
Competitive Data-Structure Dynamization∗

Claire Mathieu† Rajmohan Rajaraman‡ Neal E. Young§ Arman Yousefi¶

April 30, 2024

Abstract

Data-structure dynamization is a general approach for making static data structures dy-
namic. It is used extensively in geometric settings and in the guise of so-called merge (or
compaction) policies in big-data databases such as LevelDB and Google Bigtable. Previous
theoretical work is based on worst-case analyses for uniform inputs — insertions of one item
at a time and non-varying read rate. In practice, merge policies must not only handle batch
insertions and varying read/write ratios, they can take advantage of such non-uniformity to
reduce cost on a per-input basis.

To model this, we initiate the study of data-structure dynamization through the lens of
competitive analysis, via two new online set-cover problems. For each, the input is a sequence
of disjoint sets of weighted items. The sets are revealed one at a time. The algorithm must
respond to each with a set cover that covers all items revealed so far. It obtains the cover
incrementally from the previous cover by adding one or more sets and optionally removing
existing sets. For each new set the algorithm incurs build cost equal to the weight of the items
in the set. In the first problem the objective is to minimize total build cost plus total query cost,
where the algorithm incurs a query cost at each time t equal to the current cover size. In the
second problem, the objective is to minimize the build cost while keeping the query cost from
exceeding k (a given parameter) at any time. We give deterministic online algorithms for both
variants, with competitive ratios of !(log→ n) and k, respectively. The latter ratio is optimal for
the second variant.

1 Introduction

1.1 Background

A static data structure is built once to hold a fixed set of items, queried any number of times, and
then destroyed, without changing throughout its lifespan. Dynamization is a generic technique for
transforming any static container data structure into a dynamic one that supports insertions and
queries intermixed arbitrarily. (Deletions and updates can be supported as described in Section 1.3.)
The dynamic structure holds all items inserted so far in a collection of static containers. Insertions
are supported by adding new static containers and deleting old ones. Queries are supported by
querying all (current) static containers. Static containers are called components. Dynamization has

∗A preliminary version of this paper appeared in SODA 2021 [42].
†CNRS Paris
‡Supported by NSF grants 1535929 and 1909363; Northeastern University
§Supported by Google Research Award & NSF grant 1619463; University of California Riverside and Northeastern

University
¶Google

1

1

t = 1

→ 2

t = 2

→
1
2

t = 3

→ 4

t = 4

→
1
4

t = 5

→
2
4

t = 6

→

1
2
4

t = 7

→ 8

t = 8

→
1
8

t = 9

→
2
8

t = 10

→

1
2
8

t = 11

Figure 1: Steps 1–11 of the binary transform [12, 13]. Each cell i is a component holding i items,
where i is a distinct power of two. In each step one item is inserted and held in the new (top,
bolded) component.

been applied in computational geometry [30, 22, 1, 2, 18], in geometric streaming algorithms [34,
7, 31], and to design external-memory dictionaries [6, 52, 3, 11].

Bentley’s binary transform [12, 13], later called the logarithmic method [51, 45], is a widely
used example. It maintains the invariant that the number of items in each component is a distinct
power of two. Each insert operation mimics a binary increment: it destroys the components of size
20, 21, 22, . . . , 2j→1, where j ↑ 0 is the minimum such that there is no component of size 2j , and
builds one new component of size 2j , holding the contents of the destroyed components and the
inserted item. (See Figure 1.) Meanwhile, each query operation queries all current components,
combining the results appropriately for the data type. During n insertions, whenever an item is
incorporated into a new component, the item’s new component is at least twice as large as its
previous component, so the item is in at most log2 n component builds. That is, the worst-case
write amplification is at most log2 n. Meanwhile, the number of components never exceeds log2 n,
so each query examines at most log2 n components. That is, the worst-case read amplification is at
most log2 n.

Bentley and Saxe’s k-binomial transform is a variant of the binary transform [13]. It maintains
k components at all times, of respective sizes

(i1
1

)
,
(i2
2

)
, . . . ,

(ik
k

)
such that 0 ↓ i1 < i2 < · · · < ik.

(This decomposition is guaranteed to exist and to be unique. Figure 2 gives an example.) It
thus ensures read amplification at most k, independent of n, but its write amplification is at most
(k!n)1/k, about k

en
1/k for large k. This tradeo” between worst-case read amplification and worst-

case write amplification is optimal up to lower-order terms, as is the tradeo” achieved by the binary
transform (see Section 1.4).

These worst-case guarantees on read- and write-amplification hold both for uniform inputs
(where the inserted items have roughly the same sizes, and insertions and queries occur at uniform
and balanced rates) and for non-uniform inputs. But a non-uniform input can be substantially
easier, in that it admits a solution with average write amplification (over all inserted items) and
average read amplification (over all queries) well below worst case, achieving lower total cost.
(Roughly, this is achieved by trading build cost for query cost as the read/write ratio varies. For
intuition consider a long sequence of insertions followed by a long sequence of queries.) Worst-case
dynamization analyses do not capture this. Indeed, transforms such as those above do not adapt
to non-uniformity. Their build and query costs are close to worst case even on non-uniform inputs.

We propose two new dynamization problems—Min-Sum Dynamization and k-Component Dy-
namization—that model non-uniform insertions and queries. We consider these as online problems
and use competitive analysis to measure how well algorithms for them take advantage of non-
uniformity. We introduce new algorithms that have substantially better competitive ratios than
existing algorithms.

2

1

t = 1

→
1
1

t = 2

→ 3

t = 3

→
1
3

t = 4

→
2
3

t = 5

→ 6

t = 6

→
1
6

t = 7

→
2
6

t = 8

→
3
6

t = 9

→ 10

t = 10

→
1
10

t = 11

Figure 2: Steps 1–11 of the 2-binomial transform [13]. At time t the top and bottom components
hold

(i1
1

)
and

(i2
2

)
items where 0 ↓ i1 < i2 and

(i1
1

)
+

(i2
2

)
= t. For example at time t = 8, i1 = 2

and i2 = 4. If i1 = 0 there is only one component, the bottom component.

Relevance to industrial LSM systems. Dynamization algorithms underlie standard imple-
mentations of external-memory (i.e., disk-based) ordered dictionaries, where they are called merge
(or compaction) policies [41]. Recently inserted key/value pairs are cached in RAM to the extent
possible, while older pairs are stored in immutable (static) on-disk files (the components). Each
query (if not resolved in cache) searches the current components for the queried key, using one disk
access1 per component. The components are managed using the merge policy: periodically, the
cached pairs are flushed to disk in one batch, which is treated as an inserted item and incorporated
by building and deleting components2 according to the policy. The build cost captures the time
building on-disk components, while the query cost captures the time responding to queries.

O’Neil et al’s seminal log-structured merge (LSM) architecture [44] (building on [48, 47]) was
one of the first to adapt dynamization to external-memory dictionaries as described above. Its dy-
namization scheme can be viewed as a parameterized generalization of Bentley’s binary transform.
As the parameter varies, the tradeo” it achieves between read amplification and write amplification
is optimal (in some parameter regimes) among all external-memory structures [5, 16, 53].

Many subsequent and current industrial systems—including so-called NoSQL and NewSQL
databases—have LSM architectures. These include Google’s Bigtable [21] (and Spanner [25]),
Amazon’s Dynamo [27], Accumulo (by the NSA) [36], AsterixDB [4], Facebook’s Cassandra [38],
HBase and Accordion (used by Yahoo! and others) [32, 15], LevelDB [28], and RocksDB [29].

Non-uniform inputs can be particularly important in production LSM systems, where the sizes
of inserted batches can vary by orders of magnitude [15, §2] (see also [17, 10, 9]) and the query
and insertion rates can vary substantially with time. As discussed previously, such non-uniform
workloads can have optimal cost well below the worst-case cost. Industrial compaction policies
do adapt to non-uniformity, but only heuristically. Bigtable’s default compaction policy (which,
like the k-binomial transform, is configured by a single parameter k and maintains at most k

components) is as follows: in response to each insert (cache flush), create a new component holding
the inserted items; then, if there are more than k components, merge the i most-recently created
components into one, where i ↑ 2 is chosen minimally so that, for each remaining component S, the
size of S in bytes exceeds the total size of all components newer than S [50]. Both the worst-case
build cost and the competitive ratio of this algorithm are suboptimal.

1Database servers are typically configured so that RAM size is 1–3% of disk size, even as RAM and disk sizes
grow according to Moore’s law [33, p. 227]. A disk block typically holds at least thousands of items. Hence, an index
for every disk component, storing the minimum item in each disk block in the component, fits easily in RAM. Then
querying any component (a file storing its items in sorted order) for a given item requires accessing just one disk
block, determined by checking the index [33, p. 232].

2Crucially, builds use sequential (as opposed to random) disk access. This is why these systems outperform B+

trees on write-heavy workloads. See [41, § 2.2.1–2.2.2] for details.

3

1.2 Problem definitions

The definitions of the two dynamization problems below model insertions and queries. The end of
the section gives generalizations that allow updates, deletions, and item expiration as implemented
(lazily) in typical LSM systems.

Recall that a set cover of a given set S of items is a collection of subsets whose union is S.

Definitions 1. An input is a sequence I = (I1, I2, . . . , In) of pairwise-disjoint sets of weighted
items. Each item x ↔ It is said to be “ inserted at time t”. The weight of each item x, denoted
wt(x), must be non-negative.

A solution is a sequence C = (C1, C2, . . . , Cn), where each Ct is a set cover for the items inserted by
time t. That is,

⋃
S↑Ct S = Ut, where Ut =

⋃t
i=1 Ii. The sets in each Ct are called components.

The build cost at time t is the total weight in new sets, that is
∑

S↑Ct\Ct→1
wt(S), where wt(S)

denotes
∑

x↑S wt(x). (For time t = 1 we define C0 to be the empty set.)

The query cost at time t is |Ct|, that is, the number of components in the current cover, Ct.

Given an input, the objective of the Min-Sum Dynamization problem is to find a solution of
minimum total cost (the sum of all build costs and query costs over time).

The objective of the k-Component Dynamization problem is to find a solution having minimum
total build cost, among solutions with maximum query cost k (that is, maxt |Ct| ↓ k).

An algorithm is online if for every input I it outputs a solution C such that at each time t its
cover Ct is independent of It+1, It+2, . . . , In, all build costs wtt↑(S) at times t

↓
> t, and n.

An algorithm’s competitive ratio, c
↔(m), is the supremum, over all inputs with m non-empty

insertions, of the cost of the algorithm’s solution divided by the optimum cost for the input.

An algorithm is c(m)-competitive if its competitive ratio c
↔(m) is at most c(m) for all m.

Remarks for Min-Sum Dynamization. The definition of total read cost (as
∑n

t=1 |Ct|) models,
a-priori, exactly one query per insert. This keeps the problem statement relatively simple. However,
applications can have any number of queries per insert. This can be modeled by reduction. To model
consecutive queries with no intervening insertions, separate the consecutive queries by artificial
insertions with It = ↗ (inserting an empty set). To model consecutive insertions with no intervening
query, aggregate the consecutive insertions into a single insertion.

Note that uniformly scaling item weights changes build cost relative to query cost. In LSM
applications, each unit of query cost represents the time for one random disk read, whereas each
unit of build cost represents the (much smaller, amortized) time per byte during sequential disk
reads and writes. To model these costs, take the weight of each item x to be its size in bytes, times
the time per byte for a sequential disk read and write, divided by the (much larger) time for one
random-access disk read.

Remark for k-Component Dynamization. Among well-studied problems, Dynamic TCP Ac-
knowledgment [35, 20], a generalization of the classic ski-rental problem, is perhaps technically clos-
est to k-Component Dynamization. TCP Acknowledgement can be viewed as a continuous-time
variant of 2-Component Dynamization in which building a new component that contains all items
inserted so far (corresponding to a “TCP-ack”) has cost 1 (regardless of the component weight).

4

Deletions, updates, and expiration. The problems as defined above model queries and inser-
tions. Next we extend the definitions to allow modelling updates, deletions, and item expiration as
they typically happen (lazily) in LSM dictionaries.

In this context we assume each item is a weighted key/value pair, timestamped by insertion
time, and possibly having an expiration time. (The item weight is typically proportional to the
size in bytes of the key/value pair.) Updates and deletions are lazy (“out of place” [41, §2], [40]):
update just inserts an item with the given key/value pair (as usual), while delete inserts an item for
the given key with a so-called tombstone (a.k.a. antimatter) value. Multiple items with the same
key may be stored (possibly in multiple components), but only the newest matters: a query, given
a key, returns the newest item inserted for that key, or “none” if that item is a tombstone or has
expired. When a component S is built, it is “garbage collected”: for each key, among the items in
S with that key, only the newest is written to disk—all others are discarded.

To model this, we define three generalizations of the problems. To keep the definitions clean, in
each variant the input sets must still be disjoint and the current cover must still contain all items
inserted so far. To model updates, deletions, and expirations we only redefine the build cost.

Definitions 2. Decreasing Weights. Each item x ↔ It has weights wtt(x) ↑ wtt+1(x) ↑ · · · ↑
wtn(x). The cost of building a component S ↘ Ut at time t is redefined as wtt(S) =∑

x↑S wtt(x). We use this variant as a stepping stone to the LSM variant, next.

LSM. Each item is a timestamped key/value pair with an expiration time. Given a subset S of
items, the set of non-redundant items in S, denoted nonred(S), consists of those that have
no newer item in S with the same key. The cost of building a component S at time t, denoted
wtt(S), is redefined as the sum, over all non-redundant items x in S, of the item weight wt(x),
or the weight of the tombstone item for x if x has expired. The latter weight must be at most
wt(x). Items with the same key may have di!erent weights, must have distinct timestamps,
and can occur in di!erent components. For any two items x ↔ It and x

↓ ↔ It↑ with t < t
↓, the

timestamp of x must be less than the timestamp of x↓. This variant applies to LSM systems.3

General. Instead of weighting the items, build costs are specified directly for sets. At each time t a
build-cost function wtt : 2Ut → R+ is revealed (along with It), directly specifying the build cost
wtt(S) for every possible component S ↘ Ut. The build-cost function must obey the following
restrictions, for all times i ↓ t and sets S, S

↓ ↘ Ut:

(R1) sub-additivity: wtt(S ≃ S
↓) ↓ wtt(S) + wtt(S↓). (The cost of building a component

holding the union of two sets is at most the combined cost of building two components
that hold the respective sets.)

(R2) su!x monotonicity: if S ⇐= Ut, then wtt(S \Ui) ↓ wtt(S), (The cost of building a
component holding a set S of items is at least the cost of building a component holding
just those items in S that were inserted after time i. The exception for S = Ut allows
modeling full removal of tombstone items during full merges.)

(R3) temporal monotonicity: wti(S) ↑ wtt(S) (The cost of building a component to
hold S does not increase over time. Note, for example, that in the LSM model item
expirations can cause the cost to decrease over time.)

We chose Restrictions (R1)–(R3) so that the resulting problem has several competing properties:
it should be relatively simple, su#ciently general to model practical LSM systems, and su#ciently

3LSM systems delete tombstone items during full merges (i.e., when building a component S = Ut at time t).
This is not captured by the LSM model here, but is captured by the following general model. See Section 5.2.

5

restricted to allow competitive online algorithms. The build costs implicit in the LSM and Decreas-
ing Weights variants do obey (R1)–(R3).4 The restrictions would also hold, for example, if each
item had a fixed weight and wtt(S) = maxx↑S wt(x).

1.3 Statement of results

Min-Sum Dynamization

Recall that the iterated logarithm (base e) is the slowly growing function defined inductively by
log↔e m = 1 + log↔e logem, with the base case log↔e m = 0 for m ↓ 1. (Our analysis will use base

⇒
2

instead of e. Note that log↔↗
2
m = !(log↔e m), so inside O-notation we will omit the base.)

Theorem 1 (Section 2). For Min-Sum Dynamization, the online algorithm Adaptive-Binary (Fig-
ure 3) has competitive ratio !(log↔m), where m ↓ n is the number of non-empty insertions.

Roughly speaking, every 2j time steps (j ↔ {0, 1, 2, . . .}), the algorithm merges all components
of weight 2j or less into one. Figure 5 illustrates one execution of the algorithm. The bound in the
theorem is tight for the algorithm.

In contrast, consider the naive adaptation of Bentley’s binary transform (i.e., treat each in-
sertion It as a size-1 item, then apply the transform). On inputs with wt(It) = 1 for all t the
algorithms produce the same (optimal) solution. But, as we show in Lemma A.1 in the appendix,
the competitive ratio of the naive adaptation is $(log n).

Min-Sum Dynamization is a special case of Set Cover with Service Costs, for which Buchbinder
et al. give a randomized online algorithm [19]. For Min-Sum Dynamization, their bound on the
algorithm’s competitive ratio simplifies to O(log2 n).

K-Component Dynamization and its generalizations

Theorem 2 (Section 3.1). For k-Component Dynamization (and consequently for its generaliza-
tions) no deterministic online algorithm has ratio competitive ratio less than k.

Theorem 3 (Section 3.2). For k-Component Dynamization with decreasing weights (and plain
k-Component Dynamization) the deterministic online algorithm in Figure 8 is k-competitive.

For comparison, consider the naive adaptation of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as one size-1 item, then apply the transform). On
inputs with wt(It) = 1 for all t, the two algorithms produce essentially the same optimal solution.
But, as we show in Lemma A.2 in the appendix, the competitive ratio of the naive adaptation is
$(kn1/k) for any k ↑ 2.

Bigtable’s default algorithm (Section 1.1) solves k-Component Dynamization, but its compet-
itive ratio is $(n). For example, with k = 2, given an instance with wt(I1) = 3, wt(I2) = 1, and
wt(It) = 0 for t ↑ 3, it pays n + 2, while the optimum is 4. (In fact, the algorithm is memoryless
— each Ct is determined by Ct→1 and It. No deterministic memoryless algorithm has competitive
ratio independent of n.) Even for uniform instances (wt(It) = 1 for all t), Bigtable’s default incurs
cost quadratic in n, whereas the optimum is !(kn1+1/k).

Bentley and Saxe showed that their solutions were optimal (for uniform inputs) among a re-
stricted class of solutions that they called arboreal transforms [13]. Here we call such solutions
newest-first :

4The LSM build cost obeys (R1) because nonred(S → S
↑) ↑ nonred(S) → nonred(S)↑. It obeys (R2) because

nonred(S \ Ui) ↑ nonred(S). It obeys (R3) because the tombstone weight for each item x is at most wt(x).

6

Definition 3. A solution C is newest-first if at each time t, if It = ↗ it creates no new components,
and otherwise it creates one new component, by merging It with some i ↑ 0 newest components
into a single component (destroying the merged components). Likewise, C is lightest-first if, at each
time t with It ⇐= ↗, it merges It with some i ↑ 0 lightest components. An algorithm is newest-first
(lightest-first) if it produces only newest-first (lightest-first) solutions.

The Min-Sum Dynamization algorithm Adaptive-Binary (Figure 3) is lightest-first. The k-
Component Dynamization algorithm Greedy-Dual (Figure 8) is newest-first. In a newest-first so-
lution, every cover Ct partitions the set Ut of current items into components of the form

⋃j
h=i Ih

for some i, j.
Any newest-first algorithm for the decreasing-weights variant of either problem can be “boot-

strapped” into an equally good algorithm for the LSM variant:

Theorem 4 (Section 3.3). Any newest-first online algorithm A for k-Component (or Min-Sum)
dynamization with decreasing weights can be converted into an equally competitive online algorithm
A
↓ for the LSM variant.

With Theorem 3 this gives the following corollary:

Corollary 5 (Section 3.3). There is a deterministic online algorithm for LSM k-Component Dy-
namization with competitive ratio k.

Finally we give an algorithm for the general variant:

Theorem 6 (Section 3.4). For general k-Component Dynamization, the deterministic online algo-
rithm Bk in Figure 9 is k-competitive.

The algorithm Bk partitions the input sequence into phases. Before the start of each phase, it
has just one component in its cover, called the current “root”, containing all items inserted before
the start of the phase. During the phase, Bk recursively simulates Bk→1 to handle the insertions
occurring during the phase, and uses the cover that consists of the root component together with
the (at most k ⇑ 1) components currently used by Bk→1. At the end of the phase, Bk does a full
merge — it merges all components into one new component, which becomes the new root. It
extends the phase maximally subject to the constraint that the cost incurred by Bk→1 during the
phase does not exceed k ⇑ 1 times the cost of the full merge that ends the phase.

1.4 Properties of optimal o!ine solutions

Bentley and Saxe showed that, among newest-first solutions (which they called arboreal), their
various transforms were near-optimal for uniform inputs [12, 13]. Mehlhorn showed (also for uniform
inputs) that the best newest-first solutions have cost at most a constant times optimum [43]. We
generalize and strengthen Mehlhorn’s result:

Theorem 7 (Section 4). Every instance of k-Component or Min-Sum Dynamization has an optimal
solution that is newest-first and lightest-first.

One consequence is that Bentley and Saxe’s transforms give optimal solutions (up to lower-order
terms) for uniform inputs. Another is that, for Min-Sum and k-Component Dynamization, optimal
solutions can be computed in time O(n3) and O(kn3), respectively, because optimal newest-first
solutions can be computed in these time bounds via natural dynamic programs.

The body of the paper gives the proofs of Theorems 1–7.

7

algorithm Adaptive-Binary(I1, I2, . . . , In) —for Min-Sum Dynamization

1. maintain a cover (collection of components), initially empty

2. for each time t = 1, 2, . . . , n:

2.1. if It ⇐= ↗: add It as a new component

2.2. let j ↑ 0 be the maximum integer such that t is an integer multiple of 2j –well defined as 20 = 1

2.3. if there are multiple components S such that wt(S) ↓ 2j : merge them into one new component

Figure 3: A !(log↔m)-competitive algorithm for Min-Sum Dynamization (Theorem 1).

2 Min-Sum Dynamization (Theorem 1)

Theorem 1. For Min-Sum Dynamization, the online algorithm Adaptive-Binary (Figure 3) has
competitive ratio !(log↔m), where m ↓ n is the number of non-empty insertions.

We prove the theorem in two parts:

(i) The competitive ratio is O(log↔m) (proof in Section 2.1).

(ii) The competitive ratio is $(log↔m) (proof in Section 2.2).

2.1 Part (i): the competitive ratio is O(log↔ m)

Fix an input I = (I1, I2, . . . , In) with m ↓ n non-empty sets. Let C be the algorithm’s solution. Let
C↔ be an optimal solution, of cost OPT. For any time t, call the 2j chosen in Line 2.2 the capacity
µ(t) of time t, and let St be the newly created component (if any) in Line 2.3.

It is convenient to over-count the algorithm’s build cost as follows. In Line 2.3, if there is
exactly one component S with wt(S) ↓ 2j , the algorithm as stated does not change the current
cover, but we pretend for the analysis that it does — specifically, that it destroys and rebuilds S,
paying its build cost wt(S) again at time t. This allows a clean statement of the next lemma. In
the remainder of the proof, the “build cost” of the algorithm refers to this over-counted build cost.

We first bound the total query cost,
∑

t |Ct|, of C.

Lemma 2.1. The total query cost of C is at most twice the (over-counted) build cost of C, plus
OPT.

Proof. Consider the components with weight less than 1. By inspection of the algorithm each cover
Ct has at most one such component — the component St created at time t. Therefore, the query
cost from the components with weight less than 1 is at most n.

It remains to consider the components with weight at least 1. Let S be any component in C of
weight wt(S) ↑ 1. Each new occurrence of S in C contributes at most 2wt(S) to C’s query cost.
Indeed, let 2j ↑ wt(S) be the next larger power of 2. Times with capacity 2j or more occur every
2j time steps. So, after C creates S, C destroys S within 2j ↓ 2wt(S) time steps; note that we are
using here the over-counted build cost. So C’s query cost from such components is at most twice
the build cost of C.

Thus, the total query cost from all components is at most twice the build cost of C plus n. The
lemma follows since the query cost of C↔ is at least n, so n ↓ OPT.

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

t

µ
(t
)

Figure 4: The capacities µ(t) as a function of t.

Define % to be the maximum number of components merged by the algorithm in response to
any query. Note that % ↓ m simply because there are at most m components at any given time
in C. (Only Line 2.1 increases the number of components, and it does so only if It is non-empty.)
The remainder of the section bounds the build cost of C by O(log↔(%)OPT). By Lemma 2.1, this
will imply prove Part (i) of the theorem.

The total weight of all components It that the algorithm creates in Line 2.1 is
∑

t wt(It), which
is at most OPT because every x ↔ It is in at least one new component in C↔ (at time t). To finish,
we bound the (over-counted) build cost of the components that the algorithm builds in Line 2.3,
i.e.,

∑
t wt(St).

Observation 2.2. The di!erence between any two distinct times t and t
↓ is at least min{µ(t), µ(t↓)}.

(This holds because t and t
↓ are distinct integer multiples of min{µ(t), µ(t↓)}. See Figure 4.)

Charging scheme. For each time t at which Line 2.3 creates a new component St, have St charge
to each item x ↔ St the weight wt(x) of x. Have x in turn charge wt(x) to each optimal component
S
↔ ↔ C↔

t that contains x at time t. The entire build cost
∑

t wt(St) is charged to components in C↔.
To finish, we show that each component S↔ in C↔ is charged O(log↔%) times S↔’s contribution (via
its build and query costs) to OPT.

Throughout, given integer times t and t
↓, let [t, t↓] denote the (time) interval {t, t + 1, . . . , t↓}.

(This is non-standard notation.)
Fix any such S

↔. Define [t1, t2] to be the interval of S↔ in C↔. That is, C↔ adds S↔ to its cover
at time t1, where it remains through time t2, so its contribution to OPT is t2 ⇑ t1 + 1 + wt(S↔).
At each (integer) time t ↔ [t1, t2], component S

↔ is charged wt(S↔ ⇓ St). To finish, we show∑t2
t=t1

wt(S↔ ⇓ St) = O(t2 ⇑ t1 + log↔(%)wt(S↔)).

By Observation 2.2, there can be at most one time t
↓ ↔ [t1, t2] with capacity µ(t↓) > t2 ⇑ t1 +1.

If there is such a time t
↓, the charge received then, i.e. wt(S↔ ⇓ St↑), is at most wt(S↔). To finish,

we bound the charges at the times t ↔ [t1, t2] \ {t↓}, with µ(t) ↓ t2 ⇑ t1 + 1.

Definition 4 (dominant). Classify each such time t and C’s component St as dominant if the
capacity µ(t) strictly exceeds the capacity µ(i) of every earlier time i ↔ [t1, t⇑1] (µ(t) > maxt→1

i=t1
µ(i))

in S
↔’s interval [t1, t2]. Otherwise t and St are non-dominant.

Lemma 2.3 (non-dominant times). The net charge to S
↔ at non-dominant times is at most t2⇑t1.

9

Proof. Let ω1 be any dominant time. Let ω2 > ω1 be the next larger dominant time step, if any,
else t2 + 1. Consider the charge to S

↔ during the open interval (ω1, ω2). We show that this charge
is at most ω2 ⇑ ω1 ⇑ 1.

Component S↔ is built at time t1 ↓ ω1, so S
↔ ↘ Uω1 . At time ω1, every item x that can charge

S
↔ (that is, x ↔ S

↔) is in some component S in Cω1 . By the definition of dominant, each time in
t ↔ (ω1, ω2) has capacity µ(t) ↓ µ(ω1), since otherwise ω2 would not be the next dominant time.
So, the components S in Cω1 that have weight wt(S) > µ(ω1) remain unchanged in C throughout
(ω1, ω2), and the items in them do not charge S

↔ during (ω1, ω2). So we need only consider items in
components S in Cω1 with wt(S) ↓ µ(ω1). Assume there are such components. By inspection of the
algorithm, there can only be one: the component Sω1 built at time ω1. All charges in (ω1, ω2) come
from items x ↔ Sω1 ⇓ S

↔.
Let ω1 = t

↓
1 < t

↓
2 < · · · < t

↓
ε be the times in [ω1, ω2) when these items are put in a new component.

These are the times in (ω1, ω2) when S
↔ is charged, and, at each, the charge is wt(S↔⇓Sω1) ↓ wt(Sω1),

so the total charge to S
↔ during (ω1, ω2) is at most (ε⇑ 1)wt(Sω1).

At each time t
↓
i with i ↑ 2 the previous component St↑i→1

, of weight at least wt(Sω1), is merged.

So each time t
↓
i has capacity µ(t↓i) ↑ wt(Sω1). By Observation 2.2, the di”erence between each time

t
↓
i and the next t↓i+1 is at least wt(Sω1). So (ε⇑ 1)wt(Sω1) ↓ t

↓
ε ⇑ t

↓
1 ↓ ω2 ⇑ ω1 ⇑ 1.

By the two previous paragraphs the charge to S
↔ during (ω1, ω2) is at most ω2⇑ω1⇑1. Summing

over the dominant times ω1 in [t1, t2] proves the lemma.

Let D be the set of dominant times. For the rest of the proof all times that we consider are
dominant. Note that all times that are congested or uncongested (as defined next) are dominant.

Definition 5 (congestion). For any time t ↔ D and component St, define the congestion of t and
St to be wt(St ⇓ S

↔)/µ(t), the amount St charges S
↔, divided by the capacity µ(t). Call t and St

congested if this congestion exceeds ϑ, and uncongested otherwise (ϑ > 0 is a constant that is
specified later).

Lemma 2.4 (uncongested times). The total charge to S
↔ at uncongested times is O(t2 ⇑ t1).

Proof. The charge to S
↔ at any uncongested time t is at most ϑµ(t), so the total charge to C↔

during such times is at most ϑ
∑

t↑D µ(t). By definition of dominant, the capacity µ(t) for each
t ↔ D is a distinct power of 2 no larger than t2 ⇑ t1 + 1. So

∑
t↑D µ(t) is at most 2(t2 ⇑ t1 + 1),

and the total charge to C↔ during uncongested times is O(t2 ⇑ t1).

Lemma 2.5 (congested times). The total charge to S
↔ at congested times is O(wt(S↔) log↔%).

Proof. Let Z denote the set of congested times. For each item x ↔ S
↔, let W (x) be the collection

of congested components that contain x and charge S
↔. The total charge to S

↔ at congested times
is

∑
x↑S↓ |W (x)|wt(x).

To bound this, we use a random experiment that starts by choosing a random item X in
S
↔, where each item x has probability proportional to wt(x) of being chosen: Pr[X = x] =

wt(x)/wt(S↔).
We will show that EX [|W (X)|] is O(log↔%). Since EX [|W (X)|] =

∑
x↑S↓ |W (x)|wt(x)/wt(S↔),

this will imply that the total charge is O(log↔%)wt(S↔), proving the lemma.

The merge forest for S
↔. Define the following merge forest. There is a leaf {x} for each item

x ↔ S
↔. There is a non-leaf node St for each congested component St. The parent of each leaf {x}

is the first congested component St that contains x (that is, t = min{i ↔ Z : x ↔ Si), if any. The

10

parent of each node St is the next congested component St↑ that contains all items in St (that is,
t
↓ = min{i ↔ Z : i > t, St ↘ Si}), if any. Parentless nodes are roots.

The random walk starts at the root of the tree that holds leaf {X}, then steps along the path
to that leaf in the tree. In this way it traces (in reverse) the sequence W (X) = {Si : X ↔ Si} of
congested components that X entered during [t1, t2]. The number of steps is |W (X)|. To finish,
we show that the expected number of steps is O(log↔%).

Each non-leaf node St in the tree has congestion wt(St ⇓ S
↔)/µ(t), which is at least ϑ and at

most %. For the proof, define the congestion of each leaf x to be 2!. To finish, we argue that with
each step of the random walk, the iterated logarithm of the current node’s congestion increases in
expectation by at least 1/5.

A step in the random walk. Fix any non-leaf node St. Let ϖt = wt(St ⇓ S
↔)/µ(t) be its

congestion. The walk visits St with probability wt(S↔ ⇓ St)/wt(S↔). Condition on this event (that
is, X ↔ St). Let random variable ϖ

↓ be the congestion of the child of St next visited.

Sublemma 2.5.1. For any ϱ ↔ [ϖt, 2!), Pr[ϖ↓
> ϱ |X ↔ St] is at least 1⇑ ϖ

→1
t (2 + log2 ϱ).

Proof. Consider any child St↑ of St with ϖt↑ ↓ ϱ. We will bound the probability that St↑ is visited
next (i.e., X ↔ St↑). Node St↑ is not a leaf, as ϖt↑ < 2!. Define j(t↓) so that its capacity µ(t↓) equals
µ(t)/2j(t

↑). (That is, j(t↓) = log2(µ(t)/µ(t
↓)).) The definitions and ϖt↑ ↓ ϱ imply

Pr[X ↔ St↑ |X ↔ St] =
wt(St↑ ⇓ S

↔)

wt(St ⇓ S↔)
=

ϖt↑ µ(t↓)

ϖt µ(t)
↓ ϱ µ(t)/2j(t

↑)

ϖt µ(t)
=

ϱ

ϖt 2j(t
↑)
. (1)

Also, the algorithm merged a component containing St↑ at time t, so wt(St↑) ↓ µ(t), so

Pr[X ↔ St↑ |X ↔ St] =
wt(St↑ ⇓ S

↔)

wt(St ⇓ S↔)
=

wt(St↑ ⇓ S
↔)

ϖt µ(t)
↓ wt(St↑)

ϖt µ(t)
↓ 1

ϖt
. (2)

Combining Bounds (1) and (2), Pr[X ↔ St↑ |X ↔ St] is at most ϖ→1
t min(1,ϱ 2→j(t↑)). Summing

this bound over all children St↑ of St with congestion ϖt↑ ↓ ϱ, and using that each j(t↓) is a distinct
positive integer, the probability that ϖ↓ ↓ ϱ is at most

ϖ
→1
t

↘∑

j=1

min(1,ϱ 2→j) ↓ ϖ
→1
t

∫ ↘

0
min(1,ϱ 2→j) dj = ϖ

→1
t (log2(ϱ) + 1/ ln 2)

(splitting the integral at j = log2 ϱ). The sublemma follows from 1/ ln 2 ↓ 2.

Next we lower-bound the expected increase in the log↔ of the congestion in this step. We use⇒
2 as the base of the iterated log.5 Then log↔(2ϑt/2) = 1 + log↔ ϖt, so, conditioned on X ↔ St,

E[log↔ ϖ↓] ↑ Pr[ϖ↓ ↑ ϖt] log
↔
ϖt + Pr[ϖ↓ ↑ 2ϑt/2].

Bounding the two probabilities above via Sublemma 2.5.1 with ϱ = ϖt and ϱ = 2ϑt/2, the right-hand
side above is

↑ [1⇑ ϖ
→1
t (2 + log2 ϖt)] log

↔
ϖt + [1⇑ ϖ

→1
t (2 + ϖt/2)]

= log↔(ϖt) + 1/2⇑ [2 + (2 + log2 ϖt) log
↔
ϖt]/ϖt

↑ log↔(ϖt) + 1/2⇑ 3/10 = log↔(ϖt) + 1/5,

5Defined by log↓↔
2
ωt = 0 if ωt ↓ 8, else 1 + log↓↔

2
(log↔2 ωt). Note that log↓↔

2
ωt = !(log↓e ωt).

11

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 5: The “merge tree” for an execution of the Adaptive-Binary algorithm (Figure 3). The input
sequence starts with m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It
continues with 216 ⇑ 132 empty inserts (It = ↗). At each time t = 29, 210, 211, . . . , 217 (during the empty
inserts) the algorithm merges all components of weight t to form a single new component, their parent. In
this way, the algorithm builds a component for each node, with weight equal to the node’s label. At time
t = 217 the final component is built—the root, of weight 218, containing all items. The algorithm merges
each item four times, so pays build cost 4⇔ 218.

where the last inequality follows from ϖt ↑ ϑ (t is congested) and by setting ϑ ↑ 64. It follows
that E[log↔ ϖ↓ ⇑ log↔ ϖt |X ↔ St] ↑ 1/5. That is, in each step, the expected increase in the iterated
logarithm of the congestion is at least 1/5.

Let random variable L = |W (X)| be the length of the random walk. Let random variable
ϖ
↓
i be the congestion of the ith node on the walk. By the previous section, for each i, given

that i < L, E[log↔ ϖ↓
i+1 ⇑ log↔ ϖ↓

i |ϖ↓
i] ↑ 1/5. It follows by Wald’s equation (see [14, p. 370]

and [54, Lemma 4.1]) that E[log↔ ϖ↓
L ⇑ log↔ ϖ↓

1] ↑ E[L]/5. Since ϖ
↓
L = 2! and log↔ ϖ↓

1 ↑ 0, we have
E[log↔ ϖ↓

L⇑ log↔ ϖ↓
1] ↓ log↔ 2!. It follows that E[L] ↓ 5 log↔ 2!. Recall that the base of the iterated

logarithm is
⇒
2; so, log↔ 2! = 2 + log↔%, yielding E[L] ↓ 10 + 5 log↔%. That is, the expected

length of the random walk is O(log↔%). By the discussion at the start of the proof, this implies
the lemma.

To recap, for each component St built by the algorithm, the (over-counted) build cost is charged
item by item to those components in the optimal solution C↔ that currently contain the item. In
this way, the algorithm’s total over-counted build cost

∑
t wt(St) is charged to components in

C↔. By Lemmas 2.3–2.5, each component S
↔ in the optimal solution C↔ is charged O(1) times its

contribution t2 ⇑ t1 to the query cost of C↔ plus (in expectation) O(log↔m) times its contribution
wt(S↔) to the build cost of C↔. It follows that the expected build cost incurred by the algorithm is
O(log↔m) times the cost of C↔.

By Lemma 2.1, the total query cost incurred by the algorithm is at most twice the algorithm’s
over-counted build cost plus the cost of C↔. It follows that the total (build and query) cost incurred
by the algorithm is O(log↔(m)) times the cost of C↔. That is, the competitive ratio is O(log↔m),
proving Part (i) of Theorem 1.6

2.2 Part (ii): the competitive ratio is !(log↔ m)

Lemma 2.6. The competitive ratio of the Adaptive-Binary algorithm (Figure 3) is $(log↔m).

Proof. We will show a ratio of $(log↔m) on a particular class of inputs, one for each integer D ↑ 0.
(Figure 5 describes the input I for D = 2 and the resulting merge tree, of depth D + 1.)

6Curiously, the algorithm’s cost is in fact O(1) times the query cost of C↓ plus O(log↓ m) times its build cost.

12

1
3

9
141 · · · 78

8
77 · · · 46

7
45 · · · 30

6
29 · · · 22

2
5

21 · · · 14
4

13 12 11 10

2323242526 nodes

Figure 6: The top three levels of T↘. Each node i has 2i→p(i) children, where p(i) is the parent
of i (exc. p(1) = 0). The merge tree T

N
2 (Figure 5) consists of these three levels, with each node

i given weight 2N→p(i), so the nodes with weight 2N→i are the 2i→p(i) children of node i, and their
total weight equals the weight of node i. Note that the label of a node in the merge tree is its
weight, and the merge tree of Figure 5 is T 18

2 .

1. make node 1 the root

2. for i ↖ 1, 2, 3, . . . do:

2.1. let p(i) be the parent of i, except p(1) = 0

2.2. give node i the 2i→p(i)
children

{
c(i⇑ 1) + j : 1 ↓ j ↓ 2i→p(i)

}
,

where c(i⇑ 1) is the max child of i⇑ 1, except c(0) = 1

Figure 7: An algorithm defining the tree T↘, with nodes {1, 2, 3, . . .}.

The desired merge tree. For reference, define an infinite rooted tree T↘ with node set {1, 2, 3, . . .}
by the iterative process shown in Figure 7. Each iteration i defines the children of node i. Node
i has 2i→p(i) children, where p(i) is the parent of i (exc. p(1) = 0); these children are allocated
greedily from the “next available” nodes, so that each node i ↑ 2 is given exactly one parent. The
depth of i is non-decreasing with i.7

Figure 6 shows the top three levels of T↘. Let nd be the number of nodes of depth d or less in
T↘. Each such node i satisfies i ↓ nd (as depth is non-decreasing with i), so, inspecting Line 2.2,
node i has at most 2i ↓ 2nd children. Each node of depth d + 1 or less is either the root or a
child of a node of depth d or less, so nd+1 ↓ 1 + nd2nd ↓ 22

nd . Taking the log↔ of both sides gives
log↔ nd+1 ↓ 2 + log↔ nd. Inductively, log

↔
nd ↓ 2d for each d.

Now fix an integer D ↑ 0. Define the desired merge tree, TN
D , to be the subtree of T↘ induced

by the nodes of depth at most D + 1. Let m be the number of leaves in T
N
D . By the previous

paragraph (and m ↓ nD+1), every leaf in T
N
D has depth $(log↔m).

Assign weights to the nodes in T
N
D as follows. Fix N = 2nD. Give each node i weight 2N→p(i),

where p(i) is the parent of i (except p(1) = 0). Each weight is a power of two, and the nodes of
any given weight 2N→i are exactly the 2i→p(i) children of node i. The weight of each parent i equals
the total weight of its children.

The input. Define the input I as follows. For each time t ↔ {1, 2, . . . ,m}, insert a set It containing
just one item whose weight equals the weight of the tth leaf of T

N
D . Then, at each time t ↔

7This follows by induction: Line 2.2 ensures that p(i↑) ↓ p(i) for i↑ < i, so inductively depth(i↑) = 1+depth(p(i↑)) ↓
1 + depth(p(i)) = depth(i).

13

{m+ 1,m+ 2, . . . , 2N→1}, insert an empty set It = ↗.
In the following, we place a lower bound on the cost of the algorithm on input I. For this, we

establish a matching between the algorithm’s cover and the leaves of TN
D , which guides our bound

on the build cost of the algorithm.

No merges until last non-empty insertion. The algorithm does no merges before time
minmi=1 wt(Ii), which is the minimum leaf weight in T

N
D . This is because if a merge occurs at a

time t then there must be more than one component of weight at most t at that time (by step 2.3
of the algorithm, see Figure 3). The lightest leaves are the children of node nD, of weight 2N→nD .
Since the total leaf weight is the weight of the root, 2N , it follows that m2N→nD ↓ 2N , that is,
m ↓ 2nD = 2N→nD (using N = 2nD). So, the algorithm does no merges until time t(nD) = 2N→nD

(after all non-empty insertions).

The algorithm’s merge tree matches T
N
D . By the previous two paragraphs, just before time

t(nD) = 2N→nD the algorithm’s cover matches the leaves of TN
D , meaning that the cover’s compo-

nents correspond to the leaves, with each component weighing the same as its corresponding node.
The leaves are {j : p(j) ↓ nd < j}. So the following invariant holds initially, for i = nD:

For each i ↔ {nD, nD ⇑ 1, . . . , 2, 1}, just before time t(i) = 2N→i, the algorithm’s cover Ct(i)
matches the nodes in Qi, defined as

Qi
.
= {j : 2N→j

< t(i) ↓ 2N→p(j)} = {j : p(j) ↓ i < j}.

Informally, these are the nodes j that have not yet been merged by time t(i), because their weight
2N→p(j) is at least t(i), but whose children (the nodes of weight 2N→j) if any, have already been
merged.

We establish the invariant for all i using a backward induction. Assume inductively that the
invariant holds for a given i. We show it holds for i ⇑ 1. At time t(i), the algorithm merges the
components of weight at most µ(t(i)) = t(i) = 2N→i in its cover. By the invariant, these are the
components of weight t(i) = 2N→i, corresponding to the children of node i (which are all in Qi).
They leave the cover and are replaced by their union, whose weight equals 2N→p(i). Likewise, by
the definition (and p(j) < j)

Qi→1 = {i} ≃Qi \ {j : p(j) = i},

so the resulting cover matches Qi→1, with the new component corresponding to node i. The
minimum-weight nodes in Qi→1 are then {j : p(j) = i⇑ 1}, the children of node i⇑ 1. These have
weight 2N→(i→1) = t(i⇑ 1), so the algorithm keeps this cover until just before time t(i⇑ 1), so that
the invariant is maintained for i⇑ 1.

Inductively, we arrive at the validity of the invariant for i = 1: just before time t(1) = 2N→1 =
n, the algorithm’s cover contains the components corresponding to {j : p(j) = 1 < j}, with
weight 2N→p(j) = 2N→1 = n. At time n they are merged form the final component of weight 2N ,
corresponding to the root node 1. So the algorithm’s merge tree matches TN

D .

Competitive ratio. Each leaf in the merge tree has depth $(log↔m), so every item is merged
$(log↔m) times, and the algorithm’s build cost is $(wt(1) log↔m) = $(n log↔m) (using wt(1) = 2n).

But the optimal cost is !(n). (Consider the solution that merges all input sets into one compo-
nent at time m, just after all non-empty insertions. Its query cost is

∑m→1
t=1 t+

∑n
t=m 1 = O(m2+n).

Its merge cost is 2wt(1) = O(n). Recalling that m ↓ 2nD = 2N/2 = O(
⇒
n), the optimal cost is

O(n).)
So the competitive ratio is $(log↔m).

14

Note that in Lemma 2.6, n ↙ m
2, so log↔m = $(log↔ n). The upper bound in Section 2.1 and

the lower bound in Lemma 2.6 prove Theorem 1.

3 K-Component Dynamization and variants (Theorems 2–6)

3.1 Lower bound on optimal competitive ratio

Theorem 2. For k-Component Dynamization (and consequently for its generalizations) no deter-
ministic online algorithm has ratio competitive ratio less than k.

To develop intuition before we give the detailed proof for the general case, here is a sketch of
how the proof goes for k = 2. The adversary begins by inserting one item of weight 1 and one
item of infinitesimal weight ς > 0, followed by a sequence of n ⇑ 2 weight-zero items just until
the algorithm’s cover has just one component. (This must happen, or the competitive ratio is
unbounded — OPT pays only at time 1, while the algorithm continues to pay at least ς each time
step.) By calculation the algorithm pays at least 2+(n⇑1)ς, while OPT pays min(2+ς, 1+(n⇑1)ς),
giving a ratio of 1.5⇑O(ς).

This lower bound does not reach 2 (in contrast to the standard “rent-or-buy” lower bound)
because the algorithm and OPT both pay a “setup cost” of 1 at time 1. However, at the end of
sequence, the algorithm and OPT are left with a component of weight ∝ 1 in place. The adversary
can now continue, doing a second phase without the setup cost, by inserting an item of weight

⇒
ς,

then zeros just until the algorithm’s cover has just one component (again this must happen or the
ratio is unbounded). Let m be the length of this second phase. By calculation, for this phase, the
algorithm pays at least (m⇑ 1)

⇒
ς+ 1 while OPT pays at most min(1 +

⇒
ς+ ς, (m⇑ 1)(

⇒
ς+ ς)),

giving a ratio of 2⇑O(
⇒
ς) for just the phase.

The ratio of the whole sequence (both phases together) is now 1.75⇑O(
⇒
ς). By doing additional

phases (using infinitesimal ς1/i in the ith phase), the adversary can drive the ratio arbitrarily close
to 2. This is the idea for k = 2. Next we give the detailed proof for the general case (arbitrary
k ↑ 2).

Proof of Theorem 2. Fix an arbitrarily small ς > 0. Define k + 1 sequences of items (weights)
as follows. Sequence φ(k + 1) has just one item, φ1(k + 1) = ς. For j ↔ {k, k ⇑ 1, . . . , 1}, in
decreasing order, define sequence φ(j) to have nj = ′k/φ1(j + 1)∞ items, with the ith item being
φi(j) = ς

nk+nk→1+···+nj→i+2. Each sequence φ(j) is strictly increasing, and all items in φ(j) are
smaller than all items in φ(j + 1). Every two items di”er by a factor of at least 1/ς, so the cost to
build any component will be at most 1/(1⇑ ς) times the largest item in the component.

Adversarial input sequence I. Fix any deterministic online algorithm A. Define the input
sequence I to interleave the k+1 sequences in {φ(j) : 1 ↓ j ↓ k+1} as follows. Start by inserting
the only item from sequence φ(k + 1): take I1 = {φ1(k + 1)} = {ς}. For each time t ↑ 1, after
A responds to the insertion at time t, determine the next insertion It+1 = {x} as follows. For
each sequence φ(j), call the most recent (and largest) item inserted so far from φ(j), if any, the
representative of the sequence. Define index ε(t) so that the largest representative in any new
component at time t is the representative of φ(ε(t)). (The item inserted at time t is necessarily a
representative and in at least one new component, so ε(t) is well-defined.) At time t + 1 choose
the inserted item x to be the next unused item from sequence φ(ε(t)⇑ 1). Define the parent of
x, denoted p(x), to be the representative of φ(ε(t)) at time t. (Note: A’s build cost at time t was
at least p(x) ∈ x.) Stop when the cumulative cost paid by A reaches k. This defines the input
sequence I.

15

The input I is well-defined. Next we verify that I is well-defined, that is, that (a) ε(t) ⇐= 1
for all t (so x’s specified sequence φ(ε(t)⇑ 1) exists) and (b) each sequence φ(j) is chosen at most
nj times. First we verify (a). Choosing x as described above forces the algorithm to maintain the
following invariants at each time t:

(i) Each of the sequences in {φ(j) : ε(t) ↓ j ↓ k + 1} has a representative, and

(ii) no two of these k ⇑ ε(t) + 2 representatives are in any one component.

Indeed, the invariants hold at time t = 1 when ε(t) = k + 1. Assume they hold at some time t.
At time t+ 1 the newly inserted element x is the new representative of φ(ε(t)⇑ 1) and is in some
new component, so ε(t+ 1) ↑ ε(t)⇑ 1. These facts imply that Invariant (i) is maintained. By the
definition of ε(t+1), the components built at time t+1 contain the representative from φ(ε(t+1))
but no representative from any φ(j) with j > ε(t + 1). This and ε(t + 1) ↑ ε(t) ⇑ 1 imply that
Invariant (ii) is also maintained.

By inspection, Invariants (i) and (ii) imply that A has at least k⇑ ε(t) + 2 components at time
t. But A has at most k components, so ε(t) ↑ 2.

Next we verify (b), that I takes at most nj items from each sequence φ(j). This holds for
φ(k + 1) just because, by definition, after time 1, I cannot insert an item from φ(k + 1). Consider
any φ(j) with j ↓ k. For each item φi(j) in φ(j), when I inserted φi(j), algorithm A paid at least
p(φi(j)) ↑ φ1(j + 1) at the previous time step. So, before all nj items from φ(j) are inserted, A
must pay at least nj φ1(j + 1) ↑ k (by the definition of nj), and the input stops. It follows that I
is well-defined.

Upper-bound on optimum cost. Next we upper-bound the optimum cost for I. For each
j ↔ {1, . . . , k}, define C(j) to be the solution for I that partitions the items inserted so far into the
following k components: one component containing items from φ(j) and φ(j + 1), and, for each
h ↔ {1, . . . , k + 1} \ {j, j + 1}, one containing items from φ(h).

To bound cost(C(j)), i.e., the total cost of new components in C(j), first consider the new
components such that the largest item in the new component is the just-inserted item, say, x. The
cost of such a component is at most x/(1⇑ ς). Each item x is inserted at most once, so the total
cost of all such components is at most 1/(1⇑ ς) times the sum of all defined items, and therefore at
most

∑↘
i=1 ς

i
/(1⇑ ς) = ς/(1⇑ ς)2. For every other new component, the just-inserted item x must

be from sequence φ(j + 1), so the largest item in the component is the parent p(x) (in φ(j)) and
the build cost is at most p(x)/(1⇑ ς). Defining mj ↓ nj to be the number of items inserted from
φ(j), the total cost of building all such components is at most

∑mj

i=1 p(φi(j))/(1⇑ ς). So cost(C(j))
is at most ς/(1⇑ ς)2 +

∑mj

i=1 p(φi(j))/(1⇑ ς).
The cost of OPT is at most minj cost(C(j)). The minimum is at most the average, so

(1⇑ ς)2 cost(OPT) ↓ min
j=1,...,k

ς+

mj∑

i=1

p(φi(j)) ↓ ς+
1

k

k∑

j=1

mj∑

i=1

p(φi(j)).

Lower bound on algorithm cost. The right-hand side of the above inequality is at most
(ς/k + 1/k) cost(A), because cost(A) ↑ k (by the stopping condition) and

∑k
j=1

∑mj

i=1 p(φi(j)) ↓
cost(A). (Indeed, for each j ↔ {1, . . . , k} and i ↔ {1, . . . ,mj}, the item φi(j) was inserted at some
time t ↑ 2, and A paid at least p(φi(j)) at the previous time t⇑ 1.) So the competitive ratio is at
least (1⇑ ς)2/(ς/k + 1/k) ↑ (1⇑ 3ς)k. This holds for all ς > 0, so the ratio is at least k.

16

algorithm Greedy-Dual(I1, I2, . . . , In) — for k-Component Dynamization with decreasing weights

1. maintain a cover (collection of components), initially empty

2. for each time t = 1, 2, . . . , n such that It ⇐= ↗:
2.1. if there are k current components:

2.1.1. increase all components’ credits continuously until some component S has credit[S] ↑ wtt(S)

2.1.2. let S0 be the oldest component such that credit[S0] ↑ wtt(S0)

2.1.3. merge It, S0 and all components newer than S0 into one new component S
↓

2.1.4. initialize credit[S↓] to 0

2.2. else:

2.2.1. create a new component from It, with zero credit

Figure 8: A newest-first k-competitive algorithm for k-Component Dynamization with decreasing
weights (Theorem 3).

3.2 Upper bound for k-Component Dynamization with decreasing weights

Recall that, in k-Component Dynamization with decreasing weights, each item x ↔ It has weights
wtt(x) ↑ wtt+1(x) ↑ · · · ↑ wtn(x). The cost of building a component S ↘ Ut at time t is redefined
as wtt(S) =

∑
x↑S wtt(x). This variant is technically useful, as a stepping stone to the LSM variant.

Theorem 3. For k-Component Dynamization with decreasing weights (and plain k-Component
Dynamization) the deterministic online algorithm in Figure 8 is k-competitive.

Proof. Consider any execution of the algorithm on any input I1, I2, . . . , In. Let ↼t be such that
each component’s credit increases by ↼t at time t. (If Block 2.2 is executed, ↼t = 0.) To prove the
theorem we show the following lemmas.

Lemma 3.1. The cost incurred by the algorithm is at most k
∑n

t=1

(
wtt(It) + ↼t

)
.

Lemma 3.2. The cost incurred by the optimal solution is at least
∑n

t=1

(
wtt(It) + ↼t

)
.

Proof of Lemma 3.1. As the algorithm executes, keep the components ordered by age, oldest first.
Assign each component a rank equal to its rank in this ordering. Say that the rank of any item is
the rank of its current component, or k + 1 if the item is not yet in any component. At each time
t, when a new component is created in Line 2.1.3, the ranks of the items in S0 stay the same, but
the ranks of all other items decrease by at least 1. Divide the cost of the new component into two
parts: the contribution from the items that decrease in rank, and the remaining cost.

Throughout the execution of the algorithm, each item’s rank can decrease at most k times, so
the total contribution from items as their ranks decrease is at most k

∑n
t=1 wtt(It) (using here that

the weights are non-increasing with time). To complete the proof of the lemma, observe that the
remaining cost is the sum, over times t when Line 2.1.3 is executed, of the weight wtt(S0) of the
component S0 at time t. This sum is at most the total credit created, because, when a component
S0 is destroyed in Line 2.1.3, at least the same amount of credit (on S0) is also destroyed. But the
total credit created is k

∑n
t=1 ↼t, because when Line 2.1.1 executes it increases the total component

credit by k↼t.

17

Proof of Lemma 3.2. Let C↔ be an optimal solution. Let C denote the algorithm’s solution. At each
time t, when the algorithm executes Line 2.1.1, it increases the credit of each of its k components
in Ct→1 by ↼t. So the total credit the algorithm gives is k

∑
t ↼t.

For each component S ↔ Ct→1, think of the credit given to S as being distributed over the
component’s items x ↔ S in proportion to their weights, wtt(x): at time t, each item x ↔ S receives
credit ↼t wtt(x)/wtt(S). Have each x, in turn, charge this amount to one component in OPT’s
current cover C↔

t that contains x. In this way, the entire credit k
∑n

t=1 ↼t is charged to components
in C↔.

Recall that [t, t↓] denotes {t, t+ 1, . . . , t↓}.

Sublemma 3.2.1. Let x be any item. Let [t, t↓] be any time interval throughout which x remains
in the same component in C. The cumulative credit given to x during [t, t↓] is at most wtt(x).

Proof. Let S be the component in C that contains x throughout [t, t↓]. Assume that ↼t↑ > 0
(otherwise reduce t

↓ by one). Let creditt↑ [S] denote credit[S] at the end of iteration t
↓. Weights are

non-increasing with time, so the credit that x receives during [t, t↓] is

t↑∑

i=t

wti(x)

wti(S)
↼i ↓ wtt(x)

wtt↑(S)

t↑∑

i=t

↼i ↓ wtt(x)

wtt↑(S)
creditt↑ [S].

The right-hand side is at most wtt(x). (Indeed, in iteration t
↓ Line 2.1.1 increased all components’

credits by ↼t↑ > 0, while maintaining the invariant that credit[S] ↓ wtt↑(S), so creditt↑ [S] ↓ wtt↑(S).)

Next we bound how much charge OPT’s components (in C↔) receive. For any time t, let
N ↔

t = C↔
t \ C↔

t→1 contain the components that OPT creates at time t, and let N
↔
t =

⋃
S↑N ↓

t
S

contain the items in these components. Call the charges received by components in N ↔
t from

components created by the algorithm before time t forward charges. Call the remaining charges
(from components created by the algorithm at time t or after) backward charges.

Consider first the backward charges to components in N ↔
t . These charges come from components

in Ct→1, via items x in N
↔
t ⇓ Ut→1, from time t until the algorithm destroys the component in Ct→1

that contains x. By Sublemma 3.2.1, the total charge via a given x from time t until its component is
destroyed is at most wtt(x), so the cumulative charge to components in N ↔

t from older components
is at most wtt(N↔

t ⇓ Ut→1) = wtt(N↔
t) ⇑ wtt(It) (using that N

↔
t \ Ut→1 = It). Using that OPT

pays at least wtt(N↔
t) at time t, and summing over t, the sum of all backward charges is at most

cost(OPT)⇑
∑

t wtt(It).
Next consider the forward charges, from components created at time t or later, to any component

S
↔ in N ↔

t . Component S
↔ receives no forward charges at time t, because components created by

the algorithm at time t receive no credit at time t. Consider the forward charges S↔ receives at any
time t↓ ↑ t+1. At most one component (in Ct↑→1) can contain items in N

↔
t , namely, the component

in Ct↑→1 that contains It. (Indeed, the algorithm merges components “newest first”, so any other
component in Ct↑→1 created after time t only contains items inserted after time t, none of which are
in N

↔
t .) At time t

↓, the credit given to that component is ↼t↑ , so the components created by the
algorithm at time t

↓ charge a total of at most ↼t↑ to S
↔. Let m(t, t↓) = |N ↔

t ⇓ C↔
t↑ | be the number of

components S
↔ that OPT created at time t that remain at time t

↓. Summing over t
↓ ↑ t + 1 and

S
↔ ↔ N ↔

t , the forward charges to components in N ↔
t total at most

∑n
t↑=t+1m(t, t↓)↼t↑ . Summing

18

over t, the sum of all forward charges is at most

n∑

t=1

n∑

t↑=t+1

m(t, t↓)↼t↑ =
n∑

t↑=2

↼t↑

t↑→1∑

t=1

m(t, t↓) ↓
n∑

t↑=1

↼t↑(k ⇑ 1)

(using that
∑t↑→1

t=1 m(t, t↓) ↓ k ⇑ 1 for all t, because OPT has at most k components at time t
↓, at

least one of which is created at time t
↓).

Recall that the entire credit k
∑n

t=1 ↼t is charged to components in C↔. Summing the bounds
from the two previous paragraphs on the (forward and backward) charges, this implies that

k
∑n

t=1 ↼t ↓ cost(OPT)⇑
∑n

t=1 wtt(It) + (k ⇑ 1)
∑n

t=1 ↼t.

This proves the lemma, as it is equivalent to the desired bound cost(OPT) ↑
∑n

t=1 wtt(It)+ ↼t.

This proves Theorem 3.

3.3 Bootstrapping newest-first algorithms

Theorem 4. Any newest-first online algorithm A for k-Component (or Min-Sum) dynamization
with decreasing weights can be converted into an equally competitive online algorithm A

↓ for the
LSM variant.

Proof. Fix an instance (I,wt) of LSM k-Component (or Min-Sum) Dynamization. For any solution
C to this instance, let wt(C) denote its build cost using build-cost function wt. For any set S of
items and any item x ↔ S, let nr(x, S) be 0 if x is redundant in S (that is, there exists a newer
item in S with the same key) and 1 otherwise. Then wtt(S) =

∑
x↑S nr(x, S)wtt(x), where wtt(x)

is wt(x) unless x is expired, in which case wtt(x) is the tombstone weight of x. The tombstone
weight of x must be at most wt(x), so wtt(x) is non-increasing with t.

For any time t and item x ↔ Ut, define wt
↓
t(x) = nr(x, Ut)wtt(x). For any item x, wt↓t(x) is non-

increasing with t, so (I,wt↓) is an instance of k-Component Dynamization with decreasing weights.
For any solution C for this instance, let wt↓(C) denote its build cost using build-cost function wt

↓.

Lemma 3.3. For any time t and set S ↘ Ut, we have wt
↓
t(S) ↓ wtt(S).

Proof. Redundant items in S are redundant in Ut, so

wt
↓
t(S) =

∑

x↑S
wt

↓
t(x) =

∑

x↑S
nr(x, Ut)wtt(x) ↓

∑

x↑S
nr(x, S)wtt(x) = wtt(S). (3)

Lemma 3.4. Let C be any newest-first solution for (I,wt↓) and (I,wt). Then wt
↓(C) = wt(C).

Proof. Consider any time t with It ⇐= ↗. Let S be C’s new component at time t (so Ct \Ct→1 = {S}).
Consider any item x ↔ S. Because C is newest-first, S includes all items inserted with or after x.
So x is redundant in Ut i” x is redundant in S, that is, nr(x, Ut) = nr(x, S), so wt

↓
t(S) = wtt(S)

(because Bound (3) above holds with equality). Summing over all t gives wt↓(C) = wt(C).

Given an instance (I,wt) of LSM k-Component Dynamization, the algorithm A
↓ simulates A on

the instance (I,wt↓) defined above. Using Lemma 3.4, that A is c-competitive, and wt
↓(OPT(I,wt↓)) ↓

wt(OPT(I,wt)) (by Lemma 3.3), we get

wt(A↓(I,wt)) = wt
↓(A(I,wt↓)) ↓ cwt

↓(OPT(I,wt↓)) ↓ cwt(OPT(I,wt)).

So A
↓ is c-competitive.

19

algorithm B1(I1, I2, . . . , In) — for k = 1

1. for t = 1, 2, . . . , n: use cover Ct = {Ut} where Ut =
⋃t

i=1 Ii — one component holding all items

algorithm Bk(I1, I2, . . . , In) — for k ↔ 2

1. initialize t
↓ = 1 — variable t

↑ holds the start time of the current phase

2. for t = 1, 2, . . . , n:

2.1. let C↓ = Bk→1(It↑ , It↑+1, . . . , It) — the solution generated by Bk→1 for the current phase so far

2.2. if the total cost of C↓
exceeds (k ⇑ 1)wtt(Ut): take Ct = {Ut} and let t

↓ = t+ 1 — end the phase

2.3. else: use cover Ct = {Ut↑} ≃ C↓
t, where C↓

t is the last cover in C↓ — C↑
t has at most k ↗ 1 components

Figure 9: Recursive algorithm for general k-Component Dynamization (Theorem 6).

Combined with the observation that the Greedy-Dual algorithm (Figure 8) is newest-first, The-
orems 3 and 4 yield a k-competitive algorithm for LSM k-Component Dynamization:

Corollary 5. There is a deterministic online algorithm for LSM k-Component Dynamization with
competitive ratio k.

3.4 Upper bound for general variant

Theorem 6. For general k-Component Dynamization, the deterministic online algorithm Bk in
Figure 9 is k-competitive.

Proof. The proof is by induction on k. For k = 1, Algorithm B1 is 1-competitive (optimal) because
there is only one solution for any instance. Consider any k ↑ 2, and assume inductively that Bk→1

is (k ⇑ 1)-competitive. Fix any input (I, w) with I = (I1, . . . , In). Let OPTk denote the optimal
(o&ine) algorithm, and let C↔ = OPTk(I1, . . . , In) be an optimal solution for I.

Let N ↔
t = C↔

t \ C↔
t→1 denote OPT’s new components at time t. For a, b ↔ [n], let %b

a(OPTk)

denote the cost incurred by OPTk during time interval [a, b], that is,
∑b

i=a

∑
S↑N ↓

i
wi(S). (Recall

[a, b] denotes {a, a+1, . . . , b}.) Likewise, let%b
a(Bk) denote the cost incurred by Bk during [a, b]. Let

Ib
a = (Ia, Ia+1, . . . , Ib) denote the subproblem formed by the insertions during [a, b], with build-costs

inherited from w.
Recall that Bk partitions the input sequence into phases, each of which (except possibly the last)

ends with Bk doing a full merge (i.e., at a time t with |Ct| = 1). Assume without loss of generality
that Bk ends the last phase with a full merge. (Otherwise, append a final empty insertion at time
n+1 and define wn+1(Un+1) = 0. This does not increase the optimal cost, and causes the algorithm
to do a full merge at time n+1 unless its total cost in the phase is zero.) Consider any phase. Now
fix a and b to be the first and last time steps during the phase. To prove the theorem, we show
%b

a(Bk) ↓ k%b
a(OPTk). The theorem follows by summing over the phases.

The proof is via a series of lemmas. Recall that Ut denotes
⋃t

i=1 Ii.

Lemma 3.5. For any integer j ↔ [a, b], cost(Bk→1(Ij
a)) ↓ (k ⇑ 1) cost(OPTk→1(Ij

a)).

Proof. The instance (I, w) obeys Restrictions (R1)–(R3). So, by inspection of those restrictions,
Ij
a also obeys them. That is, Ij

a is a valid instance of general (k ⇑ 1)-component Dynamization.
So, by the inductive assumption, Bk→1 is (k ⇑ 1)-competitive for Ij

a.

20

For j ↔ [a, b], say that OPT rebuilds by time j if Ua→1 ↘
⋃j

i=a

⋃
S↑Ni

S. That is, every element

inserted before time a is in some new component during [a, j]. (Equivalently,
⋃j

i=a

⋃
S↑Ni

S = Uj .)

Lemma 3.6. Suppose OPT rebuilds by time j. Then %j
a(OPTk) ↑ wj(Uj).

Proof.

wj(Uj) = wj
(⋃j

i=a

⋃
S↑Ni

S
)

(OPT rebuilds by time j)

↓
∑j

i=a

∑
S↑Ni

wj(S) (by sub-additivity (R1))

↓
∑j

i=a

∑
S↑Ni

wi(S) (by temporal monotonicity (R3))

= %j
a(OPTk). (by definition)

Lemma 3.7. Suppose OPT does not rebuild by time j ↔ [a, b]. Then cost(OPTk→1(Ij
a)) ↓ %j

a(OPTk).

Proof. Because OPT does not rebuild by time j, some element x in Ua→1 is not in any new compo-
nent during [a, j]. Let S be the component in C↔

j containing x. Since S
↔ is not new during [a, j], it

must be that S↔ is in C↔
i for every i ↔ [a⇑ 1, j], and S

↔ ↘ Ua→1.

For the subproblem Ij
a, let C↓ be the solution defined by C↓

i = {S \ Ua→1 : S ↔ C↔
i } \ {↗} for

i ↔ [a, j]. Because each C↔
i has at most k components, one of which is S↔, and S

↔ ↘ Ua→1, it follows

that each Ci has at most k ⇑ 1 components. So cost(OPTk→1(Ij
a)) ↓ cost(C↓).

If a given component S \Ua→1 is new in C↓ at time i ↔ [a, j], then the corresponding component
S is new in C↔ at time i. Further, by su#x monotonicity (R2), the cost wi

(
S \Ua→1

)
paid by C↓ for

S \Ua→1 is at most the cost wi(S) paid by C↔ for S. (Inspecting the definition of (R2), we require
that S ⇐= Ui, which holds because OPT has not rebuilt by time j.) So cost(C↓) ↓ %j

a(OPTk).

Lemma 3.8. cost(Bk→1(Ib→1
a)) ↓ (k ⇑ 1)%b→1

a (OPTk)

Proof. If a = b then cost(Bk→1(Ib→1
a)) = 0, so assume a < b. If OPT rebuilds by time b⇑ 1, then

cost(Bk→1(Ib→1
a)) ↓ (k ⇑ 1)wb→1(Ub→1) (Bk does not end the phase at time b⇑ 1)

↓ (k ⇑ 1)%b→1
a (OPTk) (Lemma 3.6 with j = b⇑ 1).

Otherwise OPT does not rebuild by time b⇑ 1, so

cost(Bk→1(Ib→1
a)) ↓ (k ⇑ 1) cost(OPTk→1(Ib→1

a)) (Lemma 3.5 with j = b⇑ 1)

↓ (k ⇑ 1)%b→1
a (OPTk) (Lemma 3.7 with j = b⇑ 1).

Lemma 3.9. wb(Ub) ↓ %b
a(OPTk)

Proof. If OPT rebuilds by time b, then

wb(Ub) ↓ %b
a(OPTk) (Lemma 3.6 with j = b).

21

intervals before modification

· · · V = V1 V2 · · · Vε · · ·
· · · V

↓ · · ·
⇑→

intervals after modification

· · · V2 · · · Vε · · ·
· · · V

↓
1 V

↓
2 · · ·

Figure 10: Replacing intervals V and V
↓ by V

↓
1 and V

↓
2 (proof of Theorem 7).

Otherwise OPT does not rebuild by time b, so

wb(Ub) < cost(Bk→1(Ib
a))/(k ⇑ 1) (because Bk ends the phase at time b)

↓ cost(OPTk→1(Ib
a)) (Lemma 3.5 with j = b)

↓ %b
a(OPTk) (Lemma 3.7 with j = b).

The lemmas imply that the algorithm is k-competitive for the phase:

%b
a(Bk) = cost(Bk→1(Ib→1

a)) + wb(Ub) (by definition of Bk)

↓ cost(Bk→1(Ib→1
a)) +%b

a(OPTk) (Lemma 3.9)

↓ (k ⇑ 1)%b→1
a (OPTk) + %b

a(OPTk) (Lemma 3.8)

↓ k (%b
aOPTk) (as %b→1

a (OPTk) ↓ %b
a(OPTk))

Theorem 6 follows by summing over the phases.

4 Properties of optimal o!ine solutions

Theorem 7. Every instance of k-Component or Min-Sum Dynamization has an optimal solution
that is newest-first and lightest-first.

Proof. Fix an instance I = (I1, . . . , In). Recall that [t, t↓] denotes {t, t+ 1, . . . , t↓}. For any compo-
nent S that is new at some time t of a given solution C, we say that S uses (time) interval [t, t↓],
where t

↓ = max{j ↔ [t, n] : (∋i ↔ [t, j]) S ↔ Ci} is the time that (this occurence of) S is destroyed.
We refer to [t, t↓] as the interval of (this occurence of) S. For the proof we think of any solution C
as being constructed in two steps: (i) choose the set T of time intervals that the components of C
will use, then (ii) given T , for each interval [t, t↓] ↔ T , choose a set S of items for [t, t↓], then form
a component S in C with interval [t, t↓] (that is, add S to Ci for i ↔ [t, t↓]). We shall see that the
second step (ii) decomposes by item: an optimal solution can be found by greedily choosing the
intervals for each item x ↔ Un independently. The resulting solution has the desired properties.
Here are the details.

Fix an optimal solution C↔ for the given instance, breaking ties by choosing C↔ to minimize the
total query cost

∑
[t,t↑]↑T ↓ t

↓ ⇑ t + 1 where T
↔ is the set of intervals of components in C↔. Assume

without loss of generality that, for each t ↔ [1, n], if It = ↗, then C↔
t = C↔

t→1 (interpreting C↔
0 as ↗).

(If not, replace C↔
t by C↔

t→1.) For each item x ↔ Un, let ϖ
↔(x) denote the set of intervals in T

↔ of
components that contain x. The build cost of C↔ equals

∑
x↑Un

wt(x) |ϖ↔(x)|. For each time t and
item x ↔ It, the intervals ϖ

↔(x) of x cover [t, n], meaning that the union of the intervals in ϖ
↔(x)

is [t, n].
Next construct the desired solution C↓ from T

↔. For each time t and item x ↔ It, let ϖ(x) =
{V1, . . . , Vε} be a sequence of intervals chosen greedily from T

↔ as follows. Interval V1 is the latest-
ending interval starting at time t. For i ↑ 2, interval Vi is the latest-ending interval starting at

22

time t
↓
i→1 + 1 or earlier, where t

↓
i→1 is the end-time of Vi→1. The final interval has end-time t

↓
ε = n.

By a standard argument, this greedy algorithm chooses from T
↔ a minimum-size interval cover of

[t, n], so |ϖ(x)| ↓ |ϖ↔(x)|.
Obtain C↓ as follows: for each interval [i, j] ↔ T

↔, add a component in C↓ with time interval
[i, j] containing the items x such that [i, j] ↔ ϖ(x). This is a valid solution because, for each
time t and x ↔ It, ϖ(x) covers [t, n]. Its build cost is at most the build cost of C↔, because∑

x↑Un
wt(x)|ϖ(x)| ↓

∑
x↑Un

wt(x)|ϖ↔(x)|. At each time t, its query cost is at most the query cost
of C↔, because it uses the same set T ↔ of intervals. So C↓ is an optimal solution.

C↓ is newest-first. The following properties hold:

1. ϖ uses (assigns at least one item to) each interval V ↔ T
↔. Otherwise removing V from T

↔

(and using the same ϖ) would give a solution with the same build cost but lower query cost,
contradicting the definition of C↔.

2. For all t ↔ [1, n], the number of intervals in T
↔ starting at time t is 1 if It ⇐= ↗ and 0 otherwise.

Among intervals in T
↔ that start at t, only one — the latest ending — can be used in any

ϖ(x). So by Property 1 above, T ↔ has at most interval starting at t. If It ⇐= ↗, C↔ must have
a new component at time t, so there is such an interval. If It = ↗ there is not (by the initial
choice of C↔ it has no new component at time t).

3. For every two consecutive intervals Vi, Vi+1 in any ϖ(x), Vi+1 is the interval in T
↔ that starts

just after Vi ends. Fix any such Vi, Vi+1. For every other item y with Vi ↔ ϖ(y), the interval
following Vi in ϖ(y) must also (by the greedy choice) be Vi+1. That is, every item assigned
to Vi is also assigned to Vi+1. If Vi+1 were to overlap Vi, replacing Vi by the interval Vi \Vi+1

(within T
↔ and every ϖ(x)) would give a valid solution with the same build cost but smaller

total query cost, contradicting the choice of C↔. So Vi+1 starts just after Vi ends. By Property
2 above, Vi+1 is the only interval starting then.

4. For every pair of intervals V and V
↓ in T

↔, either V ⇓ V
↓ = ↗, or one contains the other.

Assume otherwise for contradiction, that is, two intervals cross: V ⇓ V
↓ ⇐= ↗ and neither

contains the other. Let [a, a↓] and [b, b↓] be a rightmost crossing pair in T
↔, that is, such that

a < b < a
↓
< b

↓ and no crossing pair lies in [a+ 1, n]. By Property 1 above, [a, a↓] is in some
ϖ(x). Also a

↓
< n. Let [a↓ + 1, c] be the interval added greedily to ϖ(x) following [a, a↓].

(It starts at time a
↓ + 1 by Property 3 above.) The start-time of [b, b↓] is in [a, a↓ + 1] (as

a < b < a
↓), so by the greedy choice (for [a, a↓]) [b, b↓] ends no later than [a↓ + 1, c]. Further,

by the tie-breaking in the greedy choice, c > b
↓. So [a↓ +1, c] crosses [b, b↓], contradicting that

no crossing pair lies in [a+ 1, n].

By inspection of the definition of newest-first, Properties 2 and 4 imply that C↓ is newest-first.

C↓ is lightest-first. To finish we show that C↓ is lightest-first. For any time t ↔ [1, n], consider
any intervals V, V

↓ ↔ T
↔ where V ends at time t while V

↓ includes t but does not end then. To
prove that C↓ is lightest-first, we show wt(V) < wt(V ↓).

The intervals of C↓ are nested (Property 4 above), so V △ V
↓ and the items assigned to V = V1

are subsequently assigned (by Property 3 above) to intervals V2, . . . , Vε within V
↓ as shown in

Figure 10, with Vε and V
↓ ending at the same time. Since V

↓ does not end when V does, ε ↑ 2.
Consider modifying the solution C↓ as follows: remove intervals V and V

↓ from T
↔, and replace

23

them by intervals V
↓
1 and V

↓
2 obtained by splitting V

↓ so that V
↓
2 starts when V started. (See the

right side of Figure 10.)
Reassign all of V ↓’s items to V

↓
1 and V

↓
2 . Reassign all of V ’s items to V

↓
2 and unassign those

items from each interval Vi. This gives another valid solution. It has lower query cost (as V is
gone), so by the choice of C↔ (including the tie-breaking) the new solution must have strictly larger
build cost. That is, the change in the build cost, wt(V)(1⇑ ε)+wt(V ↓), must be positive, implying
that wt(V ↓) > wt(V)(ε⇑ 1) ↑ wt(V) (using ε ↑ 2). Hence wt(V ↓) > wt(V).

5 Concluding remarks

This paper brings competitive analysis to bear on data-structure dynamization for non-uniform in-
puts, via two new online covering problems—Min-Sum Dynamization and k-Component Dynamization—
for which it gives deterministic online algorithms with competitive ratios !(log↔m) and k, respec-
tively. The algorithms extend to handle lazy updates and deletions as they occur in industrial LSM
systems.

The paper also shows the existence of optimal o&ine solutions that are newest-first and lightest-
first. As mentioned in the introduction, one consequence is that Bentley and Saxe’s transforms
give optimal solutions (up to lower-order terms) for uniform inputs. Another is that, for Min-Sum
and k-Component Dynamization, optimal solutions can be computed in time O(n3) and O(kn3),
respectively, because optimal newest-first solutions can be computed in these time bounds via
natural dynamic programs.

5.1 Open problems

Here are a few of many interesting problems that remain open. For k-Component Dynamization:

– Is there an online algorithm with competitive ratio O(min(k, log↔m))?

– Is there an algorithm with competitive ratio O(k/(k ⇑ h + 1)) versus OPTh (the optimal
solution with maximum query cost h ↓ k)?

– Is there a randomized algorithm with competitive ratio o(k)?

– A memoryless randomized algorithm with competitive O(k)?

For Min-Sum Dynamization:

– Is there an O(1)-competitive algorithm?

– Some LSM architectures only support newest-first algorithms. Is there a newest-first algo-
rithm with competitive ratio O(log↔m)?

– What are the best ratios for the LSM and general variants?

For both problems:

– For instances I that occur in practice, the ratio maxt,t↑ wt(It)/wt(It↑) (for t↓ such that wt(It↑) >
0) is often bounded. Does restricting to such instances allow smaller competitive ratios?

– For the decreasing-weights and LSM variants, is there always an optimal newest-first solution?

24

5.2 Variations on the model

Tombstones deleted during major compactions. Times when the cover Ct has just one
component (containing all inserted items) are called full merges or major compactions. At these
times, LSM systems delete all tombstone items (even non-redundant tombstones). Our definition of
LSM k-Component Dynamization does not capture this, but our definition of General k-Component
Dynamization does, so the algorithm Bk in Figure 9 is k-competitive in this case.

Monolithic builds. Our model underestimates query costs because it assumes that new compo-
nents can be built in response to each query, before responding to the query. In reality, builds take
time. Can this be modelled cleanly, perhaps via a problem that constrains the build cost at each
time t (and wt(It)) to be at most 1, with the objective of minimizing the total query cost?

Splitting the key space. To avoid monolithic builds, when the data size reaches some threshold
(e.g., when the available RAM can hold 1% of the stored data) some LSM systems “split”: they
divide the workload into two parts—the keys above and below some threshold—then restart, han-
dling each part on separate servers. This requires a mechanism for routing insertions and queries
by key to the appropriate server. Can this (including a routing layer supporting multiple splits) be
cleanly modeled?

Other LSM systems (LevelDB and its derivatives) instead use many small (disk-block size) com-
ponents, storing in the (cached) indices each component’s key interval (its minimum and maximum
key). A query for a given key accesses only the components whose intervals contain the key. This
suggests a natural modification of our model: redefine the query cost at time t to be the maximum
number of such components for any key.

Bloom filters. Most practical LSM systems are configurable to use a Bloom filter for each
component, so as to avoid (with some probability) accessing component that do not hold the queried
key. However, Bloom filters are only cost-e”ective when they are small enough to be cached. They
require about a byte per key, so are e”ective only for the smallest components (with a total number
of keys no more than the bytes available in RAM). Used e”ectively, they can save a few disk accesses
per query (see [26]). They do not speed up range queries (that is, e#cient searches for all keys in a
given interval, which LSM systems support but hash-based external-memory dictionaries do not).

External-memory. More generally, to what extent can we apply competitive analysis to the
standard I/O (external-memory) model? Given an input sequence (rather than being constrained
to maintain a cover) the algorithm would be free to use the cache and disk as it pleases, subject
only to the constraints of the I/O model, with the objective of minimizing the number of disk I/O’s,
divided by the minimum possible number of disk I/O’s for that particular input. This setting may
be too general to work with. Is there a clean compromise?

The results below do not address this per se, but they do analyze external-memory algorithms
using metrics other than standard worst-case analysis, with a somewhat similar flavor:

[8] Studies competitive algorithms for allocating cache space to competing processes.

[10] Analyzes external-memory algorithms while available RAM varies with time, seeking an al-
gorithm such that, no matter how RAM availability varies, the worst-case performance is as
good as that of any other algorithm.

25

[17] Presents external-memory sorting algorithms that have per-input guarantees — they use fewer
I/O’s for inputs that are “close” to sorted.

[23, 37] Present external-memory dictionaries with a kind of static-optimality property: for any
sequence of queries, they incur cost bounded in terms of the minimum achievable by any static
tree of a certain kind. (This is analogous to the static optimality of splay trees [49, 39].)

5.3 Practical considerations

Heuristics for newest-first solutions. Some LSM systems require newest-first solutions. The
Min-Sum Dynamization algorithm Adaptive-Binary (Figure 3) can produce solutions that are not
newest-first. Here is one naive heuristic to make it newest-first: at time t, do the minimal newest-
first merge that includes all of the components that the algorithm would otherwise have selected
to merge. This might result in only a small cost increase on some workloads.

Major compactions. For various reasons, it can be useful to force major compactions at specified
times. An easy way to model this is to treat each interval between forced major compactions as a
separate problem instance, starting each instance by inserting all items from the major compaction.

Estimating the build cost wtt(S). Our algorithms for the decreasing-weights, LSM, and general
variants depend on the build costs wtt(S) of components S that are not yet built. The model
assumes these become known at time t, but in practice they can be hard to compute. However,
the algorithms only depend on the build costs of components S that are unions of the current
components. For the LSM variant, it may be possible to construct, along with each component S,
a small signature that can be used to estimate the build costs of unions of such components (at
later times t), using techniques for estimating intersections of large sets (e.g. [24, 46]). It would be
desirable to show that dynamization algorithms are robust in this context—that their competitive
ratios are approximately preserved if they use approximate build costs.

Exploiting slack in the Greedy-Dual algorithm. For paging, Least-Recently-Used (LRU)
is preferred in practice to Flush-When-Full (FWF), although their competitive ratios are equal.
In practice, it can be useful to tune an algorithm while preserving its theoretical performance
guarantee. In this spirit, consider the following variant of the Greedy-Dual algorithm in Figure 8.
As the algorithm runs, maintain a “spare credit” ↽. Initially ↽ = 0. When the algorithm does a
merge in Line 2.1.3, increase ↽ by the total credit of the components newer than S0, which the
algorithm destroys. Then, at any time, optionally, reduce ↽ by some amount ↼ ↓ ↽, and increase
the credit of any component in the cover by ↽. The proof of Theorem 3, essentially unchanged,
shows that the modified algorithm is still k-competitive. This kind of additional flexibility may be
useful in tuning the algorithm. As an example, consider classifying the spare credit by the rank
of the component that contributes it, and, when a new component S

↓ of some rank r is created,
transferring all spare credit associated with rank r to credit[S↓] (after Line 2.1.4 initializes credit[S↓]
to 0). This natural Balance algorithm balances the work done for each of the k ranks.

5.4 Acknowledgements

Thanks to Carl Staelin for bringing the problem to our attention and for informative discussions
about Bigtable.

26

References

[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk loading
and dynamization. In F. Orejas, P. G. Spirakis, and J. van Leeuwen, editors, Automata,
Languages and Programming, Lecture Notes in Computer Science, pages 115–127. Springer
Berlin Heidelberg, 2001.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. Journal of the ACM, 51(4):606–635, 2004.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with block transfer. In 28th
Annual Symposium on Foundations of Computer Science, pages 204–216. IEEE, Oct. 1987.

[4] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil,
M. Cheelangi, and K. Faraaz. AsterixDB: A scalable, open source BDMS. Proceedings of the
VLDB Endowment, 7(14):1905–1916, 2014.

[5] L. Arge. External Memory Data Structures. In J. Abello, P. M. Pardalos, and M. G. C.
Resende, editors, Handbook of Massive Data Sets, Massive Computing, pages 313–357. Springer
US, Boston, MA, 2002.

[6] L. Arge and J. Vahrenhold. I/O-e#cient dynamic planar point location. Computational Ge-
ometry, 29(2):147–162, Oct. 2004.

[7] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich. Deterministic sampling and
range counting in geometric data streams. ACM Transactions on Algorithms, 3(2), May 2007.

[8] R. D. Barve, E. F. Grove, and J. S. Vitter. Application-controlled paging for a shared cache.
SIAM Journal on Computing, 29(4):1290–1303, Jan. 2000.

[9] M. A. Bender, R. A. Chowdhury, R. Das, R. Johnson, W. Kuszmaul, A. Lincoln, Q. C. Liu,
J. Lynch, and H. Xu. Closing the Gap Between Cache-oblivious and Cache-adaptive Analysis.
In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures, pages
63–73, Virtual Event USA, July 2020. ACM.

[10] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and S. McCauley.
Cache-adaptive Algorithms. In Proceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms, pages 958–971, Philadelphia, PA, USA, 2014. Society for Industrial and Applied
Mathematics.

[11] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J. Nel-
son. Cache-oblivious streaming b-trees. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 81–92, New York, NY, USA, 2007. ACM.

[12] J. L. Bentley. Decomposable searching problems. Information Processing Letters, 8(5):244–251,
June 1979.

[13] J. L. Bentley and J. B. Saxe. Decomposable searching problems I. Static-to-dynamic transfor-
mation. Journal of Algorithms, 1(4):301–358, Dec. 1980.

[14] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, USA, 1998.

27

[15] E. Bortnikov, A. Braginsky, E. Hillel, I. Keidar, and G. She#. Accordion: Better memory
organization for LSM key-value stores. Proceedings of the VLDB Endowment, 11(12):1863–
1875, Aug. 2018.

[16] G. S. Brodal and R. Fagerberg. Lower bounds for external memory dictionaries. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, pages 546–554, Philadelphia, PA, USA,
2003. Society for Industrial and Applied Mathematics.

[17] G. S. l. Brodal, R. Fagerberg, and G. Moruz. Cache-aware and cache-oblivious adaptive sorting.
In Automata, Languages and Programming, Lecture Notes in Computer Science, pages 576–
588. Springer, Berlin, Heidelberg, July 2005.

[18] H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards In-place Geometric Algorithms and
Data Structures. In Proceedings of the Symposium on Computational Geometry, pages 239–246,
New York, NY, USA, 2004. ACM.

[19] N. Buchbinder, S. Chen, and J. Naor. Competitive analysis via regularization. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, pages 436–444. SIAM, 2014.

[20] N. Buchbinder and J. Naor. The design of competitive online algorithms via a primal—dual
approach. Foundations and Trends® in Theoretical Computer Science, 3(2–3):93–263, 2009.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. BigTable: A distributed storage system for structured data.
ACM Transactions on Computing Systems, 26(2):4:1–4:26, June 2008.

[22] Y. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proceedings of
the IEEE, 80(9):1412–1434, Sept. 1992.

[23] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan. Static optimality theorem for
external memory string access. In The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings., pages 219–227, Nov. 2002.

[24] R. Cohen, L. Katzir, and A. Yehezkel. A minimal variance estimator for the cardinality of
big data set intersection. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 95–103, Halifax NS Canada, Aug. 2017. ACM.

[25] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally distributed database. ACM Transac-
tions on Computing Systems, 31(3):8:1–8:22, Aug. 2013.

[26] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value store. In
Proceedings of the ACM International Conference on Management of Data, pages 79–94, New
York, NY, USA, 2017. ACM.

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles,
pages 205–220, New York, NY, USA, 2007. ACM.

[28] A. Dent. Getting Started with LevelDB. Packt Publishing Ltd, Nov. 2013.

28

[29] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Stumm. Optimizing
space amplification in RocksDB. In Proceedings of the Biennial Conference on Innovative
Data Systems Research, pages 3–12, 2017.

[30] D.T. Lee and F.P. Preparata. Computational Geometry—A Survey. IEEE Transactions on
Computers, C-33(12):1072–1101, Dec. 1984.

[31] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets
for k-means, PCA and projective clustering. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 1434–1453, Philadelphia, PA, USA, 2013. Society for Industrial
and Applied Mathematics.

[32] L. George. HBase: The Definitive Guide: Random Access to Your Planet-Size Data. O’Reilly
Media, Inc., Aug. 2011.

[33] G. Graefe. Modern B-tree techniques. Foundations and Trends in Databases, 3(4):203–402,
2010.

[34] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In Proceed-
ings of the ACM Symposium on Theory of Computing, pages 291–300, New York, NY, USA,
2004. ACM. See also https://doi.org/10.48550/arXiv.1810.12826.

[35] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowledgment and other stories
about e/(e - 1). Algorithmica, 36(3):209–224, July 2003.

[36] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Hubbell,
P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, and C. Yee. Achieving 100,000,000
database inserts per second using Accumulo and D4M. In 2014 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6, Sept. 2014.

[37] P. Ko and S. Aluru. Optimal self-adjusting trees for dynamic string data in secondary storage.
In N. Ziviani and R. Baeza-Yates, editors, String Processing and Information Retrieval, volume
4726, pages 184–194. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[38] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. SIGOPS
Operating Systems Review, 44(2):35–40, Apr. 2010.

[39] C. Levy and R. Tarjan. A new path from splay to dynamic optimality. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pages 1311–1330, Philadelphia, PA, USA,
2019. Society for Industrial and Applied Mathematics.

[40] H. Lim, D. G. Andersen, and M. Kaminsky. Towards accurate and fast evaluation of multi-
stage log-structured designs. In Proceedings of the Usenix Conference on File and Storage
Technologies, pages 149–166, Berkeley, CA, USA, 2016. USENIX Association.

[41] C. Luo and M. J. Carey. LSM-based storage techniques: a survey. VLDB J., 29(1):393–418,
2020.

[42] C. Mathieu, R. Rajaraman, N. E. Young, and A. Yousefi. Competitive data-structure dy-
namization. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages
2269–2287. SIAM, 2021.

29

[43] K. Mehlhorn. Lower bounds on the e#ciency of transforming static data structures into
dynamic structures. Mathematical systems theory, 15(1):1–16, Dec. 1981.

[44] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (LSM-tree).
Acta Informatica, 33(4):351–385, June 1996.

[45] M. H. Overmars. The Design of Dynamic Data Structures. Number 156 in Lecture Notes in
Computer Science. Springer, Berlin, 1987.

[46] R. Pagh, M. Stöckel, and D. P. Woodru”. Is min-wise hashing optimal for summarizing
set intersection? In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 109–120, Snowbird, Utah, USA, 2014. ACM Press.

[47] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file
system. In Proceedings of the ACM Symposium on Operating Systems Principles, pages 1–15,
New York, NY, USA, 1991. ACM.

[48] D. G. Severance and G. M. Lohman. Di”erential files: Their application to the maintenance
of large databases. ACM Transaction on Database Systems, 1(3):256–267, Sept. 1976.

[49] D. D. Sleator and R. E. Tarjan. Self-adjusting binary trees. In Proceedings of the ACM
Symposium on Theory of Computing, pages 235–245, New York, NY, USA, 1983. ACM.

[50] C. Staelin. Personal communication, 2013.

[51] J. van Leeuwen and M. H. Overmars. The art of dynamizing. In J. Gruska and M. Chytil,
editors, Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
pages 121–131. Springer Berlin Heidelberg, 1981.

[52] J. S. Vitter. Algorithms and Data Structures for External Memory. Number 2:4 in Foundations
and Trends in Theoretical Computer Science. Now Publishers, Boston, 2008.

[53] K. Yi. Dynamic indexability and the optimality of B-trees. Journal of the ACM, 59(4):1–19,
Aug. 2012.

[54] N. E. Young. K-medians, facility location, and the Cherno”-Wald bound. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pages 86–95, 2000.

A Deferred proofs

Lemma A.1. For the min-sum dynamization problem, the competitive ratio of the naive adaptation
of Bentley’s binary transform, which treats each insertion as a size-1 item and applies the transform,
is $(log n).

Proof. Consider an input sequence in which an item of weight n2 is inserted in step 1, and an item
of weight ς for infinitesimally small ς > 0 is inserted in each step t, for 2 ↓ t ↓ n. The naive
adaptation of Bentley’s binary transform ignores the weights and treats each insertion as a size-1
item. Recall that the binary transform maintains at most one component of size 2i for each integer
i. Since the input sequence inserts one item each step, for each t that is a power of two, the binary
transform has exactly one component of size t immediately after step t (for instance, see Figure 1).
Thus, each step t that is a power of two incurs build cost at least n2 (owing to the item of weight
n
2). This yields a total build cost of $(n2 log n).

30

An alternative solution, such as the one computed by the algorithm of Figure 3, maintains
at most two components, one consisting of the weight n

2 item and the other consisting of any
remaining items. The build cost for step 1 is n

2. For step i, 2 ↓ i ↓ n, the build cost is (i ⇑ 1)ς
since i⇑ 1 items of weight ς are merged into a component. This yields a total build cost of at most
n
2(1 + ς/2). Since there are at most two components, the query cost is at most 2n. We thus have

an $(log n) bound on the competitive ratio of the naive adaptation of the binary transform.

Lemma A.2. The naive generalization of Bentley and Saxe’s k-binomial transform to k-Component
Dynamization has competitive ratio $(kn1/k) for any k ↑ 2.

Proof. Recall that the naive algorithm treats each insertion It as one size-1 item, then applies the
k-binomial transform. Consider inserting a single item of weight 1, then n⇑1 single items of weight
0. The naive algorithm merges its largest component !(d) times where

(d
k

)
↙ n, so d = !(kn1/k).

Each such merge costs 1. So the naive algorithm incurs total cost $(kn1/k).
The optimum keeps the weight-1 item in one component, then does all remaining merges into

the other (size-zero) component, for total cost of 1.

31

	Introduction
	Background
	Problem definitions
	Statement of results
	Properties of optimal offline solutions

	Min-Sum Dynamization (Theorem 1)
	Part (i): the competitive ratio is O(* m)
	Part (ii): the competitive ratio is (* m)

	K-Component Dynamization and variants (Theorems 2–6)
	Lower bound on optimal competitive ratio
	Upper bound for k-Component Dynamization with decreasing weights
	Bootstrapping newest-first algorithms
	Upper bound for general variant

	Properties of optimal offline solutions
	Concluding remarks
	Open problems
	Variations on the model
	Practical considerations
	Acknowledgements

	Deferred proofs

