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Transverse links, open books, and
overtwisted manifolds

Rima Chatterjee

ABSTRACT. We prove that transverse links in any contact manifold (M, &)
can be realized as a sub-binding of a compatible open book decomposition.
We define the support genus of a transverse link and prove that the support
genus of a transverse knot is zero if there is an overtwisted disk disjoint from
it. Next, we find a relationship between the support genus of a transverse link
and its Legendrian approximation.
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1. Introduction

Knot theory associated to contact 3-manifolds has been a very interesting
area of research. We say a knot in a contact 3-manifold is Legendrian if it is
tangent everywhere to the contact planes and transverse if it is everywhere
transverse. Since Eliashberg’s classification of overtwisted contact structures
[7], the study of overtwisted contact structures and the knots and links in them,
has been minimal. However, in recent years overtwisted contact structures have
played central roles in many interesting applications such as building achiral
Lefschetz fibrations [6], near symplectic structures on 4-manifolds [15] and
many more. Thus the overtwisted manifolds and the knot theory associated to
them has generated significant interest. There are two types of knots/links in an
overtwisted contact structure, namely loose and non-loose knots (Also known
as non-exceptional and exceptional knots respectively).

A link in an overtwisted contact manifold is loose if its complement is over-
twisted and non-loose otherwise. The first explicit example of a non-loose knot is
given by Dymara in [5]. In general, non-loose knots appear to be rare. Although
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it is known that there exists a non-loose knot in every 3-manifold ([14],[17])
it was not known if every knot type has a non-loose representative until very
recently. In our upcoming paper [3], we found conditions when a knot type will
have non-loose representatives in any contact 3-manifold. Legendrian approx-
imation and transverse push-off operations are known to be very useful tools
in contact geometry to go back and forth between Legendrian and transverse
representatives of the same knot type. While it is known that a non-loose trans-
verse knot will always have a non-loose Legendrian approximation, surprisingly,
a non-loose Legendrian knot can have a transverse push-off which is loose [13].

In [13], Etnyre coarsely classified loose, null-homologous Legendrian and
transverse knots. In a previous paper, the author extended that result for Legen-
drian and transverse links [4]. The support genus of a Legendrian link is defined
to be the minimum genus over all open books compatible with the underlying
contact structure such that the Legendrian link can be put on the page and the
page framing and the contact framing agree. The author proved that a coarse
equivalence class of Legendrian links has support genus zero and constructed
examples to show that the converse is not true [4]. While support genus of a
Legendrian knot was defined in [19], nothing was mentioned about transverse
knots. This paper investigates transverse knots and links in contact manifolds
and associates any transverse link in a contact manifold to a compatible open
book depomposition. The following is the main result of the paper:

Theorem 1.1. Suppose T is any transverse link in (M, §). Then T is transversely
isotopic to the sub-binding of some open book (B, 7r) supporting (M, &).

While it is well-known that any transverse knot can be associated to a com-
patible open book [1], it is not so obvious and much more complicated for the
links as the proof of the above theorem shows.

Theorem 1.1 allows us to define the support genus of a transverse link T
following the support genus of a Legendrian link. The support genus of a trans-
verse link in (M, §) is defined to be:
sg(T)=min{g : where g is the minimum genus of a page of an open
book (Z, ¢) supporting (M, &) such that T can be realized as a sub-binding of
(= )

Using the well-known relation of Legendrian and transverse links, we could
relate the support genus of a transverse link with the support genus of its Legen-
drian approximation.

Theorem 1.2. Suppose T is a transverse link in (M, &) and L is its Legendrian
approximation such that its contact framing is less than or equal to the page
framing. Then sg(T) = sg(L).

The above theorem turns out to be quite surprising as one might hope a trans-
verse link to have a support genus greater than its Legendrian approximation.
Onaran proved the following:
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Theorem 1.3 ([19]). Suppose L is a loose, null-homologous Legendrian knot.
Then sg(L) = 0.

Using Theorem 1.2, as a corollary to the above result, we could prove the
following.

Corollary 1.4. Suppose T is a loose, null-homologous transverse knot in (M, &).
Then sg(T) = 0.

It is well-known that non-loose transverse knots have all of their Legendrian
approximations non-loose. But a non-loose Legendrian can have loose transverse
push-off. Non-loose Legendrian unknots do not have any non-loose transverse
push-off [13]. On the other hand, in [8] the authors found examples of non-loose
transverse torus knots in certain overtwisted contact structures which appear
as transverse push-offs of non-loose Legendrian in the same contact structure.
But they also have examples where the transverse push-offs of the torus knots
become loose. Nothing is known about the conditions that can guarantee non-
loose transverse push-off. Non-zero support genus of a Legendrian knot could
be an obstruction for a transverse push-off to be loose. We ask the following
question:

Question: If a non-loose Legendrian knot has sg > 0 then is its transverse
push-off always non-loose?

Organization of the paper. The paper has been organized in the following
way: In section 2, we had a brief discussion of contact geometry and open book
decomposition. In section 3, we proved our main result Theorem 1.1 and end
with a proof of Theorem 1.2 and Corollary 1.4.

Acknowledgement. Iwould like to thank John Etnyre and Shea Vela-Vick for
several enlightening conversations. I would also like to thank the anonymous
referee for their helpful suggestions and insightful comments. This research
is partially supported by NSF Grant 1907654 and the SFB/TRR 191 “Symplec-
tic Structures in Geometry, Algebra and Dynamics, funded by the Deutsche
Forschungsgemeinschaff (Project- ID 281071066-TRR 191)”.

2. Basics on contact geometry

In this section, we briefly mention the preliminaries of contact geometry and
open book decompositions. For more details the reader should check [11], [9]
and [12].

2.1. Contact structures. A contact structure & on an oriented 3-manifold M
is a nowhere integrable 2-plane field and we call (M, &) a contact manifold.
We assume that the plane fields are co-oriented, so £ can be expressed as the
kernel of some global one form «a. In this case, the non-integrability condition
is equivalent to o A da > 0. There are two types of contact structures - tight
and overtwisted. An overtwisted disk is a disk embedded in a contact manifold
(M, &) such that £ is tangent to the disk along the boundary. We call a contact
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manifold overtwisted if it contains an overtwisted disk. Otherwise we call it
tight.

Though only few results are known about classifying tight contact struc-
tures on manifolds, overtwisted contact structures are completely classified by
Eliashberg.

Theorem 2.1. (Eliashberg, [7])Two overtwisted contact structures are isotopic if
and only if they are homotopic as plane fields. Moreover, every homotopy class of
oriented 2-plane fields contains an overtwisted contact structure.

2.2. Legendrian links. A link L smoothly embedded in (M, §) is said to be
Legendrian if it is everywhere tangent to . For the purposes of this paper, by
classical invariants of a link we refer to the classical invariants of its components.
To define the classical invariants all the components of the link must be null-
homologous. The classical invariants of a Legendrian knot are the topological
knot type, Thurston-Benniquin invariant tb(L) and rotation number rot(L). The
invariant tb(L) measures the twisting of the contact framing relative to the
framing given by the Seifert surface of L. The other classical invariant rot(L)
is defined to be the winding of TL after trivializing & along the Seifert surface.
Stabilization of a link can be done by stabilizing any of the link components.

/r i»u
N &»L,

FIGURE 1. Stabilizations of a Legendrian knot.

— » L

By the standard neighbourhood theorem of a Legendrian knot, locally one can
identify any Legendrian link component of L with the x-axis in R3. Stabilization
is a local operation as shown in Figure 1. The modification on the top right-side
is called the positive stabilization and denoted as L.,. The modification on the
bottom right-side is known as negative stabilizations and denoted as L_. It does
not matter which order the stabilizations are being done, it just matters where
those are being done. The effect of the stabilizations on the classical invariants
are as follows:

tb(L,)) =tb(L)—1 and rot(L,) = rot(L)+ 1.

2.3. Transverse link and its relationship with a Legendrian link. A link
T in (M, £) is called transverse (positively) if it intersects the contact planes
transversely with each intersection positive. By classical invariant of a transverse
link, we will refer to the classical invariants of its components. There are two
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classical invariants for transverse knots, the topological knot type and the self-
linking number sl(T). Self-linking number is defined for null-homologous knots.
Suppose X is a Seifert surface of a transverse knot. As X[ is trivial, we can find
a non-zero vector field v over X in €. Let T/ be a copy of T obtained by pushing
T slightly in the direction of v. The self-linking number sI(T) is defined to be
the linking number of T with T’.

Legendrian and transverse links are related by the operations known as trans-
verse push-off and Legendrian approximation. The classical invariants of a
Legendrian link component and its transverse push-off are related as follows:

sI(T,.) = tb(L) F rot(L)

where T, denotes the positive and negative transverse push-offs. In this paper,
if we mention a transverse push-off it is always the positive transverse push-
off unless explicitly stated otherwise. Note that, while a transverse push-off is
well defined, a Legendrian approximation is only well defined up to negative
stabilizations.

2.4. Open book decompositions and contact structures. Recall an open
book decomposition of a 3-manifold M is a triple (B, Z, ) where B is a link in M
such that M \ B fibers over the circle with fiber £ and monodromy ¢ so that ¢ is
identity near the boundary and each fiber of the fibration is a Seifert surface for B.
By saying ¢ is the monodromy of the fibration we mean that M\ B = £x[0,1]/ ~
where (x,1) ~ (¢(x),0). The fibers of the fibration are called pages of the open
book and B is called the binding. Note that, given a diffeomorphism ¢ of the
surface X that is fixed near the boundary one might form a mapping torus and
glue in solid tori to build a closed 3-manifold having an open book decomposion
(Z, ). So from now on we will drop the term B from the notation and use the
pair (Z, ¢) as the open book.

Given an open book (Z, ¢) for M, let £’ be £ with a 1-handle attached. Suppose
c is a simple closed curve that intersects the co-core of the attached 1-handle
exactly once. Set ¢’ = poD}, where D] is a right handed Dehn-twist along c.
The new open book (¥/, ¢") is known as the positive stabilization of (Z, ¢). If we
use D instead, that will be called a negative stabilization. For details check [10].

We say a contact structure £ = kera on M is supported by an open book
decomposition (Z, ¢) of M if

(1) da is a positive area form on the page of the open book.
(2) a(v) > 0, for each oriented tangent vector to the binding.

Given an open book decomposition of a 3-manifold M, Thurston and Winkelnkem-
per [20] showed how one can produce a compatible contact structure. Giroux
proved that two contact structures which are compatible with the same open
book are isotopic as contact structures [18]. Giroux also proved that two contact
structures are isotopic if and only if they are compatible with open books which
are related by positive stabilizations. Thus positive stabilizations of an open
book do not change the contact structure it supports, but this is not the case for
negative stabilizations.
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It is well known that every closed oriented 3-manifold has an open book
decomposition. We can perform an operation called Murasugi sum to connect
sum two open books and produce a new open book. An interested reader should
check [12] for details.

3. Transverse links and open book decomposition

We can always associate a Legendrian link in a contact manifold with a
compatible open book by putting the Legendrian link on the page of the open
book such that the page framing and the contact framing agree. Check [12] for
how to do it. But it is not so obvious in the case of transverse links. While Baker
and Etnyre showed that we can make any transverse knot a part of a binding of
a compatible open book in [1], it turns out to be much more complicated for a
transverse link. We give an explicit proof that any transverse link in any contact
manifold can be associated with a compatible open book as mentioned above.

Theorem 3.1. Let T be any transverse link in (M, §). Then T is transversely
isotopic to a sub-binding of some open book (T, ¢) supporting (M, &).

In [1], the authors prove the following lemma which becomes crucial in the
proof of our main theorem.

Lemma 3.2 ([1]). Let(Z, ¢) be an open book decomposition for a contact manifold
(M, &) with binding L. Assume K is an oriented Legendrian knot on a page of the
open book decomposition such that the page framing and the contact framing
agree. Lety be an arc on the page running from one binding component of the open
book decomposition to the knot K and approaching the knot K from the right. Set
a to be a curve which runs from L along y around K and back to L along a parallel
copy of y. The open book (2, ¢.) obtained from (X, ¢) by positively stabilizing
along a has a binding component B that is the transverse push-off of K.

For notational purposes, we will be using the word “to the right” in the
following sense: an arc “to the right” of a link component will imply that the
orientation of the link component followed by the orientation of the arc agrees
with the orientation of their intersection point on the page. A setof arcs I' =
{¥1, 72, --- ¥} being “to the right of L” means that each of the y; lies to the right
of L; where L; is the i'* link component.

Proof of Theorem 3.1. Suppose T is any transverse link in (M, £) and L is its
Legendrian approximation. Now we can put L on the page of an open book
supporting (M, &). There are several ways to put a Legendrian link on the page
of some supporting open book such that the page framing and contact framing
agree (Corollary 4.23 in [12]). Observe that all of the components have a fixed
orientation. There are several cases to consider here and we will prove the
theorem for each of the cases. Also for notational purposes, we will call two link
components ‘linearly dependent’ if they are parallel copies of one another on
the page of the open book. Otherwise, they will be ‘linearly independent’.
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FIGURE 2. (a) A planar open book and the disjoint arcs. (b)
Enlarged view of the region inside the box in disjoint arcs lying
“to the right".

Remark 3.3. Note that we might not be able to put the Legendrian link L on the
page of every supporting open book of (M, &). For example we can not Legendrian
realize an unknot on the open book (D, id) supporting (S3, £,4). But we can always
find one where we can Legendrian realize it. We start with that particular open
book.

3.1. Case 1(a). [(Z, ¢) is planar and no two link components are linearly de-
pendent] If each of the link components bounds exactly one binding component,
then clearly that binding component is its transverse push-off and we are done.
If not, we start by finding a set of disjoint arcs {y, ... ,,} such that each y; runs
from the closest boundary component of L; to L; and stays “to the right". Clearly,
if all the link components are linearly independent, we can easily find such
a set where each of the arcs y; is disjoint from L; for j # i irrespective of the
orientation of the link components. See Figure 2(a). Let c; be the arc that runs
from the binding component B; along y; around L; and back to B; following a
parallel copy y; for each i. Next we positively stabilize B; along c; (notice, here ¢;
we mean c;U core of the attaching one handle) and find a link component L that
runs around the attaching 1-handle exactly once and is topologically isotopic to
the link component L; in the whole manifold. Legendrian realize Llf . Clearly the
new boundary component Blf is the transverse push-off of Llf . See Figure 2(b).
By our choice of ;, L is the negative stabilization of L; [1]. Thus they have
transversely isotopic transverse push-offs. So B; is L;’s transverse push-off as
well. The new open book will be (X', oD,,). After doing the Dehn twist along
all such ¢;’s we find a n-component link B’ such that B is the transverse push-off
of L. The new monodromy will be given by ¢oD. o...D. oD, . By the well-
definedness of transverse push-off, B is transversely isotopic to T. Observe that,
as all of the ¢;’s are disjoint from each other, the order of Dehn twist does not
matter.
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FIGURE 3. (a) A planar open book where L; has k parallel copies.
(b) A local picture with two parallel components. We stabilize
the open book along one of the innermost boundary component.
(c) The new boundary component is Bil. Now choose yl.z on the
stabilized open book which only intersects Ll.l.

3.2. Case 1(b). [(Z, ¢) is planar and some of the link components are parallel
copies of one another] Suppose L; has k parallel copies and we will call them
L{ for j = 1,2,...k. We will treat this case differently. In this case either all
the link components are oriented similarly or some of them can have opposite
orientations.

3.2.1. Case 1(b)(i). First we consider the case where all Lé"s are oriented
similarly. Check the local picture Figure 3. Choose the link component that
has a boundary component closest to it so that the arc yi1 lies “to the right”. It
can be the outermost or the innermost Li.‘ according to the orientation. Without
loss of generality, we assume it to be the innermost component and call it Ll.l.
Let B; be its closest boundary component. We call the other components Lf
where k = 2,3... and order them from innermost to outermost. Now we find
ci1 using yl.l as before and positively stabilize the open book along B; and find
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FIGURE 4. (a) A planar open book with linearly dependent link
components and distinct orientations. (b) A local picture of
the stabilized open book. (c) Push the components over the
attaching one handle. L{ ~ denotes the negatively stabilized
component. Now use the new boundary component B’ to find
the arc 7’; to the right.

Bi1 as the transverse push-off of the negatively stabilized Ll.1 as mentioned in
subsection 3.1. Once we find Bl.l, we follow the same procedure on the new open
book (T, ¢ODci1) and find an arc yiz that runs from B; to Ll.2 and stays to the right.
Now notice here, this arc could possibly only intersect Ll.1 and no other link
component. As we have already dealt with Ll.l, this does not create any problem.
Now use yl.z to find Bl.2 using the same procedure as before. Inductively, doing
so we find a k-component link Bi1 U... B;‘ such that Ll.1 Lo Lﬁ‘ has transverse

push-off transversely isotopic to Bi1 U... Bﬁ‘ . We can do this locally for all the link
components which are not linearly independent. Notice, as the curves intersect
each other, we strictly need to maintain the order of Dehn twist in this case.

3.2.2. Case 1(b)(ii). In this case, some of the link components are oriented
opposite and thus we cannot use the same boundary component for all of them
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like we did in subsubsection 3.2.1. First we choose a link component Lé‘ such
that there exists an arc that joins Lf to its closest boundary component B;, lies

to the right and is disjoint from all other L{ ’s for j # k. It can be the innermost
or outermost link component depending on the orientation. Without loss of
generality, suppose it is the outermost component and call it Ll.1 and the arc yl.l.

We name the other parallel components L{ where j = 2,3,... as we move from
the innermost component to outermost component. Check Figure 4. Now we
find cl.1 as before and positively stabilize B; along it. Now we have a new boundary
component Bi1 which will be transversely isotopic to the transverse push-off of
L]i. Now for the next parallel component L2, if it has the same orientation, we
can easily find an arc yiz that lies “to the right”, intersects Ll.1 and no other link
component. We repeat this process step by step until we find a component which
has a different orientation. Suppose L{ is the link component with different
orientation. Notice, now we can not find an arc that lies to the right and is
disjoint from Lﬁ where [ > j. To fix this problem, we first positively stabilize the
open book along the boundary component B; along a boundary parallel curve
and push all Li."s over the attaching 1-handle where k = 1, 2.... j. This negatively

stabilizes L{ . So L{ and L,/ will have isotopic transverse push off. Now using
the new boundary component Blf coming from the stabilization, we can find an

arc y] that lies “to the right” of L/ and is disjoint from all L! for I > j. Check
Figure 4(c). Now we can continue using Blf for all the link components until we
find a link component that is oriented differently. Inductively, doing so will give
us a transverse link that is a sub-binding of the open book.

3.3. Case 2(a). [(Z,,¢) has g > 0 and all the link components are linearly
independent]

This is an easy case to deal with. Here we can have all link components of
the same type (Figure 5) or different type (Figure 6). But irrespective of the
types and orientation clearly there exists a set of disjoint arcs I' = {y1,...¥,,}
that lies on the “right” of L and runs from L; to B as shown in Figure 5(a) and
Figure 6(a). Now we will use I' to find a set of disjoint closed curves {cy, ¢,, ... ¢,,}
like before and stabilize B along ¢;’s for every i = 1, 2, ... n. Finally we will find
an n component link B’ = LI | B; as before which is the transverse push-off of L
for the same reason and thus B’ is transversely isotopic to T. The new open book
will have monodromy ¢oD, o---D, oD, and as all the curves {c;,c,, ..., C,}
are disjoint from the link components the order of Dehn twist does not matter
in this case.

3.4. Case 2(b). [(Z,,¢) has g > 0 and not all the link components are linearly

independent] Suppose L; has k parallel copies and we call them L{ for j =
1,2, ... k. This can have the following two sub cases.

3.4.1. Case 2(b)(i). [If all the components are oriented similarly]
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3(a) 3(b)

FIGURE 5. All possible cases where the link components are of
the same type. On the left, the set of disjoint arcs that lie “to the
right”. On the right the resulting open book with the transverse
link L | B;.

We consider the local picture Figure 7(b) where are link component has the
same orientation. Choose the component which is closest to B, call it Ll.1 and

find an arc yl.l that stays to its right. Notice, this arc does not intersect any of the

L{ ’s where j # 1. Do the same procedure as before and find a new boundary
component B/. We have the new open book (B B!, %/, ¢oD,1). On this new

open book, choose an arc yl.z which can only possibly intersect cl.1 (the closed
curve we found using yl.l) and Ll.l. We iterate this process step by step. This will
allow us to find a ordered set of simple closed curves {cil, cl.z, . cl’.‘} where c¥

1

only possibly intersects ¢ and L] for j = 1,2,...,k — 1. Thus if we maintain
the order and do the Dehn twist step by step that will not change the other link
components we have not dealt with in the previous steps. We finally find a k
component link which is the transverse push-off of L' UL? U --- UL¥. We can do
this process locally for all link components which are not linearly independent.
Combining this with all the cases from subsection 3.3 gives the desired result

for every possible case.
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()

FIGURE 6. (a)Example of an open book where we have mixed
type of link components. (b) The resulting open book after we
do a Dehn twist along c;, ¢, and c;.

3.4.2. Case2(b)(ii). [Ifsome of the link components have different orientation]
To deal with this case, we follow the same procedure as in subsubsection 3.2.2.
Check Figure 8.

Remark 3.4. Note that, in subsection 3.4 we assumed the components to be merid-
ional. The same idea also works for the other cases i.e if the linearly dependent
components bound the genus or go between the genus.

O
Now we are ready to define the support genus of a transverse link.

Definition 3.5. The support genus sg(T) of a transverse link T in a contact 3-
manifold (M, &) is the minimal genus of a page of the open book decomposition of
M supporting & such that T can be realized as a sub-binding of that open book.

Lemma 3.6. Let T be a transverse link in (M, &) with sg(T) = g. Then its Legen-
drian approximations with their contact framing < page framing can be put on
the page of a supporting open book of (M, &) without altering the genus.

Proof. Let (Z,, ¢) be an open book with genus g such that T is a sub-binding of
(Zg, $).

Case 1. Suppose that [0Z,| > 2. In this case, Baldwin and Etnyre showed
[Lemma 5.3, [2]] that a tubular neighbourhood of the binding is contactomorphic
to the standard neighbourhood of a transverse knot S, for some € € (0, 1). Thus
there exists a neighbourhood of the binding whose boundary is foliated by
Legendrians which sit of the page of the open book. Notice, in this case the
contact framing is same as the page framing. This Legendrian is known as a
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FIGURE 7. (a) L, has k parallel copies. (b) Enlarged view of the
region near L;. (c) The once stabilized open book along ci. Find
yf and iterate this process. (d) The final result after k iterated
stabilizations of B.

Legendrian approximation of the binding. Thus we can realize a Legendrian
approximation of T on the page of the open book.

Case 2. Suppose the open book has only one component T. Then we stabilize
the open book positively along T as shown in Figure 9. Notice, this operation
neither changes the genus of the open book nor the transverse isotopy class of
the binding T as shown in [21]. Also notice, T is still a sub-binding of the new
open book. Now we are in case 1.

We can repeat this process along a binding component T; and push the com-
ponent over the 1-handle as shown in Figure 10. This gives us the negative
stabilization Ll.1 of the Legendrian component L; on the page of the open book
[10], [19]. So this decreases the contact framing with respect to the page framing
by 1. Repeating this procedure along T; we can realize all Legendrian approx-
imations of T such that the contact framing is less than or equal to the page
framing. This completes the proof. O
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FIGURE 8. (a) Linearly dependent link components with Lf
having opposite orientation. (b) We stabilize B along a boundary
parallel curve and move the components across the attaching
1-handle. This negatively stabilizes L2. (c) Find y?.

\_7

/

FIGURE 9. Positive stabilization of the open book along T.

Remark 3.7. Notice this result will not generally hold for every Legendrian ap-
proximation of T. It might not be possible to increase the contact framing of a
Legendrian link with respect to the page framing by keeping the genus fixed.

Theorem 3.8. The support genus is an invariant of a transverse link.

Proof. Suppose T, and T, are transverly isotopic links in (M, ) with support
genus g; and g,. So there exist open books (2, , 1), (Z,, ¢,) for T, and T,. As
stated in [16], a transverse link can be considered as a contact submanifold.
So, we can extend the transverse isotopy to an ambient contact isotopy by the
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Tis1

L}

(©) (d)

FIGURE 10. (a) Local picture of an open book with two boundary
components. (b) Positively stabilize the open book along T;. (¢)
Once negatively stabilized Ll.1 on the page. (d) Iterate the process

and get the Legendrian approximation Ll.z.

isotopy extension theorem [Theorem 2.6.12, [16]] which takes one open book to
the other. Clearly, g, = g,. O

Our next theorem finds a relationship between the support genus of a trans-
verse link and the support genus of its Legendrian approximation. One might
hope that a transverse link will have a support genus greater than its Legendrian
approximation, but surprisingly that is not the case in this following special
case.

Theorem 3.9. Suppose T is a transverse link in (M, &) and L is its Legendrian
approximation such that its contact framing < page framing. Then sg(T) = sg(L).

Proof. We start with a transverse link T in (M, &) and let sg(T) = g. So we can
realize it as a sub-binding of some open book (%, ) with minimum genus g.
Now take a Legendrian approximation of each of the components such that
the components lie on the page of the open book. This can be done without
changing the genus as shown in Lemma 3.6. This will give us a Legendrian
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link L sitting on an open book with genus g. Thus sg(L) < g. Now take this
Legendrian link and put it on an open book with genus=sg(L). Now apply the
algorithm we used in Theorem 3.1 to find a transverse push off T" of L which
is also a sub-binding of the underlying open book. Thus sg(T’) < sg(L). By
the well-definedness of transverse push-off T' must be transversely isotopic to
T. As the support genus is an invariant of transverse links by Theorem 3.8, we
must have sg(T’) = g. Thus sg(T) = sg(L). As by Lemma 3.6 we can get all
Legendrian approximations of T with contact framing < page framing without
altering the genus, the proof follows. 0

The following theorem was proved in [19].

Theorem 3.10 ([19]). Suppose L is a loose, null-homologous Legendrian knot in
(M, &). Then sg(L) = 0.

As a corollary to the above theorem, we show the following:

Corollary 3.11. Suppose T is a loose, null-homologous transverse knot in (M, &).
Then sg(T) = 0.

Proof. Suppose T is a loose, null-homologous transverse knot in (M, &) with
sg(T) > 0. So we find an open book (Z,, ¢) such that T can be realized as a
sub-binding of the open book with minimum genus g # 0. By Lemma 3.6, we
can get some Legendrian approximation L of T as a leaf of the characteristic
foliation of dS, such that the contact framing agrees with the page framing.
Note that a Legendrian approximation of a loose transverse knot can be loose or
non-loose [13]. If L is non-loose, then we can negatively stabilize L enough times
so that it becomes loose. Notice that, we can negatively stabilize a Legendrian
knot on the page of an open book such that the contact framing agrees with the
page framing and keeping the genus fixed as shown in Lemma 3.6. By abuse
of notation, we call the negatively stabilized knot L too. Now applying the
algorithm of Theorem 3.1, we can realize the transverse push-off of L, say T’
as a sub-binding of the planar open book. But as support genus is an invariant
of the transverse isotopy class, sg(T) = sg(T’) and we reached a contradiction.
Thus sg(T) = 0. O
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