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Abstract. Hyperbolic representations have shown remarkable efficacy
in modeling inherent hierarchies and complexities within data structures.
Hyperbolic neural networks have been commonly applied for learning
such representations from data, but they often fall short in preserving
the geometric structures of the original feature spaces. In response to
this challenge, our work applies the Gromov-Wasserstein (GW) distance
as a novel regularization mechanism within hyperbolic neural networks.
The GW distance quantifies how well the original data structure is main-
tained after embedding the data in a hyperbolic space. Specifically, we
explicitly treat the layers of the hyperbolic neural networks as a trans-
port map and calculate the GW distance accordingly. We validate that
the GW distance computed based on a training set well approximates the
GW distance of the underlying data distribution. Our approach demon-
strates consistent enhancements over current state-of-the-art methods
across various tasks, including few-shot image classification, as well as
semi-supervised graph link prediction and node classification.

Keywords: Gromov-Wasserstein distance · Hyperbolic neural
networks · Few-shot learning · Semi-supervised learning

1 Introduction

The success of many machine learning applications relies on effectively capturing
the geometric intricacies of complex data structures. This challenge necessitates a
careful selection of the underlying space that aligns with the inherent properties
of data. In this context, hyperbolic spaces have emerged as a popular choice
for modeling data with hierarchical structures such as lexical databases [23]
and phylogenetic trees [28]. This is attributed to their distinctive capacity to
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Fig. 1. Illustration of hierarchical structures in image data. The images are taken from
the MiniImagenet dataset.

embody exponential growth and branching patterns, a feature rooted in their
constant negative curvature. Such a geometric framework can reflect the tree-like
architectures that are ubiquitous across numerous real-world networks.

Interestingly, hyperbolic spaces also play a significant role in computer
vision [2,14], particularly in tasks like image classification and object recogni-
tion where hierarchical relationships among instances and concepts are common.
For example, within the broader category of animals, there are dogs, which fur-
ther subdivide into breeds such as bulldogs, Gordon setters, Newfoundland dogs,
etc.. This is illustrated in Fig. 1. Hyperbolic embeddings can capture these hier-
archies, thereby potentially improving classification performance and providing
more interpretable models.

In crafting hyperbolic representations from non-hyperbolic features, two main
strategies emerge: principled design and data-driven learning. The principled
approach, exemplified by methods like Sarkar’s algorithm [29], focuses on con-
structing embeddings that rigorously preserve the inherent geometric structure
from data. This method particularly excels at maintaining hierarchical rela-
tionships within the data, ensuring that the embedded representation reflects
structure of the original dataset with low distortion. On the other hand, the
data-driven approach leverages the capabilities of end-to-end neural networks to
learn the hyperbolic embedding directly from data. Such neural networks are
well-known as hyperbolic neural networks (HNNs), which are pioneered in [10].
HNNs prioritize the development of hyperbolically coherent neural operations
that are expressive and mirror the Euclidean counterparts. When dealing with
input that is primarily Euclidean, HNNs employ straightforward operations, such
as exponential maps, to transition features into the hyperbolic space, thereafter
learning to extract deep features in a manner driven by the data. This method
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adapts the embedding to specific tasks, potentially unveiling intricate patterns
and relationships inherent within data.

In our work, we aim to establish a methodology that integrates the benefits
of low-distortion embedding into data-driven learning. In the context of learning
where generalization is the goal, we can view hyperbolic embedding as a method
of embedding the data distribution into hyperbolic spaces. Therefore, we need
to compare the distributions before and after the embedding. This necessitates
a comparison of data distributions before and after embedding, which is compli-
cated by the fundamental differences in geometric principles, such as curvature
and dimensionality, that govern Euclidean and hyperbolic spaces. Direct com-
parisons between such disparate spaces are inherently complex and challenging.

To address this challenge, we rely on the Gromov-Wasserstein (GW) dis-
tance [19], a tool proven effective in comparing distributions across diverse met-
ric spaces. Specifically, we employ the Gromov-Monge (GM) formulation, an
alternative form of the GW distance, to compute the explicit transport map
between heterogeneous metric spaces. The HNN layers induce the embedding
distribution, thus serving as the transport map. Consequently, the GM formu-
lation is a more suitable approach for the corresponding HNN layers. However,
implementing the GM distance poses computational challenges due to its com-
plex constraints. Therefore, in light of this, we extend the GM-based embedding
technique introduced in [16] to compute the geometry-preserving transport map
from data distribution in Euclidean space to hyperbolic spaces.

The contribution of the current work is summarized as follows:

1. We propose a novel methodology that incorporates the GM distance into an
end-to-end learning framework for hyperbolic representation learning. This
approach ensures a more faithful representation of the intrinsic hierarchical
structures. Moreover, we verify that our approach maintains computational
efficiency by analyzing its time complexity.

2. We validate that the embedding faithfully represents an embedding of dis-
tributions from the original domain by providing an upper bound for the
sampling error. Therefore, regularization on the training sample generalizes
to the underlying data distribution.

3. We provide empirical evidence showing that our regularization strategy leads
to consistent improvements over existing baseline methods when applied to
datasets with hierarchical structures, including both image and graph data.

2 Related Works

Hyperbolic Embedding. The adoption of hyperbolic geometries for repre-
senting hierarchical connections between data points has attracted considerable
attention. The exploration began when researchers considered low-distortion
embedding of tree or tree-like graphs into the hyperbolic domain. In their sem-
inal work, Sarkar [29] showed that a tree can be embedded into the Poincaré
disk with arbitrarily low distortion. Sala et al. [28] generalized the embedding
to high dimensional Poincaré balls and discussed embedding general graphs into
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trees. Sonthalia and Gilbert [32] bypassed the intermediary step of general graph
structures, opting instead to directly infer tree architectures from the data itself.
In addition to combinatorial methods, gradient-based methods are also used in
hyperbolic embedding [23,24].

Hyperbolic Neural Networks. More recently, the advancement in hyperbolic
representation learning has evolved to be more closely aligned with specific end
tasks and specific datasets, such as text [34], images [14], biology [41], molecular
[18], and knowledge graph [6]. This has led to the emergence of hyperbolic neu-
ral networks (HNNs) as a preferred framework for learning their representations.
Numerous HNN architectures have emerged [3,5,10,11,18,24,31]. Comprehen-
sive surveys on HNN include [26,40]. These HNNs define operations that conform
with a choice of coordinate system in the hyperbolic space. However, when com-
municating between the Euclidean features and their hyperbolic embeddings,
these HNNs take very simple approaches. For instance, Ganea et al. [10] directly
used logarithmic and exponential maps at the origin, leading to unavoidable
distortions. There are also very recent works addressing representations learned
by HNNs. For instance, CO-SNE [12] reduces the dimensions of hyperbolic fea-
tures for visualization, which is an analogy to t-SNE in the Euclidean domain.
Parallel to this, Fan et al. [9] developed a systematic method for embedding
data into nested hyperbolic spaces, which not only results in dimensionality
reduction but also extends to design of HNNs. Nikolentzos et al. [25] applied
the Weisfeiler-Leman algorithm to capture hierarchy in data and built HNNs
accordingly. However, none of the above methods have considered comparing
distributions before and after embedding into the hyperbolic space.

GW Distance. GW distance, a variant of optimal transport distance, has been
widely utilized to quantify structural differences between different distributions.
Memoli provided a detailed introduction and study of GW distance in [19,20].
Subsequently, Sturm [33] presented a more in-depth mathematical exposition
of GW distance, focusing on its geodesic structure and gradient flow. Follow-
ing these foundational works, GW distance has found applications in various
fields, including computer vision [27,30], recommendation systems [17], natu-
ral language processing [1], generative models [4,16,22,35]. In particular, Lee
et al. [16] employed the GM formulation to achieve geometry-preserving dimen-
sion reduction within a generative modeling framework. The discussion on the
GM formulation can also be traced to [8,21]. Moreover, GW distance has been
applied to specific data types such as graphs [38,39] and specific neural net-
work architectures such as transformers [13]. To the best of our knowledge, GW
distance has not yet been explored in the context of hyperbolic neural networks.
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3 Methodology

3.1 Preliminaries of Hyperbolic Geometry

Hyperbolic geometry, characterized by its constant negative curvature, repre-
sents a non-Euclidean geometry essential for capturing complex hierarchical
representations. We review operations that are defined in two different isomet-
ric coordinate systems, namely the Poincaré ball (Poincaré disk) model and the
Lorentz (hyperboloid) model.

Poincaré Ball Model [10,31]. The Poincaré ball model for an n-dimensional
hyperbolic space with curvature −c is defined by

B
n
c = {x ∈ R

n : c ‖x‖ < 1, c > 0} , (1)

with the corresponding Riemannian metric given by gB = (λc
x)2I, where λc

x =
2(1 − c ‖x‖2)−1 is the conformal factor.

The analogy of a linear layer in HNN depends on two important operations,
namely Möbius addition and multiplication. The Möbius addition ⊕ is defined
as:

x ⊕c y =

(
1 + 2c 〈x,y〉 + c ‖y‖2

)
x +

(
1 − c ‖x‖2

)
y

1 + 2c 〈x,y〉 + c ‖x‖2 ‖y‖2 . (2)

The Möbius multiplication M ⊗c x is defined as:

M ⊗c x =
1√
c

tanh
(‖Mx‖

Mx
tanh−1(

√
c ‖x‖)

)
Mx

‖Mx‖ . (3)

Finally, the geodesic distance between two points x and y in the Poincaré ball
can be expressed as:

dc
B

(x,y) =
2√
c

tanh−1
(√

c ‖−x ⊕c y‖)
. (4)

Unless otherwise specified, we follow the common choice to take c = 1.

Lorentz Model [5,6]. The Lorentz model of an n-dimensional hyperbolic space
L

n is a manifold embedded in a (n + 1)-dimensional Minkowski space. More
specifically, this Minkowski space contains the same points as Rn+1, but with an
inner product 〈·, ·〉

L
defined by

〈x,y〉
L

= −x0y0 +
n∑

i=1

xiyi,x = (x0, · · · , xn),y = (y0, · · · , yn) ∈ R
n+1. (5)

The Lorentz model L
n contains points with 〈x,x〉

L
= −c, where −c is the

curvature. That is,

L
n =

{
x = (x0, · · · , xn) ∈ R

n+1 : 〈x,x〉
L

= −c, x0 > 0
}

, (6)

The geodesic distance between two points x and y in the Lorentz model Ln is
expressed as

dc
L

(x,y) =
1√
c

cosh−1 (− 〈x,y〉
L
) . (7)
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Fig. 2. Illustration of the transport map T . The feature distribution μ defined on X is
pushed forward to ν = T#μ on H.

3.2 GW Regularization

To effectively utilize HNNs for learning from data, extending the geometry-
preserving embedding technique introduced in [16], we employ a regularized
learning approach focused on preserving the intrinsic geometric structures of the
input features onto hyperbolic spaces. This involves employing a cost function
capable of comparing two measures across distinct geometric spaces.

To bridge this gap, we consider the Gromov-Wasserstein (GW) distance [19]
as it is adept at quantifying the similarity between probability distributions
defined on distinct metric spaces. For two probability distributions μ and ν in
a Euclidean feature space X and a hyperbolic space H, respectively, the GW
distance is defined as:

GW (μ, ν) : := min
π∈Π(μ,ν)

E
((x,y),(x′,y′))∼π2

[
|cX(x,x′) − cH(y,y′)|2

]
(8)

where cX and cH represent the cost functions in the two spaces, and Π(μ, ν)
denotes the set of transport plans between μ and ν, which contains all joint
distributions whose first and second marginals are given by μ and ν, respectively.
By comparing the pairwise distances between two probability distributions to
evaluate the similarity of geometric structures across different metric spaces.

When working with HNNs, an explicit map T from X to H is induced by the
HNN layers, as illustrated in Fig. 2. The minimization problem presented in (8)
can be reformulated as a Gromov-Monge (GM) distance minimization problem
concerning a map T , defined as

GM (μ, ν) := min
T#μ=ν

E
(x,x′)∼μ2

[
|cX(x,x′) − cH(T (x), T (x′))|2

]
. (9)

In an HNN, when embedding the probability distribution μ from a Euclidean
space to a hyperbolic space, we can consider minimizing the following cost over
T ∈ H, where H is a hypothesis class determined by the HNN:

GM(T ;μ) := E
(x,x′)∼μ2

[
|cX(x,x′) − cH(T (x), T (x′))|2

]
. (10)
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Fig. 3. The framework of our GW regularization.

Thus, we have minT∈H GM(μ, T#μ) = minT∈H GM(T ;μ). While the GM prob-
lem described in (9) is highly challenging due to its pushforward constraint, min-
imizing the cost function in (10) is comparatively easier, as it does not require
the pushforward constraint.

In practical implementation, we can employ the simple cost func-
tion cX(x,x′) = ‖x − x′‖2 or other cost functions such as cX(x,x′) =
log

(
1 + ‖x − x′‖2

)
. Additionally, the explicit form of cH can be derived from

Eqs. (4) and (7): we can use cH = dc
H

or cH = log (1 + dc
H
), where H = B or

H = L.
When we have data points {xi}m

i=1 sampled independently and identically
distributed (i.i.d.) from μ, we consider an empirical version of the GM distance,
namely,

GM(T ; {xi}m
i=1) =

1
m(m − 1)

m∑
i,j=1

|cX(xi,xj) − cH(T (xi), T (xj))|2 . (11)

The overall framework of our GW regularization is shown in Fig. 3. Here,
{xi}m

i=1 are the Euclidean features that are fed into the HNN layers denoted by
T , {zi}m

i=1 are the hyperbolic representations so that zi = T (xi) for each i. The
GM distance, calculated according to (11), is used as a penalty term, multiplied
with a hyperparameter β and then added to the loss function associated with
the specific task.

Generalization Analysis. In the tasks we consider, the ability to generalize
beyond the given data points is essential. Although (11) only provides a formu-
lation based on the training data, we anticipate that it will serve as an effective
approximation of (10), provided that the training set {xi}m

i=1 adequately cap-
tures the characteristics of the underlying distribution μ. This expectation is
encapsulated in the theorem we present below, which formalizes the relationship
between the pointwise formulation and its distributional approximation under
the condition of a representative sample.
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Theorem 1. Given cost functions cX and cH, suppose that there exists a con-
stant 0 < α ≤ 1 for which T satisfies the following bi-Lipschitz condition:

αcX(x,x′) ≤ cH(T (x), T (x′)) ≤ 1
α

cX(x,x′), (12)

for any x,x′ ∈ X. Let μ be a distribution defined on X and {xi}m
i=1 be i.i.d.

sampled from μ. Then,

|GM(T ; {xi}m
i=1) − GM(T ;μ)| ≤ C

(1/α − 1)2

R2
(13)

holds with probability at least 1−2 exp
(

−mC

8R4

)
where C is a constant depending

on μ and R := maxx,x′∈supp(μ) cX(x,x′).

The proof of Theorem 1 is presented in the appendix.

Complexity Analysis. Since the time complexity for calculating each
Euclidean distance is O(n) and the time complexity for calculating each hyper-
bolic distance (in either the Poincaré ball model or the Lorentz model) is O(n),
the time complexity for calculating the GW regularization term is O(nm2).

Note that, if we only consider linear layers in an L-layer Vanilla HNN,
the time complexity is O(mn2L). In the few-shot learning task and the semi-
supervised graph node-level tasks that we consider in this paper, the number of
data points m is usually smaller than or comparable with n. Moreover, in tasks
such as link prediction, one also needs to compare pairs of data points, leading
to a time complexity of O(mn2L) in computing the task loss. Therefore, adding
the regularization term will not lead to change of the order of time complexity.

4 Experiments

To validate the effectiveness of the GW regularization method, we conduct exper-
iments on both image datasets and graph datasets. We present results on few-
shot image classification in Sect. 4.1 and results on graph node classification and
link prediction in Sect. 4.2. All the presented experiments are implemented on
a server with RTX 4090 (24 GB) GPUs, where each implementation runs on a
single GPU. The implementation of our proposed methods can be accessed at
https://github.com/yyf1217/GW-Regularization.

4.1 Few-Shot Image Classification

We consider the important task of few-shot image classification where the goal
is to recognize new categories with very few labeled examples per class. Unlike
supervised image classification, this task aims to generalize from a small number
of examples, typically one to five images per class. Learning structures of images
is crucial since there is very limited labeled data.
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Fig. 4. The framework of the GW regularized hyperbolic ProtoNet model.

Datasets. We consider two widely used image datasets, namely MiniImageNet
[36] and Caltech-UCSD Birds-200-2011 (CUB) [37]. These datasets have been
used in [14], where the hyperbolic ProtoNet model excels Euclidean baselines.
The MiniImageNet dataset is a subset of the ImageNet dataset [7]. It comprises
images from 100 classes, with 600 images per class. The classes have a 64/16/20
split for training/validation/test. The CUB dataset consists of 200 categories of
bird images, totaling 11,788 pictures. In this dataset, the training/validation/test
split is 100/50/50.

Setting. We apply our GW regularization on the hyperbolic ProtoNet model
[14], which primarily consists of convolutional neural network (CNN) layers used
for feature extraction from Euclidean image data and subsequent HNN layers for
classification. In [14], the HNN layers are taken to be a simple exponential map
from the Euclidean space to the Poincaré ball. In our implementation, we utilize
the publicly available code for the hyperbolic ProtoNet model from https://
github.com/leymir/hyperbolic-image-embeddings.

For clarity, we illustrate the framework for this task in Fig. 4, which is based
on Fig. 3. We take the features {xi}m

i=1 from the output of the CNN layers, and
then the HNN layers process them into {zi}m

i=1. Following this, the hyperbolic
distance between each hyperbolic embedding zi and the origin of the Poincaré
ball is computed according to (4), which is then used to calculate the maximum
class probability. Finally, the cross-entropy loss is computed using the maximum
class probability and the labels. We add β GM(T ; {xi}m

i=1) to the cross-entropy
loss to formulate our regularized loss function.

We consider various CNN architectures including Conv4, ResNet10,
ResNet12, and ResNet18. The HNN layers within the model incorporate linear
layers from [10]. Additionally, ReLU is used as the activation function across the
model. For Conv4, the embedding dimension is set to 1,600, while for ResNet10,
ResNet12, and ResNet18, the embedding dimension is set to 512. The initial
learning rate is 0.001. We consider both the 1-Shot 5-Way and 5-Shot 5-Way set-
tings, which means there are five classes involved for the task and only one/five
examples per class for training. In all experiments for the 1-Shot 5-Way task, a
consistent curvature parameter of −0.08 is employed. Similarly, for the 5-Shot
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5-Way task, we uniformly set the curvature to −0.01 throughout all experiments.
Both curvatures agree with the recommened settings in the original hyperbolic
ProtoNet. The hyperparameter β is selected according to the validation set. We
report the initial learning rate as well as the best β in Table 1.

Table 1. Hyperparameters used in few-shot image classification. “ResNet” abbreviated
as “Res” due to space constraints.

Initial learning rate (lr) β

Conv4 Res10 Res12 Res18 Conv4 Res10 Res12 Res18

MiniImageNet 1-Shot 5-Way 0.0005 0.001 0.001 0.001 0.6 0.5 0.1 0.7

5-Shot 5-Way 0.01 0.001 0.001 0.001 14 0.1 0.5 0.5

CUB 1-Shot 5-Way 0.001 0.001 0.001 0.001 0.02 0.015 0.15 0.1

5-Shot 5-Way 0.01 0.001 0.001 0.001 0.07 0.01 0.25 0.1

Results. We present our numerical results for both the 1-Shot 5-Way and 5-
Shot 5-Way settings in Table 2. We randomly sample 10,000 data points from
the test set to evaluate the performance of the model and report 95% confidence
intervals for all results. Each entry reports the average classification accuracy,
including means and standard deviations.

Table 2. Accuracy (%) results for few-shot image classification.

MiniImageNet CUB

1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot 5-Way

Conv4 53.77 ± 0.20 71.33 ± 0.16 64.66 ± 0.23 80.29 ± 0.16

Conv4+GW 55.57 ± 0.22 73.04 ± 0.16 68.67 ± 0.23 80.54 ± 0.16

ResNet10 56.45 ± 0.21 65.39 ± 0.17 72.01 ± 0.22 80.75 ± 0.15

ResNet10+GW 57.50 ± 0.22 67.62 ± 0.17 72.67 ± 0.22 83.73 ± 0.14

ResNet12 55.96 ± 0.22 70.32 ± 0.17 75.77 ± 0.22 82.90 ± 0.15

ResNet12+GW 56.95 ± 0.22 73.04 ± 0.16 77.24 ± 0.21 85.66 ± 0.14

ResNet18 57.04 ± 0.22 68.43 ± 0.16 71.86 ± 0.22 85.31 ± 0.13

ResNet18+GW 58.51 ± 0.22 71.64 ± 0.16 72.64 ± 0.22 85.83 ± 0.13

From the results, we observe that our GW regularization consistently boosts
the accuracy of the model. This improvement is evident in both datasets and
both scenarios, regardless of the underlying CNN architecture. For most CNN
architectures, the improvement is more evident in the 5-Shot 5-Way scenario
than in the 1-Shot 5-Way scenario. We believe that this can be attributed to the
increased number of training instances available in the 5-Shot scenario, which
provides a richer structure that GW regularization can leverage.
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Runtime. We report the average run time for training one epoch in Table 3. As
anticipated, incorporating GW regularization results in extended epoch training
times. However, the increase in runtime is not significant, aligning with the time
complexity analysis in Sect. 3.2. This observation underscores the efficiency of our
GW regularization approach, ensuring that the added computational demand
does not impose a significant burden on the overall training process.

Table 3. Average runtime (in seconds) for training one epoch in few-shot image clas-
sification.

MiniImageNet CUB

1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot 5-Way

Conv4 31.2 25.2 32.4 32.9

Conv4+GW 33.6 26.4 35.1 32.9

ResNet10 37.2 28.8 38.4 34.9

ResNet10+GW 40.8 34.8 43.2 38.4

ResNet12 42.0 36.0 46.8 42.0

ResNet12+GW 45.6 40.8 50.4 45.6

ResNet18 55.2 43.2 60.0 52.8

ResNet18+GW 57.6 49.2 62.4 57.6

4.2 Semi-supervised Link Prediction and Node Classification

We consider graph link prediction and node classification, which are widely
benchmarked semi-supervised tasks in graph deep learning literature.

Datasets. We consider nine datasets for node classification, namely Cora, Dis-
ease, Airport, Cornell, Texas, Wisconsin, Chameleon, Squirrel, and Actor. For
the first three datasets, namely Disease, Airport, and Cora, we also perform link
prediction. We briefly introduce the datasets in the appendix and summarize the
statistics of the graphs in Table 4.

Table 4. Statistics of graph datasets.

Disease-LPDisease-NCAirport Cora Cornell TexasWisconsin Chameleon Squirrel Actor

# nodes 2,665 1,044 3,188 2,708 183 183 251 2,277 5,201 7,600

# edges 2,265 2,265 15,837 4,488 280 295 466 31,421 198,493 26,752

# features 11 1,000 11 1,433 1,703 1,703 1,703 2,325 2,089 931

# classes N/A 2 4 7 5 5 5 5 5 5

In link prediction tasks, we randomly split edges into 85%/5%/10% for
training, validation, and test sets. For node classification tasks, we use a
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70%/15%/15% splits for Airport, Cornell, Texas, Wisconsin, Chameleon, Squir-
rel, and Actor, we use 30%/10%/60% splits for Disease, and we use standard
splits with 20 train examples per class for Cora. The above split settings agree
with standard settings in the baseline papers.

Setting. For the graph datasets, we consider the following three HNNs: the
vanilla HNN [10], HGCN [5], and HyboNet [6]. We utilize the publicly available
code for HNN and HGCN from https://github.com/HazyResearch/hgcn and
HyboNet from https://github.com/chenweize1998/fully-hyperbolic-nn.

For each model, we apply GW distance to the input node features and their
hyperbolic representations after applying the Euclidean-to-hyperbolic operation.
The regularization framework is the same as Fig. 3.

In these experiments, the HNN models share a common architecture consist-
ing of HNN layers and output layers. These models employ different HNN layers
to extract features from graph data and generate hyperbolic embeddings {zi}m

i=1.
Specifically, the Vanilla HNN and HGCN employ the Poincaré model to build
linear layers and activation. HGCN also has aggregation operation, facilitating
message passing. Differently, HyboNet employs the linear layers and aggregation
in the Lorentz model. The output layers are used to accomplish various tasks. For
node classification, the obtained hyperbolic embeddings are directly projected to
the Euclidean space. A linear layer is then used to predict the class probabilities,
with which the negative log-likelihood loss is computed. For link prediction, the
hyperbolic distances between the hyperbolic embeddings are computed. Subse-
quently, the Fermi-Dirac algorithm [15] is employed to transform the hyperbolic
distances into the edge probabilities. Finally, cross-entropy losses are computed
using these edge probabilities and the true edge labels.

For simplicity, the curvature of the hyperbolic space is set as −1 for all
experiments, which is a common setting for graph datasets. Tables 5 and 6 list
hyperparameters such as initial learning rate, the number of the HNN layers,
weight decay, dropout, and embedding dimensions. The hyperparameter β from
validation is also listed for different datasets.

Table 5. Hyperparameters used in the Vanilla HNN and HGCN.

Disease Airport Cora Cornell TexasWisconsin Chameleon Squirrel Actor

LP NC LP NC LP NC NC NC NC NC NC NC

Initial lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

# layers 2 2 2 2 2 2 2 2 2 2 2 2

Weight decay 0.0 0.001 0.0005 0.0 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Dropout 0.0 0.1 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

# embeddings 3 16 16 16 16 16 16 16 16 16 5 5

HNN β 0.9 0.08 2 1.25 0.5 0.35 0.25 0.1 0.15 0.02 0.001 0.03

HGCN β 0.3 0.09 2 1.5 0.1 0.6 0.25 0.15 0.2 0.08 0.01 0.03
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Table 6. Hyperparameters used in HyboNet.

Disease Airport Cora Cornell TexasWisconsin Chameleon Squirrel Actor

LP NC LP NC LP NC NC NC NC NC NC NC

Initial lr 0.005 0.005 0.01 0.02 0.02 0.02 0.005 0.005 0.005 0.005 0.01 0.01

# layers 2 4 2 6 2 3 2 2 2 2 2 2

Weight decay 0.0 0.0 0.0 0.0001 0.001 0.01 0.0 0.0 0.0 0.0 0.001 0.001

Dropout 0.0 0.1 0.0 0.0 0.7 0.9 0.2 0.2 0.2 0.2 0.2 0.2

# embeddings 16 16 16 16 16 16 16 16 16 16 16 16

β 0.3 0.07 1.5 1.1 0.25 0.25 0.13 0.1 0.1 1.3 2.5 0.01

Results. For the link prediction task, we report the AUC scores in Table 7.
For the node classification task, we report the F1 scores, in Table 8. Each score
reports the average from three random runs as well as the standard deviation.
For clarity, we just use “HNN” in place of the Vanilla HNN in the tables.

Table 7. AUC (%) results of the link prediction task.

Disease Airport Cora

HNN 92.83 ± 1.83 93.56 ± 0.30 88.80 ± 1.29

HNN+GW 94.45 ± 0.58 94.23 ± 0.33 89.76 ± 2.07

HGCN 92.41 ± 1.78 93.42 ± 0.15 93.37 ± 0.15

HGCN+GW 93.79 ± 1.15 95.81 ± 0.02 93.48 ± 0.22

HYBONET 95.65 ± 0.57 96.18 ± 0.05 92.04 ± 0.37

HYBONET+GW 96.58 ± 0.57 96.44 ± 0.02 93.33 ± 0.22

From Table 7, it is evident that our GW regularization consistently enhances
the AUC scores across different network architectures and across all datasets.
Similarly, Table 8 showcases that GW regularization again demonstrates a posi-
tive impact on model performance across various datasets and architectures. In
many scenarios of node classification, GW regularization actually achieves sub-
stantial improvement, such as HNN+GW for Disease, HGCN+GW for Cornell
and HyboNet+GW for Wisconsin.

Runtime. We report the average run time for training one epoch for link pre-
diction in Table 9. Similarly to the previous experiment, the runtime for GW
regularized training is longer, but not significantly. This again aligns with the
complexity analysis in Sect. 3.2.
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Table 8. F1 (%) result of the node classification task.

Disease Airport Cora Chameleon Squirrel

HNN 58.40 ± 2.53 87.40 ± 1.34 53.73 ± 0.91 71.43 ± 1.63 47.89 ± 2.21

HNN+GW 65.62 ± 1.98 89.38 ± 0.67 55.33 ± 0.35 72.53 ± 0.19 49.44 ± 1.05

HGCN 93.04 ± 1.64 86.96 ± 0.22 79.47 ± 1.01 77.72 ± 0.90 51.79 ± 0.58

HGCN+GW 95.28 ± 0.40 87.91 ± 0.72 80.00 ± 0.62 79.18 ± 1.64 52.70 ± 1.24

HYBONET 85.70 ± 0.60 93.13 ± 0.19 73.53 ± 0.75 82.05 ± 0.55 74.04 ± 2.42

HYBONET+GW 87.66 ± 1.21 94.46 ± 0.20 79.40 ± 0.95 83.58 ± 0.28 77.27 ± 0.78

Cornell Texas Wisconsin Actor

HNN 93.94 ± 1.31 94.69 ± 1.31 93.21 ± 3.86 42.63 ± 1.73

HNN+GW 95.45 ± 2.28 96.97 ± 1.32 98.15 ± 1.85 45.03 ± 1.73

HGCN 83.33 ± 3.47 78.79 ± 4.73 75.31 ± 2.83 36.39 ± 1.00

HGCN+GW 88.64 ± 2.28 81.82 ± 3.94 83.33 ± 1.86 39.19 ± 0.67

HYBONET 78.79 ± 4.73 67.42 ± 3.47 74.07 ± 1.86 45.74 ± 2.13

HYBONET+GW 81.82 ± 3.93 74.24 ± 1.31 80.87 ± 3.86 49.64 ± 0.38

Table 9. Average runtime (in seconds) for training one epoch in link prediction.

Disease Airport Cora

HNN 0.0301 0.0881 0.0549

HNN+GW 0.0313 0.0884 0.0563

HGCN 0.0489 0.1075 0.0743

HGCN+GW 0.0505 0.1078 0.0747

HYBONET 0.0301 0.0631 0.0374

HYBONET+GW 0.0323 0.0639 0.0379

5 Conclusion

In this paper, we have delved into the integration of the GW distance as a novel
regularization term within the realms of hyperbolic neural networks, with a par-
ticular emphasis on leveraging the GM formulation. This approach has allowed
for a sophisticated comparison of distributions across the Euclidean space and
the hyperbolic space, capturing the essence of the underlying structures while
not increasing the order of the time complexity. We have demonstrated that
the hyperbolic embeddings of the data points resonate closely with distributions
where they are sampled from.

Our regularization method has been rigorously tested and validated across
diverse datasets including image data for the few-shot classification task and
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graph data for the semi-supervised link prediction and node classification tasks,
showcasing a uniform elevation in performance metrics.

Our future work involves more efficient methods in large scale settings, where
the number of instances is much larger than feature dimensions. Additionally, we
are intrigued by the potential of integrating our GW regularization framework
with emerging geometric deep learning architectures for complex data structures,
where the flexibility with the choice of underlying spaces is crucial.
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