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Abstract

An agent’s ability to leverage past experience is critical for efficiently solving new
tasks. Prior work has focused on using value function estimates to obtain zero-
shot approximations for solutions to a new task. In soft Q-learning, we show how
any value function estimate can also be used to derive double-sided bounds on the
optimal value function. The derived bounds lead to new approaches for boosting
training performance which we validate experimentally. Notably, we find that the
proposed framework suggests an alternative method for updating the Q-function,
leading to boosted performance.

1 Introduction

In recent years, reinforcement learning (RL) has seen impressive success at the price of ever-increasing
sample budgets. The current paradigm of RL consists of training agents from scratch with new
hyperparameters or in new domains, without significant reuse of previously collected information.
The large datasets generated from such runs have been approached with techniques such as offline RL;
however, the approximate solutions obtained from previous runs are typically not reused. To address
this issue, approaches that directly leverage this learned prior knowledge to efficiently calculate
policies for new tasks are needed. While prior solutions may not be optimal for arbitrary new tasks,
they have been shown to serve as useful approximations that reduce training time in a variety of
settings: (Rusu et al., 2016; Tasse et al., 2021; Agarwal et al., 2022; Adamczyk et al., 2023b). In this
work, we present a new way in which information from previous solutions can be further leveraged
to address new tasks'.

Previous work has focused on addressing this challenge with approaches such as transfer learning,
curriculum learning, and compositionality. In this work, we will focus on value-based RL algorithms
where the agent learns the optimal action-value, or @Q-function. In many instances, the agent has an
estimate of the value function even before training begins. For example, in the case of curriculum
learning, the agent has the @-values for previously learned (progressively more challenging) tasks.
In the case of compositional (Haarnoja et al., 2018a) or hierarchical RL (Hafner et al., 2022), the
agent can combine knowledge by applying a function on the subtasks’ @-values. When using an
exploratory skill-acquisition approach (Eysenbach et al., 2019) or constructing a task basis (Alver
& Precup, 2021), the agent obtains solutions for a diverse set of skills to use on downstream tasks.
Even in cases where an initial estimate is not explicitly provided, the agent indeed has access to an
estimate through the @-values obtained in the ongoing learning phase (bootstrapping).

LOur code is publicly available at https://github.com/JacobHA/RLC-SoftQBounding.
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An underlying question in these scenarios is the following: How can the agent use these known
value function estimate(s) for solving a new target task? Does the estimate only serve as a zero-shot
approximation or is there additional useful information that can be extracted from such estimates?
In this work, we address this question by deriving bounds on the optimal Q-values
from an arbitrary prior estimate. We emphasize that the surprising nature of these bounds is
that information concerning the optimal value function can be derived from arbitrarily suboptimal
estimates.

To derive such bounds, we leverage exact results on the Q-function from recent work by Cao et al.
(2021) and Adameczyk et al. (2023a). In the latter, the authors show (in their Theorem 1) that
there exists a method of “closing the gap” between any estimate (therein denoted Q*(s,a)) and any
target (denoted @*(s, a)) task in entropy-regularized RL. Here, we show that since this gap between
the target and estimated value functions, @*(s, a) — Q*(s,a) = K*(s,a), is itself an optimal value
function, it can be bounded. As a consequence, instead of providing only a zero-shot approximation
(“warmstart” or “jumpstart”) for training the target task, we show that the estimates available to
the agent also provide a double-sided bound on the desired optimal @-values. From Theorem 1 of
Cao et al. (2021), it can be shown that an optimal solution is not required for deriving such bounds,
and in fact any function over the state-action space can be used to derive double-sided bounds,
including for instance the bootstrapped estimate of Q(s,a). Since it is the most general, we focus
on this case in the present work.

A schematic illustration of our approach is provided in Figure 1. Starting with samples of a value
function (red points), we derive double-sided bounds (dashed blue lines) on the optimal value func-
tion (solid black line). We find that applying these bounds during training significantly boosts the
agent’s training performance in the tabular setting. We provide further theoretical analysis in contin-
uous state-action spaces, relevant for the function approximator (FA) setting in deep reinforcement
learning, for which we present initial experiments in Section 5.

Main contributions
The main contributions of our work are as follows:

1. A framework for bounding optimal value functions given any estimate of the value function.
2. A novel soft -learning algorithm and demonstration of its advantages.

3. Extension of theoretical results to continuous state-action spaces.

2 Preliminaries

For the theoretical analysis, we begin with finite, discrete state and action spaces, and we subse-
quently extend our analysis to continuous spaces. In this setting, the RL problem is modeled as a
Markov Decision Process (MDP) represented by the tuple (S, A, p, r,y) where § is the state space; A
is the action space; p : S X A — § is the transition function (dynamics); r : Sx.A — R is a (bounded)
reward function; and v € [0,1) is the discount factor. We focus on the generalization of entropy-
regularized RL (Ziebart, 2010), which augments the un-regularized RL objective by including an
entropic regularization term which penalizes control over a pre-specified reference policy:

. ©° . 1 m(alst)
T 7argm7:;me [;’Y <T"‘ﬁlog(ﬂ'o(at|8t)>)]

where mp(als) is a fixed prior policy. This additional control cost discourages the agent from choosing
policies that deviate too much from the prior policy. Importantly, entropy-regularized MDPs lead
to stochastic optimal policies that are provably robust to perturbations of rewards and dynamics
(Eysenbach & Levine, 2022); making for a more suitable approach to real-world problems.
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Figure 1: Schematic illustration of the main contribution of this work. Given any approximation
(red curve) to the optimal value function of interest (black curve), we derive double-sided bounds
(blue curves) that lead to clipping approaches during training. Based solely on the current ap-
proximation for Q(s,a) (red curve), we derive double-sided bounds on the unknown optimal value
function @*(s,a) (black curve). In the right panel, we show the different clipping methods, which
are described further in the “Experimental Validation” section. In “Hard Clipping”, the target is
replaced with the exceeded bound; in “Soft Clipping”, an additional loss term is appended to the
Bellman loss, proportional to the magnitude of the bound violation.

The solution to the RL problem is defined by its optimal action-value function (Q*(s,a)) from which
one can derive the aforementioned optimal policy 7*(als) through a Boltzmann distribution with
temperature 7. The optimal value function can be obtained by iterating the following recursive
Bellman equation (Ziebart, 2010; Haarnoja et al., 2018b):

Q*(s,a) =r(s,a) + % s’@plog E BQ(s"a") (1)

a’~o

The regularization parameter [ is used to control the degree of stochasticity in the optimal policy.
In the entropy-regularized setting, Q* is referred to as the optimal “soft” action-value function. For
brevity, we refer to Q* simply as the value function when context is clear.

3 Prior Work

The use of value function bounds has been investigated in various domains of RL: offline and online
settings, compositionality, and imitation learning. In this section, we briefly outline some of the most
relevant work from this domain. We contrast the existing literature with regard to the following
features: i) the MDP’s structural assumptions, ii) the requirement for additional samples to derive
bounds, iii) use of double or single-sided bounds.

In (Nemecek & Parr, 2021), the authors have derived double-sided bounds on the state value function
V(s) when the task’s reward function can be written as the positive conical combination of subtask
rewards. This method requires additional samples for first learning the successor features (SFs)
before then deriving the double-sided bounds for a downstream task. The aforementioned work was
subsequently extended by Kim et al. (2022), where, in the same SF setting, they present double-
sided bounds on @-values for linear combinations of subtask reward functions. They introduced a
notion of “soft clipping” but it was not demonstrated in practice. We later adapt this idea of soft
clipping to our setting, with details in Section 5. Both Nemecek & Parr (2021) and Kim et al. (2022)
consider the un-regularized RL problem formulation (8 — o0).

The two previous methods focus on the standard (un-regularized) reinforcement learning setting.
However, the double-sided bounds presented by Haarnoja et al. (2018a)’s Lemma 1 are derived for
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the MaxFEnt setting, for the case of convex reward combinations. It is worth noting that the lower
bound in this case must be learned (their C function). Extending these results to other more general
classes of functional composition, Adamczyk et al. (2023b) provides double-sided bounds for both
entropy-regularized and un-regularized RL. However, one side of the bounds in all cases must be
learned as well.

In a different context focused on the stability of value-based RL, Lee et al. (2021) proposes to
(approximately) bound Bellman updates through a weighted ensemble, which improves the stability
of training and sample efficiency in entropy-regularized RL. However, the method by Lee et al.
(2021) cannot leverage known solutions for new tasks, instead using a parallel ensemble of learners
for variance estimation, exploiting the UCB framework (Auer et al., 2002) for exploration bonuses.

Other examples of deep RL utilizing bounds include (He et al., 2017), which utilize bounds based
on n-step returns, resulting in faster reward accumulation in the Atari suite. However, their bounds
were not tested in stochastic environments but were shown to hold in expectation. Further, their
upper bound depends on Q*, the unknown optimal value function, making it intractable without
first solving the task in question. Later, the work of Hoppe & Toussaint (2020) modeled @-functions
through graphical models, using this structure to derive various bounds used in a constrained-DDPG
algorithm. In this algorithm, a “hard clipping” mechanism is used, wherein the updates to the Q-
values were clipped based on their bounds. We will consider a similar hard clipping approach,
discussed in Section 5, but we derive bounds without imposing a graphical model of the dynamics.
In principle, our bounds can interface easily with such prior work, by straightforwardly combining
methods to obtain the tightest bounds possible.

In contrast to the aforementioned work, we propose a novel method for calculating double-sided
bounds, not limited to a particular type of composition of prior solution(s) and valid for an arbitrary
input function. Our method for deriving double-sided bounds is zero-shot — it does not require
additional samples beyond those collected by the learning agent. Furthermore, our results are
applicable to stochastic environments and both discrete or continuous domains.

4 Results

Our main result provides double-sided bounds on the optimal @Q-function. We emphasize that any
(bounded) function @ : S x A — R can be used to generate such bounds. We suggestively use the
notation “Q(s,a)” for this otherwise arbitrary function to emphasize that it may be derived from a
previous task’s solution, an estimate, or other ansatz (e.g. composition or hierarchical function) of
Q-values.

Theorem 1. Consider an entropy-reqularized MDP (S, A,p,r,~, 8, 7o) with optimal value
function Q*(s,a). Let any bounded function Q(s,a) be given. Denote the corresponding
state-value function as V(s) = 1/BlogEqnr, exp fQ(s,a). Then, Q*(s,a) is bounded by:

r(s,a) + v < E V(s')+ 11an

&g - s'~p -

) Qe e E VO +TES) @
where
A(s,a) =71(s,a)+v E V(') — Q(s,a).

s'~p

In Equation 2, the inf and sup are taken over the (potentially continuous) state-action space S x A.
The proof of Theorem 1 can be found in Appendix B. Intuitively, this result can be understood as
a double-sided bound on the optimal Q-function, calculated through a single iterate of the Bellman
operator (B) on any input function (denoted Q):

Q"(s,0) - BQ(s,a)| <0 (HVE), (3)
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where H = (1 —+)~! denotes the effective time horizon and £ denotes the Bellman loss incurred by
the input function . During training, the Bellman loss (ideally) reduces to zero: £ = [|A[|> — 0,
implying that inf A — 0 and sup A — 0, hence the bounds in Theorem 1 are tight upon convergence
of the soft action-value function.

As an alternative, in practice, one can replace the inf and sup in the previous results by a min and
max, respectively, over some finite dataset (e.g. the current batch of replay data). Although not
exact, this substitution becomes increasingly accurate for large datasets (batch sizes), as formalized
by our Theorem 2 (Informal). We employ this substitution in the function approximator experiments
shown in Section 5.

After calculating (or estimating) the lower and upper bounds in Theorem 1, we propose to clip the
Q-function with these bounds at each training step. We conclude this section by showing that the
Bellman operator with clipping converges to the optimal @-function:

Proposition 1. Let B(:) denote the Bellman operator, and let the functions
L(s,a), U(s,a) be lower and upper bounds on the optimal action-value function respectively:
L(s,a) < Q*(s,a) < U(s,a) for all s € S and a € A. The clipped Bellman operator,
BcQ(s,a) = max (min (BQ(s,a),U(s,a)),L(s,a)) converges to the optimal action-value
function Q*(s,a) = B®Q(s,a) = BF¥Q(s,a) for any bounded initial function Q(s,a).

This result shows that updates with and without clipping are guaranteed to converge to the same
fixed point, Q*(s,a) (proof in Appendix B). We experimentally demonstrate this statement in Fig-
ure 2.

4.1 Extension to Continuous Spaces

The bounds presented in the previous section, though exact, are often intractable due to the required
global extremization over continuous state-action spaces. We therefore loosen the previous bounds
by relaxing the required extremization with a simpler optimization over a given batch of replay
data. To this end, we apply the results on Pure Random Search from (Malherbe & Vayatis, 2017),
bounding the error of estimated extrema of Lipschitz-continuous functions in bounded continuous
spaces. We next give a brief discussion on the required steps in the proof, and a full discussion and
derivation of Theorem 2 are given in Appendix C. We will assume that the extrema of the MDP’s
reward function r(s,a) can be estimated with high accuracy (since in principle, the entire replay
buffer can be used). Instead, we will focus on the larger errors in A, which change over the course
of training (since we use the most recently learned Q-values to generate bounds) and hence has a
much smaller dataset available, e.g. the sampled replay batch, for estimation.

Two issues must be addressed before we can apply the concentration results from (Malherbe &
Vayatis, 2017) to Theorem 1: (1) Their concentration analysis requires a Lipschitz constant for
the function in question (A) which is not readily available; and (2) the exact value of A cannot
be given in general, since the dependence on V(s) requires computing an expectation value over
states and actions. We surmount these two issues by first providing a calculation for the Lipschitz
constant of A, based on the Lipschitz constant for a general soft @Q-function. The derivation and
discussion of this Lipschitz constant is given in Appendix C.2 due to space constraints. Secondly,
in the case of stochastic transitions with continuous state-action spaces, we cannot calculate the
state-value function term directly. Instead, we apply a concentration inequality to this expectation
term, allowing us to bound its error with high probability. A similar error propagation must be
considered from the sampling the prior policy in the continuous action setting (to approximate the
action expectation in Equation 1). Hence, with sufficient smoothness and sampling hypotheses, we
extend Theorem 1 to the sample-based case relevant for the FA setting:
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Figure 2: Here we show specific results on a representative environment, and further examples are
given in the Appendix. At each step, the agent receives a small penalty if it has not reached the
goal (orange diamond). The discount factor v = 0.98 and inverse temperature parameter 8 = 5
are fixed throughout these experiments. From left to right: (1) The optimal policy is shown at the
inset. The greedy policy is evaluated during training for the various methods presented. “Baseline

Bounds” refers to clipping during training with [T““;, %} . (2,3) The mean and range of Q-values

and the proposed bounds (Equation 2). Clipping during training constrains the -values to a tight
range much faster than without clipping. Each method is averaged over 30 random initializations.

Theorem 2 (Informal). Consider an MDP with a bounded continuous state and action
space, S x A C R%, with stochastic dynamics. Suppose an Lq-Lipschitz function Q(s,a)
is given to gemerate double-sided bounds on the optimal value function, denoted Q*(s,a).
Let e > 0,0 > 0 be given and define the horizon H = (1 — 7)71, and sample budgets:
Bl > O(e7%logd™?), ns > O (H?% 2logd™ 1), na > O (e?PH=2)logs1).

Suppose ns samples are used to estimate the expectation over next-states and n 4 samples are
usecj to estimate the expectation over next-actions in the soft state-value function. Denoting
V, A as the quantities estimated from samples, the following bounds

max(s’a)eg A(s,a) +€) (4)

Q*(s,a) <r(s,a) +'y( ZV

-~
Q*(s,a) 2 7(s,a) +'y( ZV min(m)efi(&@) —a) -

hold with probability at least 1 — 4.

This result shows that our bounds remain valid in the continuous state-action setting with stochastic
dynamics, given sufficiently many samples (large batch sizes). We provide results for other scenarios
(discrete or continuous states, deterministic or stochastic transition dynamics), as well as the formal
result and relevant definitions in Appendix C.

5 Experimental Validation

In our experiments, we study the utility of clipping based on our theoretical results. For simplicity,
we first highlight the results in discrete environments with tabular soft @-learning. Without any
external estimates for the @-function, we use the estimate given by the previous step’s @-values.
Note that this method of obtaining an estimate from the previous training step is the most general
case, applicable to any value-based algorithm. If available, further information based on other
solutions or task structure can additionally be used. Secondly, we study the extension of our theory
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to the case of continuous states, using the same method for deriving bounds, where we compare
clipping methods on the classic control benchmark.

We observe that the use of bounds for clipping the Q-function during training leads to a different
training dynamics than the standard TD update. Intuitively, clipping restricts the Q-function away
from invalid regions while the Bellman updates pull the Q-function toward the correct values. The
state-action dependency of our bounds also seems to be a key feature, based on comparison to using

the looser but constant “Baseline” bounds: Q*(s,a) € [%‘;, %‘7"} (cf. Figures 2 and 3).

5.1 Tabular Experiments

In the tabular case, since we have access to the Q-table,

we can simply clip the updated @Q-table according to the Clipping: Clipping:
derived bounds. When the model (reward and transition —*= Baseline Bounds ~®~ Given Model
table) is given, we maintain the lower and upper bounds —&— No Clipping e Eggre:gg:Mo del
throughout training, tightening them whenever a better

bound becomes available. In Figure 2 we show the results Bé LiTessssssssssesssesees
of training in a simple maze environment. In the main EE 0.8

plots of Figure 2, we depict a comparison of the evalua- g g 0.6

tion rewards and the mean @Q-value over all (s,a) pairs. ﬁé’c’ 0.4

In experiments across different sized environments, and %_é

with various levels of stochasticity, we universally find the E‘_;“ 0.2

increase in convergence speed shown. <§ 0.0

) o 1076 107> 107% 1073 1072 107! 10°
To verify the robustness of clipping benefits, we sweep Learning rate

over the learning rate and maze topology, and measure

the speed of convergence: plotted in Figure 3. The met- Figure 3: Speed of learning (measured
ric used is a normalized area under the evaluation reward as area under evaluation reward curve)
curve. Since randomly generated mazes are used, we nor- Wwith Q-value clipping during TD up-
malize against the performance of a uniform policy and dates. Each point is the result of aver-
the greedy optimal policy (given by the exact solution). aging over 30 randomly generated 7 x 7
Thus an algorithm which quickly obtains (and maintains) mazes with stochastic transitions. Fur-
the optimal reward will have a larger success metric (more ther details of the experiment are given
details in Appendix A.1). In this experiment, we use in Appendix A.1.

stochastic transition dynamics. We begin by giving the

agent the model (in this case, simply a table of rewards

and stochastic transition probabilities), which is required for an exact calculation of the bounds in
Theorem 1. This setting of a “Given Model” is shown with red circles in Figure 3, which outperforms
the other methods, for all learning rates. Then, we consider the case of a learned model, shown with
green stars in Figure 3. This case represents a stepping stone from exact tabular updates (red line)
to the function approximator case since there is noise in the calculation of A(s, a) based on sampling
errors introduced by the learned model.

We have found that there are initializations for which our bounds are not violated and thus the Q-
function is not (initially) clipped by our bounds. For instance, we find that for @-values initialized
far from zero, the bounds are loose and not violated, hence small learning rates will yield nearly
static training dynamics which do not converge. This observation, coupled with the finding that
updating via clipping (when the bounds are violated) consistently performs better (red line with
circle markers in Fig. 3) leads us to the following: To take advantage of the boosting given by
clipping in the low learning rate regime, we propose to use the standard temporal difference (TD)
update only if the @-function has not changed between two iterations (i.e. no clipping occurs),
and otherwise clip the Q-values appropriately without any TD update. This should be distinguished
from a simpler “always clip” approach, shown in Algorithm 1. This change ensures convergence of
a tabular SQL algorithm while maximizing the utility of clipping. Pseudocode for the algorithm is
given in Algorithm 2 in Appendix A.1. The performance difference between Algorithms 1 and 2 is



RLJ | RLC 2024

Acrobot-vl MountainCar-v0 CartPole-v1
500 N —
B -100 T T NN WAV
] & -120 ] ’,
2 = 2
7] O 400 X
% 200 & @
s 5 -140 5 R
‘g *g § 300
2-300 2 2
] T -160 ]
fim} Jim} 0200
Q f GJ [
87400 (v T ?—180 g
o o 100
2 2 ES
—-500 -200 -
0 1000 2000 3000 4000 5000 0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000 10000
Environment Steps Environment Steps Environment Steps
mmmm none wmmm hard = soft-huber = soft-linear soft-square

Figure 4: We test the proposed clipping methods (labeled None, Hard, and Soft; described be-
low) across the classic control suite. We fine-tuned each environment’s hyperparameters (details
in Appendix A.1). The average evaluation reward plotted is the reward achieved by following the
stochastic optimal policy, averaged over 5 episodes. Each method in a given environment is averaged
over 30 random initializations, with the 95% bootstrapped confidence interval shaded. To ensure
the performance stems from our bounds alone, we have not included the simpler Riin,max/(1 — )
bounds which are likely to improve the performance further.

shown in Figure 6 in Appendix A. Two versions (one with the model given and one with a learned
model) of our proposed algorithm are shown in Figure 3.

5.2 Function Approximator Experiments

To test our bounds in the deep RL setting, we turn to environments with continuous state spaces,
adopting a DQN-style implementation of discrete-action soft @)-learning with an entropy-regularized
TD update, using an online and target network. Although we have derived bounds for this case, we
cannot simply clip the entire @Q-function as we did in the tabular setting. The proposed algorithm
(with clipping only if the @-function remains fixed) cannot be directly translated to the FA setting.
Thus, we will propose two different methods of clipping suitable for function approximators.

Since the soft @-learning (SQL) algorithm employs a target network we use both the target and
online networks to derive bounds on the optimal Q-values (cf. Appendix A for the implementation
details and hyperparameters used for training). Since the bounds must hold when either the target
or online net is used as an estimate, we can always take the tighter bound (s, a)-wise between the
two. In general, given many sources of Q-function estimates (such as in ensemble methods), one can
use them collectively to obtain the tightest bound possible.

The derived bounds can be implemented using different approaches for clipping of the value function
during training. We highlight the different methods used below, inspired by the methods used by
He et al. (2017); Kim et al. (2022); Adamczyk et al. (2023b):

(0) No Clipping: The standard training scheme for SQL is implemented.

(1) Hard Clipping: At each backup calculation we enforce the following bounds on the new Q-
value:

Q(s,a) < Qeip(s,a) = min {max {r(s,a) + %log E exppQ(s,a), L(S,a)} , U(s, a)} (6)
a’~mo

and L and U denote the lower and upper bounds derived in Theorem 1. In the tabular setting,

L and U can be calculated exactly. However, for function approximator experiments with sampling,

we replace the inf and sup with a min and max over the current batch as justified in Section 4.

(2) Soft Clipping: An additional term, the “clipping loss”, is added to the function approximator’s

loss function. The clipping loss is defined as

ACclip = |Tls,| Z ‘Q(Sa a) - chip(s>a) s (7)
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with a summation over the current batch, where |B| is the batch size. This gives a total loss of
L = LBeliman +1Leclip- The hyperparameter n weights the relative importance of the bound violations
against the Bellman error, whose value we fix to unity for simplicity. On an environment-wise basis,
we fine-tune the hyperparameters on the baseline method (values in Appendix A.2) and use those
same values for all clip methods. Figure 4 indicates that clipping can lead to improvements in the
speed of training; however, additional modifications are needed to further validate the benefits of
clipping in the FA setting. In Figure 4, we observe that replacing the ¢;-loss shown in Equation 7
with the Huber or ¢ loss can yield better performance depending on the environment. However,
this effect can likely be mitigated by fine-tuning the weight parameter, 7.

6 Discussion

In this work, we have given a theoretical foundation for deriving double-sided bounds in reinforce-
ment learning, showcasing their experimental validity. Our investigation in tabular domains has
demonstrated that application of these bounds significantly boosts training speed. Coupling our
bounds with proof techniques in e.g. (Tang, 2020) may allow for a proof of a faster convergence
rate. Beyond the theoretical contributions, our work calls for exploration in several new research
directions. While our derived bounds hold in general, there is potential for further refinement given
specific classes of value function estimates and transition dynamics or reward function structures,
as discussed in Section 3. There is also the potential in transfer learning to leverage bound violation
minimization at a state-action level to construct refined initializations from a diverse set of policies.

Integrating our results with other state-of-the-art methods in value-based learning seems a promising
direction for future study. Several specific examples include: exploiting ensembles and extending to
continuous actor-critic methods, adopting a dynamic schedule for the soft clipping weight parameter,
akin to that in (Haarnoja et al., 2018b), and interfacing with model-based approaches such as
DYNA (Sutton, 1990), where our tabular results suggest that a more significant performance boost
may be achieved. We believe that integrating these methods is an important step to ensuring
utility in more complex environments. Finally, we note an intriguing suggestion arising from our
experiments, which can be loosely summarized as “clipping is all you need”. Further translating the
benefits of clipping from tabular to deep RL presents an exciting opportunity for future research.
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Figure 5: Examples of the random maps generated for the tabular experiments.

A Experiments

In tabular soft Q)-learning, we calculate the Bellman residual, mixing it into the current estimate
of Q(s,a) at every step taken by the agent. At each update step, we calculate the bounds given
by Theorem 1, which are exact in the case that the model is given (red circles in Figure 3). Since
these bounds are exact, we can repeatedly take the tightest possible bounds at every step, leading
to the consistent fast convergence. When the model is learned through sampling (updating the
deterministic reward table and using count-based estimates for the stochastic transition dynamics),
the bounds are inexact, so we only use the current step’s estimate without iteratively tightening them,
which we found to lead to collapse to incorrect values. The clipping performed follows Equation 6
in the main text.

For the tabular experiments, we first generated 30 random mazes for each method to solve 10 times.
In each generated 7 x 7 maze, walls are randomly generated at a site with probability 20%, and a
goal is randomly placed at a site without a wall. We show four examples of such mazes in Figure 5.
Depth-first search is used to ensure the generated maze has a valid solution (i.e., the rewarding state
can be visited by the agent). Each step costs the agent —1, and the goal state incurs a cost of —0.25.
The environment is stochastic, such that the probability of moving in the “intended” direction is
75%, and the probability of moving perpendicular to the intended direction is 12.5%. The agent
then transitions to the grid state one unit in that direction, as common in MiniGrid or FrozenLake
environments. Although we have sparse rewards for the simplicity of environment generation, we
find our results to hold across various dense reward settings, with varying levels of stochasticity.

As mentioned in the main text, the ability for bounds to be applied (and training efficiency overall)
is sensitive to the scale of the initialized Q-function. We found that a random uniform initialization
of the @Q-values in the range (—1,1) performs best for the baseline, and thus we maintain this
initialization across all experiments.

Since each maze potentially has a different evaluation reward scale, we normalize the evaluation
score so they may be averaged across mazes, akin to e.g. Mnih et al. (2015):

<R> optimal — <R> agent

Normalized Evaluation Reward = ,
<R>agent - <R>unifor1n

(8)

where (R)optimal, (R)agent, (R)uniform denote the average reward (over 3 episodes) obtained by an
agent executing an optimal, training, or uniform random policy, respectively. Finally, we integrate
the area under this “Normalized Evaluation Reward” vs. Environment Steps curve, to obtain a met-
ric for the speed of convergence, plotted in Figure 3: “Average Integrated Evaluation Reward (AUC)”.

To explore the utility of clipping in function approximator (FA) systems, we use a soft Q-learning
(SQL) algorithm Haarnoja et al. (2017), while applying and monitoring clipping given by the bounds
in Theorem 1. In particular, we continuously bootstrap by using the previous estimate of the Q-
function to generate the bounds, and we clip the target network’s output value accordingly. More
specifically, we extract bounds from both the target network and Q-network at each step, and take the
tighter of the two bounds. For continuous spaces, we use the estimate sup (s, a) ~ max;ep r(s, a),
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where the max is taken over the current batch (and similarly for infr(s,a)). We consider the two
clipping methods described in the Experiments section of the main text. We have also experimented
with different loss functions, as the optimal choice seems to be environment-dependent.

A.1 Implementation Details

For many environments of interest, the transition dynamics are reducible (they have absorbing states
returning a termination signal (“done” in Gym Brockman et al. (2016), “terminated” in the newer
Gymnasium package Towers et al. (2023)). A common method to assign a @Q-value to such states is
given by (see e.g. Mnih et al. (2015)):

_Jr(s,a) if terminated
Qls,a) = {r(s,a) +V(s") else ©)

This value assignment means that states near absorbing states will have values ~ O(1) rather than
the (’)(ﬁ) given by the bounds presented. In passing, we note that one way to circumvent this would
be to alter the convention by assigning a value of r(s,a)/(1 —+) at termination, since for irreducible
dynamics, this would correspond to accumulating the terminal state’s reward ad infinitum.

To conform to the convention shown above, we modify our bounds to allow for the termination
signal to properly affect the bounds. Focusing on deterministic dynamics for simplicity, the bounds
are modified from:

lI—x
min(s,a)EB A(S, a)
1 -~

Q*(s,0) < r(s,a) + 7(17(5’) i ma"wew(s,a))

@ (5.0) 2 1l £ (V) +
to the following:

maXs,qa)eB A(57 Cl)

Q*(s,a) < r(s,a) +'y<f/(s/) + )[1 — done(s')]

-~
Q' (5:0) 2 r(sv) V() 4 DS e “’) 1~ done(s')

which can be justified by referring to the value definition used (Equation 9).
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Next we provide the algorithm used for clipping in our experiments. We highlight in blue the
changes from a standard soft )-learning approach without clipping, e.g. a discrete-action analogue
of Haarnoja et al. (2017).

Algorithm 1 Soft @-learning with Constant Clipping (Tabular)

1: Initialize @Q-values: Q(s,a) ~ Unif(—1,1), max sample budget.

2: Initialize L(s, a) = —o0, U(s, a) = +00.

3: Set learning rate «, discount factor 7, and inverse temperature 5.

4: while total environment steps < max sample budget do

5 Reset environment

6 while not end of episode do

7: Choose action a ~ 7(+|s) o exp SQ(s, a)

8 Take action a: observe reward r, next state s’, and termination signal
9: Compute state value function: V(s') = 87! log Eq/ o, exp BQ(s', a’)
10: Compute the TD error: § = r + v - (1 — terminated) - V(s') — Q(s, a)

11: Update Q-table: Q'(s,a) = Q(s,a) + ad

12: Calculate new bounds {L'(s,a), U'(s,a)} using @’ in Theorem 1.

13: Tighten lower bounds: L/(s,a) = max{L/(s,a), L(s,a)}

14: Tighten upper bounds: U’(s,a) = min {U'(s,a), U(s,a)}

15: Clip the Q-values: Q'(s,a) = clamp (Q'(s,a), min = L/(s,a), max = U'(s,a))
16: Update state: s <+ s’

17: Update Q: Q + @’

18: end while

19: end while

Algorithm 2 Soft Q-learning with Conditional TD-updates (Tabular)

1: Initialize @-values: Q(s,a) ~ Unif(—1,1), max sample budget.

2: Initialize L(s,a) = —o0, U(s,a) = +o0.

3: Set learning rate «, discount factor 7, and inverse temperature 5.

4: while total environment steps < max sample budget do

5 Reset environment

6 while not end of episode do

7: Choose action a ~ 7(+|s) o exp BQ(s, a)

8 Take action a: observe reward r, next state s’, and termination signal
9 Compute state value function: V(s') = 87! log Eq/n, exp BQ(s', a’)

10 Calculate new bounds {L'(s,a), U'(s,a)} using @’ in Equation 2.

11: Tighten lower bounds: L/(s,a) = max{L/(s,a), L(s,a)}

12: Tighten upper bounds: U’(s,a) = min {U'(s,a), U(s,a)}

13: Clip the Q-values: Q'(s,a) = clamp (Q(s,a), min = L/(s,a), max = U'(s, a))
14: if Q' == (@ then

15: // No clipping has been applied, resort to TD-update:

16: Compute the TD error: § =7 + - (1 — terminated) - V(s') — Q(s,a)
17: Update Q-table: Q'(s,a) + Q'(s,a) + ad

18: end if

19: Update state: s < s’

20: Update Q: Q + Q'

21: end while

22: end while

In Figure 6, we compare Alg. 1 and Alg. 2. Importantly, we find it is imperative to not always
update the @-function with TD updates. Rather, we find that by using TD updates only when the
QQ-values are not changed by clipping, the performance significantly improves in the high learning
rate regime.
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—— Always TD and Clip (Alg. 1)
—@— TD only if No Clip (Alg. 2)
—— No Clipping
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Figure 6: In the 7 x 7 mazes, we compare the “always clip” (Algorithm 1) and “TD ounly if no
clipping” (Algorithm 2) algorithms as discussed in Section 5. The points labeled “TD only if No
Clip” represent the same algorithm shown in the main text’s Figure 3, titled “Clipping: Given
Model”.
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Figure 7: We perform the same experiments as demonstrated in Figure 3, on larger 30 x 30 magzes,
with the same qualitative results.
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A.2 Hyperparameters

For the FA classic control experiments, we parameterize the Q-function by an MLP with a standard
fixed depth (two hidden layers) and fine-tuned width. We keep the discount factor v = 0.99 fixed
across tasks, and use a single online and target function. We tune the learning rate, /3, target update
frequency, training frequency, number of gradient steps per training step, and batch size. The ranges

for each hyperparameter, swept uniformly at random, are given below:

Table 1: Hyperparameters and Ranges

Hyperparameter Range Sampling Distribution
Learning Rate (107%,1071) Log Uniform

Inverse Temperature, 3 (10=2,10%) Log Uniform

Target Update Frequency {1,10,100, 1000} Uniform

Training Frequency (1,100) Log Uniform
Gradient Steps per Training Step (1, 100) Log Uniform

Batch Size 24,25 26 27 28 29 2101 Uniform

Hidden Dimension §247 2526 27 28 29} Uniform

We sweep each hyperparameter at random in the ranges shown, and select the best hyperparameter
set, sorted by the largest area under the evaluation reward curve (averaged over 3 independent runs).
The best hyperparameters for each environment are shown in the next table.

Table 2: fine-tuned Hyperparameters for No Clipping (Baseline) Soft Q-Learning

Environment CartPole-vl  Acrobot-vl MountainCar-v0
Learning Rate 0.016 0.0005 0.007

Inverse Temperature, 3 0.019 4.5 5.3

Target Update Frequency 1 10 10

Training Frequency 2 2 58

Gradient Steps per Training Step 16 20 5

Batch Size 512 64 128

Learning Starts 0 0 10,000

Hidden Dimension 64 64 512
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B Proofs of Exact Results

In this section and the next we provide proofs of the theoretical results in the main text. Each proof
is prefaced with a restatement of the theorem for convenience.

We begin with a helpful lemma which bounds the optimal action-value function Q*(s,a) for any
task. We note that these bounds hold for both un-regularized RL and entropy-regularized RL.

Lemma A. For a task with reward function r(s,a), discount factor v, the (soft) optimal
action-value function Q*(s,a) satisfies:

inf
Q*(5,0) > 1(5,0) + 7 2 (®:2)

L—v
sup, , (s, a
Q' (5,0) < rls,0) 7" L5 10 )

Proof. We will prove the upper bound here, with the lower bound’s proof following similarly. The
proof follows from induction on steps (n) of the recursive Bellman backup equation:

Q(n+1)(8 a) _ T'(S a) + L E lo og E exp (BQ(TL)(S/, a/)) . (12)

B s'~p(ls,a)  a’'~mo(]s’)

We first use induction to prove

n

supr(s,a).

Q™ (s,a) < r(s,a) +7 T

Then, since lim,, o, Q" (s,a) = Q*(s,a) and y € [0,1) the desired result (Equation 11) will follow
from this limit.
We set Q) (s,a) = 7(s,a). The base case (n = 1) trivially holds:
W(s,a) = +2 B 1o E ex O a’
QT(s.a)=r(sa) B pClsa) S armmo(fs) T <BQ ( ))

r(s,a) +2 g log E  exp(Br(s,ad))

Bswp (ls,a)  a’'~mo(-]s’)

<r(s,a)+ 5 sup (Sr(s, a))
=r(s,a) + 711—_71 supr(s,a).

We proceed in proving the upper bound based on induction as described above. For notational
convenience we denote R = supr(s,a). The inductive hypothesis is:

1—9"
. 1
R (13)

Q™ (s,a) <r(s,a) +7
To prove that the inequality holds for step (n + 1), we use the Bellman backup equation:

Q(n+1)(8 a) _ r(s a) _|_ N E exp (ﬁQ(n)(sl,a'))

6 s'~p(-]s,a) ga ~7f0( Is")

1—9"
QY <r(s,a E o exp (6 {r s,a) + R})
(s,a) <rls,a) + ﬁs~p<\sa> gawmus’) (s'.a) T

1—
Sr(s,a)+’y<R+7 1_77 R)
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At this point if the transition dynamics were known then one could improve this bound by including
the next term, By p(.|s,q) max, 7(s’,a’). Instead we do not assume access to the next term, bounding
this term by R. Then we have:

1— A"
Q("H)(s,a) <r(s,a)+7y <R + 1 —77 R>

1 _ ,.yn-l-l

1—x R,

=r(s,a)+~
which completes the proof of the inductive step. As stated above, this completes the proof of
the upper bound by taking the limit n — oco. The lower bound follows similarly by swapping all
inequalities and taking inf instead of sup. O

We now proceed with the proof of our first result, Theorem 1. We do so by applying Lemma A to
the K* function of Adamczyk et al. (2023a)’s Theorem 1.

Theorem 1. Consider an entropy-reqularized MDP (S, A,p,r,~, 3, 7o) with optimal value
function Q*(s,a). Let any bounded function Q(s,a) be given. Denote the corresponding
state-value function as V(s) = 1/BlogEqnr, exp BQ(s,a). Then, Q*(s,a) is bounded by:

r(s,a) + 7 < E V(s')+ llan

s'~p -

)<@Easrear (B Ve +TES)

s'~p 1—’}/

where

A(s,a) =r(s,a) + VS/IEPV(S’) —Q(s,a).

Proof. As a point of notation, 7(s,a) in Adamczyk et al. (2023a) is the same as our 7(s,a). Their
r(s,a) is now replaced by the reward function corresponding to an “optimal” value function of
Q(s,a). As discussed, Q(s,a) need not be an optimal value function corresponding to any known
or desired task (reward function). However, because of Theorem 1 in Cao et al. (2021), we see that
choosing a reward function of Q(s,a) — yEs V(s') ensures that Q(s,a) is indeed an optimal value
function, allowing us to apply Theorem 1 of Adamczyk et al. (2023a):

Q*(s,a) = Q(s,a) + K*(s,a) (15)

where K* is the optimal soft action value function corresponding to a task with reward function
A(s,a) = 7(s,a) +vEgp(is,a) V(') —Q(s,a). By applying Lemma A to the value function K*, we
arrive at the stated result in Equation 14:

Q*(Saa) - Q(Saa) + K*(s,a)

sup A
< Q(s,a) + A(s,0) + 77 -
A
= Q) tr(sa)+y | E V() - Qlsa) b7
s'~p(-|s,a -

A
=r(s,a)+~ (swp%:!s o V(s') + SluE ’y> .

The same proof holds for the lower bound. O
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We now turn to the proof of the convergence result presented in the main text:

Proposition 1. Let B(:) denote the Bellman operator, and let the functions
L(s,a), U(s,a) be lower and upper bounds on the optimal action-value function respectively:
L(s,a) < Q*(s,a) < U(s,a) for all s € S and a € A. The clipped Bellman operator,
BcQ(s,a) = max (min (BQ(s,a),U(s,a)),L(s,a)) converges to the optimal action-value
function Q*(s,a) = B*Q(s,a) = BFQ(s,a) for any bounded initial function Q(s,a).

Proof. We first show convergence of the operator B¢, then show that it converges to the same fixed
point as that of B. For convergence, it suffices to show that B¢ is a contraction mapping, that is:

|BCQ(S7a) - Q*(S,CL)‘ < Y |Q(Saa) - Q*(S7a’)|
There are three cases for the magnitude of BQ(s,a) relative to the upper and lower bounds:
1. BQ(s.a) € (L(s,a),U(s, )
2. BQ(Sa CL) € (7007 L(Sa a))
3. BQ(s,a) € (U(s,a), )
In the first case, clipping does not occur and hence BcQ(s,a) = BQ(s,a), which con-

tracts with rate 7. In the second case, we can write BQ(s,a) = L(s,a) — x(s,a) where
x(s,a) := BQ(s,a) — L(s,a) > 0 is referred to as the “bound violation”. Then,

|BcQ(s,a) — Q"(s,a)| = |Q"(s,a) — BcQ(s, a)|
= |Q"(s,a) — L(s, a)|
<|Q*(s,a) — L(s,a) + x(s, a)|
=Q"(s,a) — (L(s,a) — x(s,a))|
= |Q"(s,a) — BQ(s,a)|

A similar proof holds for the third case.

By the Banach fixed point theorem, it follows that repeated application of Bc converges to a fixed
point. It is clear that the fixed point for B is also a fixed point for B¢, and since it is unique, we
have BFQ(s,a) = B*Q(s,a) = Q*(s,a). O

C Error Analysis for Continuous Spaces

In this section, we turn to those results specific to the bounds in continuous spaces and their error
analysis, based on Lipschitz continuity and finite sampling errors.

C.1 Reward functions

In theoretical analyses of RL algorithms it is typical to assume a bounded reward function:
r(s,a) € (Rmin,Rmax) for all s € §S;a € A. However, the values of these bounds may not be
known to the agent (or even RL practitioner) in the general model-free case. Thus, one must resort
to sampling the reward and estimate the values of Ry, and Ryax- In fact, due to Corollary 1 from
Malherbe & Vayatis (2017) one can obtain global empirical bounds on r(s, a) with high probability.
In the following, we restate Corollary 1 for convenience. Notice that the resulting bounds depend
only on a dataset (replay buffer or batch) B, the dimensionality of the continuous state-action space
|S x A|, a desired probability 1 — d, and confidence interval €. Given these input parameters, the
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global extrema of the reward function (or any Lipschitz function) can be bounded with high confi-
dence, within the convex hull of points sampled (i.e. the replay buffer). For bounds on the reward
function, one obtains the following:

Corollary 1. Consider an MDP with bounded continuous state-action space S x A C R?,
. d
and deterministic dynamics. Lete > 0, 6 > 0, and |B| > (M) log1/4,

be given, where diam represents the diameter of a bounded space. Suppose |B| samples are
drawn uniformly from state-action space, (s,a) ~ Unif (S x A), and denote the convex hull
of these points as ¢ = Conv(B). Then, the following bounds on the reward function’s extrema

infr(s,a) > min r(s,a) —e,
@ (s,a)eB

supr(s,a) < max r(s,a)+ ¢,
c (s,a)eB

hold with probability at least 1 — 9.

Proof. The only difference from the result in Malherbe & Vayatis (2017) is that we have written the
result in terms of the number of samples, which is found by solving for |B|:

1
log(1/4)\ ¢
e < L, -diam(c) - <0g|(3|/ )> (16)
L.di d
1Bl > (1:111(0)) log1/6. (17)
Note that these bounds only hold within the convex hull of the sampled points. O

C.2 Lipschitz Continuity

Due to the hypotheses of Corollary 1, the function of interest must be Lipschitz continuous. In the
present case, this function (the one being maximized or minimized) is A, as seen in Theorem 1.
Therefore we must derive the Lipschitz constant for the function A. To carry out this calculation,
we suppose that a Lipschitz MDP and Lipschitz input function, denoted Q(s,a), are given.

Lemma B. Consider an MDP with (L, Ly)-Lipschitz rewards and dynamics, L,-Lipschitz
continuous logmo(-|s) (with respect to s) and Lg-Lipschitz continuous function Q(s,a). The
function A in Equation 1 generated for this MDP with Q is Lipschitz-continuous with constant

Lpa =Ly + Lo +7vLp(Lg + 87" Ly).
In the case of a uniform prior policy my this simplifies to

La=L,+(1+7L,)Lg. (18)

Proof. The sum of Lipschitz functions is itself Lipschitz continuous, with the Lipschitz constant
being the sum of all terms’ Lipschitz constants (through the triangle inequality). We begin with
the calculation of the Lipschitz constant for the soft state-value function, V. First, we note that
the operation of LogSumExp is Lipschitz continuous with Lipschitz constant 1 (cf. “mellowmax”
with an additive constant in Asadi & Littman (2017)). Since this operation (over action space) is
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composed with the Lg-Lipschitz input Q-function and L,-Lipschitz prior log my we have for V(s'),

Bt log B exppQ(ssa)= B og» expB(Q(s'a) + B logmo(a'|s)).  (19)

Written this way, we can see the operation in question is a composition and sum of Lipschitz
functions, leading to a Lipschitz constant of Ly = 1- (Lo + 87'L,). Note that in the case of a
uniform prior policy L, = 0, and the Lipschitz constant for the state value function reduces to L.

Now calculating the Lipschitz constant of A, the contribution from Eg ., V(s') is:

V(i')—  E V(s

s'~p(]s,a) s'~p(]5,8)

/S (0|5, a) — p(:18,)) V(s')ds’ (20)
< LyLy (s — &+ |a—a]). (21)

In the second line we have used the same argument as in the proof of Lemma 2 of Rachelson
& Lagoudakis (2010). Now, using the full definition of A we may finally compute its Lipschitz
constant as:

A(s,a) — AG )| = |r(s,a) 47 E V<s'>c2<s,a>(r<§,a>+v E v<s’>Q<§,a>)\

s'~p(-|s,a) s'~p(-|8,a)
<(Lr+Lg)(ls—8|+]a—al) +~ Visy— E V()
s'~p(-|s,a) s'~p(-|8,a)

< (Lr + Lg) (Is = 3| + a — a|) + vLpLv (|s — 3| + [a — a])
= (L, + Lo +vLy(Lg + B 'Ly)) (|s — 8|+ |a—al).

The second line follows from the triangle inequality and Lipschitz continuity of the reward function
and input function ). This allows us to read off the final Lipschitz constant as:

La=1L,+Lo+~L,(Lo+ B 'L,). (22)

Note that in the simpler case of the MaxEnt uniform prior policy (L, = 0) the Lipschitz constant
of A simplifies to Ln = L, + (1 ++vL,)Lq. O

C.3 Extension of Exact Bounds

In this section, we extend our results from the tabular case (Theorem 1) to scenarios where sampling
is required (i.e. in the presence of continuous state-action spaces and stochastic dynamics).

We will proceed by introducing and proving three progressively more involved results, covering
the following situations: (1) Sampling error arises from estimating the extrema of A, which can
be calculated exactly, but for which we do not have access to global extrema. (2) An additional
sampling error arises due to stochastic transition dynamics. (3) Additional sampling error arises due
to continuous action spaces, for which the state-value function integral cannot be calculated exactly.

In each case, we provide the number of samples required for a given (g, §)-concentration inequality.
In (1) we denote the number of samples for estimating the extrema of A with |B| samples (as in
practice we sample using the current batch of replay data), and in (2) we introduce ngs, the number
of samples for the next-state transitions, and in (3) we introduce n 4, the number of samples for
next-actions drawn from the prior policy.

Note that for partially discrete spaces (e.g. continuous state, discrete action), we assume that
optimization over the discrete variable is feasible. As in Corollary 1, all proceeding bounds involving
extremization over A only hold within the convex hull of the sampled points.
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Theorem 1. Consider an MDP with bounded continuous state space, discrete actions,
and determinstic dynamics. Let e1 > 0, 01 > 0, La given in Lemma B, and

. |S|
B > (M> log1/81, be given. Suppose |B| samples are drawn uniformly from

€1

state-space, s ~ Unif (S). Then, the following bounds on the Q-values

Q" (s,a) <r(s,a) +~ (S/]EPV(S/) + max(s,a)elzs_Ais, a) + s1> (23)
Q*(s,a) > r(s,a) +7v (Sf]EpV(S/) + min(s,a)ef_A’(ys,a) - 51) (24)
(25)

hold with probability at least 1 — 1, where A is given by Equation 1.

Proof. The bounds follow directly from applying Corollary 1 to the bounds given in Theorem 1. [

For the case of stochastic dynamics, we must construct an estimate of V and A which can be
calculated with the given information (samples of the next state, rather than an exact integral):

n_ s V(NS s N1
s/~p]%|s,a>v(s)_fsp(‘ a)V(s))ds” — s ;V( i) (26)
A(s,a) = A(s,a) = (s, a) +7%ZV(82) —Q(s,a) (27)

i=1

where ng denotes the number of next-state samples from the transition dynamics. Based on these
definitions, we introduce two small lemmas, bounding the error in replacing the true functions with
their corresponding estimates:

2
Lemma C. Let 6 > 0 and € > 0 be given. Then with at least n > (%) 1og%

samples on the next state, the error in replacing Ey V(s') with £ 3" | V(s}) is bounded with
probability 1 — §, leading to the following bounds:

177/
E V(s') <= V(s;) + 28
E V<23V +e (28)
1TL
E V(s')> = V(s;) —e. 29
RO SR (29)

Proof. Applying Hoeffding’s inequality on the relevant term gives

2
IP’( <5> 21—2exp<—2bg2n)

where as usual b = (Rpax — Rmin) (1 — v) 7! is the gap between a lower and upper bound on the
concentrating quantity of interest, V. Note that here and in the following we assume exact global
bounds on the reward function, (s, a) though in principal a corresponding error term based on finite

n

E V() - =S V(s)

P =
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samples can be included. Defining 6 = 2 exp (—%n), we have with probability at least 1 — §:

1 n
— 30
s’ n Z: ( )
2
where solving for n yields a requirement of n = % (%) 10g§ samples. Expanding the
absolute values leads to the two bounds shown, which is a more useful form for the subsequent
results. 0

We next provide a similar lemma for the error in replacing A with A:

2
Lemma D. Lete >0 and § > 0 be given. Then given n > % (%) log% samples to

estimate the value of the next state, the error in replacing A(s,a) with A(s, a) in Equation 27
is upper bounded. That is, for all s € S,a € A:

A(s,a) — A(s,a)’ < e (31)

with probability 1 —§.

Proof. From the definitions, we can immediately calculate the following error bound

r(s,0)+7 B V() - Qls,a) - <r<s,a>+v;2v<s;>—c2<s,a>>|

s'~p

A(s,a) — A(S,a)‘ -

=1

= ’y e
sp i=1
< 7e.
where the last line holds with probability 1 — §. The last line follows from Lemma C when using at
2
least n = % (%) log% samples. O

Now we combine all the previous results to arrive at the following extension of our main results to
the case of sampling in stochastic environments with continuous state space:

Theorem 2. Consider an MDP with bounded continuous state space, discrete actions and
) 15|
stochastic dynamics. Let €1,e5 > 0, d1,02 > 0, and |B|] > (%?m(c)) log1/01,

2
ns > %(%) log %, be given. Suppose |B| samples are drawn uniformly from
state-space, s ~ Unif (S). Then, for V, A given in Equation 26, 27, the following bounds on

the Q-values

Z m A +eq +

Q*(s,a) <r(s,a) +v ( vis S 1 —(S’va) - 62) (32)
i s.a A 5 — =

Q*(s,a) > r(s,a) —i—W( E V(s mm(w )EB 1(5 ;l) €1 €2> (33)

hold with probability at least 1 — 61 — 265.
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Proof. For stochastic dynamics there remains an error in using samples to estimate the expectation
over next states in V(s').

Now, for simplicity, we will assume that the same number of samples ns are used to estimate V(s')
appearing explicitly in the bound and implicitly in the definition of A. In principle, these can be
different values, but we propose (as done experimentally) to use the same batch of replay data for
both calculations.

2
Then by Lemma C, let g5 > 0,2 > 0 and ng > % (%) log % next-state samples be given.
Then with probability at least 1 — do:

~

A(s,a) < A(s,a) + veo (34)
A < A
masx, A(s,a) < max (A(s,a) + ) (35)
< (m?x A(s,a) + ves. (36)
s,a)EB

Combining the bound above with Lemma B allows one to replace all instances of V and A with
their approximations in the upper bound of Theorem 1:

A
Q*(s,a)Sr(s,a)+7< E V(s)+ Deacs W“fl)

s'~p 1—’y

oS max A(s,a) +¢
<r(s,a) +'y< ZV )+ ea+ (‘,a)ells_r(y ) !

maxs q As,a+ gg+¢€
<r(s,a) +7< ZV + &9+ (s,a)eB 1(—7) e 1)

max(s,a)eg A(&a) +e1 469
Vs
— (5,0 +7< §j — ,

which holds with probability at least (1 — d1)(1 — d2)% > 1 — §; — 20, (we ignore the terms beyond
first order which are negligible in the limit of small ¢;). One factor of 1 — §; arises from Theorem 1
and two factors of 1 — d5 correspond to the use of Lemma B and Lemma C separately, as they act
on independent next-state samples: Lemma B operates on the next-state samples dictated by the
fixed (s, a)-value of interest on the left-hand side of the bound, whereas Lemma C operates on the
next states in the batch B. As discussed previously, we have assumed for simplicity the same values
of (g2, 0d2) in their corresponding concentration bounds.

A similar proof holds for the lower bound. O

Lastly, we will consider the case of continuous actions in a soft Q-learning style algorithm where one
samples actions from the prior policy my to estimate the following integral

V(s)=p"" log/ PR 1 (als)da, (37)
A

specifically with n 4 samples from the prior policy,

na
Vi(s)=pt logz ePR(s.a:) (38)
i=1
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Theorem 3. Consider an MDP with a bounded continuous state and action space,
S x A C RY with stochastic dynamics. Suppose an Lg-Lipschitz function Q(s,a) is
given to generate double-sided bounds on the optimal value function, denoted Q*(s,a). Let
gi > 0,0; > 0 be given and define the horizon H = (1 — )™, and sample budgets

Ladiam (S S
B > ( adiam XA)) log —, (22)
€1 51
1 H(Rmax - Rmin) 2 2

1 loo = 40
n8_2( . ) o8 2. (40)

1 [ ¢BH(Rmax—Rmin) _ | 2 2
na > 3 ( e ) log 5 (41)

Suppose |B| samples are drawn uniformly from the state-action space, s ~ Unif (S) and
a ~ Unif (A) to estimate the extrema of A. Suppose ns samples are used to estimate
the expectation over next-states and na samples are used to estimate the soft state-value
function Denoting V., A as the quantities estimated from samples, the following bounds on
the Q-values

maX(sya)eg A(S, a) +e1+€E2+ €3

Q* (s, a)<r(sa+’y( ZV T (42)
min(s,a)eB A(Sva) — &1 —€2—¢&3

Q* (s, a)>r(sa+’y( Zv T (43)

hold with probability at least 1 — §; — 269 — 203.

As before, we first provide a bound on the error in replacing V with V before combining it with the
previous result.

Lemma E. Let the definitions in Equations 37, 38 and some € > 0, 6 > 0 be given. Then,
for

1 (emRmRmm)/(lv) _ 1>2 2

action samples from the prior policy a ~ mo(als), the error in replacing the state value
function with its estimate is bounded:

Ze’BQ 50 _ e < V(s ZeﬂQ 504 4 g (45)
i=1

with probability 1 —§.

Proof. We will focus on the proof of the upper bound. The lower bound follows from a similar proof.
From Hoeffding’s inequality, with probability 1 — 4,

BV _lzem(s,an < (eﬂRmax/(l—w _eﬂRmm/(l—w) L os 2z
n-

BV () < BVE) Lz
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By taking the log on both sides
log(eEV(S) +3)

(s) + B log(1 + ZeFV()

V(S) + 871 log (1 + ge—ﬁRmm/(l—»y)>

=V(s)+ey

IN

(with probability 1 — 0), where e satisfies

|

1 2
— 7= BRmax/(1=7) _ ,BRmin/(1—7) —
efﬁRmin/(lf’Y) < (e ¢ ) 2n+ log 5 ' (46)
or in other words,
1 2 [ eBRmax—Rumn)/(1=7) _ 1\ 2
n+210g6< eﬂEJr—l ) . (47)
For clarity we also provide the corresponding lower bound here:
BV () > BV() _z
1 0 %
V(s) > 3 log (eﬂv(s) - 5)
= V(s) + B log(1l — Ee PV )
> V(s) + Bt log(1 — Z-:Ve*’BR“‘aX/(P”))
= V(s)—e_
where again we solve for n_:
1 2 1 _ efﬁ(Rmafomin)/(l77) 2
n_ = §log5 ( = ) . (48)
Letting e, = e_ = ¢ for simplicity and solving for the value of n in Hoeffding’s inequality such that
both the upper and lower bounds on V' are satisfied gives:
n > max{ny,n_} (49)
1 2 eﬁ(Rmafomin)/(lf"/) -1 2 1— efﬁ(Rmafomin)/(lf"/) 2
:iloggmax < 1 > ,( TppF ) . (50)
For small ¢ < (Rmax — Bmin)/(1 — 7), the first term dominates, thus
1 2 eﬁ(Rmax_Rmin)/(l_’Y) — 1 2
nzzlogé( e ) (51)

samples suffice to satisfy both the lower and upper bounds |V — V| < e with probability at least
1 — 0. In passing, we note that in the low J regime, fe < 1 and S(Rmax — Rmin)/(1 —7) < 1, the
required samples simplifies to the “usual” (Hoeffding) form, quadratic in H/e:

H(Rmax - Rmin) 2 2
log —. 2
i) ) oy 2 (52)

n(6<<1)2;(

O
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Now, to prove Theorem 3, we apply the same techniques as before:

Proof. Applying Lemma E to the expectation over actions in V and A in Theorem 2 gives, similar
to the previous proof, two terms of e3:

1 & ma A(s,a) +e1+¢
Q*(s,a) <r(s,a)+7 fZV(s’)_k X(s,0)eB A(s,a) + €1+ €2 (53)
s -y
1 &s, . mMaxX(s,q)eB A(S,CL) + &1+ €2+ 753)
<r(s,a)+~vy| — V(s') +e3+ : 54
= >v(nsg<> 3 ik -
1 o aX(s,a A 5 +e1+e9+¢€
=7(s,a) +7( V(s) + o (20)EB (5,0) Fer + €2 3). (55)
ns i 1—v

Similar to the proof of Theorem 2, we introduced two instances of this action sampling (one for

V(s') and one for the extrema of A(s,a)). This requires an additional two factors of 1 — 3 in the
confidence: (1 —d1)(1 —82)%(1 —d3)2 > 1 —§; — 265 — 205. O

We note that one can also instead combine Theorem 1 with Lemma E to arrive at double-sided
bounds for the case of deterministic transitions with continuous actions.



