuous dynamics are derived using Euler-Lagrange equations, and the discrete dynamics are 

obtained via the conservation of angular momentum. 

 

Rigid Compass Walker [17] 
 

Parameters 
Ramp angle 0≤γ≤π/2 
Leg length l>0 
Hip mass M 

Leg masses m 
   

States x = [𝜃𝜃,𝜙𝜙, 𝜃̇𝜃, 𝜙̇𝜙] 
θ: angle of the stance leg relative to the slope normal 

ϕ: angle between the stance and swing legs 
   

Continuous Dynamics (m << M) 
𝜃̈𝜃(𝑡𝑡) − sin(𝜃𝜃(𝑡𝑡) − 𝛾𝛾) = 0 

 
𝜃̈𝜃(𝑡𝑡) −  𝜙̈𝜙(𝑡𝑡) + 𝜃̇𝜃(𝑡𝑡)2 sin�𝜙𝜙(𝑡𝑡)� − cos(θ(t) − 𝛾𝛾) sin�𝜙𝜙(𝑡𝑡)� = 0 

   
Guard Function 
𝜙𝜙(𝑡𝑡) − 2𝜃𝜃(𝑡𝑡) = 0 

 
   

Discrete Dynamics 
𝜃𝜃(𝑡𝑡+) =  −𝜃𝜃(𝑡𝑡−) 

 
𝜙𝜙(𝑡𝑡+) =  −2𝜃𝜃(𝑡𝑡−) 

 
𝜃̇𝜃(𝑡𝑡+) = cos(2𝜃𝜃) ∗ 𝜃̇𝜃(𝑡𝑡−) 

 
𝜙̇𝜙(𝑡𝑡+) = cos(2𝜃𝜃) (1 − cos(2𝜃𝜃)) ∗ 𝜃̇𝜃(𝑡𝑡−) 

 
   

Key Assumptions 
Collisions with ground are inelastic/impulsive 

Stance foot is attached to the ground via pin-joint 

Weight transfer between legs occurs instantaneously 

Foot scuffing is ignored 
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Similar to the rigid compass walker, the kneed walker is a more complicated passive walking 

model with the ability to clear the floor. Given the correct initial conditions, the swing leg will 

bend at the hinge during the forward swing and straighten out before touching the ground. The 

kneed walker consists of two legs and a hip mass, only now the legs consist of two links attached 

with a hinge. Each link has an associated mass, yielding a total of five masses. When the links 

are aligned, knee strike occurs and the knee is locked. This is modeled as a discrete inelastic 

collision. Thus, the kneed walker circumvents the foot scuffing issue but has more complex 

dynamics and two instances of discrete dynamics per walking cycle [19]. The full equations of 

motion for this model can be found in [18].  

 

 

Figure 3. a) The Spring-Loaded Inverted Pendulum (SLIP) model in both flight and 
stance [19]. 3. b) The bipedal spring mass model as defined in [20]. 

 

The spring-loaded inverted pendulum (SLIP) model is a commonly used template for 

running. The SLIP model consists of a point mass and a massless, spring leg. Unlike the previous 

two models, the SLIP model uses different dynamics to govern the flight phase and the stance 
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phase. Furthermore, the coordinates used for each phase are different, yielding a piecewise 

holonomic dynamical system. Finally, the massless leg allows for the instantaneous repositioning 

of the leg during flight such that the control input 𝑢𝑢 directly defines leg angle 𝜃𝜃. During stance, 

the leg end point is fixed to the ground via a pin joint. Despite its simplicity, the SLIP model can 

accurately describe experimental data from humans, to cockroaches and crabs [21]. 

The bipedal spring-mass model is an extension of the SLIP model that includes two legs. In 

this model, there are two massless spring-like legs and a central mass. The bipedal spring-mass 

model is capable of different periodic walking patterns including both walking and running. 

Unlike the SLIP model, the bipedal spring-mass model has a single set of states, x = [𝑥𝑥, 𝑧𝑧, 𝑥̇𝑥, 𝑧̇𝑧]. 

Furthermore, the equation of motion is given simply by 𝑚𝑚𝒓̈𝒓 = 𝑭𝑭𝟏𝟏 + 𝑭𝑭𝟐𝟐 − 𝑚𝑚𝒈𝒈, where forces 𝑭𝑭𝟏𝟏 

and 𝑭𝑭𝟐𝟐 are the forces of legs 1 and 2 respectively when they are in stance. These forces become 

zero when the leg is not in contact with the ground. The force is a function of the leg tip and 

center of mass (COM), 

𝑭𝑭𝟏𝟏 =  𝑘𝑘 �
𝐿𝐿0

|𝒓𝒓 − 𝒓𝒓𝑭𝑭𝑭𝑭𝑭𝑭| − 1� (𝒓𝒓 − 𝒓𝒓𝑭𝑭𝑭𝑭𝑭𝑭) 

Note that this force becomes zero when the spring becomes fully uncompressed. The transition 

between swing to stance occurs when a leg fulfills the landing condition 𝑧𝑧𝑇𝑇𝑇𝑇 = 𝐿𝐿0 sin(𝛼𝛼0) and 

the vertical velocity is negative [20]. The model assumes a constant angle of attack, 𝛼𝛼0. Thus, 

there are no swing dynamics and the equations of motion require knowledge of the foot point 

position 𝒓𝒓𝑭𝑭𝑭𝑭𝑭𝑭 and 𝒓𝒓𝑭𝑭𝑭𝑭𝑭𝑭. 
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Spring Loaded Inverted Pendulum [19] 
 

Parameters 
Leg rest length 𝑙𝑙0 

Hip mass m 
Spring constant k 

   
States 𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = [𝑥𝑥, 𝑧𝑧, 𝑥̇𝑥, 𝑧̇𝑧], 𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = [𝑟𝑟,𝜃𝜃, 𝑟̇𝑟, 𝜃̇𝜃] 

x: horizontal position of the hip mass 
z: vertical position of the hip mass 

r: radial distance between stance foot and hip mass 
𝜃𝜃: angle of leg relative to z-axis 

   
Flight Dynamics 

𝑥̈𝑥 = 0 
 

𝑧̈𝑧 = −𝑔𝑔 
 

𝜃𝜃 = 𝑢𝑢 

   
Flight to Stance Transition 

𝑧𝑧 − 𝑙𝑙0 cos(𝜃𝜃) ≤ 0 
 

   
Stance Dynamics 

𝑚𝑚𝑟̈𝑟 −𝑚𝑚𝑚𝑚𝜃̇𝜃2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) − 𝑘𝑘(𝑙𝑙0 − 𝑟𝑟) = 0 

𝑚𝑚𝑟𝑟2𝜃̈𝜃 + 2𝑚𝑚𝑚𝑚𝑟̇𝑟𝜃̇𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) = 0 

 
 

Stance to Flight Transition 

𝑟𝑟 ≥ 𝑙𝑙0 
 

   
Key Assumptions 

Piecewise dynamics 
 

Massless leg, no leg dynamics 
 

Stance foot is attached to the ground via pin-joint 
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Figure 4. Rimless Wheel Model as defined in [19]. 

 

Finally, the rimless wheel was first introduced in Passive Dynamic Walking by Tad McGeer 

[22]. The rimless wheel emulates the heel strike and associated energy loss without the 

instability of the previous hybrid models. It consists of rigid legs attached to a central mass and 

assumes inelastic, impulsive collisions with the ground. Furthermore, the stance foot is attached 

to the ground via a pin joint, and the transfer of support between legs is instantaneous. Thus, the 

mode has hybrid dynamics, where the reset map encodes both the impulse from the collision as 

well as the coordinate change when the stance leg is redefined. The wheel exhibits a steady 

rolling cycle when the system has sufficient kinetic energy to vault the mass over the stance leg 

following a collision event [19]. 
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Rimless Wheel [19] 
 

Parameters 
Ramp angle 0≤γ≤π/2 
Spoke angle 0≤α≤π/2 
Central mass m 
Leg length l 

   
States x = [𝜃𝜃, 𝜃̇𝜃] 

θ: angle of the stance leg relative to the vertical axis 
   

Continuous Dynamics 
𝜃̈𝜃 =

𝑔𝑔
𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 
 

   
Guard Function 
𝜃𝜃 = 𝛾𝛾 ± 𝛼𝛼 

 
   

Discrete Dynamics 
𝜃𝜃(𝑡𝑡+) =  𝜃𝜃(𝑡𝑡−)− 2𝛼𝛼 

 
𝜃̇𝜃(𝑡𝑡+) =  𝜃̇𝜃(𝑡𝑡−)cos (2𝛼𝛼) 

 
   

Key Assumptions 
Collisions with ground are inelastic/impulsive 

Stance foot is attached to the ground via pin-joint 

Weight transfer between legs occurs instantaneously 

 

Below is a table describing the key features of each walking model when determining 

suitability for Koopman modeling (Table 1). From the previous section, key problems include 

the curse of dimensionality and difficulty capturing stable and unstable modes. Furthermore, 

walking models that do not have discrete dynamics are preferred, since Koopman Operator 

Theory lacks guarantees for accurate modeling for systems with discrete jumps in state. Finally, 

all dynamics must be a function of state. Both the rigid walker and the kneed walker have 

unstable behaviors and discrete dynamics. SLIP and Bipedal SLIP have no discrete jumps in 
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state, but the massless leg assumption, the switching between states, and the fixed angle of 

attacks (Bipedal SLIP) make these models difficult or undesirable for linearization. The rimless 

wheel has low dimensionality and no unstable behaviors, but the original formulation has 

discrete dynamics. 

 

 

 

With the initial choice of the rigid compass walker, significant effort was made to create 

a viable model with the rigid walker with springs and dampers attached to the feet. However, 

there was no clear way to differentiate foot scuffing from heel strike without several 

assumptions. Furthermore, even with the presence of a linear spring, the walker would still 

experience a discrete jump in state when the leg impacts the ground if the foot’s velocity before 

landing included a component normal to the stance/spring axis [23]. Thus, a single linear spring 

oriented along the axis of each leg was insufficient in preventing discrete dynamics. A multi-

directional spring or shock absorbing element could be employed, but this would necessitate 

 
Rigid Walker Kneed Walker SLIP Bipedal SLIP Rimless Wheel 

Num. States 4 6 4 4 2 

Discrete Impacts 1 2 - - 1 

Instability Yes Yes Yes Yes No 

Additional Notes Ignores foot 
scuffing 
Instantaneous 
swap of stance and 
swing legs 
No slip 

Knee locks into 
place 
Instantaneous 
swap of stance and 
swing legs 
No slip 

Switches between 
cartesian and polar 
No leg dynamics 
No slip 

Dynamics a 
function of foot 
location  
No leg dynamics 
No slip 

Instantaneous 
swap of stance 
spoke 
 
No slip 

Table 1. Summary of walking model suitability for use in Koopman lifted linearization. Key features 
include low dimensionality, stability, non-discrete dynamics and state-dependent dynamics 
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additional position and velocity variables to monitor spring deflection in both the parallel and 

perpendicular directions, which could lead to a significant increase in complexity. Finally, it is 

not possible to artificially extend the duration of the discrete contact because the dynamics no 

longer become a function of state.  

 

2.3 Collision Model 
 

Another important choice is that of the collision model. In the rigid contact model, it is 

assumed there is no penetration between the feet and the ground surface. When two bodies make 

contact, their relative velocities immediately become zero, resulting in hybrid dynamics. The 

original rimless wheel formulation falls under this category.  

In the viscoelastic model, objects are allowed to intersect, and the ground reaction forces 

are computed at each contact point as a spring damper force. These forces are a function of the 

objects’ penetration depth and relative velocity. Oftentimes, these forces are modified to ensure 

unilaterality. Viscoelastic models can apply to either point contact or hydroelastic contact, where 

the intersection of bodies creates a repelling force based on the objects' associated strain 

deformation [23]. To model friction, two common solutions are to model friction as a spring 

damper force in the horizontal direction or to utilize a modified Coulomb model to better relate 

friction forces to normal force [24]. 
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Figure 5.  

Figure 5. Normal and Friction Forces for a Point-Mass. The ground reaction forces, 
based on the floor contact model from Khadiv et al., are nonlinear functions of the point 

mass’s floor penetration (𝛿𝛿𝑦𝑦), and its velocity in the floor’s reference frame (𝛿𝛿𝑥̇𝑥, 𝛿𝛿𝑦̇𝑦) [24]. 

 

In Compliant Floor Contact from Rigid vs compliant contact: An experimental study on 

biped walking by Khadiv et al., a viscoelastic floor model is presented: 

𝐹𝐹𝑁𝑁 = −𝑘𝑘𝑦𝑦 tan � 𝜋𝜋
2𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝛿𝛿𝑦𝑦� − 𝑏𝑏𝑦𝑦 �𝛿𝛿𝑦𝑦� 𝛿𝛿𝑦̇𝑦 

𝐹𝐹𝐹𝐹= − 2
𝜋𝜋

tan−1 �𝛿𝛿𝑥̇𝑥
𝜆𝜆
� 𝜇𝜇𝐹𝐹𝑁𝑁 

 

The normal force is composed of a spring and damper term, with 𝑘𝑘𝑦𝑦 and 𝑏𝑏𝑦𝑦 representing floor 

stiffness and floor damping respectively. Benefits of this contact model include normal force 

unilaterality, the ability to specify a maximum penetration depth (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚), and zero ground 

reaction forces when leaving or coming into contact with the ground (i.e. 𝛿𝛿𝑦𝑦 = 0 → 𝐹𝐹𝑁𝑁 ,𝐹𝐹𝐹𝐹 = 0) 

[24].  

The friction force depends on the normal force. When 𝜆𝜆 approaches zero, the friction force 

becomes equal to that of the Coulumb model. A larger 𝜆𝜆 yields a smoother friction model to help 

generate non-oscillatory friction forces (Figure 6).  
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This contact model is shown to properly model the impact of a bouncing ball and the 

empirical measurements of the SURENA II bipedal robot [24]. 

 

 

Figure 6. Variation of the Pseudo Coulomb Friction Model with respect to 𝜆𝜆. A higher 𝜆𝜆 
value smooths the discontinuity at 𝛿𝛿𝑥̇𝑥 = 0, yielding better numerical results. At 𝜆𝜆 = 0, 

the Coulomb Friction Model is obtained. From Figure 3 of [24]. 
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Chapter 3 

Dynamics Modeling and Simulation 

3.1 Rimless Wheel Modeling 

For the passive Rimless Wheel model, there are only three generalized coordinates, q = [x, y, 

𝜃𝜃], and a total of nine states, z = [𝑞𝑞, 𝑞̇𝑞]. Coordinates x and y give the location of the central mass 

in the ramp reference frame. Model parameters include the central mass (M), spoke length (l), 

wheel inertia (I), ramp angle (𝛾𝛾), floor height (𝑦𝑦𝐶𝐶) and additional floor parameters such as 

ground stiffness (𝑘𝑘𝑦𝑦), ground damping (𝑏𝑏𝑦𝑦), maximum penetration depth (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚), pseudo-

Coulomb parameter (𝜆𝜆), and coefficient of friction (𝜇𝜇). The spoke tip locations are functions of 

the central mass location and wheel rotation angle. There are six spokes in total, with the angle 

between spokes 2𝛼𝛼 = 𝜋𝜋/3.  
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Figure 7. Rimless wheel model. The model has a ramp angle (𝛾𝛾), central mass (M), 
spoke length (l), and six evenly spaced spokes separated by angle 2𝛼𝛼. The central mass 
position, 𝒓𝒓𝟎𝟎, is measured relative to the ramp’s reference frame. The wheel orientation 
angle 𝜃𝜃 is the angle between spoke A and the ramp’s vertical axis. In this figure, only 

spoke tip 𝑟𝑟𝐷𝐷 is in contact with the ramp. 

  

The spoke tip locations (𝒓𝒓𝑨𝑨, 𝒓𝒓𝑩𝑩, 𝒓𝒓𝑪𝑪, 𝒓𝒓𝑫𝑫, 𝒓𝒓𝑬𝑬, 𝒓𝒓𝑭𝑭) are a function of the central mass 

location, 𝒓𝒓𝟎𝟎, and the rotation angle 𝜃𝜃. Then, the spoke tip velocities (𝒗𝒗𝑨𝑨, 𝒗𝒗𝑩𝑩, 𝒗𝒗𝑪𝑪, 𝒗𝒗𝑫𝑫, 𝒗𝒗𝑬𝑬, 𝒗𝒗𝑭𝑭) are 

obtained by taking their derivatives. 

Positions: 

𝒓𝒓𝟎𝟎 = 𝑥𝑥 𝑒̂𝑒𝑥𝑥 + 𝑦𝑦 𝑒̂𝑒𝑦𝑦 
𝒓𝒓𝑨𝑨 = 𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑒̂𝑒𝐴𝐴 =  𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (cos(𝜃𝜃) 𝑒̂𝑒𝑥𝑥  + sin(𝜃𝜃) 𝑒̂𝑒𝑦𝑦) 
𝒓𝒓𝑩𝑩 = 𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑒̂𝑒𝐵𝐵 =  𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (cos(𝜃𝜃 +  𝜋𝜋

6
) 𝑒̂𝑒𝑥𝑥  + sin(𝜃𝜃 +  𝜋𝜋

6
) 𝑒̂𝑒𝑦𝑦) 

⋮ 

 𝒓𝒓𝑭𝑭 = 𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑒̂𝑒𝐹𝐹 = 𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (cos(𝜃𝜃) 𝑒̂𝑒𝑥𝑥  + sin(𝜃𝜃 +  5𝜋𝜋
6

) 𝑒̂𝑒𝑦𝑦) 
 
 

Velocities: 

𝒗𝒗𝟎𝟎 =  𝑑𝑑
𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 = 𝑥̇𝑥 𝑒̂𝑒𝑥𝑥 + 𝑦̇𝑦 𝑒̂𝑒𝑦𝑦 

𝒗𝒗𝑨𝑨 =  𝑑𝑑
𝑑𝑑𝑑𝑑
𝒓𝒓𝑨𝑨 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑒̂𝑒𝐴𝐴 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (−𝜃̇𝜃 sin(𝜃𝜃) 𝑒̂𝑒𝑥𝑥 + 𝜃̇𝜃 cos(𝜃𝜃) 𝑒̂𝑒𝑦𝑦) 
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𝒗𝒗𝑩𝑩 = 𝑑𝑑
𝑑𝑑𝑑𝑑
𝒓𝒓𝑩𝑩 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑒̂𝑒𝐵𝐵 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (−𝜃̇𝜃 sin(𝜃𝜃 +  𝜋𝜋

6
) 𝑒̂𝑒𝑥𝑥  + 𝜃̇𝜃 cos(𝜃𝜃 + 𝜋𝜋

6
) 

𝑒̂𝑒𝑦𝑦) 

⋮ 

𝒗𝒗𝑭𝑭 =  𝑑𝑑
𝑑𝑑𝑑𝑑
𝒓𝒓𝑭𝑭 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑒̂𝑒𝐹𝐹 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒓𝒓𝟎𝟎 + (l + 𝑙𝑙0) (−𝜃̇𝜃 sin(𝜃𝜃 +  5𝜋𝜋

6
) 𝑒̂𝑒𝑥𝑥  + 𝜃̇𝜃 cos(𝜃𝜃 +

 5𝜋𝜋
6

) 𝑒̂𝑒𝑦𝑦) 
 

 

This model does not have spoke masses, so the kinetic energy term consists of the central 

mass and the rotational inertia of the wheel. However, the addition of spoke masses could be 

subsumed within a larger rotational inertia parameter value using the same formulation:  

T = 1
2

M (𝒗𝒗𝟎𝟎 ∙ 𝒗𝒗𝟎𝟎) + 1
2

I 𝜃̇𝜃2 

V = M g (𝒓𝒓𝟎𝟎 ∙ 𝑒̂𝑒ramp) = M g (𝒓𝒓𝟎𝟎 ∙ (−sin(𝛾𝛾) 𝑒̂𝑒𝑥𝑥  + cos(𝛾𝛾) 𝑒̂𝑒𝑦𝑦))  
 

We derive the equations of motion using the Euler-Lagrange equations. Note that the 

resulting terms are all functions of q or z = [𝒒𝒒, 𝒒̇𝒒]. 

L(z) = T-V 

g(z) = 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜕𝜕𝜕𝜕
𝜕𝜕𝒒̇𝒒
� − �𝜕𝜕𝜕𝜕

𝜕𝜕𝒒𝒒
� − ∑ �𝜕𝜕𝒓𝒓𝒊𝒊

𝜕𝜕𝒒𝒒
�
𝑇𝑇
∙𝑖𝑖 𝑭𝑭𝑖𝑖 =  𝑴𝑴(𝒒𝒒)𝒒̈𝒒 + 𝑽𝑽(𝒒𝒒, 𝒒̇𝒒) + 𝑮𝑮(𝒒𝒒)−𝑸𝑸 = 0 

A(q) = �𝜕𝜕𝐠𝐠
𝜕𝜕𝒒̈𝒒
� = 𝑴𝑴(𝒒𝒒) 

b(z) = A𝒒̈𝒒 − 𝒈𝒈 =  −(𝑽𝑽(𝒒𝒒, 𝒒̇𝒒) + 𝑮𝑮(𝒒𝒒)−𝑸𝑸)  
∴ 𝒒̈𝒒 = 𝐀𝐀−𝟏𝟏𝐛𝐛 

 

The ground contact is incorporated into the equations of motion via the generalized 

forces term 𝑸𝑸 =  ∑ 𝑸𝑸𝒊𝒊𝑖𝑖 =  ∑ �𝜕𝜕𝒓𝒓𝒊𝒊
𝜕𝜕𝒒𝒒
�
𝑇𝑇
∙𝑖𝑖 𝑭𝑭𝑖𝑖. Recall the following floor contact parameters: ground 

stiffness (𝑘𝑘𝑦𝑦), ground damping (𝑏𝑏𝑦𝑦), maximum penetration depth (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚), pseudo-Coulomb 

parameter (𝜆𝜆), and coefficient of friction (𝜇𝜇).  
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Figure 8. Ground Reaction Forces for Spoke D. Ground reaction forces only exist for 

spoke tips below the ground 

 

For a generic spoke i, the generalized force contributions for ground reaction forces at the spoke 

tip 𝒓𝒓𝒊𝒊 is given below: 

𝛿𝛿𝑦𝑦,𝑖𝑖  = 𝒓𝒓𝒊𝒊 ∙ 𝑒̂𝑒𝑦𝑦 – 𝑦𝑦𝐶𝐶  
 
if 𝛿𝛿𝑦𝑦,𝑖𝑖 < 0 

𝛿𝛿𝑥𝑥,𝚤𝚤̇ = 𝒗𝒗𝒊𝒊 ∙ 𝑒̂𝑒𝑥𝑥 
𝛿𝛿𝑦𝑦,𝚤𝚤̇ = 𝒗𝒗𝒊𝒊 ∙ 𝑒̂𝑒𝑦𝑦 

𝐹𝐹𝑁𝑁,𝑖𝑖 = −𝑘𝑘𝑦𝑦 tan � 𝜋𝜋
2𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝛿𝛿𝑦𝑦,𝑖𝑖� − 𝑏𝑏𝑦𝑦 �𝛿𝛿𝑦𝑦,𝑖𝑖� 𝛿𝛿𝑦𝑦,𝚤𝚤̇   

𝐹𝐹𝐹𝐹,𝑖𝑖= − 2
𝜋𝜋

tan−1 �𝛿𝛿𝑥𝑥,𝚤𝚤̇

𝜆𝜆
� 𝜇𝜇𝐹𝐹𝑁𝑁,𝑖𝑖   

𝑸𝑸𝒊𝒊 = �𝜕𝜕𝐫𝐫𝐢𝐢
𝜕𝜕𝒒𝒒
�
T

 * [𝐹𝐹𝐹𝐹,𝑖𝑖;𝐹𝐹𝑁𝑁,𝑖𝑖]  
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3.2 MATLAB Simulation 

The Rimless Wheel model with a viscoelastic contact model is implemented in 

MATLAB. For each time step 𝑡𝑡 in our simulation, we obtain the accelerations at time 𝑡𝑡 using the 

manipulator equations and calculating the generalized forces. Then, we advance using the semi-

implicit Euler method for integration. The simulation is run with time steps of 𝛥𝛥𝑡𝑡 =

0.001 seconds.  

for 𝑡𝑡 = 1:1:𝑡𝑡𝑓𝑓 
𝒛𝒛𝒕𝒕 = [𝒒𝒒𝒕𝒕, 𝒒̇𝒒𝑡𝑡] 
𝑸𝑸 = ∑ 𝑸𝑸𝒊𝒊𝑖𝑖   
𝒒̈𝒒𝒕𝒕 = (𝐛𝐛(𝒛𝒛𝒕𝒕) + 𝑸𝑸 )/𝐀𝐀(𝒒𝒒𝒕𝒕) 
𝒒̇𝒒𝒕𝒕+𝟏𝟏 =  𝒒̇𝒒𝒕𝒕 +  𝛥𝛥𝛥𝛥 𝒒̈𝒒𝑡𝑡 
𝒒𝒒𝒕𝒕+𝟏𝟏 = 𝒒𝒒𝒕𝒕 +  𝛥𝛥𝛥𝛥 𝒒̇𝒒𝒕𝒕+𝟏𝟏 

 

A variety of different floor stiffnesses and ground damping constants were tested for the 

rimless wheel, but the parameters chosen in Table 2 led to numerical stability while still having a 

reasonably stiff floor. Despite the high maximum ground penetration depth (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 m), the 

largest depths for the two trajectories shown in Figure 9 and Figure 11 were 0.0166 m and 

0.0089 m respectively.  
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Parameter Symbol Value 

Central Mass [kg] M 1.0 

Spoke Length [m] l 1.0 

Wheel Inertia [kg ∙ m2] I 0.1 

Ramp Angle [°] 𝛾𝛾 20.0 

Floor Height [m] 𝑦𝑦𝐶𝐶 −1.0 

Ground Stiffness Coefficient 𝑘𝑘𝑦𝑦 1.0 × 103 

Ground Damping Coefficient 𝑏𝑏𝑦𝑦 1.0 × 104 

Maximum Penetration Depth [m] 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 0.2 

Pseudo-Coulomb Parameter 𝜆𝜆 1.0 × 10−3 

Coefficient of Friction 𝜇𝜇 0.5 

 

Table 2. Parameter Values for Rimless Wheel MATLAB Simulation. 
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Figure 9. Rimless wheel MATLAB model passive rolling trajectory. Model shown at t = 2.50, 5.00, and 
7.50 seconds. Dots represent past center of mass locations, each separated by 0.1 seconds. The initial 

condition for this trajectory was 𝑧𝑧0 = [0,−0.01, 3, 0, 0,−5]. 

Figure 11. Rimless wheel MATLAB model passive rolling trajectory states 
vs time. After  

Figure 10. Rimless wheel MATLAB model passive rolling trajectory states vs time. 
Wheel converges to a stable periodic solution after ~1.5 seconds. Collisions with 

ground produce sharp but continuous spikes in velocity.  
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Figure 11. Rimless wheel MATLAB model stance trajectory. Model shown at t = 2.50, 5.00, and 7.50 seconds. 
Dots represent past center of mass locations, each separated by 0.1 seconds. The small white dot on the model 

represents the center of mass location from 2 seconds ago, indicating that the model is gradually slipping 
down the ramp. The initial condition for this trajectory was 𝑧𝑧0 = [0,−0.01, 𝜋𝜋

8
, 0, 0, 0]. 

Figure 12. Rimless wheel MATLAB model stance trajectory states vs time. Small oscillations in 
velocity occur due to repeated ground contact. The x-position plot shows the model slipping down 

the ramp. 
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Chapter 4 

Passive Koopman Models 

4.1 Passive Koopman Models Using Radial Basis Functions 

Following the construction of the passive MATLAB model, data was collected for use in 

the passive Koopman model Specifically, a region of space centered around the origin was 

randomly sampled. To ensure that floor contact was properly modeled, at least 20% of every 

trajectory started with ground contact. The trajectories were capped with maximum initial energy 

(including the potential energy stored in the viscoelastic springs due to ground penetration), and 

trajectories that deviated too far from the origin were removed. Each trajectory lasted a total of 

two seconds with data sampled at a rate of dt = 0.05 seconds. Data sets were compiled from 100 

and 1000 trajectories. A third validation data set was created of 50 trajectories.  

The first Koopman models were obtained with RBF observables. The Gaussian RBFs 

were placed in the state space of the 100 and 1000-trajectory data sets, with the k-means++ 

clustering algorithm determining center placement. The equation for the Gaussian radial basis 

function is given below: 

𝜙𝜙𝑖𝑖(𝑥𝑥) = exp �−�
�|𝑥𝑥 − 𝑐𝑐𝑖𝑖|�2

𝜖𝜖
�
2

� 
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Important hyperparameters include the dilation factor (𝜖𝜖), the center locations (𝑐𝑐𝑖𝑖), and the 

number of radial basis functions (N). Too many observables can lead to overfitting and poor 

estimation performance, while too few will fail to capture the dynamics of the system. All six 

passive RBF Koopman models in this section, used 𝜖𝜖 =0.4. 

 

Figure 13. Placement of RBF Centers Using kmeans++. Depicted are 1000 RBF centers 
based on the 1000-trajectory data set. The Rimless Wheel COM positions are shown in 
red while the RBF centers are shown in black. The RBF centers are also functions of 

wheel angle 𝜃𝜃 and velocities, but these dimensions are not plotted for simplicity.  

 

Once the radial basis functions were obtained, the data set was lifted such that for each 

data point 𝑧𝑧𝑡𝑡, we obtain 𝜒𝜒𝑡𝑡 = [𝑧𝑧𝑡𝑡,𝜙𝜙1(𝑧𝑧𝑡𝑡),𝜙𝜙2(𝑧𝑧𝑡𝑡), … ,𝜙𝜙𝑁𝑁(𝑧𝑧𝑡𝑡)]. We included the original states 𝑧𝑧𝑡𝑡 

in the lifted space for ease of use when implementing MPC. In this formulation, the A matrix 

was obtained using a least squares regression of the 𝜒𝜒𝑡𝑡 and 𝜒𝜒𝑡𝑡+1 lifted data sets: 𝐴𝐴 = 𝜒𝜒𝑡𝑡+1 𝜒𝜒𝑡𝑡#. 

Larger data sets should yield better results, assuming that the data is uniformly distributed, as 

they reduce the effects of randomness.  
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It is beneficial to have the x-position as a state when implementing MPC. However, since 

the dynamics of the rimless wheel are invariant with respect to the x-position, the system 

behaves identically whether at x = 0 m or x = 100 m. Consequently, when constructing the 

Koopman Operator model, it is advantageous to remove the x-position from the training data to 

enhance model accuracy. The passive Koopman models presented below were initially 

developed with a dependency on x, but we found that performance issues only emerge when the 

x-position is far from the origin. This issue is explored in further detail in Section 685.5. 

Mode power is a method to determine the relative importance of a given mode within a 

data set. Mode powers are evaluated for each data point within a training set and then averaged. 

Eigenvalues with low mode power are typically associated with noise and can be removed with 

little consequence [25]. To calculate the mode power, the eigenvalues and eigenvectors of the 

linearized model are obtained. For each element in the dataset 𝑛𝑛 the lifted state χ𝑛𝑛 is projected 

onto the eigenvectors such that 𝑍𝑍𝑛𝑛 =  χ𝑛𝑛
′  𝑉𝑉. The element 𝑍𝑍𝑛𝑛,𝑖𝑖 shows the contribution of the 

eigenvector 𝑉𝑉𝑖𝑖 for the input data 𝑧𝑧𝑛𝑛. Finally, the mode power of the eigenvector 𝑉𝑉𝑖𝑖 is given by 

1
𝑁𝑁
∑ 𝑍𝑍𝑛𝑛,𝑖𝑖
𝑁𝑁
𝑛𝑛=1 . Figure 14 shows the Mode Power plots for Koopman Models with 10, 100, and 1000 

RBFs. We see the emergence of oscillatory behaviors with greater number of observables. 

However, the more “important” poles belong to lower frequencies or are oriented along the x-

axis. It is difficult to read the mode power plots when the number of observables is high, as the 

many poles overlap.  
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Figure 14. Mode Power Plots for 10, 100, and 1000 RBF Passive Koopman Models. For 
10 RBF, the poles are mostly aligned along the x-axis. More imaginary poles/oscillatory 

behaviors appear with more observables. All three models use the 1000-trajectory 
training set. 

Mean Squared Error (MSE) is a common metric used to evaluate Koopman prediction 

accuracy. For a test data set with N total data points, the MSE is given by  

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
�(𝑧𝑧𝑖𝑖 − 𝑧̂𝑧𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

Figure 15 depicts the MSE vs. time of a Koopman Model for predictions of different time 

horizons. The training data is centered around the origin where the trajectories are initialized. As 

the trajectories evolve, they disperse, resulting in more varied data over time. This dispersion 
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suggests that the Koopman model might be more accurate at the beginning of a trajectory 

compared to the end. However, the figure indicates that higher errors actually occur at the start of 

a trajectory, possibly due to the increased likelihood of ground contact, resulting in more 

unpredictable movement.  

 

Figure 15. Mean Squared Error vs. Time for a Passive Koopman Model. MSE calculated for 50 
trajectories not including in training/model creation There is seemingly a downwards trend between 
trajectory time and prediction accuracy. The Koopman model was created with the 1000-trajectory 

training set and 1000 RBFs. 

 

Finally, Figure 16, Figure 17, and Figure 18 depict the tracking performance for different 

time horizons. Figure 16 shows the Koopman model's predictions for different time horizons for 

a passive rolling trajectory. While the model captures the rolling motion accurately initially, its 

performance degrades for the 10- and 15-time step predictions. Figure 17 examines prediction 

performance on the same trajectory with ground truth updates every 1, 5, 10, and 15 steps. 

Unsurprisingly, accuracy is improved with more frequent updates, as the model is corrected 

often and errors are not allowed to accumulate. Figure 18 tests the Koopman model on a 
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challenging backward, uphill trajectory, demonstrating worse performance due to the trajectory's 

rarity in the training data, with accuracy declining markedly over longer time horizons. All 

figures use the same model, trained on the 1000-trajectory data set with 1000 radial basis 

functions (𝜖𝜖 = 0.4). 

 

 

Figure 16. Passive Koopman Model Tracking Performance for Different Time Horizons. 
At every time step, the model is given the ground truth (depicted by the blue dot) and 
then blindly predicts the next N time-step (depicted by the orange line going off each 

blue dot). The Koopman Model is capable of capturing the ground truth rolling motion 
but with decreasing accuracy over time. This is exemplified by the smoothing out of the 
peaks and valleys in the 15 Time Step Prediction plot. The Koopman model was created 

with the 1000-trajectory training set and 1000 RBFs. 
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Figure 17. Passive Koopman Model Tracking Performance with Updates Every 1, 5, 10, 
and 15 Time-Steps. The blue dot depicts data points fed into the model as the ground 

truth. If the model is very incorrect, these updates will result in a sharp change in state. 
We see better performance when the update rate is high. The Koopman model was 

created with the 1000-trajectory training set and 1000 RBFs. 
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Figure 18. Passive Koopman Model Tracking Performance for a Challenging Trajectory 
with Updates Every 1, 5, 10, and 15 Time-Steps. Using the same Koopman model as 
Figure 17, the model is tested for a trajectory that travels backward, up the ramp. The 

tracking performance is visibly worse, as such trajectories are not common in the training 
data set. 
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4.2 Passive Koopman Models Using Neural Net Generated Observables 

A second batch of Koopman models was made using Neural Net generated observables. The 

network structure is shown in Figure 19. The state 𝑧𝑧𝑡𝑡 is fed into the encoder and outputs 

observables 𝑔𝑔𝑡𝑡. Then, the states are concatenated to create the lifted state 𝜒𝜒𝑡𝑡 and fed into the 

linear layer, which outputs the lifted state 𝜒𝜒𝑡𝑡+1. The A matrix is obtained by taking the weight 

matrix from the final linear layer. The encoders have two hidden layers with rectified linear unit 

(ReLu) activation units. The encoder and linear layer structure is essentially that of [26]. 

 

 

Figure 19. Neural Network Structure. The fully-connected encoder network generates the 
observable functions 𝑔𝑔𝑡𝑡 based on the input data 𝑧𝑧𝑡𝑡. Then, the original states are appended 
to the observables to obtain the lifted state 𝜒𝜒𝑡𝑡. The final linear layer advances the lifted 
state one-time step. In this figure, orange denotes states and blue denotes observables g. 
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The Neural Network was trained on the 100- and 1000- trajectory data sets defined in 

Section 3.2. The network was trained on the standard Deep Koopman loss function that takes the 

sum of the MSE for the state prediction and the MSE for the observable prediction [27].  

 

𝐿𝐿 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧̂𝑧𝑡𝑡+1, 𝑧𝑧𝑡𝑡+1) + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 (𝑔𝑔�𝑡𝑡+1,𝑔𝑔𝑡𝑡+1) 

 

The parameter 𝛾𝛾 weights the observable prediction accuracy relative to the state prediction 

accuracy. For the generated models, 𝛾𝛾 is kept fixed at 1.  

 Four models were made using Neural Net generated observables. The Mode Powers for 

the 30-observable models are shown in Figure 20. Table 3 shows the relative performance 

between all ten models generated in this chapter. Mean squared error is obtained over a 50-

trajectory validation data set. We see the best performer was the 1000 observable RBF model 

generated with the 1000-trajectory data set. Generally, the Koopman models using RBFs that 

were trained with more observables and the larger data set performed best. The Neural Net 

Koopman models had the lowest MSE for 1-time step predictions, but were poor at predicting for 

longer time horizons. In the future, additional terms could be added to the loss function to help 

improve long term accuracy by calculating the MSE of future predictions [27]. The Neural Net 

models with a high number of observables and low amounts of training data performed the 

worst, perhaps due to overfitting. 
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Figure 20. Mode Power Plots for 30 NN Generated Observable Koopman Models. 
Models were trained with the 100-trajectory data set (left) and the 1000-trajectory data 
set (right). The 100-trajectory model has more oscillatory poles at higher frequencies. 
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Table 3. Comparison of Different Passive Koopman Models. The leftmost column 
describes the type of observables used in the model, followed by the number of 

trajectories in the data set, and finally the number of observables. The MSE is evaluated 
for a 1-, 5-, 10-, 15-, and 30-time step prediction over the course of 50 trajectories. The 
Koopman models trained on the largest dataset performed consistently better than those 
trained on the smaller one. We see clear overfitting with the 100 trajectory, 100 neural 

net generated observable model, despite reasonable 1-time step MSE.  

 

 

 

 

 

 

 

 

 

 

 

 

   1 dt 5 dt 10 dt 15 dt 30 dt 

RBF 

100 

10 1.55 0.92 0.91 1.08 2.73 

100 1.72 1.37 1.23 1.36 3.68 

1000 0.66 0.53 0.59 0.69 1.87 

1000 

10 0.66 0.78 0.80 0.91 2.17 

100 0.61 0.72 0.78 0.88 2.16 

1000 0.46 0.48 0.60 0.69 1.81 

NN 

100 

30 0.39 1.00 1.27 1.63 4.25 

100 0.45 1.26 1.36× 101 7.77× 102 3.55 × 108 

1000 

30 0.34 0.96 1.81 2.81 7.09 

100 0.32 0.78 1.13 1.40 3.51 
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Chapter 5 

Actuated Koopman Models 

5.1 Actuation of the Rimless Wheel 

 

In recent years, the study of the Rimless Wheel has garnered significant attention, 

particularly in the design of spring-like, impact-reducing rimless wheels. However, despite these 

impact-absorbing elements, these rimless wheel models typically utilize discrete dynamics. The 

viscoelastic wheel developed by Kawamoto et al. exhibits discrete impacts both when the spoke 

contacts the ground and when the spoke leg returns to its free length [28]. Similarly, the models 

proposed by Sanchez et al. and Hanazawa et al. utilize rimless wheels with telescoping, spring-

loaded legs with discrete dynamics upon contact with the floor. Interestingly, these three models 

do not control the leg length but rather the angle between a torso and the ground [28], [29], [30]. 

While the integration of a torso into the model presents an interesting avenue for future research, 

the primary objective of this thesis is to develop a model with interesting ground interaction 

dynamics. 

The model presented in this section is designed with a prismatic actuator at the tip of each 

spoke (Figure 21). For a six spoke model, we add a total of twelve states for the actuators so q = 

[x, y, 𝜃𝜃, 𝜙𝜙𝐴𝐴, 𝜙𝜙𝐵𝐵,𝜙𝜙𝐶𝐶 ,𝜙𝜙𝐷𝐷 ,𝜙𝜙𝐸𝐸 ,𝜙𝜙𝐹𝐹] and z = [𝑞𝑞, 𝑞̇𝑞]. These actuators are allowed to expand or retract 

a maximum set limit, and have a maximum control input of |𝑢𝑢𝑛𝑛| ≤ 1 m/s. As before, model 

parameters include the central mass (M), spoke length (l), wheel inertia (I), ramp angle (𝛾𝛾), floor 
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height (𝑦𝑦𝐶𝐶) and now actuator refence length (𝑙𝑙0). Additional floor parameters such as ground 

stiffness (𝑘𝑘𝑦𝑦), ground damping (𝑏𝑏𝑦𝑦), maximum penetration depth (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚), pseudo-Coulomb 

parameter (𝜆𝜆), and coefficient of friction (𝜇𝜇). The model and floor contact parameter values are 

carried over from the passive model case. Crucially, we assume the actuators are controlled with 

a high-fidelity control loop, so the actuator dynamics are directly defined by the control input: 

𝜙𝜙𝑛̇𝑛(𝑡𝑡) = 𝑢𝑢𝑛𝑛(𝑡𝑡). 

 

 

Figure 21. Rimless Wheel with Prismatic Actuators. The spokes have length 𝑙𝑙 as well as 
the actuator reference length 𝑙𝑙0. Actuator states 𝜙𝜙𝑛𝑛 are measured relative to this reference 
length. In this figure, all actuators are set to 𝜙𝜙𝑛𝑛 = 0 except for 𝜙𝜙𝐵𝐵 = −0.1 and 𝜙𝜙𝐶𝐶 = 0.1. 
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5.2 Control Coherent Koopman Formulation 

 

The Control Coherent Koopman requires a linear actuation subsystem. In other words, we 

seek an actuation method that is linear in control and that separates the input from the other state 

variables. Below, we show how the actuator subsystem is separated for the actuated rimless 

wheel: 

 

Where q = [x, y, 𝜃𝜃, 𝜑𝜑𝐴𝐴,𝜑𝜑𝐵𝐵, …𝜑𝜑𝐹𝐹] and the text in red denotes variables that have been affected by 

control input 𝑢𝑢𝑡𝑡=0. Depending on when the input is incorporated, we are able to quarantine the 

effects of the control input 𝑢𝑢𝑡𝑡=0 to 𝜑̇𝜑𝑁𝑁, 𝑡𝑡=0 and future time steps. However, this method requires 

implementing the control after the ground reaction forces are calculated, which is an important 

modeling decision. We leverage the viscoelastic floor to separate the velocity of the prismatic 

joint and the location/velocity of the central mass [x, y 𝜃𝜃]. If the floor was implemented as a hard 

constraint (i.e. actuator tip 𝒓𝒓𝑵𝑵 is pinned to the floor like in the original rimless wheel hybrid 
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model), the velocity of the prismatic would directly result in a change in velocity of the central 

mass in the same time step. With a rigid contact model, a spring and mass on each spoke is 

necessary to separate the actuator from affecting the other state variables.  

 

5.3 Three-Actuator Model 

 

The three-actuator model is motivated by the curse of dimensionality. With an actuator 

attached to every spoke, there is a total of 18 states. To keep the dimensions low, the symmetry 

of the rimless wheel model is leveraged. Koopman models are accurate for relatively short 

periods of time, so if the constructed Koopman model is expected to be accurate for up to 20-

time steps (one second), it should experience about one to two impacts with the ground in that 

time. Thus, we can create a model where the spokes closest to the ground have actuators (𝒓𝒓𝑨𝑨(x, 

y, 𝜃𝜃, 𝜑𝜑𝐴𝐴), 𝒓𝒓𝑩𝑩 (x, y, 𝜃𝜃, 𝜑𝜑𝐵𝐵), 𝒓𝒓𝑭𝑭 (x, y, 𝜃𝜃, 𝜑𝜑𝐹𝐹)), and those near the top are passive (𝒓𝒓𝑪𝑪 (x, y, 𝜃𝜃), 𝒓𝒓𝑫𝑫 

(x, y, 𝜃𝜃), 𝒓𝒓𝑬𝑬 (x, y, 𝜃𝜃)). By removing the actuator states for half of the spokes, the number of 

states decreases from 18 to 12.  

A change of coordinates is required to utilize the three-actuator Koopman model due to 

the decreased number of spokes and the training data’s limited range of initial conditions. For 

example, to predict the motion of a fully actuated, 18-dimensional rimless wheel we first 

determine which three spokes are closest to the ground, change the angle to lie within 𝜃𝜃 = [0, 𝜋𝜋
3

], 

and change the x-value to start at 0 (Figure 22). By limiting the range of 𝜃𝜃, we reduce the state 

space needed for sampling while still producing a useful model. We assume the spokes not in 

contact with the ground do not greatly affect the dynamics of the system.  
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To find the three spokes closest to the ground, we ignore the actuator states 𝜑𝜑𝑖𝑖. In other 

words, the positions we evaluate are not the actuator tips: 𝑟𝑟𝑖𝑖 = 𝑟𝑟0 + (l + 𝑙𝑙0 + 𝜑𝜑𝑖𝑖) 𝑒̂𝑒𝑖𝑖, but rather the 

spoke tips: 𝑟𝑟𝑖𝑖_𝑠𝑠𝑠𝑠 = 𝑟𝑟0 + (l + 𝑙𝑙0) 𝑒̂𝑒𝑖𝑖. 

 

 

 

Figure 22. Coordinate Transformation between Fully Actuated and Reduced State 
Models. Changes include remapping the angle to fit within 𝜃𝜃 = [0, 𝜋𝜋

3
], setting the x-

coordinate of the center of mass to zero, and making the spokes furthest from the ground 
passive (shown here in black) 

 

Below is the pseudo code for how the coordinate transformation is implemented: 

 control_law(zt = [x, y,𝜃𝜃,𝜑𝜑1,𝜑𝜑2,𝜑𝜑3,,𝜑𝜑4,𝜑𝜑5,𝜑𝜑6, ẋ, ẏ, 𝜃̇𝜃]): 

   

  𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 = mod(𝜃𝜃, 𝜋𝜋
3

)   

  if 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 == 𝜋𝜋
6
:  // breaks ties when the rimless wheel is in stance 

   if 𝜃̇𝜃 > 0: 

    [n1, n2, n3] = return_lowest_three_spokes(zt =[x, y,𝜃𝜃 + 0.01, ẏ, 𝜃̇𝜃])  
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// where [n1, n2, n3] indicates spoke_tipn1 is closest to the ground, 
spoke_tipn2 is second closest, etc. Note these are calculated 
without 𝜙𝜙𝑖𝑖 

   else: 

    [n1, n2, n3] = return_lowest_three_spokes(zt =[x, y,𝜃𝜃 − 0.01, ẏ, 𝜃̇𝜃]) 

  else: 

   [n1, n2, n3] = return_lowest_three_spokes(zt =[x, y,𝜃𝜃, ẏ, 𝜃̇𝜃]) 

 

  𝜙𝜙𝐴𝐴 = 𝜙𝜙𝑛𝑛1  //the lowest spoke is assigned as spoke A  

 

  if n1 == 6:  //if the lowest spoke is 6, then the clockwise order of spokes is [5, 6, 1] 

   𝜙𝜙𝐵𝐵 = 𝜙𝜙1 

   𝜙𝜙𝐹𝐹 = 𝜙𝜙5 

  elif n1 == 1:  //if the lowest spoke is 1, then the clockwise order of spokes is [6, 1, 2] 
   𝜙𝜙𝐵𝐵 = 𝜙𝜙2 

   𝜙𝜙𝐹𝐹 = 𝜙𝜙6 

else:          //if the lowest spoke is neither 1 or 6, then the clockwise order of spokes is 
[min(n2, n3), n1, max(n2, n3)] 

   𝜙𝜙𝐵𝐵 = 𝜙𝜙max(n2,n3) 

   𝜙𝜙𝐹𝐹 = 𝜙𝜙min(n2,n3) 

 

  𝑧𝑧0 = [0,𝑦𝑦,𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛,𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵,𝜙𝜙𝐹𝐹 , ẋ, ẏ, 𝜃̇𝜃]  //new state vector with only three actuators  
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5.4 Actuated Koopman Models (RBF, NN) 

 

A dataset was generated from the three-actuator Rimless Wheel simulation for the 

actuated Koopman model. Just as before, a region of space centered around the origin was 

randomly sampled. To ensure that floor contact was properly modeled, at least 20% of every 

trajectory started with ground contact. The trajectories were capped with maximum initial energy 

(including the potential energy stored in the viscoelastic springs due to ground penetration), and 

trajectories that deviated too far from the origin were removed.  

The data sets used to generate the Koopman models consisted of purely passive data, that 

is 𝑢𝑢𝑛𝑛 = 0 for all time t. The actuator states were randomly initialized with 𝜙𝜙𝑛𝑛 ∈ [−0.1, 0.1] and 

held constant throughout the trajectory. Each trajectory lasted a total of two seconds with data 

sampled at a rate of dt = 0.05 seconds. Trajectories were ended prematurely if any spokes other 

than A, B or F touched the ground. Data sets were compiled from 100 and 1000 trajectories.  

A validation data set was created of 100 trajectories created in the same manner as the 

training sets. A second, actuated validation data set was created of 2,000, trajectories with 

constant input 𝑢𝑢𝑛𝑛 = 𝐶𝐶 and a duration 𝑡𝑡𝑓𝑓 = 0.8 seconds. In this section, the actuators had a 

maximum extension of |𝜙𝜙𝑛𝑛| ≤  0.1 𝑚𝑚. Due to the randomized actuator states and the constant 

control input, many trajectories lasted only one- or two-time steps before reaching the actuator 

state limit. Data collection was ended prematurely before the actuators could exceed this limit. 

 Four RBF Koopman models were generated in the same manner as in Section 3.2. The 

training set was truncated to remove actuator velocities, so the states used for these Koopman 

model were 𝑧𝑧 = [𝑥𝑥,𝑦𝑦,𝜃𝜃,𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵 ,𝜙𝜙𝐹𝐹 , 𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃]. This was done to prevent the model from estimating 
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the control inputs (𝜙̇𝜙𝑖𝑖 = 𝑢𝑢𝑖𝑖). Some models were trained on similarly generated datasets but 

without the x-position data. This practice is further discussed in Section 5.5. 

As before, the RBF centers are calculated via kmeans++ and the A matrix obtained via 

least squares estimation. In addition, two models were made with Neural Net generated 

observables with the same training data sets. All hyperparameters were kept the same as before. 

The six models were evaluated for the passive dataset in Table 4. The best performing model 

was the Koopman Model with 1000 RBF, trained on the 1000-trajectory data set, but the neural 

net models also had low MSE, especially for the 1-time step prediction.  

 

Figure 23 Placement of RBF Centers Using kmeans++ for the Actuated Rimless Wheel 
Model. Depicted are 1000 RBF centers based on the 1000-trajectory data set. The 

Rimless Wheel COM positions are shown in red while the RBF centers are shown in 
black. The RBF centers are also functions of wheel angle (𝜃𝜃), actuator states 

(𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵,𝜙𝜙𝐶𝐶), and velocities (𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃), but these dimensions are not plotted for simplicity. 
While this model has actuators, the training data sets are entirely passive (𝑢𝑢𝑛𝑛 = 0). 

 



63 
 

 

 

Figure 24. Mode Power Plots for 100, and 1000 RBF Actuated Koopman Models. For 
100 RBF, the poles are mostly aligned along the x-axis. Both models use the 1000-

trajectory training set. 

 

 

Figure 25. Mean Squared Error vs. Time for an Actuated Koopman Model for Passive 
Trajectories. MSE calculated for 2,000 trajectories not included in training/model 

creation. Once again, there is seemingly a downwards trend between trajectory time and 
prediction accuracy. The Koopman model was created with the 1000-trajectory training 

set and 1000 RBFs. 
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Figure 26. Actuated Koopman Model Tracking Performance for a Passive Trajectory and 
for Different Time Horizons. At every time step, the model is given the ground truth 

(depicted by the blue dot) and then blindly predicts the next N time-step (depicted by the 
orange line going off each blue dot). The Koopman model was created with the 1000-

trajectory training set and 1000 RBFs. 
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Table 4. Comparison of Different Actuated Koopman Models for Passive Trajectories. 
The leftmost column describes the type of observables used in the model, followed by the 
number of trajectories in the data set, and finally the number of observables. The MSE is 
evaluated for a 1-, 5-, 10-, 15-, and 30-time step prediction over the course of 100 passive 

trajectories. The RBF Koopman model with the 1000 trajectory data set performed the 
best. The Neural Net models had low 1-time step predictions but very high MSE for 

longer time horizons. 

 

Following the evaluation of the Actuated Rimless Wheel Koopman models on the passive 

dataset, the models were tested on an actuated dataset. As previously mentioned, the actuated 

dataset was derived from simulations of the actuated rimless wheel with a constant control input 

(𝑢𝑢𝑛𝑛 = 𝐶𝐶𝑛𝑛) and time steps of 𝑑𝑑𝑑𝑑 = 0.001 seconds. In contrast, the Koopman model was generated 

using data sampled at a rate of 𝑑𝑑𝑑𝑑 = 0.05 seconds and is therefore only capable of predictions of 

that scale. 

Recall the Koopman models with only have three actuated spokes. With the control 

coherent Koopman formulation, the control input only affects actuator velocities. 

𝜙𝜙𝑖𝑖,𝑡𝑡+1 = 𝜙𝜙𝑖𝑖,𝑡𝑡 + dt 𝑢𝑢𝑖𝑖,𝑡𝑡 

Thus, the B matrix is effectively empty, except for the dt term in the rows corresponding to the 

actuator states. 

 1 dt 5 dt 10 dt 15 dt 30 dt 

RBF 

100 
100 0.52 0.51 0.72 1.01 2.92 

1000 0.62 0.41 0.68 0.82 2.88 

1000 
100 0.53 0.50 0.69 0.93 2.52 

1000 0.48 0.31 0.42 0.64 2.05 

NN 
100 30 0.49 1.09 3.35 1.68× 101 3.62× 103 

1000 30 0.38 0.58 0.92 1.40 5.35 
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When provided with a control input, the Koopman model tends to overestimate the 

ground reaction forces at the actuator tip, resulting in higher MSE (See Figure 27 and Table 5). 

This discrepancy arises because the simulation, which updates more frequently, calculates 

ground reaction forces before the actuator tip penetrates too deeply into the ground, allowing for 

some degree of repulsion. On the other hand, the Koopman model, updating at a slower rate, 

pushes the actuator tip further into the ground, resulting in higher estimated ground reaction 

forces. 

Since the Koopman model is trained on passive data, it lacks information about actuators 

pushing off the ground, and therefore cannot correct the overestimation. An alternative approach 

could involve updating the Koopman model at the same rate as the simulation. However, 

considering that Koopman models generally struggle with long-term prediction accuracy, this 

solution would limit the model's overall utility. 
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Figure 27. Actuated Koopman Model Tracking Performance for an Actuated Trajectory 
and for Different Time Horizons. Plots generated using the same model as those in Figure 
23. The control input is kept constant throughout the trajectory. The tracking is worse for 

the actuated trajectories, but the model is able to predict the general shape of the 
trajectory. 

 

   1 dt 5 dt 10 dt 15 dt 

RBF 

100 
100 1.01 0.71 0.68 0.89 
1000 1.35 0.88 2.13 1.43 

1000 
100 8.30× 102 0.67 0.63 0.79 
1000 0.97 0.62 0.56 1.03 

NN 
100 30 1.04 0.78 0.83 9.42 
1000 30 0.81 0.79 1.10 1.85 

 

Table 5. Comparison of Different Actuated Koopman Models for Actuated Trajectories. 
The leftmost column describes the type of observables used in the model, followed by the 
number of trajectories in the data set, and finally the number of observables. The MSE is 

evaluated for a 1-, 5-, 10-, 15-time step prediction over the course of 100 passive 
trajectories. The relative performances are similar to that of Table 4, with the same 

general trends. The MSE is on average higher for the actuated trajectories, perhaps due to 
the time-scale discrepancy between the simulation data and Koopman model. 
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5.5 Impact of X-Position Data on Model Fidelity 

 

In this section, we will investigate how incorporating x-position data in the creation of the Koopman 

models effects their performance both near and away from the origin. As mentioned in Section 3.3, the 

rimless wheel dynamics are invariant of the location of the origin on the x-axis. That is, the rimless 

wheel will behave the same whether it is far up or far down the slope. Furthermore, when ramp angle 

𝛾𝛾 = 0, the x-position becomes an ignorable coordinate.  

Model A was created with RBFs whose centers were placed along all states (including x) while 

Model B was created with RBFs centers that do not depend on x. The models in this section were 

created with 𝜖𝜖 = 0.4, 𝛾𝛾 = 20°, 100 observables and a 1000 trajectory data set. In addition, the actuator 

bounds are increased from −0.1 m ≤ 𝜙𝜙𝑁𝑁 ≤ 0.1 m to −0.25 m ≤ 𝜙𝜙𝑁𝑁 ≤ 0.25 m. All other model, 

ground contact, and inertial parameters were kept consistent with the previous sections. Figure 28 shows 

that Models A and B perform similarly when near the origin, but surprisingly, both perform poorly when 

𝑥𝑥 ≈ 100 m. While Model B’s RBFs are independent of the x-position, the least squares regression was 

done with x-position data, resulting in an inaccurate model. An analysis of Model B's A matrix reveals 

that the x-position state has the greatest influence on the dynamics of the x-velocity and angular velocity 

(Figure 29). 
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Figure 28. Time Prediction Accuracy Comparison at x = 0 m and x = 100 m. Model A 
(top row) employs RBF centers that vary with x, while Model B (bottom row) uses RBFs 

independent of x. The same trajectory was used across all four plots, with only the x-
position modified. Both models show poor performance when x = 100 m, suggesting that 
incorporating x-position data in the least squares regression introduces an x-dependency. 
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Figure 29. Heatmap of A Matrix Values for Model B. The first column corresponds to the 
effect of the x-position in the time-evolution of the state variables and observables. The 

largest value on the first column is at (0,0) = 0.9995, corresponding to the preservation of 
the x-position. The second largest is at (6, 0) = -0.0195, and the third largest values is at 
(8,0) = 0.0167 corresponding to the x-velocity and angular-velocity respectively. This 

indicates that the A matrix incorrectly attributes the x-position as influencing the 
dynamics of both the x-velocity and angular velocity. 

 

 Models B.1 and B.2 were constructed to compare different methodologies for eliminating 

x-dependency from the A matrix. Model B.1 simply sets all values in the first column of the A 

matrix to zero, except at (0,0). Model B.2, on the other hand, is generated using the same 

datasets but modified to exclude the x-position. In this case, 𝑧𝑧 =  [𝑦𝑦,𝜃𝜃,𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵,𝜙𝜙𝐹𝐹 , 𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃], and 

𝜒𝜒(𝑧𝑧) = [𝑧𝑧,𝑔𝑔1(𝑧𝑧),𝑔𝑔2(𝑧𝑧), … ,𝑔𝑔𝑁𝑁(𝑧𝑧)]. The x-position is obtained by integrating 𝑥̇𝑥 is integrated over 

the trajectory (𝑥𝑥𝑡𝑡� = 𝑥𝑥0 +  ∑ 𝑥̇𝑥𝑖𝑖 ∗ 𝑑𝑑𝑑𝑑𝑡𝑡−1
𝑖𝑖=0 ). Table 6 displays the MSE of the Models B, B.1, and B.2 

for trajectories at x = 0 m and x = 100 m. The best performing model was Model B.2, the only 

model fully independent of the x-position. The accuracy of Model B.1 had higher error at x = 

100 m then at x = 0 m. This model was initially trained with the x-position included, so simply 
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zeroing out the first column of the state matrix A, while the model had already learned to 

compensate for the x-position data, resulted in generally inaccuracies.  

 

 x-pos [m] 1 dt 5 dt 10 dt 15 dt 

Model B) 0 0.52 0.54 0.63 0.71 

100 7.62 122.87 313.33 476.32 

Model B.1) 0 0.52 0.53 0.62 0.74 

100 0.52 0.59 0.84 1.22 

Model B.2) 0 0.52 0.53 0.62 0.72 

100 0.52 0.53 0.62 0.72 

 

Table 6. Model Comparison for Trajectories Centered at x = 0 m and x = 100 m. MSE 
was calculated using a validation dataset with a shifted x-position. All three models 

performed similarly near the origin. Model B showed extremely poor tracking 
performance at x = 100 m. Model B.1’s accuracy decreased at x = 100, likely because the 

model initially learned to estimate dynamics with the x-position included; thus, simply 
zeroing out the first column still left an inaccurate dynamics model. Furthermore, the x-
position dynamics for Model B.1. may also be inaccurate. In contrast, Model B.2’s MSE 
was identical for trajectories centered at x = 0 m and x = 100 m, as it was designed to be 

fully independent of x-position data, making it the best performer at x = 100 m. 
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Chapter 6 

Control Methods 

6.1 L-MPC on a Ramp 
 

Finally, the actuated Koopman models were used for Linear Model Predictive Control on the 

fully actuated Rimless Wheel simulation. Using the Gurobi Optimizer, a control input was 

calculated every 0.05 seconds. Since the simulation was running with a 0.001 second time step, 

the control input was held constant between MPC calculations. The linear control problem was 

formulated as the following: 

min
𝐮𝐮[.]

� (𝛘𝛘[𝑡𝑡] − 𝛘𝛘𝐫𝐫𝐫𝐫𝐫𝐫)𝐓𝐓𝐐𝐐(𝛘𝛘[𝑡𝑡] − 𝛘𝛘𝐫𝐫𝐫𝐫𝐫𝐫)𝐓𝐓 + 𝐮𝐮[𝑡𝑡]𝐓𝐓𝐑𝐑𝐑𝐑[𝑡𝑡])

𝑡𝑡𝑓𝑓−1

𝑡𝑡=0

 

Subject to 𝝌𝝌[𝑡𝑡 + 1] = 𝐀𝐀𝝌𝝌[𝑡𝑡] + 𝐁𝐁𝐁𝐁[𝑡𝑡],∀ 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓 − 1� 

𝝌𝝌[0] = 𝝌𝝌𝟎𝟎 

𝐮𝐮𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝐮𝐮[𝑡𝑡] ≤ 𝐮𝐮𝐦𝐦𝐦𝐦𝐦𝐦 

𝐚𝐚𝐚𝐚𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝝌𝝌[𝑡𝑡, 3: 5] ≤  𝐚𝐚𝐚𝐚𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦  

Where both the control input and actuator states [𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵 ,𝜙𝜙𝐶𝐶] are bounded. We used the lifted 

states for the positional error and the Koopman A matrix to advance the dynamics between time 

steps. The time horizon 𝑡𝑡𝑓𝑓 was tuned for the different Koopman models for best results. The Q 

and R matrices were also varied for each reference point 𝒛𝒛𝒓𝒓𝒓𝒓𝒓𝒓. For example, Figure 25 shows the 
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use of MPC to stop the rimless wheel from rolling down the ramp. To achieve this behavior, we 

used 𝒛𝒛𝒓𝒓𝒓𝒓𝒓𝒓 = 0 and diagonal matrix,  

Q =�
𝑄𝑄𝑥𝑥 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑄𝑄𝜙𝜙𝑛𝑛

� 

where diagonal elements associated with the x-position, theta, and actuator states were set to 0, 

elements associated with y-position and velocities were nonzero, and elements associated with 

RBF observables were set to 0.1. With this Q matrix, the cost function penalizes nonzero 

velocities and decreases the relative importance of observable errors compared to state error. 

This Q matrix also ensures the rimless wheel stays in contact with the ground by penalizing 

deviations in y-position. Errors in x-position, 𝜃𝜃, and actuator states were ignored. 

All Q values associated with the observables were given the same small weighting. The 

RBFs for the reference point are functions of the entire state, but not all these states are relevant. 

For example, if the goal is to stop the wheel on the ramp, the RBFs are evaluated with reference 

state 𝒛𝒛𝒓𝒓𝒓𝒓𝒓𝒓 =  𝟎𝟎. Overemphasizing observables errors could inadvertently drive the rimless wheel 

to 𝜃𝜃 = 0, when the intended behavior is to decrease velocities [𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃] = 𝟎𝟎. However, lowering 

the weights on observable error limits the usefulness of the observables. A more effective 

method would be to use trajectory tracking with lifted states, better leveraging the information 

encoded in the observables (Section 6.2). 

 Figure 30 and Figure 31 demonstrate cases where MPC is successful in bringing the 

rimless wheel to a stop on a ramp from a rolling trajectory and initiating motion from a position 

about to enter stance. However, the MPC was not consistently successful. Even with saturated 

inputs, there were several initial conditions under which the wheel could not achieve its desired 
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behavior. For example, when the rimless wheel was fully stopped on the ramp, the actuators 

could not generate enough force to start a rolling motion. For the ramp angle 𝛾𝛾 = 20°, the 

actuator bounds −0.1 ≤ 𝜙𝜙𝑁𝑁 ≤ 0.1 were too restrictive to enable these behaviors. Similarly, the 

rimless wheel is unable to push itself up the ramp.  
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Figure 30. MPC to Stop a Rolling Trajectory. Figure A) shows the trajectory with no 
control input and initial conditions 𝑧𝑧0 = [0.1, 0.5, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -
5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]. Figures B) and C) show the wheel is successfully stopped 
using MPC with the 100 RBF, 1000 trajectory Koopman model, and the 1000 RBF, 1000 
trajectory Koopman model. The time horizons (p) for the two models were 9-time steps 
and 12-time steps, respectively. While both models succeed, the MPC for figure C) took 
longer to compute due to the larger A matrix requiring significantly more computations. 
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Figure 31 MPC to Start a Stopping Trajectory. Figure A) shows the trajectory with no 
control input and initial conditions 𝑧𝑧0 = [0.1, 0.2, 𝜋𝜋

6
 + 0.001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]. Figure B) shows the wheel is successfully pushed 
into a rolling trajectory using MPC with the 100 RBF, 1000 trajectory Koopman model. 

The positional error was heavily weighted, resulting in fully saturated control inputs.  
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6.2 L-MPC on Flat Ground 
 

Up to this point, all Koopman models had been created with a ramp angle of 𝛾𝛾 = 20°. 

While constructing Koopman models on ramps was useful for validating prediction accuracy in 

passive rolling, it is more compelling to study the motion of the rimless wheel when it is entirely 

driven by the actuators. 

There are three behaviors that a rimless wheel can achieve on flat ground: rolling 

forwards, rolling backwards, and settling into a stance. As before, the stance behavior can be 

implemented by tracking a zero-velocity reference point. However, when attempting to get the 

rimless wheel to move forwards or backwards, we found better results when tracking a reference 

trajectory. A well-designed reference trajectory allows for the incorporation of additional 

information through the observables, potentially enhancing performance. Trajectory tracking 

MPC was implemented with the following formulation: 

min
𝐮𝐮[.]

� (𝛘𝛘[𝑡𝑡] − 𝛘𝛘𝐫𝐫𝐫𝐫𝐫𝐫[𝑡𝑡])𝐓𝐓𝐐𝐐(𝛘𝛘[𝑡𝑡] − 𝛘𝛘𝐫𝐫𝐫𝐫𝐫𝐫[𝑡𝑡])𝐓𝐓 + 𝐮𝐮[𝑡𝑡]𝐓𝐓𝐑𝐑𝐑𝐑[𝑡𝑡])

𝑡𝑡𝑓𝑓−1

𝑡𝑡=0

 

Subject to 𝝌𝝌[𝑡𝑡 + 1] = 𝐀𝐀𝝌𝝌[𝑡𝑡] + 𝐁𝐁𝐁𝐁[𝑡𝑡],∀ 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓 − 1� 

𝝌𝝌[0] = 𝝌𝝌𝟎𝟎 

𝐮𝐮𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝐮𝐮[𝑡𝑡] ≤ 𝐮𝐮𝐦𝐦𝐦𝐦𝐦𝐦 

𝐚𝐚𝐚𝐚𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝝌𝝌[𝑡𝑡, 3: 5] ≤  𝐚𝐚𝐚𝐚𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦  
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The reference trajectory was generated using data from passive rolling simulations of the 

rimless wheel. A key challenge when using a reference trajectory is determining the appropriate 

segment to track at any given moment, or choosing to follow a set trajectory regardless of the 

rimless wheel’s current state. In this implementation, the point on the reference trajectory closest 

to the current state, in terms of 𝜃𝜃 and 𝜃̇𝜃, is identified. The next 𝑝𝑝 time steps from this “closest 

point” form the reference trajectory, where 𝑝𝑝 denotes the time horizon.  

The Q matrix for trajectory tracking heavily penalizes deviations in x-velocity and x-

position. There are also penalties, though less heavily weighted, for errors in 𝑦𝑦,𝜃𝜃, 𝑦̇𝑦, and 𝜃̇𝜃. A 

smaller penalty is assigned to errors in the observables 𝑔𝑔𝑖𝑖 and no penalty is imposed for actuator 

state errors. 

The models presented in the following sections were generated without x-position data 

(see Section 5.5) and datasets were generated to capture more collisions. Specifically, data was 

generated with at least 20% of all trajectories starting with ground contact and at least 20% 

starting near a contact mode change (i.e. initial angles near 𝜃𝜃 = 𝜋𝜋
3

,−𝜋𝜋
3
).  

 

# observables 𝝐𝝐 1 dt 5 dt 10 dt 15 dt 

100 0.9 0.51 0.37 0.49 0.53 
500 1.0 0.49 0.25 0.31 0.40 
1000 0.8 0.57 0.20 0.25 0.35 

 

Table 7. Comparison of Flat, DMD + CCK Models for Passive Trajectories. MSE calculated 
using the same validation dataset for all models. Epsilon was tuned to minimize MSE for each 

model. Models with a greater number of observables generally produced more accurate 
predictions, especially for longer time horizons.  
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Three Koopman models were generated for this section, with their relative performances 

enumerated in Table 7. However, with the current formulation, the 1000-observable MPC 

computations regularly take more than 100 times longer than the 100-observable MPC, without a 

significant improvement in performance. In Korda and Mezic (2018), the method described in 

the appendix transforms the higher order linear MPC problem into a dense form, thereby 

eliminating the dependence on the lifting dimension [31]. In the future we aim to implement this 

formulation and close the gap between the computation loads of the three models, enabling the 

use of the 1000-observable model in online MPC and reducing computation time across the 

board. Finally, dimension reduction via SVD is commonly employed in DMD-based Koopman 

models [8]. 

Figure 32 depicts the mechanism by which the rimless wheel achieves rolling on flat 

terrain. The MPC aggressively commands the leg that is about to make contact with the ground 

to retract (see the orange spoke retracting at t = 4.25 and 4.50 s). Simultaneously, the MPC 

extends the stance leg (see the blue spoke extend from t = 4.25 to 4.75 s). The extension effort is 

maximized when the leg is positioned behind the wheel’s COM, which pushes the wheel off the 

back spoke, injecting energy into the system without impeding the rolling motion. This 

combination of a lengthened back spoke and a shortened front spoke creates a pseudo-ramp 

effect, encouraging the wheel to roll forward. The rimless wheel’s x and y velocities experience 

sharp changes when the wheel lands on a new spoke. Note that the wheel will continue to extend 

the back leg beyond contact, indicating potential inaccuracies in the model. 
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Figure 32. Mechanism of Forward Rolling in the Rimless Wheel. Snapshots are taken 
every 0.25 seconds, starting at t = 4.0 seconds. In the first snapshot, the wheel maintains 
ground contact with the light blue spoke (marked by an x), while the control command 

retracts the dark blue spoke and extends the light blue one (control inputs are represented 
by colored arrows, with the arrow’s length denoting magnitude). The wheel is rolling 
clockwise, as indicated by the gray circular arrow. The 100 RBF Koopman model was 

utilized for this figure, tracking the 𝛾𝛾 = 20° passive rolling trajectory.  
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Figure 33 demonstrates the underlying logic behind the Linear MPC optimization. The 

MPC rollout shows optimization through multiple instances of the spokes making and breaking 

contact. This demonstrates the power of the Koopman operator in successfully encoding these 

changes in contact modes within a linear model, and the control coherent Koopman formulation 

in generating a B matrix that is accurate through these different contact modes. 

 

 

 

 

Figure 33. The MPC Rollout using the Three-Actuator Koopman Model. The state at t = 
2.80 seconds is copied over from the simulation, but modified to fit the Three Actuator 

Model (Section 5.3). Future states are predicted using the linear model with control 
inputs. The Koopman model predicts multiple contact mode changes within the 8 time-

step (0.4 second) period. Although the model does not anticipate ground contact with the 
green spoke, it retracts the green spoke, potentially indicating a learned association 

between shorter front spokes and forward motion. MPC snapshots are taken two time 
steps apart, with dt = 0.05 seconds. 
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To achieve rolling at different speeds, reference trajectories were generated using data 

from various ramp slopes. Table 8 presents the different rolling speeds achieved with MPC using 

these reference trajectories. To roll backwards, the same trajectories are used but with the x and 

the 𝜃𝜃 values negated.  

 

Reference Ramp Angle [°] Reference Avg. 
Velocity [m/s] 

Forward Sim  
Avg. Velocity [m/s] 

Backward Sim  
Avg. Velocity [m/s] 

10 1.0 0.96 -0.49 

15 1.6 1.42 -0.01 

20 2.4 1.49 -0.59 

23 3.0 1.44 -0.61 
 

Table 8. Rolling Velocities Achieved in Simulation. Reference trajectories were generated 
from passive rolling data of the fully actuated rimless wheel at various slope angles. The 

MPC struggled to increase the average speed beyond 1.5 m/s when rolling forwards, 
likely due to actuation limitations and the less aggressive nature of contour trajectory 
tracking. The model was also less successful in achieving high velocities when rolling 
backwards. Simulation were run for 10 seconds using the 100-observable model with a 

12-step time horizon (0.6 seconds) and aggressive inputs (R = 0.1 I). 

 

The rimless wheel struggled to surpass a forward speed of 1.5 m/s. This limitation is 

likely due to constraints on the control input (|𝑢𝑢| ≤ 1 m/s) and actuator states (|𝜙𝜙𝑖𝑖| ≤ 0.25 m), 

which restrict the maximum force the rimless wheel can exert to push off the ground and limit 

the length differential between spokes respectively. This length differential is crucial for 

simulating the ramp effect, so the limit on actuator states limits the maximum pseudo-ramp 

angle.  
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The wheel is less successful in rolling backwards, a surprising result given that there 

should not be a forwards/backwards bias in the formulation of the model. Figure 34 shows the 

states and control commands when tracking the 𝛾𝛾 = 20° trajectory both forwards and backward.  

In the forward trajectory, we observe that during actuation, adjacent spokes receive 

opposite inputs—specifically, the middle spoke extends while the front spoke retracts. This 

action facilitates both a push-off from the ground and creates a pseudo-ramp effect, aiding in 

forward motion. 

In the backward trajectory, however, the front and back spokes are activated. Since the 

wheel is moving backward, the back spoke retracts while the front spoke extends. Crucially, 

because the front spoke extends instead of the middle spoke, the overall movement is slower, 

missing out on the earlier push-off potential that contributes to more efficient forward motion. 

This behavior remained consistent with different R values and time horizon. 
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Figure 34. Comparison of Forward and Backward Rolling States and Control. Both 
figures generated from symmetric initial conditions, and the same weights and reference 

trajectory. 
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 Finally, there are several ways to fine-tune trajectory tracking. The relative weights of Q 

and R can significantly impact performance. Figure 35 illustrates the effects of varying R when 

tracking a forward rolling trajectory. When R is small, the penalty on control inputs is minimal, 

leading to an aggressive strategy with purely saturated inputs. As R increases, control input 

saturation decreases. In fact, the wheel rolls further with R = 0.4 I, better tracking the reference 

trajectory. However, when R becomes too large, performance declines, and the wheel takes 

longer to reach a stable rolling pattern. The total control effort was evaluated over the course of 

the simulation (Utot =  ∑ ||𝐮𝐮𝐭𝐭||2 ∗ dtT
t=0 ), with the total effort per rotation for the three 

simulations as 5.3, 5.7, and 4.8, respectively.  

 

 

 

Figure 35. Effect of Input Weight on Rolling Trajectory. Each plot shows the rimless 
wheel tracking the same 20° trajectory from the same initial condition. In Plot A, where 
R = 0.1I, inputs are lightly penalized, leading to fully saturated control inputs. Plot B, 

with a higher input penalty (R = 0.4 I), shows less saturated control and more irregularity 
between steps, yet it traveled the farthest and best tracked the reference trajectory. Plot C, 

with an input penalty 8 times that of Plot A, traveled the shortest distance. The total 
command input per rotation for the three simulations was 5.3, 5.7, and 4.8, respectively. 
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6.3 DMDc Comparison 
 

In the Dynamic Mode Decomposition with control (DMDc) methodology, the B matrix is 

approximated using least squares regression. Unlike for the Control Coherent Koopman method, 

generating the B matrix requires actuated datasets. The dataset for this model was generated with 

the same simulation parameters as those in Section 6.2, but with randomized control commands 

(within the actuation bounds) that remained constant throughout the trajectory. Due to the 

constraint that trajectories are terminated once actuator states exceed their limits, many 

trajectories in this dataset were cut short. To mitigate this, the dataset includes 5,000 trajectories, 

which contains approximately the same number of data points as the 1,000 trajectory non-

actuated dataset. 

As before, the radial basis functions are placed in the state space, so the centers are 

functions of 𝑧𝑧 = [𝑦𝑦, 𝜃𝜃,𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵 ,𝜙𝜙𝐹𝐹 , 𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃]. Then, the dataset is lifted such that for states 𝑧𝑧𝑡𝑡, we 

obtain 𝜒𝜒𝑡𝑡 = [𝑧𝑧𝑡𝑡,𝜙𝜙1(𝑧𝑧𝑡𝑡),𝜙𝜙2(𝑧𝑧𝑡𝑡), … ,𝜙𝜙𝑁𝑁(𝑧𝑧𝑡𝑡)]. We also obtain the lifted dataset for the next time 

step (𝜒𝜒𝑡𝑡+1). Finally, we construct Ωt = [𝜒𝜒𝑡𝑡 ,𝑢𝑢𝑡𝑡]. The A and B matrices are obtained using a least 

squares regression of the Ω𝑡𝑡 and 𝜒𝜒𝑡𝑡+1 lifted data sets: [𝐴𝐴,𝐵𝐵] = 𝜒𝜒𝑡𝑡+1 Ω𝑡𝑡
# [8]. 

DMDc offers a significant advantage over Control Coherent Koopman by incorporating 

actuated data into the model formulation, potentially improving the model's understanding of 

floor interactions. As discussed in Section 5.4, the Control Coherent Koopman model tends to 

overestimate ground reaction forces at the actuator tip due to its slower update rate compared to 

the simulation. Since it is trained on passive data, it lacks the ability to correct this 

overestimation. With DMDc, by including actuation data, the models may provide more accurate 

predictions of actuation effects. However, there are additional states to fit, which leads to 
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physically incoherent dynamics, similar to how the inclusion of x-position data led to unphysical 

dynamics for those Koopman models.  

The DMDc models were constructed using 100 RBFs placed with kmeans++. After 

tuning, the optimal 𝜖𝜖 value for the DMDc Koopman model was 𝜖𝜖 = 6.0, which achieved lower 

MSE for passive trajectory prediction than the 100 RBF DMD model. However, using this 𝜖𝜖 =

6.0 Koopman model in MPC caused numerical issues due to the model's extreme matrix 

coefficient range. To avoid these issues, we used a DMDc model with 𝜖𝜖 = 2.0 for MPC. While 

this model's tracking accuracy was relatively worse, it had a more manageable matrix range. 

These values are summarized in Table 9.  

 

Model Type 𝝐𝝐 1 dt 5 dt 10 dt 15 dt Max A Value Avg. A Value 

DMDc 2.0 0.49 0.39 0.51 0.58 75 0.020 
DMDc 6.0 0.48 0.36 0.47 0.52 29,700 0.057 

DMD (+ CCK) 0.9 0.51 0.37 0.49 0.53 1,900 0.10 
 

Table 9. Comparison of Flat DMDc Koopman Models for Passive Trajectories. The MSE 
values are calculated using the same validation dataset for all models. The table also lists 
maximum and average value for each model’s A matrix. Generally, higher epsilon values 
will result in larger ranges in the A matrix values, as the RBFs can capture the volatility 

of floor contact. 

 

Both DMDc models correctly captured the actuator dynamics, represented by 𝜙𝜙𝑖𝑖,𝑡𝑡+1 =

𝜙𝜙𝑖𝑖,𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡 ∗ dt. As a result, the rows in the B matrix corresponding to the actuator states are 

nearly zero (around 10−16), except for the dt term. However, when implementing MPC, the 

DMDc models performed very poorly, which was surprising given their decent passive tracking 

performance. 
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An examination of the MPC rollout revealed nonsensical predictions (illustrated in Figure 

36). The model incorrectly predicts the wheel’s future states, so inefficient and oftentimes 

unhelpful control commands are implemented, impeding the wheel from rolling trajectory. An 

examination of multiple MPC rollouts shows the DMDc model generally predicts the wheel will 

roll forward, despite their being no physical basis for this behavior.  

 

 

Figure 36. The MPC Rollout using the DMDc, Three Actuator Koopman Model. The state at t = 2.45 
seconds is copied over from the simulation, but modified to fit the Three Actuator Model (Section 5.3). 

Future states are predicted using the linear model with control inputs. Almost immediately, the MPC roll 
out predicts the rimless wheel will turn clockwise. Due to the incorrect prediction, the wheel settles into a 
stance for the remainder of the simulation. MPC snapshots are taken two time steps apart, with dt = 0.05 

seconds. 
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Furthermore, replacing the B matrix in the DMDc model with the B matrix from the 

control-coherent Koopman model also failed to yield success. This is likely because the model 

had learned to predict trajectories where the actuators influence all the states. This situation is 

similar to training the model with x-dependency. Even zeroing the values in the A matrix 

associated with the x-position was insufficient to achieve an accurate model, as the model had 

been trained to account for the effect of the x-position influencing the dynamics of the other 

states. 
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Chapter 7 

Conclusion and Future Work 
 

In this thesis, we have detailed the creation of a linear model for an actuated rimless 

wheel, and evaluated its use for prediction and control. The primary contribution of this work is 

the linear model’s usage in linear model predictive control, and the ability to plan through 

contact using a single set of linearized dynamics—a powerful technique that enables globally 

optimal online optimization through impact events. This is an exciting result with the potential to 

revolutionize control methods for contact-rich dynamical systems. 

However, developing a contact-heavy system necessitated careful selection of the model, 

particularly for this initial implementation. Limitations of the rimless wheel model, as well as the 

methods discussed in this thesis, are linked to ongoing questions within the Koopman Operator 

community. To extend this model to legged robots (i.e. higher-order, unstable systems), we must 

address challenges related to dimensionality and the ability to capture unstable modes within a 

linear model. Potential future work could involve investigating how to model unstable models 

without allowing them to dominant, or generating models built solely for specific subspaces. 

Currently, we are working on implementing the rimless wheel model in hardware. As we 

transition to hardware, a key question arises: Will the control-coherent Koopman model and the 

time-delayed effects of inputs and ground reaction forces be sufficient for estimating real-world 

dynamics? We anticipate that generating data-driven models based on real hardware data will be 

necessary. Furthermore, error due to the control time delay effect can be mitigated with shorter 
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time steps. Images of the initial hardware setups are shown in Figure 37. Challenges in the 

hardware implementation include improving computation time for both MPC and image 

processing (for state estimation) to enable 20 Hz control inputs, and the need for actuators that 

are both fast and capable of generating sufficient force to enable rolling behaviors. 

 

 

Figure 37. Rimless Wheel Hardware Plans. Figure A) shows the gantry schematic to 
keep the rimless wheel fixed in-plane. Figure B) shows a prototype of the actuator 

housing and micro stepper linear actuators 

 

Other areas of interest include utilizing ground reaction forces and other physically 

meaningful variables as observables, as well as improving Koopman predictions over longer 

time horizons. Additionally, there is potential to extend the rimless wheel model to more 

complex motions, such as overcoming uneven terrain, navigating obstacles, or synchronizing 

motion with another wheel. The application of Koopman operator theory to robot control and 

contact dynamics is a highly promising area, offering numerous exciting directions for future 

research. 
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