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Abstract

Motivated by modern architectures allowing for the partitioning of a GPU into hardware separated
instances, we initiate the study of scheduling splittable jobs on configurable machines. We consider
machines that can be configured into smaller instances, which we call blocks, in multiple ways, each
of which is referred to as a configuration. We introduce the Configurable Machine Scheduling (cms)
problem, where we are given n jobs and a set C of configurations. A schedule consists of a set of
machines, each assigned some configuration in C with each block in the configuration assigned to
process one job. The amount of a job’s demand that is satisfied by a block is given by an arbitrary
function of the job and block. The objective is to construct a schedule using as few machines as
possible. We provide a tight logarithmic factor approximation algorithm for this problem in the
general setting, a factor (3 + ω) approximation algorithm for arbitrary ω > 0 when there are O(1)
input configurations, and a polynomial time approximation scheme when both the number and size
of configurations are O(1). Finally, we utilize a technique for finding conic integer combinations in
fixed dimension to develop an optimal polynomial time algorithm in the case with O(1) jobs, O(1)
blocks, and every configuration up to a given size.
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1 Introduction

As the size of Deep Neural Network (DNN) models (particularly Large Language Models)
continue to increase, there is a growing need to more e!ciently allocate computational
resources to these models at inference time. One challenge in e!ciently allocating resources
is that certain large models may require powerful GPUs, while other smaller models would
greatly underutilize the power of such GPUs. To combat this issue, modern GPUs (e.g.,
NVIDIA A30, A100, H100) include a new hardware feature called Multi-Instance GPU
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(MIG). MIG enables a GPU to be partitioned into smaller hardware isolated GPU instances,
each with their own processors, memory, L2 cache, and bus bandwith.

While MIG theoretically allows GPUs to avoid wasting resources, the feature raises the
problem of e!ciently scheduling on MIG-enabled GPUs. The problem presents two main
challenges which must be considered simultaneously, and so compound the complexity of
finding a solution. The first challenge is to partition the GPU into a configuration of smaller,
variably sized GPU instances that can be used to execute DNN models. The second challenge
is to assign models to these instances based on their resource demands. The problem is
further complicated by the facts that (a) di"erent configurations of GPU instances may have
varying levels of computational and memory resources, (b) the resources are non-fungible
for DNN models in the sense that increasing the size of a GPU instance may not linearly
increase its performance [17], and (c) due to hardware constraints, some partitions of the
GPU may not be available [13].

No prior work has provided algorithms with provable performance guarantees in the
presence of (a-c), and currently deployed scheduling algorithms ignore either (b) [14], or
(c) [16], or all three [19]. While this problem has gained much attention [17, 10, 11], these
investigations primarily rely on heuristics with no formal guarantees. This paper is the first
to establish theoretical bounds for scheduling on MIG-enabled GPUs.

We provide a natural formalization of the above problem, initiating a systematic theoretical
study of scheduling splittable jobs in configurable machines. We call this problem Configurable

Machine Scheduling or cms. We consider machines that can be partitioned into multiple
configurations of smaller instances, which we call blocks. We consider jobs that have certain
demands that need to be satisfied by allocating blocks to it. Each job also has a corresponding
table that specifies how much of the job’s demand is satisfied by a given block type. A
schedule specifies each machine’s configuration and which job each of the machine’s blocks is
to execute. Our goal is to construct a schedule that satisfies all job demands using as few
machines as possible.

Configurable Machine Scheduling (cms) A cms instance is defined by a set C of machine

configurations and a set J of jobs, as well as an integer k indicating the number of available
block types.

Each machine configuration ω → C is a multiset of blocks represented as a length k vector.
For i → [k] = {1, . . . , k}, we let ωi → Z→0 indicate the number of blocks of type i in ω.
For each job j → J , there is an associated demand dj as well as a length k throughput

table fj . For a job j → J and block type i → [k], the value of fj(i) denotes the amount of
j’s demand satisfied when it is executed on a single block of type i.

The goal is to satisfy all job demands on as few machines as possible. A machine µ
specifies how each block is allocated for each job. Specifically, µ(i, j) represents the number
of blocks of type i on which machine µ executes job j, with the constraint that, there exists
a configuration ω such that

∑
j µ(i, j) ↑ ωi, for each i → [k]. That is, each machine has an

implicit configuration, and the total number of blocks of type i used by machine µ cannot
exceed the number of blocks of type i included in µ’s configuration.

A schedule consists of a multiset M of machines, with Mµ indicating the number of
instances of machine µ in M . In any schedule, all job demands must be completely satisfied,
i.e. for any schedule M , we require

∑
µ↑M

∑
i↑[k] Mµ · µ(i, j) · fj(i) ↓ dj for each job j. The

formal objective is, then, to construct a schedule M that minimizes the total number of
machine instances, given by

∑
µ Mµ. (See Figure 1 for an example.)
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Figure 1 Example cms instance (a) with schedule (b). The instance has k = 3 block types,
|C| = 2 configurations, and |J | = 3 jobs. Configuration ε has three type 1 blocks, and one type 3
block. Configuration ϑ has two type 2 blocks. Job j1 had demand 11, with throughput fj1 (1) = 2,
fj1 (2) = 4, and fj1 (3) = 5. Job j2 had demand 14, with throughput fj2 (1) = 8, fj2 (2) = 1, and
fj2 (3) = 3. Job j3 had demand 29, with throughput fj3 (1) = 5, fj3 (2) = 3, and fj3 (3) = 5. The
schedule uses six machines: two instances of µ, one instance of µ

→, and three instances of µ
↑. µ

and µ
→ have configuration ε. µ executes j1 on three type 1 blocks and j3 on one type 3 block. µ

→

executes j2 on one type 1 block and one type 3 block, and j3 on two type 1 blocks. Machine µ
↑ has

configuration ϑ and executes j2 on one type 2 block and j3 on the other. Summing the throughput
over all machines is su!cient to satisfy all job demands.

In any cms instance, we assume that, for all j, fj maps to {ε → N : ε ↑ dj}, which we
can ensure with only a polynomial increase in the length of the input, and no loss in the
value of the optimal solution. The size of a configuration ω, denoted |ω|, is the number of
blocks in the configuration, i.e. |ω| =

∑
i↑[k] ωi. Furthermore, for convenience, some of our

algorithms output the schedule as a multiset of configurations, one for each machine in the
output schedule, and a multiset of blocks for each job. In the appendix, we prove that this
format of the output is without loss of generality, since it can be e!ciently transformed to a
schedule as formally defined above.

1.1 Our results

Our cms problem formulation yields a rich landscape of optimization problems, which vary
depending on the properties of block types, configurations, and the job demand tables. In
this paper, we explore the general cms problem and three restricted versions of the problem.
We obtain near-tight approximations or optimal results for the associated problems (see
Table 1).

Table 1 Results for Configurable Machine Scheduling. n is the number of jobs, k is the number
of block types, and c = maxω↓C{|ε|} is the maximum size of any configuration. All results are
proved in this paper. The hardness of cms with O(1) jobs and O(1) configuration size is unknown.

-
Problem Algorithm Approximation Hardness

General LP+ Greedy O(log cnk) Ω(log nk)

O(1) configurations
Extreme-Point
LP Rounding

(2 + ε)OPT + |C|
3 + ε

2

O(1) configurations
of O(1) size Small/Large Job LP 1 + ε ?

O(1) number of jobs and blocks,
with all configurations up to a given size

Conic Integer Combinations
in Fixed Dimension 1 -

-
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General cms (Section 2). Using a reduction from minimum multiset multicover [15],
we first observe that cms is hard to approximate to within a factor of !(log nk), where n
is the number of jobs and k the number of blocks. We then present a factor O(log(cnk))
approximation algorithm, where n is the number of jobs, k the number of blocks, and c
is the size of the largest configuration, which is essentially tight given the above hardness
result. Our algorithm constructs a schedule by greedily selecting the highest throughput
configuration on the basis of a linear programming relaxation.

The logarithmic-hardness result for the general problem motivates us to consider restricted
versions with a constant number of configurations, which are also of practical interest.

cms with a constant number of configurations (Section 3). Using a reduction from
Partition, we observe that cms, even with one configuration and two jobs, is hard to
approximate to within a factor of 2. Our main result is an algorithm that, for any instance
of cms with a constant number of configurations C and arbitrary ϑ > 0, uses at most
(2 + ϑ)opt + |C| machines where opt is the number of machines needed in the optimal
solution, asymptotically almost matching the hardness result for a constant number of
configurations. We also show that our algorithm always returns a 3 + ϑ approximation.
Our algorithm builds on the seminal LP rounding technique of [9] and exploits the
structure of extreme-point solutions to iteratively and carefully round the LP variables.

To find more tractable cases, we study a further restriction of the problem that bounds
the size of configurations.

cms with a constant number of configurations of constant size (Section 4). We next
consider cms with a constant number of configurations, each of constant size (i.e., having
a constant number of blocks). We show that the problem is solvable in pseudo-polynomial
time; our main result here is a PTAS based on rounding a novel LP relaxation for the
problem.

Our LP based approximations require the number of configurations given in the input to
be constant. Our final result explores nontrivial tractable models where the number of jobs
is constant while the number and size of configurations are not constant.

cms with a constant number of jobs and blocks, with all configurations up to a given

size (Section 5). We consider cms with a constant number of jobs, a constant number
of block types, and where every configuration up to a given size is available. We give an
algorithm that solves this problem optimally in polynomial time. Our algorithm uses a
technique for finding conic integer combinations in fixed dimension, which was developed
by Goemans and Rothvoss in their study of bin packing with constant number of job
types [5]. We also show that this technique extends to a more general setting where
configurations are defined by a constant number of rational polytopes.

1.2 Our Techniques

General cms. The logarithmic factor approximation algorithm for the most general case
uses two algorithmic approaches, each of which faces challenges on its own. The first approach
uses the natural heuristic of greedily allocating machines to execute as much total throughput
as possible. When each job can be fully executed on at most one block of each type, we
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show that this algorithm achieves a logarithmic approximation ratio. However, in general the
algorithm’s approximation ratio is !(n). The second approach is based on an LP relaxation
that uses job-block variables to indicate how many blocks of a given type are used to execute
a job. When the job-block variables are large enough (greater than 1) they can be rounded
and scheduled using a multi-set multi-cover algorithm to achieve a logarithmic approximation
ratio. On the other hand, variables with low values cannot be rounded up without a large
loss in the approximation ratio, and cannot be rounded down because even a small fractional
block allocation may represent a significant amount of throughput. Our solution is to marry
these approaches. We first solve the LP relaxation and use a multi-set multi-cover algorithm
to schedule those job-block pairs with large variable values. For any jobs with remaining
demand, we show that they can be fully executed on at most one block of each type, and
ensure that the maximum ratio of execution function values is at most the number of block
types k. Executing the greedy algorithm on these remaining jobs yields an algorithm with a
logarithmic approximation ratio.

Constant number of configurations. In this case, we use essentially the same LP as for
the general problem, simplifying it to use only variables that represent how many of each
block type are allocated to a job. We then build a graph with nodes representing the block
types and jobs, and insert an edge between a job and block type if the corresponding variable
in the LP is nonzero. We leverage extreme point properties to prove that the graph is a
pseudo-forest; i.e., each component is either a tree or a tree with a cycle. Our key technical
contribution is to carefully round the LP solution by exploiting this tree structure and the
constraints on the possible LP values mandated by the fact that, by our construction, no block
can satisfy more demand than the job requires. This algorithm returns a (2 + ϑ)opt + |C|
approximation. We extend this result to a (3 + ϑ)opt approximation (which is better for
opt < |C|) by running the above algorithm on each subset of the input configurations, and
then returning the best solution.

Constant number of configurations of constant size. The LP used in the preceding two
variants of the problem has an integrality gap of 2. This holds even for simple instances with
one configuration of constant size and two jobs. To obtain a PTAS for a constant number of
configurations of constant size, we first divide the jobs into small and large jobs based on
whether the number of machines needed to serve their demand exceeds a constant threshold
(based on a parameter ϑ). We then formulate a new LP that imposes di"erent constraints
for the small jobs taking into account that there is a bounded number of ways their demands
can be allocated. Through a careful rounding of the LP, we derive a (1 + ϑ)-approximation
algorithm for the problem.

Constant number of jobs and blocks, and all configurations up to a given size. In this
setting neither the number or configurations nor the size of any configuration is constant,
and so any approach based on our LP relaxations faces the obstacle that either the program
has an integrality gap of at least 2, or is intractable. Therefore, in order to solve this problem
optimally, more sophisticated techniques are required. The approach we develop is based on
a technique for finding conic integer combinations in fixed dimension which was developed
by Goemans and Rothvoss in their study of bin packing with constant job types [5]. The
challenges of this approach lie in formulating the problem to appropriately leverage the
power of the apparatus. In our case, this involves providing a rational representation of the
problem on an individual machine that yields a complete solution when combined with the
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representations of other machines. In the general case, the nonlinear relationship of blocks
to job throughput and to configuration size renders the problem extremely di!cult, even
when jobs and blocks are constant. However, when all configurations up to a given size are
available, a configuration can be represented as a linear combination of block allocations,
making the problem tractable. In fact, as long as the number of jobs and blocks types is
constant, the general technique for finding conic integer combinations allows us to devise an
optimal polynomial time algorithm whenever the set of configurations can be represented
using a constant number of rational polytopes.

1.3 Related work

Configurable machine scheduling has connections to many well-studied problems in combin-
atorial optimization, including bin-packing, knapsack, multiset multicover, and max-min fair
allocation. General cms generalizes the multiset multicover problem [8, 6, 15], for which the
best approximation factor achievable in polynomial time is O(log m) where m is the sum of
the sizes of the multisets [15, 18]. The hardness of approximating the problem to within an
O(log n) factor follows from the result for set cover [4].

As we note above, cms is NP-complete even for the case of one configuration and two
jobs. The single configuration version can be viewed as a fair allocation problem with each
block representing an item and each job representing a player that has a value for each
item (given by the demand table) and a desired total demand. The objective is to minimize
the maximum number of copies we need of each block so that they can be distributed
among the players satisfying their demands. In contrast, the Santa Claus problem in fair
allocation [1] (also studied under a di"erent name in algorithmic game theory [12]) aims
to maximize the minimum demand that can be satisfied with the available set of blocks.
The best result for the Santa Claus problem is a quasi-polynomial O(nω)-approximation
algorithm, where ϑ = O(log log n/ log n) [2], though factor O(1) approximation algorithms
are known for special cases (e.g., see [3]).

1.4 Discussion and Open Problems

Our study has focused on a combinatorial version of cms in which each machine can be
configured as a collection of abstract blocks. It is also natural to consider a numerical version
of cms in which each block type is an item of a certain size, and each configuration has a
certain capacity and can only fit blocks whose sizes add up exactly to its capacity. Note
that instances of numerical cms can be presented more compactly than general instances
of cmssince the allowable configurations can be captured by configuration capacities and
block sizes. The approximation ratios established for cms apply to numerical cms as well;
however, it is not certain that there is also a logarithmic hardness for numerical cms. Thus,
an intriguing open problem is whether numerical cms admits an approximation factor
significantly better than the logarithmic factor established in Section 2. Also of interest is a
numerical cms variant where all capacity-bounded configurations are allowed, for which we
believe techniques from unbounded knapsack [7] and polytope structure results of the kind
we show in Section 5 would be useful.

Our results indicate several directions for future research. One open problem is to
devise approximation algorithms that leverage structure in the set of available configurations.
In practice, the configuration sets associated with multi-instancing GPUs might not be
arbitrary sets, e.g. the blocks of Nvidia’s A100 GPU are structured as a tree and every valid
configuration is a set of blocks with no ancestor-descendant relations [17]. Showing improved
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bounds for such cases seems to be a challenging, but potentially fruitful area of research.
Another open problem lies in shrinking the gap between our upper and lower bounds.

The hard instance for cms with a constant number of configurations has a constant-size
solution, showing for instance that it is NP-hard to distinguish a problem with solution
size 1 from one with solution size 2. These lower bounds are su!cient to show hardness
of approximation, but do not rule out the possibility of asymptotic PTAS (even additive
constant approximations). Furthermore, we have not been able to show any hardness for
cms with a constant number of configurations of constant size, and this is an important and
interesting open problem.

Finally, our focus has been on the objective of minimizing the number of machines,
which aims to meet all demands using minimum resources. Our results can be extended to
minimizing makespan, given a constant number of machines. However, approximations for
other objectives such as completion time or flow time, in both o#ine and online settings, are
important directions for further research.

2 General cms logarithmic approximation

In this section, we consider the most general model of cms with an arbitrary configuration set
C over k block types, and n jobs in J . Our first lemma presents an approximation-preserving
reduction from multiset multicover to cms. We thus obtain that no polynomial time algorithm
can achieve an approximation ratio better than !(log nk) (assuming p ↔= np). The lemma
also implies that an improvement to our approximation ratio would yield an improvement to
the best known approximation for multiset multicover.

↭ Lemma 1. There is an approximation-preserving reduction from the multiset multicover

problem to cms.

Proof. Consider an arbitrary instance I of multiset multicover. Let U denote the set of
elements and C the collection of multisets in the set cover instance. Let re denote the coverage
requirement for element e. We can assume without loss of generality that there do not
exist two multisets S and S↓ with S ↗ S↓, since we can eliminate S from the set collection
otherwise. We construct an instance of cms where each multiset S is a configuration and
each element e is both a block type and a job. The job e has demand re, which can only be
satisfied by re blocks of type e.

Any multiset multicover solution, given by a collection M of multisets, corresponds to a
solution for cms: each multiset S in M is a machine configured according to S. Therefore,
the number of multisets in M is the same as the number of machines in the cms solution.
Furthermore, since each element e is covered re times in M , it follows that each job e has
re occurrences of block type e included in cms solution, thus satisfying the demand for e.
Similarly, every cms solution with m machines is a collection of m multisets, with each multiset
corresponding to the configuration of a machine. Since the objective function value achieved
by each of the two solutions is identical, the reduction is approximation-preserving. ↫
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Algorithm 1 Logarithmic Approximation for cms

1 Formulate and Solve a Linear Relaxation (Constraints 1-4)

Round variables down if their fractional component is less than (1/2k)

2 Solve Problem over the Integer Components of Variables (Algorithm 2)

Construct partial schedule S via multiset-multicover defined over variable integer
components

3 Greedily Schedule any Jobs with Remaining Demand (Algorithm 3)

Construct a partial schedule S↓ to satisfy any remaining demand by greedily
configuring each machine to maximize throughput

4 Output the schedule formed by the additive union (S ↘ S) ↘ (S↓ ↘ S↓)

The main result of this section is Algorithm 1, an O(log(maxε↑C{|ω|} · n · k)-approximation
algorithm for cms. The first step of Algorithm 1 solves a linear relaxation of cms, which
minimizes

∑
ε yε subject to:

∑
j xi,j ↑

∑
ε↑C yε · ωii → [k] (1)

∑
i fj(i) · xi,j ↓ dj j → J (2)

xi,j ↓ 0 i → [k] and j → J (3)
yε ↓ 0 ω → C (4)

Terms and Constraints. Each variable xi,j indicates the number of blocks of type i that
are assigned to execute job j. Each variable yε indicates the number of machines that use
configuration ω. Constraint 1 ensures a schedule cannot use more blocks of a given type than
appear across all allocated machines. Constraint 2 states that the total number of blocks
executing a job must be su!cient to satisfy its demand. It is easy to verify that this program
relaxes cms and is solvable in polynomial time.

Let (x↔, y↔) be variable assignments that yield an optimal solution to (1-4). For the second
step of Algorithm 1, we separate the integer from the fractional components of the x-variables.
We define x̄i,j =

⌊
x↔

i,j

⌋
.

We define x̂i,j = 0 if either (i) (x↔
i,j ≃

⌊
x↔

i,j

⌋
) < 1

2k or (ii) fj(i) · (x↔
i,j ≃

⌊
x↔

i,j

⌋
) <

maxi→{fj(i↓) · (x↔
i,j ≃

⌊
x↔

i,j

⌋
)}/k, otherwise x̂i,j = x↔

i,j ≃
⌊
x↔

i,j

⌋
. The second step of Algorithm 1

then calls Algorithm 2 to provide a schedule for the problem (C, J̄, k) with modified demands
d̄j = min{dj ,

∑
i fj(i) · x̄i,j}.

Algorithm 2. We define the set A =
{

(
∑

j ⇐xi,j⇒ , i) : i → [k]
}

. We construct schedule S by
using the greedy multiset multicover algorithm given in [15] on the instance (A, C).

Step three of Algorithm 1 then constructs a schedule S↓ to satisfy any remaining demand
given by the fractional components x̂ via Algorithm 3, which greedily allocates the highest
throughput machines until all demands are met. Finally, Algorithm 1 outputs the schedule
S↔ such that, S↔

µ = 2(Sµ + S↓
µ) for each µ.

Algorithm 3. For each j → J and i → [k], we initialize f̂j(i) = fj(i). While there is some
job that hasn’t been fully executed, do the following. Compute a machine µmax by iterating
over all configurations ω and greedily allocating each block of ω to the job with the highest
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throughput for that block (accounting for demand already satisfied). Of these machines,
greedily set µmax to be the one with highest total throughput. Allocate enough instances of
µ such that some job’s remaining demand becomes less than f̂j(i) for some i. Then, for each
j, i, update f̂j(i) ⇑ min{f̂j(i), Dj} where Dj is the job’s remaining demand. Then repeat.

In the remainder of the section, we provide analysis of Algorithm 1. The following lemmas
establish bounds on the lengths of the schedules produced by Algorithm 3. We note that
there exist instances for which Algorithm 3 produces schedules with length !(n), and so
it cannot be used to solve cms without some additional processing (which, for us, involves
reducing the instance via Algorithm 2).

↭ Lemma 2. If dj ↑
∑

i fj(i) for all i (i.e. each job can be executed on at most one block

of each type) then Algorithm 3 returns an O(log(maxε↑C{|ω|} · nkϖ)) approximation, where

ϖ = maxi,i→,j{fj(i)/fj(i↓)}.

Proof. Consider the following integer program formulation of cms, which minimizes
∑

t,ε wt,ε

subject to:
∑

t,ε,i zt,i,j · fj(i) ↓ dj , j → J and
∑

j zt,i,j ↑ wt,ε · ωi, t → N, ω → C, i → [k]
and

∑
ε wt,ε ↑ 1, t → N and wt,ε, zt,ε,i,j → N, t → N, ω → C, i → [k], j → J . In this program,

wt,ε = 1 if the tth machine instance has configuration ω (0 otherwise), zt,i,j = the number of
blocks of type i that the tth machine uses to execute job j. It is easy to see that the program
relaxes cms.

Let (w↔, z↔) be a variable assignment that minimizes the objective with value ϱ. Then
∑

j

dj ↑
∑

µ↑S

µ(i, j) · fµ(i)(i) ↑ ϱ · k · max
ε↑C

{|ω|} · max
i,j

{fj(i)}

The fact that dj ↑
∑

i fj(i) for all j implies that ϱ ↑ nk since, in the worst case, each block
is executed on its own machine. So we can infer that log(

∑
j dj) ↑ 2 · log(nk · maxε↑C{|ω|} ·

maxi,j{fj(i)}). In the remainder of the proof, we show that the greedy algorithm has an
approximation ratio of log(

∑
j dj).

Let (w̄, z̄) be the variable assignment given by schedule produced by Algorithm 3. Let
ūt =

∑
ε,i,j z̄t,ε,i,j for every t. We define u↔

t and v↔
t to be any values that satisfy the following

equalities: u↔
t + v↔

t =
∑

ε,i,j fj(i)z↔
tε,i,j , t → N and

∑
t v↔

t =
∑

j dj ≃
∑

t↗ϑ

∑
ε,i,j fj(i)z̄t,ε,i,j

and
∑

t u↔
t =

∑
j dj ≃

∑
t v↔

t . Informally, ūt is amount of throughput achieved by machine
instance t of (w̄, z̄). u↔

t is the amount of throughput achieved by machine instance t of (w↔, t↔)
that is also satisfied by one of the first ϱ machines in (w̄, z̄). v↔

t is the remaining demand
satisfied by machine instance t of (w↔, z↔). It is easy to see that,

∑
t↗ϑ ūt =

∑
t u↔

t . We
show that 2

∑
t↗ϑ ūt ↓

∑
t↗ϑ v↔

t . Suppose, for the sake of contradiction, that the claim is
false. Then for some t, 2z̄ϖ+1,ε,i,j < v↔

t . However, since v↔ represents demand not satisfied
by (w̄, z̄) in the first ϱ machines, and since the machine µmax in Algorithm 3 has throughput
at least half of the maximum (proved below), in this case the throughput of µmax would be
at least v↔

t . This is a contradiction.
We now show that, when Algorithm 3 constructs µmax, its throughput is at least half the

throughput of the highest throughput machine possible. Let ω be the configuration used
by µmax. We show that the maximum throughput machine µ↔ over ω has throughput no
more than twice that of µmax. We consider an integer program formulation of the problem
of finding the maximum throughput machine: wj ↑ dj , j → J and wj ↑

∑
i zi,jfj(i), j → J

and
∑

j zi,j ↑ ωi, i → B.
The set B includes all block instances in ω. Let (w↔, z↔) represent the solution to

this program given by the optimal machine µ↔. Let (w̄, z̄) represent the solution to this
program given by µmax. For each block i, we set ui and vi to be any values that satisfy the
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following equations. ui + vi =
∑

j z↔
i,jfj(i), i → [k] and

∑
i vi =

∑
j w↔

j ≃
∑

i,j z̄i,jfj(i) and∑
i ui =

∑
j w↔

j ≃
∑

i vi. Informally, ui is the amount of demand satisfied by block i of µ↔

that is also satisfied by µmax, and vi ui is the amount of demand satisfied by block i of µ↔

that is not satisfied by µmax. For any block i, it is easy to see that
∑

j z̄i,j ↓ ui. We can
also infer that

∑
j z̄i,j ↓ vi because, otherwise, the greedy algorithm would have chosen to

execute the same job as µ on block i. This proves the result.
Since

∑
t↗ϑ ūt =

∑
t u↔

t and 4
∑

t↗ϑ ūt ↓
∑

t v↔
t , the total demand satisfied by (w̄, z̄) is at

least 1/4 the total demand. It is straightforward to generalize this reasoning to show that
every ϱ machine instances of (w̄, z̄), reduce the total demand by a factor of 1/4, which proves
our claim. ↫

↭ Theorem 3. Algorithm 1 returns an O(log(maxε↑C{|ω|} · n · k)) approximation to the cms
problem.

Proof. Let S and S↓ represent the schedules produced by Algorithm 2 and Algorithm 3,
respectively. We first argue that S has length O(log(maxε{|ω|} · n)) · opt. Algorithm 2
reduces scheduling the integer components of the variables to an instance of multi-set multi-
cover in which there are n elements and the largest covering multi-set has size maxε{|ω|}.
The claim follows directly from Theorem 5.1 in [15].

We now show that S↓ has length O(log(maxε{|ω|} · nk)) · opt. By Lemma 2, we need
only to show that dj ↑

∑
i fj(i) and that maxj,i,i→{fj(i)/fj(i↓)} = O(k). We can infer

dj ↑
∑

i fj(i) because (C, J, k) with modified demand tables and demands f̂ , d̂ is defined
over x̂, so each job can be completely executed by one block of each type. Also, the definition
of x̂ entails that for each j, every nonzero value of x̂i,j (resp. f̂j(i) · x̂i,j) is within a factor of
2k (resp. k) of every other.

Finally, in defining x̂, we rounded down x↔
i,j if (i) z↔

i,j < 1/2k or if (ii) z↔
i,j · fj(i) <

maxi→{z↔
i→,j ·fj(i↓)}/k. Job j’s total reduction in demand from (i) is no more than dj

∑
i x↔

i,j ≃
x̄i,j ↑ dj/2, which is accounted for by doubling S1 and S2 in the output. Job j’s total
reduction in demand due to (ii) is at most maxi→{z↔

i→,j · fj(i↓)} which is accounted for in
setting x̂i,j = 2z↔

i,j for all remaining i’s. Each doubles our approximation ratio. ↫

3 cms with a constant number of configurations

We consider cms with n jobs and a set C of O(1) configurations, each of arbitrary size. We
first observe that the problem is NP-hard to approximate to within a factor of two.

↭ Lemma 4. cms with a constant number of configurations is hard to approximate to within

a factor of 2.

Proof. We present a reduction from Partition to combinatorial cms. Given an instance of
Partition with a set S of n elements 0 < a1 < a2 < · · · < an, we construct the following
instance. We consider one configuration that contains n blocks all of a di"erent type, labeled
1, ..., n. We have two jobs j1, j2, both with the demand function given by f(i) = ai. The
demand for each job is 1

2
∑

i ai.
We claim that the number of machines needed for scheduling the job is one if and only

if the Partition instance has a yes answer. If the Partition instance has a yes answer, then
there exists a way to split the n blocks into two parts so that each part’s value adds up to∑

i ai/2. We use one machine, and assign the blocks to each job according to the Partition
solution. The demand function ensures that the demand of the job is satisfied. Conversely, if
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Algorithm 4 Schedule for cms with O(1) configurations

Input: A cms instance (C, J, k)
1 L ⇑ { ⇐(1 + ϑ)i⇒ | 0 ↑ i ↑ log1+ω(

∑
j dj) }, Sol ⇑ {}

2 foreach C↔ → P (C), the powerset of C do
3 foreach m → L|C↑|

, where mε is the number of copies of ω do
4 B↔ ⇑ {i → [k] | ⇓ω → C↔ s.t. i → ω} is the set of blocks present in C↔

5 Construct the feasibility LP, LPf with constraints from equations (1↓), (2),
and (3).

∑

j

xi,j ↑
∑

ε↑C↑

mε · ωi block types i → B↔ (1↓)

6 if LPf is feasible with extreme-point solution x then
7 Graph G ⇑ (J ⇔ B↔, E) with E = { (i, j) | xi,j > 0 }
8 foreach Component S → G that has a cycle K do
9 Pick some job j in the cycle K, and let b1, b2 be its neighbors in the

cycle
10 if xb1,j · fj(b1) ↓ xb2,j · fj(b2) then E ⇑ E \ {(b2, j)} else

E ⇑ E \ {(b1, j)}
11 Make j the root of the remaining tree S

12 foreach Job j → J do
13 for the parent block p of j, do x↔

p,j ⇑ ⇐2xp,j⇒
14 foreach child block c of j do x↔

c,j ⇑ ↖2xc,j↙
15 foreach Configuration ω → C↔ do y↔

ε ⇑ 2mε + 1
16 if fewer configurations are used in y↔ than in Sol then Sol ⇑ (x↔, y↔)
17 break out of iteration

18 return Sol transformed from (x↔, y↔) format to a machine schedule according to
Algorithm 6

the demand of the two jobs is satisfied by one machine, then each job has at least
∑

i ai/2
demand satisfied. According to the demand function f ,

∑
i ai is the maximum amount

of demand that can be satisfied by this configuration. Thus each job has exactly
∑

i ai/2
demand satisfied, and so there is some partition of S into two parts such that each part sums
to

∑
i ai/2. ↫

Our main result in this section is a polynomial time algorithm that returns a solution
with cost the minimum of (2 + ς)opt + |C| and (3 + ϑ)opt, for arbitrary ϑ > 0, where
opt is optimal cost. Our algorithm, detailed in Algorithm 4, guesses the number of each
configuration used in an optimal solution, to within a factor of 1 + ϑ (see line 3), and then
builds on the paradigm of [9] by carefully rounding an extreme-point optimal solution for a
suitable instantiation of lp(1-4) (given in line 5).

Using extreme-point properties, we establish Lemma 5, the proof of which closely fol-
lows [9].

↭ Lemma 5. Every component in graph G of line 7 has at most one cycle.

Proof. This proof follows a similar structure as the proof of Lemma 17.6 in [18]. We will
use a proof by contradiction. First, consider a component in G, called Gc. Then consider
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the restriction of the LP, LPc, to only the jobs and block types present in the component.
Also let xc be the restriction of x to those jobs and blocks present in the component. Let xc̄

be the rest of x. Note that xc is a feasible solution to LPc since all the blocks that satisfy
demand for jobs in Gc are connected to those jobs in the original graph G and thus are also
included in Gc, so we continue to satisfy all the demand for these jobs. Now assume for
contradiction that xc is not an extreme point in LPc. Then ⇓x1, x2, φ where x1 and x2 are
feasible solutions to LPc and φ → (0, 1) such that we have xc = φ · x1 + (1 ≃ φ) · x2.

Now we show that x1 +xc̄ and x2 +xc̄ are feasible solutions to the LP . First, consider that
x1, x2 have disjoint jobs and block types from xc̄. Thus, we can consider their corresponding
constraints separately. Furthermore, together, x1, x2, and xc cover all the constraints (since
they cover all jobs and block types). Thus we need only verify that x1, x2 satisfy their
constraints, and xc̄ satisfies its constraints. Since x1, x2 are feasible solutions to LPc we
know they satisfy the constraints in LP relevant to them. And since xc̄ is part of the feasible
solution x, it must also satisfy the constraints relevant to it. Between the two, all the
constraints of the LP are satisfied, since together they cover all jobs and blocks.

But then since x = φ · (x1 + xc̄) + (1 ≃ φ) · (x2 + xc̄) we can say that x is a convex
combination of two other solutions. Thus, x is not an extreme point solution. But, since x is
an extreme point solution, we reach a contradiction.

Therefore, xc must be an extreme point solution in LPc. We know that the number of
tight constraints in an extreme point solution is at least as many as the number of variables.
Thus at most |B↔

c | + |Jc| constraints can be not tight (coming from constraints 1↓ and 2).
Since we create an edge only if an x variable is nonzero, or equivalently, its nonzero constraint
is not tight, we know that the number of edges in Gc must be at most the number of blocks
+ jobs in Gc. In other words, the number of edges is at most the number of nodes. Since C
was chosen arbitrarily, we conclude that every component in G has at most one cycle. ↫

↭ Lemma 6. Algorithm 4 returns a feasible integer solution to lp(1-4).

Proof. Since the algorithm returns the least cost rounded solution over all iterations, we
need to show that (x↔, y↔) is a feasible integer solution to lp(1-4). By our rounding, x↔

i,j

and y↔
ε are integers for each i, j, ω. It remains to show that (x↔, y↔) is feasible in lp(1-4).

Constraints 3 and 4 are true by definition of x↔, y↔.
We now consider constraint 1. If a block type i is not in B↔, then this constraint is

satisfied because xi,j = 0 for all j, and thus x↔
i,j = 0 for all j. Now we consider blocks that

are in B↔. By Lemma 5, each component of G has at most one cycle. In the algorithm
we remove an edge from each of these cycles, so the resulting graph is a forest. Thus each
block type i has one parent and so is a child of one job. This means that all xi,j variables
associated with block i are rounded as ⇐2xi,j⇒, except for the parent of i, pi. So

∑

j

x↔
i,j =

∑

j ↘=pi

⇐2xi,j⇒ + ↖2xi,pi
↙ ↑

∑

j

2xi,j + 1 ↑
∑

ε↑C↑

2mε · ωi + 1

↑
∑

ε↑C↑

(2mε + 1) · ωi ↑
∑

ε↑C

y↔
ε · ωi

The third inequality follows from constraint 1↓ since x satisfies LPf , and the fourth
inequality holds since i → B↔ implying that there is at least one ω → C↔ with ωi ↓ 1. Thus,
constraint 1 is satisfied.

Now, we consider constraint 2. First, we consider some job j whose edge was not removed.
Then, since G becomes a forest after pruning edges we obtain that either the children or



M. Casey, R. Rajaraman, D. Stalfa and C. Tan 22:13

the parent of j satisfy at least half of its demand. If its children satisfy at least half of its
demand then we have

∑
children of j fj(i) · xi,j ↓ 1

2 dj and thus we obtain
∑

i

fj(i) · x↔
i,j ↓

∑

children of j

fj(i) · ↖2xi,j↙ ↓ 2
∑

children of j

fj(i) · xi,j ↓ dj ,

Therefore, the constraint is satisfied. Otherwise, its parent p satisfies at least half of its
demand implying that xp,j ↓ 1

2 since we have fj(p) ↑ dj by our assumption on the input.
Then, x↔

p,j = ⇐2xp,j⇒ > xp,j , yielding
∑

i x↔
i,j · fj(i) ↓

∑
i xi,j · fj(i) ↓ dj since x is a feasible

solution to LPf . So the constraint is satisfied.
Finally, we consider any job j that had an edge removed in the cycle. Assume without

loss of generality that (b2, j) was removed from the graph. Since j is the root of the tree it is
in (by line 11), all of its neighboring blocks are its children. Then, we have

∑

i

x↔
i,j · fj(i) =

∑

i ↘=b2

↖2xi,j↙ · fj(i) ↓ xb1,j · fj(b1) + xb2,j · fj(b2) +
∑

i ↘=b1,b2

2xi,j · fj(i)

↓
∑

i

xi,j · fj(i) ↓ dj .

The second inequality comes as a consequence of line 10 and the fact (b2, j) was removed
from the graph, which implies that 2xb1,j · fj(b1) ↓ xb1,j · fj(b1) + xb2,j · fj(b2). So the
constraint is satisfied in all cases. Thus (x↔, y↔) is a feasible integer solution to lp(1-4). ↫

↭ Theorem 7. Algorithm 4 returns a min{(3 + ϑ)opt, (2 + ς)opt + |C|} approximation to

the cms problem in polynomial time if the number of configurations is constant.

Proof. We show that the algorithm returns a solution with the stated approximation factor.
Consider the iteration where C↔ = Copt where Copt is the set of configurations used by an
optimal integer solution. The algorithm will iterate through potential counts mε for each
ω in C↔, round and return a schedule the first time LPf has a feasible solution; let m be
the vector of how many configurations are used in this iteration. By Lemma 6, the solution
returned is feasible.

We now bound the cost by first arguing that
∑

ε mε ↑ (1 + ϑ)opt. Observe that the
y values in the optimal integer solution to lp(1-4) would yield a feasible solution to LPf

if they equalled the corresponding m values in LPf (namely by setting the x variables in
LPf to the x values in the optimal integer solution to lp(1-4)). For each such yi value,
consider pi, the first power of 1 + ϑ that is at least yi. Then, we have yi ↑ ⇐pi⇒ ↑ (1 + ϑ)yi.
By definition of L, we will set values for mε such that they are greater than and within a
factor of (1 + ϑ) of the y values from the optimal integer solution. Thus they will be feasible,
since they use at least as many of each configuration and

∑
ε mε ↑ (1 + ϑ)opt. Since we

iterate through the m values in increasing order of
∑

ε mε, the first feasible solution will use
at most this many configurations.

Now consider that the rounded solution y↔ has
∑

ε y↔
ε ↑

∑
ε(2mε + 1) = 2

∑
ε mε +

|COP T | ↑ 2(1 + ϑ)opt + |COP T |. Since the optimal integer solution uses at least 1 of
each configuration in COP T , we have that

∑
ε y↔

ε ↑ (3 + ϑ)opt and also that
∑

ε y↔
ε ↑

(2 + ϑ)opt + |C|.
Finally, we prove that the runtime of algorithm 4 is polynomial if |C| = O(1). The first for

loop in the algorithm ranges over 2|C| values. The inner for loop ranges over (log L)|C↑| values.
Remember that L =

∑
j dj . But then L ↑ n · maxj dj . Thus the inner loop ranges over

↑ (log(n · maxj dj))|C↑| ↑ (log n + log maxj dj)|C| values. Since dj is specified as a number,
it is specified using log dj bits. Thus the inner loop runs a number of times polynomial in
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the input, except for the number of configurations. Lastly we analyze the body of the inner
for loop. The size of the LP is polynomial in the size of the input, and thus constructing and
solving it takes time polynomial in the size of the input. Constructing the graph takes time
polynomial in the size of the LP, as does rounding using the graph. Thus overall the runtime
of the algorithm is polynomial in the size of the input, except for it being exponential in the
number of configurations. So if |C| = O(1), the algorithm is polynomial. ↫

4 cms with a constant number of configurations of constant size

In this section, we consider cms with n jobs, a set C of a constant number of configurations
with the additional constraint that each configuration has at most a constant number b
of blocks. Let k be the total number of block types. Since |C| and b are both constant,
k ↑ b|C| is a constant. In Section 4.2, we present our main result of this section, a PTAS for
the problem. As a warmup, in Section 4.1, we present an optimal dynamic programming
algorithm for the problem, which takes time (nbdmax)O(k+|C|); this is pseudo-polynomial
time for constant k and |C|.

4.1 A pseudo-polynomial time algorithm

We present an optimal dynamic programming algorithm that takes time polynomial in n and
the maximum demand. Recall that C denotes the set of configurations, and |C| is constant.
Let N denote the total number of machines. Then, there are

(N+|C|≃1
|C|≃1

)
ways of distributing

the N machines among these configurations. Each way yields a specific number of blocks of
each type. For given ni, 1 ↑ i ↑ k, let S(j, n1, n2, . . . , nk) be True if the demand of jobs 1
through j can be satisfied using ni blocks of type i, for each i. Then, we have

S(j, n1, n2, . . . , nk) =
∨

mi↗ni,⇐i

(S(j ≃ 1, n1 ≃ m1, n2 ≃ m2, . . . , nb ≃ mk) ∝ T (j, m1, m2, . . . , mk))

where T (j, m1, m2, . . . , mk) is true if and only dj can be satisfied using mi blocks of type i,
for each i. Note that T (j, m1, m2, . . . , mk) can be computed easily by inspecting the demand
table of job j and dj .

The algorithm computes S(j, n1, n2, . . . , nk) for 1 ↑ j ↑ n, ni ↑ Nb; the number of
di"erent tuples equals n(Nb)k. The time taken to compute a given S(j, n1, n2, . . . , nk), given
S(j ≃ 1, n1 ≃ m1, n2 ≃ m2, . . . , nk ≃ mk) for all choices of mi’s, is proportional to the number
of di"erent choices of mi’s, which is bounded by

(N+|C|≃1
|C|≃1

)
. We thus obtain that S can be

computed in n(Nb)O(k+|C|). This computation, coupled with a binary search over possible
values of N , yields the desired algorithm. Since N is bounded by n times the maximum
demand, we obtain a pseudopolynomial time optimal algorithm if |C| and k are bounded.

4.2 A polynomial-time approximation scheme

Blocks and patterns. Abusing notation slightly, we use fj(ω) to denote the total demand
of j satisfied if every block in configuration ω is assigned to j. We partition the set J of
jobs into two groups: the large jobs L and small jobs S. A job j is small if there exists a
configuration ω such that fj(ω) ↓ ϑdj ; otherwise, j is large.

Let ϑ > 0 be a given constant parameter, and let φ = ϑ/(2b). We define a pattern ↼ to be
a size k list of integers ↼1 through ↼k that sum to no more than b/φ2; ↼i denotes the number
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of blocks i in pattern ↼. Let W be the set of all possible patterns. So, |W | ↑ (b/φ2)k. We
assign each small job a type. Job j is of type t → 2W if each pattern ↼ → t is such that the
demand of j is satisfied if j is allocated ↼i blocks i for 1 ↑ i ↑ k. So, the number of job
types is at most 2(b/ϱ2)k . Define constant ↽ = 2(b/ϱ2)k .
The linear program. We define a linear program PTAS-LP using the following notation. In
PTAS-LP, ω ranges over all configurations in C, p → {1, . . . , k} ranges over types of blocks,
xj,p is the number of p-blocks dedicated to processing a large job j, yε is the number of
machines we use with configuration ω, ωp is the number of p-blocks in ω, zt,ς is the number
of small jobs of type t that are distributed according to pattern ↼, and nt is the number of
small jobs of type t. Recall that ↼p is the pth entry of ↼. PTAS-LP minimizes

∑
ε↑C yε

subject to the following constraints
∑

j↑L xi,j +
∑

t↑2W

∑
ς↑W (zt,ς · ↼i) ↑

∑
ε yε · ωi i → [k] (5)

∑
i↑[k] fj(p) · xi,j ↓ dj j → L (6)

∑
ς zt,ς ↓ nt t → 2W (7)

xi,j , yε, zt,ς ↓ 0 j → L, i → [k], ω, t → 2W , ↼ → W (8)

Constraints Constraint 5 guarantees that the number of blocks i that are used to execute
jobs is at most the number of available blocks i. Constraint 6 ensures that each large job is
fully executed, and constraint 7 guarantees that each small job is fully executed. Constraint 8
ensures non-negativity.

Lemma 8 proves that it is su!cient to consider schedules in which small jobs are executed by
a bounded number of blocks. Lemma 9 uses Lemma 8 and shows PTAS-LP is an approximate
relaxation for the problem.

↭ Lemma 8. For any schedule with m machines, there exists a schedule with m(1 + bφ)
machines in which each small job is executed by at most b/φ2

blocks.

Proof. Consider any placement P that uses m machines. Suppose a small job j is in more
than b/ϑ2 blocks in P . Since each configuration is of size at most b, it follows that j is
placed in at least 1/φ2 machines. Since j is small, there exists a configuration ω such that
fj(ω) ↓ φdj . We remove j from each machine to which it is assigned in P and place it in
1/φ additional machines, each with configuration ω, guaranteeing that the demand of j is
satisfied. Since each machine can hold at most k small jobs, this modification of P results in
the increase in the number of machines by a factor of at most (1 + bφ), yielding the desired
claim. ↫

↭ Lemma 9. The value of PTAS-LP is at most (1 + bφ)opt.

Proof. Let A be an optimal placement of the jobs on m machines. Using Lemma 8, we first
compute a new placement B using at most m(1 + bφ) machines in which each small job is
placed in at most 1/φ2 machines.

We now define variable assignments so that the value of PTAS-LP is no more than
(1 + bφ)m. For each large job j and each block i, set xi,j to be the number of blocks i on
which B executes j. For each small job type t and each pattern ↼, set zt,ς to be the number
of small jobs that are executed in pattern ↼ according to B. Note that since each small job
is placed in at most 1/φ2 machines, and hence at most b/φ2 blocks, the placement of each
small job follows one of the patterns in W . Set yε equal to the number of machines with
configuration ω according to A.
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Algorithm 5 Schedule for O(1) configurations of O(1) size

Input: (C, J, k)
1 Solve PTAS-LP; let (x, y, z) be the solution computed.
2 if n ↑ b(|C| + ↽)/φ then
3 Compute and return an optimal solution using enumeration
4 foreach large job j and block i do
5 x̂i,j = ↖xi,j↙; Assign ↖xi,j↙ blocks i to job j

6 foreach job type t and pattern ↼ do
7 Assign blocks per pattern ↼ to each job in ↖zt,ς↙ small jobs of type t

8 foreach configuration ω do
9 Use ↖yε↙ machines with configuration ω

It is easy to see that constraints (6 - 8) are satisfied. To see that constraint 5 is satisfied,
observe that each machine used by B either has some block executing a large job (in which
case it contributes toward the first term of 5) or it has some block executing a small job
(in which case it contributes toward the second term). Therefore, the left hand side of 5
counts the total number of blocks needed to complete all the jobs, while the right hand side
computes the total number of blocks supplied by the machines. ↫
↭ Theorem 10. Algorithm 5 returns a (1+ϑ) approximation to the cms problem in polynomial

time if the number of configurations is constant and they are of constant size.

Proof. First, if n ↑ b(|C| + ↽)/φ, then the algorithm returns an optimal solution. Otherwise,
since each machine has at most b blocks, we obtain that opt ↓ (|C| + ↽)/φ. We will show
that the number of machines used is at most (1 + bφ)opt + φ2bopt + |C| + ↽, which is at
most (1 + 2bφ)opt = (1 + ϑ)opt.

Rounding up the x variables increases the number of blocks by at most the number
of large jobs times the number of block types. Since each large job requires at least 1/φ2

machines, this increase in the number of blocks is at most φ2bopt. Rounding up the z
variables adds at most 1/φ2 blocks per small job type assigned to a given pattern, increasing
the number of blocks by at most ↽. Rounding up the y variables increases the number of
machines by |C|. Taken together with the above increase in the number of blocks, each of
which requires at most one machine, the total increase is bounded by φ2bopt + ↽ + |C|. By
Lemma 9, the LP optimal is at most (1 + bφ)opt, yielding the desired claim.

The linear program PTAS-LP has at most nk + |C| + ↽ log ↽ variables and k + n + ↽
linear constraints (other than the non-negativity ones), and can be solved in polynomial time.
The enumeration for n ↑ b(|C| + ↽)/φ is constant time, while the rest of the algorithm is
linear in the number of variables. The hidden constant, however, is doubly exponential in
|C| and the configuration size bound b, and exponential in 1/ϑ. ↫

5 cms with O(1) number jobs and block types, and all configurations

up to a given size

In this section, we consider models for which we are able to obtain optimal solutions in
polynomial time. For models with a constant number of jobs, blocks, and configurations, the
linear program (1-4) has constant size and so can be solved as an integer program. Many
models, however, do not fit this framework and require more sophisticated methods. Consider
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a setting where the number n of jobs is constant, as well as the number k of block types.
We also assume that there exists an integer K such that the set of available configurations
C includes all configurations up to size K. For example, with k = 2 block types {1, 2} and
K = 3, the set of available configurations C = {{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}}. In this
section, we show that a class of problems, including this model, is polynomial time solvable
using methods developed by Goemans and Rothvoss [5] to optimally solve bin packing with
a constant number of job types.

Consistent with our initial description of the cms model, we assume all configurations
are given as input. However, the input can be reduced exponentially if configurations are
given as a single parameter K indicating the size of all valid configurations. The algorithm
described in this section is polynomial time in either case – that is, the algorithm’s runtime
is polynomial in log K and log maxi,j{dj/fj(i)} (assuming n and k are constant). We note
that there is an easy reduction from bin packing with constant job types to this problem
(when configurations are not listed individually).

Let P be the set of vectors:





u1,1
...

uk,n

v1
...

vn

1





subject to
n∑

j=1

b∑

i=1
ui,j ↑ K (9)

vj =
k∑

i=1
ui,j · fj(i) j → J (10)

ui,j ↓ 0 i → [k], j → J (11)
vj ↓ 0 j → J (12)

Let QH be the set of vectors





z1,1
...

zb,n

w1
...

wn

h





subject to,

0 ↑ h ↑ H (13)
wj ↓ dj j → J (14)
zi,j ↓ 0 i → [k], j → J (15)

↭ Lemma 11 (Theorem 2.2 in [5]). Let N = nk + n + 1. Given rational polyhedra P, Q → RN

where P is bounded, one can find a vector y → int.cone(P ′ZN )′Q and a vector φ → Z|P ⇒ZN |
→0

such that y =
∑

x↑P ⇒ZN φxx in time enc(P )2O(N) · enc(Q), or decide that no such y exists.

Moreover, the support of φ is bounded by 22N+1
.

↭ Lemma 12. Given P and QH , the algorithm of Lemma 11 returns a vector φ i! there

exists a solution using at most H machines. Moreover, a returned vector φ provides a solution

that uses at most H machines.

Proof. As in the lemma, let N = nk + n + 1. We first show that, if there exists a valid
solution using at most H machines then int.cone(P ′ ZN ) ′ QH ↔= ⊋. Suppose there exists
a valid solution to the problem using at most H machines. We argue that each machine µ
corresponds to an integer valued vector in P . Consider an arbitrary machine µ in the given
solution. Recall that µ(i, j) = the number of blocks of type i on which µ executes job j.
This implies that

∑
j

∑
i µ(i, j) ↑ K. Setting vj =

∑
i µ(i, j) · fj(i) ensures that the vector

(v1 . . . vn 1 u1,1 . . . ub,n) → P . Let pµ be the vector in P corresponding to machine µ. Let
φ = (φµ), where φµ is the multiplicity of machine µ in the given solution. Then

∑
µ φµ · xµ

yields integer vector q = (z1,1 . . . zb,n w1 . . . wn h). Since every job is fully executed, we can
infer that wj ↓ dj . Since the solution uses at most H machines, we can infer that 0 ↑ h ↑ H.
Therefore, q → Q, which implies that int.cone(P ′ ZN ) ′ Q ↔= ⊋.

We now show that, if int.cone(P ′ ZN ) ′ QH ↔= ⊋, then there exists a solution to the
problem using at most H machines. Suppose there exists a vector q → int.cone(P ′ZN )′QH .
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Define φ = (φx)x↑P ⇒ZN such that
∑

x↑P ⇒ZN x · φx = q. As above, we treat each element
x → P ′ ZN as corresponding to a machine, and φx as the multiplicity of that machine in
our final schedule. Similar reasoning shows that φ yields a valid solution, which completes
the proof of the lemma. ↫

↭ Theorem 13. Given an instance of cms with O(1) jobs and O(1) block types, and where

all configurations of size at most K are available, there exists an algorithm that computes an

optimal solution in poly(log K, log maxi,j{dj/fj(i)}) time.

Proof. The maximum number of machines needed in any solution is m = n ·maxi,j{dj/fj(i)}.
We binary search in the range [0, m] to find the minimum integer value of H for which the
algorithm of Lemma 11, given P and QH , returns a vector φ. By Lemma 12 this provides an
optimal solution. ↫

We have shown the existence of an algorithm that computes an optimal solution to cms
with O(1) number of jobs and block types, and with all configurations up to a given size.
However, the Goemans-Rothvoss framework generalizes to a constant number of polytopes
(Theorem 6.2 in [5]) which entails the following stronger claim.

↭ Lemma 14. Suppose an instance of cms has a constant number of jobs and blocks, and the

set of all configurations can be specified using a set T of rational polytopes with |T | = O(1).
Then there exists an algorithm that computes an optimal solution in time polynomial in log K
and log maxi,j{dj/fj(i)}).

To prove Lemma 14, we use the following result from Goemans and Rothvoss.

↭ Lemma 15 (Theorem 6.2 in [5]). Given rational polytopes {Pt ↗ Rnk+n+1 : t → T} and

rational polyhedron Q ↗ Rn+1
, define Xt := {x → Zn+1 : ⇓y → Znb, (x, y) → Pt}. Then

there is an algorithm that decides correctly whether int.cone(


t↑T Xt) ′ Q ↔= ⊋ in time

(enc(P ))2O(nk+n+1+|T |) · enc(Q)O(1)
. In the a"rmative case, the algorithm provides a vector

φ = (φt,x)t↑T,x↑X with φt,x → Z→0 and (
∑

t↑T

∑
x↑X φx · x) → Q. Moreover, the size of the

support of φ is bounded by 22(nk+n+1+|T |)+1
.

Proof of Lemma 14. For each t → T , we specify Pt as an nk + n + 1 length vector as
above, except the polytope is defined by arbitrary rational constraints specific to Pt. QH is
defined as above. As in Lemma 12, we argue the following claim: given {Pt}t↑T and QH ,
the algorithm of Lemma 15 returns a vector φ i" there exists a solution using at most H
machines. Moreover, a returned vector φ provides a solution that uses at most H machines.
The reasoning is similar to that used in Lemma 12.

Let Xt be defined as in the lemma, for all t → T . If there is a valid solution then for each
machine µ there is some t such that µ can be represented as an element p of Pt. Also, we
define φ = (φt,p)t↑T,p↑X such that φt,p provides the multiplicity of the machine corresponding
to p in the solution. The fact that we begin with a valid solution on at most H machines
ensures that

∑
t↑T

∑
x↑X x · φt,x → QH . In the other direction, we show that if the algorithm

returns a vector φ, then φ provides a solution to the problem. As above, we can interpret
φt,x as providing the multiplicity of the machine corresponding to x → X in our solution –
since there exists y such that (x, y) → Pt, we can infer that x is a valid machine. By the
constraints on QH , we can infer that the derived solution completes all jobs and uses at most
H machines. This proves the lemma. ↫
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A Constructing Schedules of Polynomial Size

For any schedule S with m machine instances, there exists a multiset of configurations T used
in S and, for each job j, a multiset of blocks Tj used in S. Note both enc(T ) and enc(Tj), for
every j, are polynomial in |C|, |J |, and k, where enc(A) denotes the binary encoding length
of a multiset A.

↭ Lemma 16. Given a multiset of configurations T and, for each job j, a multiset of blocks

Tj, we can output a schedule M such that (i) the number of block instances across all

machines instances in M is at least the number of block instances in T , (ii) the multiset of

blocks assigned to each job j across all machine instances in M is identical to Tj, and (iii)

the description of M has length polynomial in unique(T ) +
∑

j unique(Tj), where unique(A)
denotes the number of distinct elements in multiset A.

Proof. We construct M via Algorithm 6. We show that the number of di"erent machines
in the schedule produced by Algorithm 6 is polynomial in |T | +

∑
j |Tj |. A new machine is

constructed in each iteration of the while-loop. In a single iteration of the while-loop, machines
are allocated until condition (i) or condition (ii) holds. By the line 10 and 11 updates, the
number of times these conditions can be met is at most unique(T ) +

∑
j unique(Tj). This

proves the claim. ↫

Algorithm 6 Multiset-to-Machines.

Input: (T, T1, . . . , Tj)
1 for all ω : sε ⇑ the number of occurrences of ω in T
2 for all i, j : ti,j ⇑ the number of occurrences of i in Tj

3 while sε +
∑

i,j ti,j > 0 do
4 choose any ω → T such that sε > 0
5 construct a new machine µ with configuration ω
6 foreach i → [k] do
7 assign ωi jobs to block i in ω, ensuring that for every job j, µ(i, j) ↑ ti,j

8 allocate a instances of µ, where a is the minimum value such that
either (i) a = sε, or (ii) for some i, j, a · µ(i, j) = ti,j

9 for all i, j : ti,j ⇑ ti,j ≃ a · µ(i, j)
10 sε ⇑ sε ≃ a
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