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Abstract

In this paper, we revisit the online recoloring problem introduced recently by Azar, Machluf, Patt-
Shamir and Touitou [5] to investigate algorithmic challenges that arise while scheduling virtual
machines or processes in distributed systems and cloud services. In online recoloring, there is a fixed
set V of n vertices and an initial coloring c0 : V → [k] for some k ↑ Z>0. Under an online sequence
ω of requests where each request is an edge (ut, vt), a proper vertex coloring c of the graph Gt

induced by requests until time t needs to be maintained for all t; i.e., for any (u, v) ↑ Gt, c(u) ↓= c(v).
In the distributed systems application, a vertex corresponds to a VM, an edge corresponds to the
requirement that the two endpoint VMs be on di!erent clusters, and a coloring is an allocation of
VMs to clusters. The objective is to minimize the total weight of vertices recolored for the sequence
ω. In [5], the authors give competitive algorithms for two polynomially tractable cases – 2-coloring
for bipartite Gt and (! + 1)-coloring for !-degree Gt – and lower bounds for the fully dynamic case
where Gt can be arbitrary.

We obtain the first competitive algorithms for capacitated online recoloring and fully dynamic
recoloring, in which there is a bound on the number or weight of vertices in each color. Our first set
of results is for 2-recoloring using algorithms that are (1 + ε)-resource augmented where ε ↑ (0, 1) is
an arbitrarily small constant. Our main result is an O(log n)-competitive deterministic algorithm
for weighted bipartite graphs, which is asymptotically optimal in light of an ”(log n) lower bound
that holds for an unbounded amount of augmentation. We also present an O(n log n)-competitive
deterministic algorithm for fully dynamic recoloring, which is optimal within an O(log n) factor in
light of a ”(n) lower bound that holds for an unbounded amount of augmentation.

Our second set of results is for !-recoloring in an (1 + ε)-overprovisioned setting where the
maximum degree of Gt is bounded by (1 ↔ ε)! for all t, and each color assigned to at most (1 + ε) n

!
vertices, for an arbitrary ε > 0. Our main result is an O(1)-competitive randomized algorithm for
! = O(

√
n/ log n). We also present an O(!)-competitive deterministic algorithm for ! ↗ εn/2.

Both results are asymptotically optimal.
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1 Introduction

The challenge of e!ciently allocating virtual machines (VMs) across large clusters in a cloud
or data center is well documented [26, 24, 27]. Most big-data applications are inherently
distributed. To minimize congestion, communication costs, and service delays incurred due
to inter-VM and inter-process communication, distributed systems are demand-aware [4],
requiring scheduling algorithms to e!ciently adapt to network tra!c. While co-locating
frequently communicating VMs and processes in a single cluster (corresponding to a!nity
requests in cloud or VM environment) is desirable to minimize communication overhead,
service providers are also required to satisfy anti-a!nity requests [1, 16], which require that
certain VMs must not be co-located. Large-scale deployment systems including Kubernetes
and VMWare support anti-a!nity rules to provide safety, performance and robustness [2, 10].
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96:2 Competitive Capacitated Online Recoloring

The online recoloring problem (also referred to as online disengagement) was introduced
recently by Azar, Machluf, Patt-Shamir and Touitou [5] to investigate algorithmic challenges
that arise in scheduling of VMs in distributed systems and cloud computing. In this
problem, we have a graph G on a fixed set of n vertices (corresponding to VMs) with weights
(corresponding to VM sizes) and edges (corresponding to anti-a!nity requests) are revealed
over time. The goal is to ensure that endpoints of every edge encountered are assigned a
di"erent color (i.e. the corresponding VMs scheduled on di"erent clusters). The graph induced
by the requested edges is assumed to be k-colorable (colors corresponding to k clusters) and
the objective is to minimize the total weight of vertices recolored throughout time. The cost
of recoloring any vertex captures the size and migration cost of the corresponding VM.

In [5], the authors study the uncapacitated version where the total weight of vertices
assigned a color is unconstrained. Since vertex coloring is NP-hard [17], they focus on
polynomially tractable cases when the graph induced by the request sequence is either
bipartite (k = 2) or has maximum degree at most ! (k = ! + 1). In the static setting, both
cases admit linear-time greedy algorithms. In the online setting, while existence of a proper
k-coloring guarantees that any vertex needs to be recolored at most once, the uncertainty
of future requests can force multiple recolorings. The capacitated online recoloring problem
captures the practical scenario where cluster sizes are constrained, i.e. the total weight of
vertices assigned any color is bounded. Resolving this was left as an open problem in [5].

Online Recoloring. We formally describe the online recoloring problem [5]. Given a fixed set
of n vertices denoted by V , weight function w : V → R+ and an initial coloring c0 : V → [k]
(where [k] = {1, 2, ..., k}), an algorithm maintains a k-coloring c : V → [k] for V under an
online sequence of requests, ω = {ωi}T

i=1 where ωi is an edge (ui, vi) between ui, vi ↑ V . Let
ω→t = {ωi}t

i=1. For all t, c must be a proper k-coloring for Gt, the subgraph induced by ω→t,
i.e. for all (ui, vi) where i ↓ t, c(ui) ↔= c(vi). At any time, any vertex v can be recolored for
a cost w(v). In the unweighted setting, w(v) = 1 for all v ↑ V . The objective is to minimize
the total recoloring cost incurred for the request sequence ω.

We analyze online algorithms in the standard competitive analysis framework. Let the
total cost by an optimal algorithm (resp., an online algorithm A) on a request sequence ω be
denoted by OPTω (resp. Aω). An algorithm A for online recoloring is ε-competitive if for
any request sequence ω, Aω ↓ εOPTω. Note that ω can be assumed to be finite w.l.o.g. (in
particular, |ω| = O(n2)) since a repeated edge request incurs no cost.

Fully Dynamic Recoloring. In the above formulation, the graph induced by the request
sequence is assumed to be k-colorable. We also consider a fully dynamic variant [6], which
captures the case when requests are temporary, i.e, the graph induced by the request sequence
is not necessarily k-colorable. For all t, it is only required to maintain that c(ut) ↔= c(vt)
for the current request ωt = (ut, vt). Note that the request sequence can be unbounded in
this model. An algorithm A for fully dynamic recoloring is ε-competitive if for any request
sequence ω, Aω ↓ εOPTω + µ where µ is a constant independent of request sequence ω.

Capacitated Online and Fully Dynamic Recoloring. For uncapacitated recoloring described
above, the total weight of vertices assigned a particular color is unconstrained. In capacitated

recoloring, the total weight of vertices assigned color i is at most Wi for all i at any time
t. In this paper, we focus our attention on the uniform capacity case, i.e. Wi = B, for all
i ↑ [k]. In the unweighted case, B is the number of vertices assigned any color i ↑ [k]. For
capacitated online and fully dynamic recoloring, we assume that the graph induced by ω

admits a proper k-coloring while respecting capacity constraints for each i ↑ [k].
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Resource Augmentation. Our algorithms for online and fully dynamic 2-recoloring mildly

utilize resource augmentation: we assume the total weight of vertices that can be assigned
color i is B(1 + ϑ) ↗i ↑ [k] for an arbitrarily small constant 0 < ϑ < 1. The competitive
ratio is analyzed with respect to an o#ine algorithm constrained to a capacity of B for all i.
Nevertheless, our deterministic and randomized lower bounds hold for resource augmented
algorithms–thus, establishing tightness of the upper bounds we obtain.

Overprovisioned Setting. For !-recoloring, we introduce and study an overprovisioned

setting where the graph induced by ω has maximum degree (1 ↘ ϑ)! and each color i ↑ [!]
has capacity (1 + ϑ)n/!. In contrast to the resource augmented framework, the competitive
ratio is analyzed with respect to a o#ine algorithm with the same number of colors and
unconstrained capacity. Remarkably, even in this pessimistic analytical framework, we obtain
tight deterministic and randomized algorithms.

1.1 Related Work

Online Recoloring. Azar el al. [5] recently introduced the online (uncapacitated) recoloring
problem. They give optimal deterministic and randomized algorithms for online recoloring
when k = 2 and k = ! + 1. For the bipartite case, they give an optimal O(log n)-competitive
deterministic algorithm and a lower bound of ”(log n), which holds for randomized algorithms.
For (! + 1)-recoloring, they give a deterministic O(!)-competitive algorithm, a O(log !)-
competitive randomized algorithm, and matching lower bounds. They introduce fully dynamic
recoloring and consider three equivalent edge insertion models and show that fully dynamic
recoloring has substantially worse competitive ratios than online recoloring: for 2-coloring,
they consider edge requests on a length n-odd cycle (which cannot be properly colored in
the online recoloring setting) and provide a reduction from the metrical task systems (MTS)
problem on a length n-odd cycle, yielding ”(n) deterministic and ”( log n

log log n ) randomized
lower bounds respectively for fully dynamic recoloring.

In subsequent work [6], Azar et al. give general lower bounds for k-coloring. They provide
”(k log(n/k) deterministic and ”(log k · log(n/k)) and randomized lower bounds. They also
present lower bounds for capacitated k-coloring, including an ”(n) deterministic and an
”(log n) randomized lower bound, for the tight case when kB =

∑
v↑V w(v). Note that all

lower bounds given in [6, 5] hold even for unweighted instances, i.e. when w(v) = 1, ↗v ↑ V .

Dynamic Coloring. Maintaining a proper coloring in fully dynamic graphs is well studied
[14, 15]. Since determining the chromatic number number of a graph is NP-hard [17], most
works focus on restricted classes of graphs, bounded chromatic number or maximum degree.
In dynamic coloring, an edge (or vertex) is either inserted or deleted from the graph and the
algorithm is required to quickly re-compute a proper coloring. The objective is to minimize
the update time [8, 25], and/or the recourse [18, 7] (i.e. the number of recolored vertices
after an update) in a worst-case or amortized sense. Kashyop et al. [18], Barba et al. [7] and
Bosek et al. [9] study trade-o"s between the number of colors, number of recolorings and
update time for dynamic coloring for various classes of graphs (including bipartite, bounded
degree and arboricity, and interval graphs). The crucial di"erence between dynamic and
online recoloring is the fact that the number of recolorings in the former do not guarantee
competitiveness in the latter; a dynamic algorithm incurring O(1) recolorings per update
only guarantees O(T ) recolorings where T = |ω| in the online setting. When OPTω ≃ T ,
this precludes competitiveness which is measured against OPTω.

ESA 2024
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Online Balanced Graph Partitioning. Online balanced graph partitioning (OBGR) intro-
duced by Avin et al., [3] and later explored in [22, 13, 21, 23] is related to online recoloring.
While the objective of recoloring is to optimize allocations of VM’s under anti-a!nity

requests, OBGR deals with a!nity requests. In OBGR, given a graph G on n vertices
that are initially assigned to ϖ servers each of capacity k, for any online request (u, v), an
algorithm incurs a unit cost if u and v are in di"erent clusters and 0 otherwise. Any vertex
can be migrated for a unit cost at any time. The goal is to minimize the total migration and
communication costs incurred for the request sequence. Since the static version of balanced
graph partitioning is known to be NP-hard even for ϖ = 2 (the minimum bisection problem)
[12] resource augmentation and randomization have been employed to obtain competitive
algorithms (some taking exponential time) for OBGR. Avin et al. [3] give an O(k2

ϖ
2) compet-

itive algorithm without resource augmentation, and a O(k log k) exponential time algorithm
with (2 + ϑ)-augmentation (improved in [11] with (1 + ϑ)-augmentation). For the learning

variant of OBGR, Henzinger et al. [13] give optimal deterministic O(ϖ log k)- and randomized
O(log k + log ϖ)-competitive algorithms. Räcke et al [22] give an O(log n)-approximation
algorithm with (2+ϑ)-augmentation for the o"ine case. The current best deterministic online
algorithm for OBGR [23] obtains O(kϖ log k)-competitiveness with (1 + ϑ)-augmentation.

1.2 Our results

We present the first competitive algorithms for capacitated online 2-recoloring, making progress
on open problems posed by Azar et al. [5]. We also introduce the capacitated !-recoloring
problem in an overprovisioned setting and obtain asymptotically optimal algorithms.

Capacitated 2-Recoloring. Our algorithms for capacitated 2-recoloring hold with (1 + ϑ)-
resource augmentation, i.e. the algorithms utilize a capacity of W = (1 + ϑ)B for each cluster,

while the optimal o#ine algorithm has a capacity of B where B =
∑

v→V
w(v)

2 , (w.l.o.g.,
assume

∑
v↑V w(v) is even) and ϑ ↑ (0, 1) is a small constant.

Fully Dynamic Recoloring: Our first result is an algorithm for fully dynamic capacitated
recoloring which works for unweighted instances.

↭ Theorem 1. There exists a deterministic O(n log n)-competitive (1+ϑ)-resource augmented

algorithm for fully dynamic capacitated online 2-recoloring that works for unweighted instances.

We give a deterministic lower bound for fully dynamic 2-recoloring that holds for an
unweighted instance and unbounded resource augmentation, establishing that our algorithm
is tight within a O(log n) factor. The proof of Theorem 2 is deferred to the full version of
the paper.

↭ Theorem 2. The competitive ratio of any deterministic algorithm for capacitated fully

dynamic 2-recoloring is ”(n), for any resource augmentation ϑ > 0 and unweighted instances.

Online Recoloring: Our main result is an asymptotically optimal deterministic O(log n)-
competitive algorithm for capacitated online 2-recoloring which works for weighted instances.

↭ Theorem 3. There exists an optimal deterministic O(log n)-competitive (1 + ϑ)-resource

augmented algorithm for capacitated online 2-recoloring that works for weighted instances.

We complement our result giving a lower bound for the capacitated case similar to the
uncapacitated case in [5], which holds for an unbounded amount of resource augmentation,
ϑ > 0. The proof of Theorem 4 is deferred to the full version of the paper.
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↭ Theorem 4. The competitive ratio of any randomized algorithm for capacitated online

2-recoloring is ”(log n), which holds for an arbitrary amount of resource augmentation ϑ > 0.

Capacitated !-recoloring. We introduce the (1+ϑ)-overprovisioned setting for capacitated
!-recoloring, and give optimal deterministic and randomized algorithms. In this setting,
there are n vertices, and ! colors. Each color is assigned exactly n

! vertices initially. The
maximum degree of the graph induced by the request sequence is bounded by (1 ↘ ϑ)!,
and the total capacity per color is (1 + ϑ) n

! . The request sequence is finite. In contrast to
the resource augmented setting for which the competitiveness is analyzed with respect to
an unaugmented optimal o#ine algorithm, we analyze competitiveness with respect to an
optimal o#ine algorithm with the same number of colors and unrestricted capacity per color.

We first note that a lower bound of ! holds for any deterministic algorithm in this setting.
The instance is similar to the one given for uncapacitated (! + 1)-recoloring given in [5].
Thus, deterministic (1 + ϑ)-overprovisioned !-recoloring is as hard as deterministic (! + 1)
recoloring. The proof of Theorem 5 is deferred to the full version of the paper.

↭ Theorem 5. The competitive ratio of any deterministic algorithm for (1+ϑ)-overprovisioned

!-recoloring is ”(!).

We give an optimal deterministic algorithm matching the above lower bound.

↭ Theorem 6. There exists a O(!)-competitive deterministic algorithm for (1 + ϑ)-

overprovisioned !-recoloring when ! ↓ ϑn/2.

Our main result for !-recoloring is an optimal O(1)-competitive randomized algorithm.

↭ Theorem 7. There exists a O(1)-competitive randomized algorithm for (1 + ϑ)-overpro-

visioned !-recoloring that works against an oblivious adversary when ! = O

(√
n

log n

)
.

1.3 Technical Overview

Algorithms for 2-Recoloring. Our algorithms maintain a set of bipartite components
induced by the request sequence. We develop a subroutine Rebalance which is a FPTAS, to
periodically assign components while respecting capacity constraints.

Our fully dynamic algorithm is a phase-based algorithm where the graph induced by
requests in any phase is bipartite and admits a coloring such that the total weight of vertices
assigned any color is W = (1 + ϑ)B. During a phase, our algorithm works as follows: on
a request (u, v) where u is in component P1 and v in P2, s.t. P1 is the heavier of the two
components, P2 is recolored and merged to P1. If recoloring of P2 leads to capacity violation,
Rebalance is invoked. The total recoloring cost charged to a vertex per phase is bounded
by separately considering when it is part of a heavy or light component. We observe that
whenever recoloring of a light component leads to a call to Rebalance, vertices in light
components of total weight at least ”(W ) must have been recolored since the last call to
Rebalance (if any). On the other hand, when two heavy components are merged, Rebalance
is always invoked; while a single call to Rebalance incurs O(W ) cost, the number of such calls
is only O(1) per phase. Combined with a charging argument which bounds the number of
times any vertex can be recolored in a phase by O(log n), we obtain a O(n log n)-competitive
algorithm for fully dynamic recoloring. We complement this result with a lower bound of
”(n) which holds for an unbounded amount of augmentation, establishing that our algorithm
is tight to within a O(log n) factor.

ESA 2024
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Our deterministic O(log n)-competitive algorithm uses the fully dynamic algorithm as
a subroutine once a lower bound of ”(W ) on OPTω has been determined. Our algorithm
incorporates laziness together with the greedy approach. While it is crucial to maintain a
coloring that is close to the initial coloring for any component to be competitive, we recolor a
component according to an optimal coloring only after a constant factor increase in its weight,
until it is possibly merged to a heavier component. Whenever a light component P2 is merged
to a heavy component P1 such that the weight of P1 does not change significantly, only P2 is
recolored (if necessary). A crucial property we exploit in the analysis is the monotonicity of
the distance to initial coloring with respect to the weight of any component. As a result,
the cost of periodically re-coloring components to mimic an optimal coloring after weight
increases can be charged to OPTω. An intricate charging argument allows us to bound the
cost of both periodic recolorings and greedy recolorings by OPTωO(log n).

If the request sequence precludes optimal colorings without significant rebalancing (i.e.
when a lower bound of OPTω = ”(W ) is determined), our algorithm transitions to the
fully dynamic algorithm. The total cost of the fully dynamic algorithm for the remaining
request sequence is bounded by O(W log n). Note that our fully dynamic algorithm is
O(n log n)-competitive. Our analysis reveals that in the case when OPTω = ”(W ), the
fully dynamic algorithm yields O(log n) competitiveness on weighted instances. We give a
randomized lower bound of O(log n) for online recoloring which holds for an algorithm with
unbounded resource augmentation, establishing that our algorithm for online 2-recoloring is
asymptotically optimal.

Algorithms for !-Recoloring. We give asymptotically optimal deterministic and randomized
algorithms for !-recoloring in the (1 + ϑ)-overprovisioned setting. Both algorithms consist of
a recoloring subroutine that colors an individual vertex and a rebalancing subroutine when
any color reaches capacity. The implementations of these subroutines are di"erent in the
two algorithms. Similar to the approach in [5], we lower bound OPTω as the size of the
minimum vertex cover on the graph induced by the set of monochromatic edges in ω with
respect to the initial coloring. Both algorithms maintain a 2-approximate vertex cover C. If
the requested edge is monochromatic, both algorithms recolor only the endpoint in C.

Our deterministic algorithm picks a feasible color assigned to the least number of vertices,
ensuring that whenever all feasible colors are full for a vertex, the rebalancing cost of O(n)
can be charged to the increase in vertex degrees. To rebalance, we utilize an algorithm for
equitable coloring of graphs with bounded maximum degree by Kierstead et al. [19]. We
complement our results by giving a deterministic ”(!) lower bound, similar to an instance
in [5].

Our O(1)-competitive randomized algorithm uses a simple rebalancing procedure which
sequentially colors vertices randomly among their feasible colors, where a color c is feasible
for a vertex v if none of v’s neighbors are assigned c. To implement the recoloring subroutine
for v, a random feasible color for v is picked. While our randomized algorithm is simple, we
face multiple technical challenges towards obtaining competitiveness since straightforward
concentration inequalities cannot be applied, because recolorings (and rebalancings) involve
dependent events. For instance, our analysis of rebalancing utilizes a martingale to derive
a concentration bound on the load of any color. We also invoke stochastic domination
arguments to upper bound the load on any color due to recoloring, and lower bound the
number of recolorings performed before any color is overloaded.
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1.4 Open Problems

While we obtain tight bounds for several variants of capacitated recoloring, our work leaves
several open problems. Obtaining competitive algorithms for fully dynamic 2-recoloring, and
!-recoloring in the weighted setting remains open. Bridging the #(log n) gap between the
upper and lower bounds for fully dynamic 2-recoloring is a natural question. The case of fully
dynamic !-recoloring is wide open, even in the uncapacitated setting. Another direction is
the case of non-uniform capacities; we believe that Theorem 3 extends to this case.

The overprovisioned model for !-recoloring allows for stronger results than the resource
augmented model in that the o#ine algorithm is permitted to utilize the same resources.
Our current results assume over-provisioning in colors (with respect to the maximum degree)
and capacity per color; it would be insightful to obtain results where either the capacity, or
the number of colors is overprovisioned. Also, whether the O(log n)-competitive 2-recoloring
result generalizes to the overprovisioned model would be interesting to resolve. Finally, can
the range of ! for our results in the over-provisioned model be improved?

2 Capacitated 2-Recoloring

2.1 Preliminaries

Let [n] denote the set of integers {1, 2, ..., n}. We denote the two clusters as C1 and C2,
each of which has capacity W = 1+ε

2
∑

v↑V w(v). A vertex v (resp. set S ⇐ V ) is said to be
scheduled on a cluster C ↑ {C1, C2} if v ↑ C (resp. S ⇐ C). At any point, let N(C) denote
the residual capacity of cluster C ↑ {C1, C2} where N(C) = W ↘

∑
v↑C

w(v). We assume that

w(v) ↑ [ 1
2

∑
v↑V w(v)] for all v ↑ V .

Our algorithms maintain a set of bipartite connected components P induced by the request
sequence. A connected component P is a maximal set of vertices such that for any ui, vi ↑ P ,
there is a path between ui and vi consisting only of vertices in P . Initially, P = {{v}| v ↑ V }
so that each component consists of a single vertex. Each component Pi ↑ P for i ↑ [|P|] with
bi-partition (Ai, Bi) is expressed as Pi = (Ai, Bi). We refer to the weight (resp. size) of the
component as w(Pi) (resp. |Pi|), where w(Pi) =

∑
v↑Ai↓Bi

w(v) (resp. |Pi| = |Ai| + |Bi|).

Component Merges. A request (ut, vt) between vertices in distinct components P1 =
(A1, B1) and P2 = (A2, B2) leads to a merge of P1 and P2 into a new component P3,
following which P is updated. More precisely, if ut ↑ A1 (resp. B1) and vt ↑ A2, then
P3 = (A1 ⇒ B2, A2 ⇒ B1) (resp. P3 = (A1 ⇒ A2, B1 ⇒ B2)), and analogously for the case when
vt ↑ A1. For any component Pi ↑ P , our algorithms schedule Ai and Bi in di"erent clusters.
Observe that |P| ↓ n and maxPi↑P(|Pi|) ↓ n ↘ 1.

Recolor Subroutine. Our algorithms employ a recoloring subroutine Recolor. Given a
current coloring c(v) = j for any vertex v ↑ V , Recolor(v, i) recolors v to i if the current
coloring j ↔= i and sets N(Cj) (resp. N(Ci)) to N(Cj) ↘ w(v) (resp. N(Ci) + w(v)).

Rebalancing Subroutine. Our algorithms periodically call a re-balancing subroutine
Rebalance which takes as input a weight parameter W

↔, component set P, and a para-
meter ϑ. It computes an assignment of bipartite components in P to clusters such that
the total weight of vertices assigned on C1 is at most W

↔(1 + ϑ). If this is not possible, it
terminates. While an assignment satisfying weight constraint exactly W

↔ can be determined

ESA 2024
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in pseudo-polynomial time O(|P|W ↔) = O(nW
↔), Rebalance is a FPTAS (fully polynomial-

time approximation scheme) and takes O(n2 ln W ↑

ε ) time. The algorithm is deferred to the
full version of the paper.

2.2 An O(n log n)-Competitive Algorithm for Fully Dynamic Recoloring

We present an algorithm Greedy-Recoloring for fully dynamic recoloring in the unweighted
setting with (1 + ϑ)-augmentation, where 8

n ↓ ϑ < 1. We begin by defining a phase.

↭ Definition 8. A phase R of request sequence ω is a maximal contiguous sub-sequence of

ω such that, i) all components induced by requests in R are bipartite and, ii) there exists a

feasible assignment of components such that the total number of vertices assigned to cluster

C1 is at most (1 + ε
2 ) n

2 .

The sequence ω is partitioned into consecutive phases R1, R2, ... and our algorithm
initializes each phase Ri with a set of singleton components Pi = {{v}| v ↑ V } and assigns
exactly n

2 vertices to each cluster. The set of components Pi induced by requests throughout
any phase Ri is maintained. A phase terminates when either i) a request (ut, vt) is encountered
where ut, vt ↑ Aj or ut, vt ↑ Bj for any component Pj = (Aj , Bj) in Pi, i.e. Pj ceases to
be bipartite or ii) invoking Rebalance(Pi,

n
2 ,

ε
2 ) returns infeasible, i.e. an assignment of

components is not possible while fulfilling the capacity constraint of (1 + ε
2 )n

2 . Thereafter,
the next phase Ri+1 begins. The following lemma follows from the definition of a phase.

↭ Lemma 9. For an unweighted instance such that w(v) = 1 for all v ↑ V , OPT incurs a

cost of at least 1 per phase.

Proof. If Rebalance does not yield an assignment of components induced by requests in
phase Ri, OPT must incur a cost of at least 1 during phase Ri. If Ri terminates because
a component ceases to be bipartite, there exist requests in Ri on an odd cycle for which a
single recoloring is necessary. ↫

Algorithm Greedy-Recoloring. We give a high level description of our Algorithm Greedy-
Recoloring. The pseudo code is given in the full version of the paper. Consider a request
(ut, vt) in phase Ri. If ut, vt ↑ P for some component P ↑ Pi such that P stays bipartite,
nothing is done. Else if P ceases to be bipartite, phase Ri terminates.

If ut, vt are in distinct components P1 = (A1, B1), P2 = (A2, B2) (w.l.o.g., assume that
|P1| ⇑ |P2|), vertices in A1 ⇒ A2 are assigned to C1 and vertices in B1 ⇒ B2 are assigned to
C2, P2 is merged into P1. If |P2| ↓ εn

8 and recoloring is possible while fulfilling capacity
constraints, P2 is re-colored. More concretely, if ut ↑ A1 (resp. B1) and vt ↑ A2 (resp, B2),
vertices in B2 (resp. A2) are recolored and assigned to C1 (resp. C2), and vertices in A2
(resp. B1) are recolored and assigned to C2 (resp. C1) if residual capacities N(C1), N(C2)
are su!cient. Otherwise, Rebalance(Pi,

n
2 ,

ε
2 ) is invoked. If Rebalance yields a feasible

component assignment, vertices are appropriately recolored such that N(C1) and N(C2) are
both at least ε

2 · n
2 = εn

4 .

Proof of Theorem 1. By virtue of the recolorings performed, AlgorithmGreedy-Recoloring
always maintains a 2-coloring of the graph induced by the sequence of requests in a phase.
Note that Rebalance incurs a total recoloring cost at most n. Before the first request arrives,
we call Greedy-Recoloring({v| v ↑ V },

n
2 ) For the sake of analysis, we say a component

Pj ↑ Pi during phase Ri is small if |Pj | ↓ εn
8 and large otherwise. Note that the algorithm

always recolors the smaller component, P2 when P1 = (A1, B1) and P2 = (A2, B2) are
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merged, as long as component P2 is small and capacity constraints are not violated. In this
case, |P1| ⇑ 2|P2|, and each vertex in P2 is charged a recoloring cost of 1. If P2 is large,
Rebalance is called.

The key observation is that whenever a small component P1 is created as a result of two
small components P1 and P2 being merged, and A2 and B2 cannot be recolored because
either N(C1) ↘ |A2| < |B2| or N(C2) ↘ |B2| < |A2|, at least εn

8 vertices (let S denote the
set of these vertices) must have been successfully recolored since the last time Rebalance
was called. This holds since (1 + ϑ) n

2 ↘ (1 + ε
2 ) n

2 ↘ |P1| ⇑ εn
8 . We charge the recoloring cost

of n incurred as a result of Rebalance uniformly to all vertices in S, i.e. every vertex in S

receives a charge of n
εn/8 = 8

ε . Each time a vertex is charged in this manner, the component
containing it doubles in size. Hence, any vertex is charged at most 8

ε log εn
8 = O(log n) while

it is part of a small component.
On the other hand if P2 is large, Rebalance is called. The recoloring cost is charged

uniformly to all vertices in P2, so that each vertex in P2 receives a charge of at least n
εn/8 = 8

ε .
Thus, every time a vertex is part of a large component it can be charged a recoloring cost at
most log( 8

ε ) = O(1) since its component size doubles and the maximum size of any component
is n.

If recoloring does not lead to a call to Rebalance, vertices in P2 are simply charged 1 for the
recoloring. Thus, every vertex receives a total charge of log n + 8

ε log( 8
ε ) + 8

ε log εn
4 = O(log n)

throughout the phase. The total recoloring cost incurred by the algorithm is O(n log n), and
by Lemma 9, this yields O(n log n)-competitiveness. ↫

2.3 An O(log n)-Competitive Algorithm for Online Recoloring

In this section, we present our main result for 2-recoloring which is an asymptotically optimal
O(log n)-competitive algorithm. Recall that in the uniform capacity setting, the graph
induced by request sequence ω admits a proper coloring such that the weight of vertices
assigned any color is exactly 1

2
∑

v↑V w(v).

Notation and Definitions. Given an initial coloring c0, an arbitrary coloring c and S ⇐
V , let dS(c, c0) denote the weighted Hamming distance of c from c0 restricted to S, i.e.
dS(c, c0) =

∑
v↑S: c0(v) ↗=c(v)

w(v). Let dS(c) := dS(c, c0) for brevity. For a bipartite component

Pi = (Ai, Bi), there are exactly two feasible colorings; let c1 denote the coloring for which
vertices in Ai (resp. Bi) are colored 1 (resp 2) and c2 denote the coloring for which vertices
in Ai (resp. Bi) are colored 2 (resp. 1). Let cm denote the optimal coloring where m ↑ {1, 2},
such that dPi(cm) = min{dPi(c1), dPi(c2)}, i.e. cm corresponds to a coloring incurring the
minimum recoloring cost for Pi w.r.t. the initial coloring c0. Since there are only two possible
colorings, it follows that dPi(cm) ↓ w(Pi)

2 . Our algorithm assigns vertices in Ai on cluster
Cm and vertices in Bi on cluster C3↘m. Finally, let E(Pi) denote the estimated weight of
component Pi. Our algorithm maintains the property that E(Pi) ⇑ w(Pi)

(1+ ω
4 ) , and periodically

recomputes optimal colorings whenever the total weight w(Pi) > (1 + ε
4 )E(Pi), and updates

E(Pi) to w(Pi). Let c(S) denote the restriction of some coloring c to set S ⇐ V .

Algorithm Follow-Greedy. The algorithm begins with the set of components P = {{v}| v ↑
V } and E({v}) = w(v) for all v. For any request (ut, vt) such that ut ↑ P1, vt ↑ P2 where
w.l.o.g., w(P1) ⇑ w(P2), the algorithm merges P2 into P1. There are two cases to consider: i)
if c(ut) = c(vt) and w(P1) ↓ E(P1)(1 + ε

4 ) following the merge and, ii) w(P1) > E(P1)(1 + ε
4 )

following the merge. In the former case, only vertices in P2 are recolored as long as capacity
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constraints are respected. In the latter case, the algorithm computes an optimal coloring
cm for P1. If cm(P1) ↔= c(P1), where c is the current coloring and recoloring P1 according
to cm respects capacity constraints, P1 is recolored. If capacity constraints are violated at
any point, Follow-Greedy calls (and transitions to) algorithm Greedy-Recoloring(P, W).
The complete pseudo-code of the algorithm is deferred to the full version of the paper.

Analysis. Whenever components are greedily assigned an optimal coloring such that the
total weight of components exceeds W , Follow-Greedy transitions to Greedy-Recoloring.
At this point, we show that OPTω = ”(W ), and bound the recoloring cost incurred by
Greedy-Recoloring on the request sequence thereafter by O(W log n). On the other hand,
we show that the total recoloring cost incurred for any component P whenever w(P ) increases
(before Greedy-Recoloring is ever called) can be bounded by O(log n) times the recoloring
cost incurred by OPT on P . Combining the two bounds yields O(log n)-competitiveness.

Lemma 10 establishes a monotonicity property– distance to optimal colorings for any
component P is monotonically non-decreasing with its weight w(P ).

↭ Lemma 10. Let P and P
↔

be components at times t1 and t2 respectively, where 1 ↓ t1 ↓
t2 ↓ T and P ⇐ P

↔
. If cm and c

↔
m are optimal colorings for P and P

↔
respectively, then

dP (cm) ↓ dP (c↔
m) ↓ dP ↑(c↔

m).

Proof. We note that if cm(P ) ↔= c
↔
m(P ), then

dP (cm) =
∑

v↑P : cm(v) ↗=c0(v)

w(v) ↓
∑

v↑P : c↑
m(v) ↗=c0(v)

w(v) = dP (c↔
m)

since cm is an optimal coloring for vertices in P . Using this we have,

dP ↑(c↔
m) =

∑

v↑P : c↑
m(v) ↗=c0(v)

w(v) +
∑

v↑P ↑\P : c↑
m(v) ↗=c0(v)

w(v) ⇑
∑

v↑P : c↑
m(v) ↗=c0(v)

w(v)

= dP (c↔
m). ↫

Our algorithm periodically recomputes an optimal coloring cm for any component when its
weight increases by least a (1 + ε

4 ) factor, and re-colors vertices according to cm (if needed).
Let T denote the time step before Greedy-Recoloring is called; if Greedy-Recoloring
is never called, T = |ω|. A component Pi ↑ P is said to be alive during a time interval
TPi = [1, T

↔] where T
↔ ↓ T , if for all requests ωt = (ut, vt) ↑ ω→T ↑ such that ut ↑ Pi, vt ↑ Pj ,

w(Pi) ⇑ w(Pj); i.e. Pi is not the smaller of the two components merged during time t ↑ TPi .

↭ Lemma 11. Let Pi be an alive component during interval TPi = [1, T
↔] and c

t
m denote an

optimal coloring for Pi at time t. For all t ↑ TPi the coloring c maintained by Follow-Greedy
satisfies dPi(c) ↓ dPi(ct

m) + ε
4 w(Pi), where w(Pi) is the weight of Pi at time t.

Proof. Let c(Pi) be the coloring maintained by the algorithm. Let ta, tb ↑ TPi be time-steps
such that ta < tb at which the algorithm re-computes an optimal coloring for Pi and recolors
Pi if necessary. Thus, c(Pi) = c

t
m(Pi) at t = ta and t = tb respectively. For any t ↑ (ta, tb),

if c = c
t
m, then dPi(c) = dPi(ct

m). For all other t, dPi(ct
m) ⇑ dPi(cta

m) by Lemma 10. Let S

denote the set of vertices which are merged to P1 in the time interval (ta + 1, tb). Since
w(S) ↓ ε

4 w(Pi), dPi(c) ↓ dPi(cta
m) + ε

4 w(Pi) ↓ dPi(ct
m) + ε

4 w(Pi), completing the proof. ↫

Lemma 12 gives a lower bound on OPTω if Greedy-Recoloring is called.

↭ Lemma 12. If Follow-Greedy calls Greedy-Recoloring at time t, then OPTω↓t
= ”(W ).
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Proof. Note that the residual capacity N(Ci) = (1 + ϑ)W ↘
∑

v↑Ci
w(v) for any i ↑ {1, 2}.

Algorithm Greedy-Recoloring is called whenever following a merge of P2 into P1, either
i) an optimal coloring for P1 violates capacity constraints or ii) recoloring vertices in
P2 violates capacity constraints. Let c denote the infeasible coloring in any case, s.t.
i) c = cm (the optimal coloring) when w(P1) > E(P1)(1 + ε

4 ) or, ii) c(v) = 1 for all
v ↑ B2, and c(v) = 2 for all v ↑ A2 (see lines 13-15, 20 of Follow-Greedy), such that∑

Pi↑P
∑

v↑Pi: c(v)=j w(v) > W (1 + ϑ) for some j ↑ {1, 2}. Note that such a j must exist
since the capacity constraint is violated for one of the two clusters by the coloring c. By Lemma
11, it follows that dPi(c) ↓ dPi(cm) + ε

4 w(Pi) where cm denotes an optimal coloring at time t

for any component Pi. Note that OPTω ⇑
∑

Pi↑P dPi(cm) since this lower bound disregards
capacity constraints. Thus,

∑
Pi↑P dPi(c) ↓

∑
Pi↑P [dPi(cm) + ε

4 w(Pi)] ↓ OPTω + ε
2 W since∑

Pi↑P w(Pi) = 2W . Thus, OPTω ⇑
∑

Pi↑P dPi(c) ↘ ε
2 W . Now, note that

∑
Pi↑P dPi(c) ⇑

ϑW since cluster capacities have been exceeded by at least ϑW , which is only possible if
at least a set S of vertices with weight at least ϑW change their initial coloring. Thus,
OPTω ⇑ ϑW ↘ ε

2 W = ε
2 W = ”(W ). ↫

Lemma 13 bounds the recoloring cost of Greedy-Recoloring. The proof is similar to
the proof of Theorem 1 and deferred to the full version of the paper.

↭ Lemma 13. The total recoloring cost incurred by Greedy-Recoloring when it is called

by Follow-Greedy is O(W log n).

↭ Lemma 14. Follow-Greedy incurs a total recoloring cost of O(OPTω log n) before Greedy-
Recoloring is ever called.

Proof. Let T = |ω| if Greedy-Recoloring is never called; otherwise T = t ↘ 1 if it is called
at time t. We analyze the cost of Follow-Greedy on the set of all alive components PA until
time T . Any alive component P

↔ at any point satisfies P
↔ ⇐ P for some alive component

P ↑ PA. Let OPT (P ) denote the cost incurred by OPT on P until time T . We show that
the total cost of Follow-Greedy on P is bounded by OPT (P )O(log n) to conclude the proof.

For any component P ↑ PA, let IP = {[0 = t0, t1), [t1, t2), [t2, t3), ..., [tf , tf+1 = T ]}
denote the partition of time interval [0, T ] such that, for all j ↑ [f ] i) Pj ⇐ P is a sub-
component of P for which an optimal recoloring is computed at time tj , ii) (1 + ε

4 )w(Pj↘1) ↓
w(Pj) and iii) P1 ⇐ P2 ⇐ ... ⇐ Pf+1 = P . Recall that optimal colorings are only computed
whenever component weights increase by at least a (1 + ε

4 ) factor. Let Qj denote the set of
components that are merged to Pj↘1 during time interval [tj↘1, tj ] to yield Pj . Note that for
components Q ↑ Qj , w(Q) ↓ w(Pj↘1) ↓ (1 + ε

4 )w(Pj↘1) by definition of Pj and Qj and the
aforementioned property ii). Thus, w(Pj) ↓ 2(1 + ε

4 )w(Pj↘1).
There are two types of recolorings performed during time interval [tj↘1, tj ]:

- (Type I ) Pj is recolored at time tj .
- (Type II ) Q ↑ Qj is recolored at tQ ↑ [tj↘1, tj ] if c(ut) = c(vt) where ut ↑ Pj↘1 and vt ↑ Q.
We charge the cost of both Type I and Type II colorings to OPT . For Type I colorings, note
that c

tj↔1
m (Pj↘1) ↔= c

tj
m(Pj), and hence OPT (P ) ⇑ OPT (Pj) ⇑ 1

2 w(Pj) ⇑ 1
2

w(Pj↔1)
2(1+ ω

4 ) = w(Pj)
4+ε

by Lemma 10 and the upper bound on w(Pj). We charge every v ↑ Pj s.t. w(v) >
w(Pj)

2n

an amount 2w(v) to reflect this cost. Let jmax ↓ f denote the largest j for which Pj is
recolored in this manner. Since these recolorings may happen every time a component
undergoes a (1 + ε

4 ) factor increase in weight, each vertex in Pjmax is charged at most
O(log(1+ ω

4 ) n) = O(log n) Type I recoloring costs. Accounting for all P ↑ PA, the total Type
I recoloring cost is O(OPTω log n).
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For Type II recolorings, we consider two cases depending on whether Pj is recolored
at time tj or not. Consider a component Q ↑ Qj that is merged to Pj↘1 at time tQ for
j ↑ [f + 1] and recolored. If Pj is recolored at time tj , the Type II recoloring cost for Q

can be absorbed in the Type I recoloring cost for Pj by charging each vertex v ↑ Pj where
w(v) >

w(Pi)
2n a cost 4w(v) (instead of 2w(v) as before).

On the other hand, if Pj is not recolored at time tj (and hence the cost of a Type
II recoloring cannot be associated to a Type I recoloring), we charge the cost as follows.
Let Q↔

j ⇐ Qj denote the set of components that are recolored by Follow-Greedy and
consider a component Q ↑ Q↔

j that is recolored at time tQ. By Lemma 11, it follows
that for all t ↑ [tj↘1, tQ), the coloring c maintained by Follow-Greedy satisfies dQ(c) ↓
dQ(ct

m) + ε
4 w(Q), where c

t
m corresponds to an optimal coloring for Q at time t. Moreover,

OPT (Pj) ⇑ dPj↔1(ctj↔1
m ) +

∑
Q↑Q↑

j

1
2

w(Q)
(1+ ω

4 ) = dPj↔1(ctj↔1
m ) +

∑
Q↑Q↑

j

w(Q)
(2+ ω

2 ) since Pj is not
recolored. In other words, the optimal coloring for Pj is sub-optimal on a set S ⇐ Q of
vertices of weight at least w(Q)

(1+ ω
4 ) and hence, incurs a recoloring cost of at least 1

2 w(S) for
recoloring Q. We charge every vertex v ↑ Q for which w(v) >

w(Q)
2n a cost 2w(v). For any j

and Q ↑ Q↔
j for which Type II recolorings happen, every vertex v in Q can only be charged

O(log n) times since the weight of the component containing v doubles each time v is charged.
This yields a total cost of O(OPTω log n) for Type II recolorings, completing the proof. ↫

Proof of Theorem 3. We prove that Follow-Greedy is O(log n)-competitive. If Greedy-
Recoloring is not invoked, Lemma 14 yields O(log n) competitiveness. Else, by Lemmas 14
and 13 a total cost of O(OPTωlog n + W log n) = O(W log n) is incurred. Combined with
Lemma 12, this yields O(log n)-competitiveness. ↫

3 Capacitated Online !-recoloring

We give deterministic and randomized algorithms for capacitated !-recoloring in an overpro-
visioned setting. Formally, we have n vertices, ! colors, each with capacity (1 + ϑ) n

! , such
that the maximum degree of the graph induced by request sequence ω is at most (1 ↘ ϑ)!.
We analyze competitiveness with respect to an optimal o#ine algorithm with no capacity

constraints. Initially all vertices are assigned to ! colors such that each color has exactly n
!

vertices (for convenience, we assume that n is divisible by !).
Our algorithms maintain a list of feasible colors L(v) ⇐ [1, !] for each vertex v ↑ V .

We derive a lower bound for OPTω (similarly to [6] for uncapacitated (! + 1)-recoloring)
by considering the size of the minimum vertex cover of graph GM induced by the set of
monochromatic edges (ut, vt) (with respect to the initial coloring c0), i.e. c0(ut) = c0(vt).
The following lemma is immediate since OPT must recolor at least one endpoint of a
monochromatic edge in GM .

↭ Lemma 15 ([6]). OPTω ⇑ |C≃|, where C
≃

denotes a minimum vertex cover of GM .

Lemma 15 holds for the uncapacitated case [6]; thus, our algorithms in the overprovisioned
setting are competitive with respect to an optimal algorithm which is not capacity constrained.

Maintaining a 2-approximate vertex cover. Both of our algorithms maintain a 2-approxi-
mate vertex cover C of GM online, i.e., |C| ↓ 2|C≃| using a simple greedy algorithm: on
arrival of an edge (ut, vt) such that c0(ut) = c0(v), if neither of ut or vt are in C, both ut and
vt are added to C. Consider any distinct pairs of vertices (ui, vi), (uj , vj) added to C. By
virtue of the algorithm, vertices ui and vi can not be adjacent to uj or vj in GM . Thus, any
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vertex cover must include one of ut or vt whenever ut, vt are added by the greedy algorithm
after a request (ut, vt) is encountered. It follows that C ↓ 2|C≃|.

The Algorithm. We give a generic algorithm !-Recoloring below that invokes a Recolor
subroutine. Our deterministic and randomized algorithms di"er in their respective imple-
mentations of this subroutine. The vertex cover C is initialized to ⇓. On any request (ut, vt),
if c(ut) = c(vt) there are multiple cases to consider:
1. If ut, vt /↑ C: add ut, vt to C, and call Recolor(ut).
2. Elsif ut ↑ C, vt /↑ C: call Recolor(ut).
3. Else: if both ut, vt ↑ C, call Recolor(arg maxw↑{ut,vt} deg(w)).

3.1 A Deterministic O(!)-Competitive Algorithm

We give a deterministic algorithm by describing a deterministic Recolor subroutine which
is used in conjunction with algorithm !-Recoloring. As before, let N(Ci) = (1 + ϑ) n

! ↘∑
v↑Ci

w(v) = (1 + ϑ) n
! ↘ |Ci| denote the residual capacity of cluster Ci, for any i.

Deterministic Recolor(v). Suppose v is currently assigned to color i. Among the list of
feasible colors L(v) for v, we recolor v with color j with maximum residual capacity; i.e.,
Cj = arg max{Ci: i↑L(v),N(Cj)>0} N(Ci). The variables N(Ci) (resp. N(Cj)) are incremented
(resp. decremented) by 1, and the list L(v) updated. If N(Cj) = 0 for all j ↑ L(v), then the
following Rebalance procedure is called and all colors are assigned at most ⇔ n

! ↖ vertices.

Deterministic Rebalance. For any graph G with maximum degree at most r, an equitable
coloring is a proper coloring such that for any i, j ↑ [r + 1] the number of vertices assigned
color i di"ers by the number of vertices assigned color j by at most 1. Kierstead et al. [19]
present an O(rn

2)-time algorithm to compute a (r + 1)-equitable coloring. We use their
algorithm as the rebalancing procedure to recompute a coloring for the subgraph Gt induced
by ω→t. The cost of Rebalance is trivially bounded by O(n).

Proof of Theorem 6. Let |C≃| denote the size of the optimal vertex cover for the graph GM .
Our algorithm only recolors vertices in C. Since the maximum degree is (1 ↘ ϑ)!, there are
at least ϑ! feasible colors for each vertex when recoloring happens. If there exists a feasible
color j ↑ L(v) s.t. N(Cj) ⇑ 1, a cost of 1 is incurred. Thus, if Rebalance is never called
throughout the request sequence, the total cost is at most O(2 · |C≃| · (1 ↘ ϑ)!) = O(|C≃|!).
Combined with Lemma 15, this yields O(!)-competitiveness.

Now, let v denote the first such vertex for which a rebalancing procedure is called.
This implies that for at least ϑ! feasible colors j ↑ L(v), s.t. N(Cj) = 0. It follows
that OPT ⇑ |C≃| ⇑ ϑ!( εn

! ↘ 1) = ϑ
2
n ↘ ϑ! ⇑ ε2n

2 in this case, since only vertices in C

are recolored. Since the sum of degrees of all nodes in the subgraph GT induced by ω is
n!(1 ↘ ϑ), the re-balancing procedure can be called O(n!(1↘ε)

ε2n ) = O(!) times, incurring
a total re-balancing cost O(n!) since a single call to re-balancing incurs O(n) recolorings.
The total number of recolorings between re-balancing calls is bounded by O(n!). Since
OPT = ”(n) in this case, the algorithm is O(!)-competitive, completing the proof. ↫

3.2 A Randomized O(1) Competitive Algorithm

Our randomized algorithm uses randomized Recolor and Rebalance subroutines in conjunc-
tion with algorithm !-Recoloring.
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Randomized Recolor(v). Suppose v is currently assigned color i. We pick a feasible color
j for v uniformly at random from L(v). If N(Cj) ⇑ 1, recolor v to j and assign to Cj , and
increment NC(i) (resp. decrement NC(j)) by 1; otherwise, call randomized Rebalance.

Randomized Rebalance. Initially, for each vertex v, the feasible list of colors is L(v) = [!].
Thereafter, a coloring for V is sequentially determined as follows: for each v ↑ V , a random
color c is picked from the current list of feasible colors L(v), and assigned to v. For all
neighbors u of v, c is removed from L(u) and the process repeats.

The following holds since the maximum degree of any vertex is always bounded by
(1 ↘ ϑ)!.

↭ Observation 16. |L(v)| ⇑ ϑ! for any v ↑ V and any time t.

Analysis of Rebalance. A key property of randomized rebalancing is that the distribution
of the vertices across the colors is very close to balanced. This is formalized by the following
lemma, whose proof utilizes a martingale argument and Azuma’s inequality.

↭ Lemma 17. Randomized Rebalance computes a proper coloring c satisfying i) the number

of vertices assigned any color i where i ↑ [!] is at most (1 + ε
2 ) n

! with probability at least

1 ↘ !e
↘ ω2n

2!2 and ii) the probability that any two vertices u, v have the same color is at most

1
ε! .

Proof. We first note that rebalancing always computes a proper coloring. To establish a
high probability upper bound on the number of vertices in any color, we use a martingale
argument. Let X1, X2, ..., Xn denote i.i.d. random variables uniformly generated from the
interval [0, 1] in advance. In the randomized Rebalance subroutine, we can view the color
assignment for the jth vertex v as follows: the algorithm selects the kth color in L(v) for
k = ⇔Xj · |L(v)|↖. This ensures that any color c ↑ L(v) is picked with probability 1

|L(v)| .
This view allows us to condition our martingale on independent random variables X1, .., Xi

instead of the actual color choices, which are not independent in general.
Let Yi denote the number of vertices assigned color i once rebalancing is completed. Note

that Yi depends on random variables X1, ..., Xn all of which are mutually independent. Let
Z denote the Doob martingale where Zj = E[Yi| X1, ..., Xj ], i.e. Zj is the expected value of
Yi given the random choices of the first j vertices, and let Z0 = E[Y ].

To compute a high probability bound on the value of Zn, we first compute E[Z0] = E[Yi].
We note that the coloring computed by randomized Rebalance is symmetric with respect to
any color. Thus, E[Yi] = E[Yj ] for any i ↔= j where i, j ↑ [!]. Since E[

∑
i↑[!] Yi] = n, we

have that E[Yi] = n
! for any i ↑ !. Moreover, note that Zj ↘ Zj↘1 ↓ 1 for any j ↑ [n]. We

apply the Azuma-Hoe"ding inequality (e.g., see Theorem 13.6 in [20]) to derive

Pr
[
Zn ↘ Z0 ⇑ ϑn

2!

]
= Pr

[
Zn ↘ n

! ⇑ ϑn

2!

]
↓ e

↘ 2ω2n2
4!2n = e

↘ ω2n
2!2

Taking a union bound for all ! colors, we have that the probability that for any color i,
the number of vertices assigned color i is at most (1 + ε

2 ) n
! is at least 1 ↘ !e

↘ ω2n
2!2 . This

completes the proof for property i) of coloring c given by randomized rebalancing.
For property ii), let v be colored after u when randomized rebalancing is called. Note

that v has at least 1
ε! feasible colors in L(v) at the time it is colored (by Observation 16)

and chooses a color randomly. Since u is a non-neighbor, u can be assigned one of the colors
in L(v); since v is assigned a random color in L(v), we obtain Pr[c(u) = c(v)] ↓ 1

ε! . ↫
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Analysis of recoloring. Our algorithm recolors only when c(ut) = c(vt) for a request (ut, vt)
at any time t. We first place an upper bound on the probability of recoloring. The proof of
the following lemma is deferred to the full version of the paper.

↭ Lemma 18. For a request (ut, vt) in which at least one of ut or vt has been recolored before

time t, Pr[c(ut) = c(vt)] ↓ 1
ε! .

For our analysis, we partition the request sequence into phases where a phase ends
whenever a rebalancing occurs. This yields a (possibly empty) sequence of complete phases
followed by an incomplete phase. Note that the length of any complete phase is a random
variable. We first show that each complete phase has ”(n) recolorings with high probability.

↭ Lemma 19. A complete phase has at least ϑ
2
n/4 recolorings with probability at least

1 ↘ 2!e
↘ ω2n

2!2 .

Proof. We establish the claim by showing that if at most ε2n
4 recolorings take place in phase,

then the number of vertices recolored to any particular color j is at most (1 + ϑ) n
! with

high probability, indicating that the phase has not completed. In the remainder of the proof,
we assume that t = ε2n

4 recolorings take place. Fix a color j. Let Yi denote the random
variable which is 1 if there exists a vertex v such that v is recolored to j during its i

th

recoloring. Note that Pr[Yi = 1| Yi↘1, ..., Y1] ↓ 1
ε! by Observation 16. We are interested in

the random variable Y =
∑t

i=1 Yi, and note that the total number of vertices assigned to
color j is bounded by (1 + ε

2 ) n
! at the beginning of a phase with high probability, by Lemma

17. Moreover, Y is stochastically dominated by Z =
∑t

i=1 Zi, where Z1, Z2, ..., Zt are i.i.d.
Bernoulli random variables such that Zi = 1 with probability 1

ε! and 0 otherwise. Note that
E[Z] ↓ εn

4! . Thus, to upper bound Y , we can use a Cherno" bound (see p. 69 of [20]) for Z:

Pr[Y ⇑ ϑn

2! ] ↓ Pr[Z ⇑ ϑn

2! ] ↓ Pr[Z ⇑ 2E[Z]] ↓ e
↘ ωn

12!

Taking a union bound over all j, we have that the probability the maximum number of
vertices assigned any color j ↑ ! is at most (1 + ϑ) n

! with probability at least 1 ↘ !e
↘ ωn

12! .
Adding the preceding failure probability to the failure probability of Lemma 17 and noting
that !e

↘ ωn
12! ↓ !e

↘ ω2n
2!2 (for ! ⇑ 6/ϑ) yields the desired claim. ↫

Lemma 20 bounds the number of new edges requested in any completed phase by ”(n!)
with high probability. This bounds the number of phases by O(1).

↭ Lemma 20. The number of new requests (ut, vt) in any complete phase such that (ut, vt)
is requested for the first time at time t is at least

ε3n!
4(1+ε) with probability at least 1 ↘ 3!e

↘ ω2n
2!2 .

Proof. Let Yi denote the random variable which is 1 if the i
th newly requested edge (ui, vi)

during any phase leads to a recoloring by the algorithm, and 0 otherwise. Let N = ε3n!
4(1+ε) . By

Lemma 18, Pr[Yi = 1|Yi↘1, ..., Y1] ↓ 1
ε! . We use the fact that Y =

∑N
i=1 Yi is stochastically

dominated by Z =
∑N

i=1 Di where Di is a Bernoulli random variable that is 1 with probability
1

ε! and 0 otherwise. Thus, we can apply a Cherno" bound (see p. 69 of [20]) to Z to get a
high probability bound on Y . . We analyze the probability that Z =

∑N
i=1 Di ⇑ ε2n

4 , i.e.
the probability that the number of recolorings is at least ε2n

4 recolorings for N new requests
in the phase. Then E[Z] = ε3n!

4ε(1+ε)! = ε2n
4(1+ε) . We derive

Pr
[
Y ⇑ ϑ

2
n

4

]
↓ Pr

[
Z ⇑ ϑ

2
n

4

]
= Pr [Z ⇑ (1 + ϑ)E[Z]] ↓ e

↘ ω4n
12(1+ω) .
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We obtain the desired claim by adding the above failure probability to that of Lemma 19
and noting that ! is su!ciently large (⇑ 6/ϑ

2). ↫

Lemma 21 bounds the expected number of recolorings throughout the algorithm.

↭ Lemma 21. The expected number of recolorings performed during the first phase is O(|C≃|).
The expected number of recolorings of the algorithm is O(n).

Proof. From Lemma 18, it follows that at any time t and any vertex v such that u is not
a neighbor of v at time t, Pr[c(u) = c(v)] ↓ ε

! . Since only vertices in the vertex cover C
are recolored, the number of events for which a recoloring may happen is |C|!(1 ↘ ϑ). Each
such event happens with probability at most 1

ε! and since |C| ↓ 2|C≃|, it follows that the
expected number of recolorings by the algorithm is bounded by 2|C≃| (1↘ε)

ε = O(|C≃|).
To establish the second statement of the lemma, we use Lemma 18 and the fact that the

total number of distinct edges is bounded by n! to derive that the expected total number of
recolorings of the algorithm is at most n + n!/(ϑ!) = n(1 + 1/ϑ). ↫

Finally, combining the lemmas above yields O(1)-competitiveness for our randomized al-
gorithm, thus proving Theorem 7.

Proof of Theorem 7. By Lemma 15, OPTω ⇑ |C≃|. We consider two cases. First, if
|C≃| ↓ ε2n

4(1+ε) , then the number of edges introduced is at most ε3n!
4(1+ε) . By Lemma 20, with

probability at least 1 ↘ 3!e
↘ ω2n

2!2 , the first phase does not complete. The failure probability
is 1/poly(n) for ! = O(

√
n/ log n). Therefore, by Lemma 21, the expected cost of the

algorithm is O(|C≃|) + n!/poly(n) = O(|C≃|).
Second, if |C≃| >

ε2n
4(1+ε) , then by Lemma 21, the expected cost of all the recolorings is

O(n). By Lemma 20, the number of phases is O(1) with probability at least 1 ↘ 3!e
↘ ω2n

2!2 .
Therefore, the expected rebalancing cost is at most (1↘1/poly(n))O(n)+n!/poly(n) = O(n).
Therefore, the expected total cost is O(|C≃|), thus completing the proof. ↫
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