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Abstract

This paper addresses a cross-modal learning framework, where the objective is to enhance
the performance of supervised learning in the primary modality using an unlabeled, unpaired
secondary modality. Taking a probabilistic approach for missing information estimation, we
show that the extra information contained in the secondary modality can be estimated via
Nadaraya-Watson (NW) kernel regression, which can further be expressed as a kernelized
cross-attention module (under linear transformation). This expression lays the foundation
for introducing The Attention Patch (TAP), a simple neural network add-on that can be
trained to allow data-level knowledge transfer from the unlabeled modality. We provide
extensive numerical simulations using real-world datasets to show that TAP can provide
statistically significant improvement in generalization across different domains and different
neural network architectures, making use of seemingly unusable unlabeled cross-modal data.

1 Introduction

Consider a cross-modal learning framework where there exist a labeled primary modality and an unlabeled,
unpaired secondary modality. In this paper, we address the following research question: can we boost
the performance of supervised learning in the primary modality by exploiting the extra information in the
secondary modality (that is unlabeled and unpaired with the primary modality)? Our work naturally lies at
the intersection of cross-modal learning and semi-supervised learning. The cross-modal learning paradigm
learns from data in different modalities (Li et al., 2018). From a probability theory perspective, cross-modal
data often refers to data with different support dimensions and distribution curvatures. The semi-supervised
learning paradigm uses unlabeled data to improve the model performance learned by limited labeled data
(Zhu, 2005; Van Engelen & Hoos, 2020). While cross-modal learning and semi-supervised learning have been
extensively studied independently, the intersection of the two has been less explored in the literature and
remained elusive. To be specific, when we have a limited amount of labeled data in the primary modality and
a large set of unlabeled and unpaired data in the secondary modality available during training, there is no
principled learning paradigm that can make use of the secondary modality to create a model that is better
than the model learned with only the primary modality. Figure 1a presents a visualization of our target
problem to solve.

Our target problem is frequently encountered in different research communities. For example, when building
a battery failure prediction model using temporal current and voltage readings, one option is to learn a
supervised learning model with only current and voltage readings. However, there exist unlabeled videos of
battery inner structure changes that are generated by different research labs, so a potentially more effective
option is to incorporate the information of these videos into the model. These videos are information-rich,
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(a) For primary modality X ⊆ Rdx and the secondary
modality Z ⊆ Rdz , there exists a space M1 that contains
the mutual information between X and Z, where ϕ1 :
Z → M1 and ϕ3 : X → M1 transform data z ∈ Z and
x ∈ X to space M1, respectively. There also exists a
space M2 that contains the exclusive information present
in Z but not in X . A transformation ϕ2 : Z → M2 takes
data z ∈ Z to m2 ∈ M2. The label information for data
in X is available, but data in Z are unlabeled. There is
also no alignment between data in X and Z.

NW Kernel Regression
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(b) The Attention Patch (TAP) parameterized by query
transformation ϕ3 : Wq, key transformation ϕ1 : Wk,
and value transformation ϕ2 : Wv. TAP takes one in-
stance x ∈ X (or a representation of x), uses a batch
of reference data Z : {zi ∈ Z}nz

i=1 to generate the cor-
responding representation m2 ∈ M2, which contains
information that is not present in space X . The rep-
resentation m2 will be concatenated with input x for
downstream tasks.

Figure 1

but labeling them requires repeating the collection process, which is expensive and potentially impossible
due to equipment constraints (Davidson et al., 2018). In general, reusing information-rich but hard-to-label
datasets for different learning tasks calls for developing novel methods at the intersection of cross-modal
learning and semi-supervised learning.

To solve the target problem, we start by formulating the missing information estimation problem from a
probability density estimation perspective. Using kernel density estimation (Rosenblatt, 1956; Wand & Jones,
1994; Wang et al., 2023), we show that this formulation leads to a multivariate NW kernel regression, which
can further be expressed as a kernelized cross-attention module (under linear transformation). We name this
module The Attention Patch (TAP), as shown in Figure 1b. TAP is a simple neural network plugin that
can be attached between two consecutive layers in a neural network. The TAP integration requires minimal
modification to the original network (i.e., only moderate dimension change), and the parameters of mappings
ϕ1, ϕ2, ϕ3 can be learned in parallel with the original network training.

1.1 Summary of Contributions

• This is the first work that investigates a learning paradigm in semi-supervised learning and cross-
modal learning, where the "extra" information in Z is not only unlabeled and unpaired but also
comes from a different modality than the primary modality X . We propose a framework to enhance
supervised learning of the primary modality X using unpaired, unlabeled secondary modality Z.

• In Sections 3 and 4, we show that formulating our target problem as a missing information estimation
problem leads to a multivariate Nadaraya-Watson (NW) kernel regression, and it further recovers
a kernelized version of the popular cross-attention mechanism (Vaswani et al., 2017) (under linear
transformation). Based on our observation, we propose The Attention Patch (TAP) neural network
plugin for cross-modal knowledge transfer from unlabeled modality. We further propose a batch
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training strategy to incorporate more unlabeled cross-modal data while maintaining moderate memory
costs.

• We provide detailed simulations on three real-world datasets in different domains to examine various
aspects of TAP and demonstrate that the integration of TAP into a neural network can provide
statistically significant improvement in generalization using the unlabeled modality. We also provide
detailed ablation studies to investigate the best configuration for TAP in practice, including the
choice of kernel, the choice for latent space transformation, and compatibility with CNN and
Transformer-based backbone feature extractors with an additional text-image dataset.

2 Related Literature

In this section, we provide a review of related literature that explains why existing techniques can not be
directly applied to our target problem.

2.1 Cross-Modal Learning

Cross-modal learning focuses on learning with data from different modalities. The most representative topic
application-wise is cross-modal retrieval. This topic focuses on finding relevant samples in one modality given
a query in another modality (Wang et al., 2016). The most important step in cross-modal retrieval tasks
is learning a coupled space that can correctly describe the correlation between data points from different
modalities. Traditional techniques including canonical correlation analysis (Hardoon et al., 2004; Andrew
et al., 2013; Wang & Shahrampour, 2021), partial least squares (Geladi & Kowalski, 1986; Cha, 1994), and
bilinear model (Sharma et al., 2012; Tenenbaum & Freeman, 2000) find a simple projection of the matching
pairs that minimize certain pre-defined loss functions. This framework, though has seen several variants
and extensions (Ngiam et al., 2011; Hong et al., 2015; Sohn et al., 2014; Xu et al., 2015), remains the most
popular framework in cross-modal correlation learning.

In addition to cross-modal retrieval, cross-modal supervised learning also follows the same principle. Examples
include but are not limited to Lin & Tang (2006); Evangelopoulos et al. (2013); Jing et al. (2014); Feichtenhofer
et al. (2016); Peng et al. (2017); Li et al. (2019). All of these models involve coupled space learning through
either implicit or explicit learning loss with matching pairs of cross-modal inputs.

With the rise in popularity of natural language processing and time series analysis, a new concept of weak
alignment appears in cross-modal learning. Weak alignment refers to the missing alignment of sub-components
in instances from different modalities (Baltrušaitis et al., 2018). More specifically, this often means cross-modal
input sequences with different sampling intervals or orders. For example, in the case of vision and language
models, a text description sequence of a video will usually differ from the time and order of information that
appeared in the video (Venugopalan et al., 2015; Tsai et al., 2019), or a text description of an image will
need to map a sequence of words to a collection of objects without any specific orders (Mitchell et al., 2012;
Kulkarni et al., 2013; Chen et al., 2015; Karpathy & Fei-Fei, 2015).

There exists a research direction that taps into instance-wise nonalignment for cross-modal learning, which
is called non-parallel co-learning (Baltrušaitis et al., 2018). Non-parallel co-learning aims at improving the
model learned on a single modality using another modality that is unaligned with the primary data. However,
this is a concept that has only been studied with very specific applications, and it also requires the reference
modality to be labeled during the training process. For example, cross-modal transfer learning (Frome
et al., 2013; Kiela & Bottou, 2014; Mahasseni & Todorovic, 2016) mainly focuses on transferring supervised
pre-trained embedding networks for improved cross-model prediction accuracy. Cross-modal meta-learning
(Phoo & Hariharan, 2020; Islam et al., 2021) investigates improving few-shot learning performance of primary
modality using a labeled, yet unaligned secondary modality.

In a nutshell, almost all cross-modal learning frameworks focus on the case where there are known alignments
between different modalities of data at least during the learning phase. Our work considers the case where both
alignment and labels do not exist during learning, and our proposed architecture can be applied to arbitrary
modalities.
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2.2 Semi-Supervised Learning

Semi-supervised learning focuses on addressing the challenge of limited labeled data availability in building a
learning algorithm (Zhu, 2005; Van Engelen & Hoos, 2020). Among all kinds of semi-supervised learning
methods, self-training is the closest class of methods that relates to our study. Self-training refers to the
class of methods that train a supervised learning algorithm using labeled and unlabeled data together
(Triguero et al., 2015). This approach is usually done by assigning pseudo labels to the unlabeled data
and jointly refining the supervised learning model and the pseudo labels by iterative training (Yarowsky,
1995; Rosenberg et al., 2005; Dópido et al., 2013; Wu et al., 2012; Tanha et al., 2017). For most traditional
learners, this means re-training the learning algorithm many times as the pseudo labels are being updated.
However, this pseudo-label training approach naturally works with incremental learning algorithms like
neural networks, where the model is gradually learned through optimizing an objective function (Lee et al.,
2013; Berthelot et al., 2019; Zoph et al., 2020; Xie et al., 2020; Sohn et al., 2020). Strictly speaking, all
pseudo-labeling/self-training methods focus on assigning labels in the prediction space to the data points in
the primary space that is the same as the labeled data.

There exists another line of research that studies semi-supervised learning in the context of multi-view or
multi-modal learning. For example, multi-view co-training methods (Blum & Mitchell, 1998; Kiritchenko &
Matwin, 2001; Wan, 2009; Du et al., 2010) propose to train different classifiers on different views of the same
data. Multi-view co-training generally assumes the two views are independent of each other but can perform
equally well in a single-view prediction task. The development of deep neural networks also introduced
a lot of cross-modal semi-supervised learning works, which mainly focus on computer vision and natural
language processing (Nie et al., 2017b;a; 2019; Jia et al., 2020). Again, all of these mentioned works rely on
the availability of labels in all the modalities.

As we can see, all existing semi-supervised learning frameworks consider the case where the unlabeled data
resides in the same space or joint space as the labeled data. Our work considers the case where the unlabeled
data resides in a completely different space than the labeled data.

3 Estimating the Missing Information

In this section, using kernel density estimators, we show that the missing information estimation problem
coincides with the Nadaraya-Watson (NW) kernel regression. We further establish that this particular
multivariate estimation scheme yields an asymptotically vanishing error.

3.1 Cross-Modal NW Kernel Regression

For clarity, we focus on estimating the missing information of one data point x, which can be obtained from
a data point z in another mode. We denote the corresponding representation of x in M1 as m1 = ϕ3(x).
Consider the missing information for x in space M2 as m2 = ϕ2(z), which needs to be estimated with the
help of reference dataset Z : {zi ∈ Z}nz

i=1. Let us write the conditional expectation of the missing information
m2 given the representation m1 as follows

E(m2|m1) =
∫

m2
p1(m2, m1)

p2(m1) dm2, (1)

where p1(m2, m1) is the joint density of m2 and m1, and p2(m1) is the marginal density of m1. Using
reference data Z : {zi}nz

i=1, we apply kernel density estimation (Rosenblatt, 1956) for both above densities in
the following form

p1(m2, m1) ≈ 1
nz

nz∑
i=1

k(ϕ3(x), ϕ1(zi))k1(ϕ2(z), ϕ2(zi)) ≜ p̂1(ϕ2(z), ϕ3(x))

p2(m1) ≈ 1
nz

nz∑
i=1

k(ϕ3(x), ϕ1(zi)) ≜ p̂2(ϕ3(x)),
(2)
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for proper kernel functions k and k1, which results in the following proposition.
Proposition 1. The missing information estimation formulation in Equation (1) can be approximated with
kernel density estimators in Equation (2). When the kernel function k1(·, µ) in Equation (2) is a density
function for a distribution with mean µ, the approximation leads to

E(m2|m1) ≈
nz∑
i=1

k(ϕ3(x), ϕ1(zi))ϕ2(zi)∑nz

j=1 k(ϕ3(x), ϕ1(zj))
. (3)

The proof can be found in the Appendix. The proposition implies that the conditional expectation of missing
information (given representation) leads to a multivariate version of the well-known NW kernel regression
estimator (Nadaraya, 1964; Watson, 1964) that employs both modalities of data with the help of kernel
density estimators. In Section 4.1, we will see that the above formulation recovers the popular kernelized
cross-attention when ϕ1, ϕ2, ϕ3 are linear mappings.

3.2 Estimation Error Guarantee

We now investigate the estimation error of Equation (3) under several assumptions, especially for its connection
to the reference sample size and the choice of the kernel function. In particular, we consider the case that x
and z replace m1 (i.e., ϕ3(x), ϕ1(z)) and m2 (i.e., ϕ2(z)), respectively. The NW kernel regression formulation
in Equation (3) now becomes

f̂(x) =
n∑

i=1

kH(x, xi)zi∑n
j=1 kH(x, xj)

, (4)

where kH(x, xi) = 1
|H| k( x−xi

|H| ) is a kernel that satisfies the following mild technical assumption and the
subscript of nz is dropped for convenience.
Assumption 1. (Wand & Jones, 1994) The bandwidth matrix H = hnI of the kernel function kH(·) with
|H| = hd

n (the subscript n shows the dependence of h to the number of data points) has the following
properties

lim
n→∞

hn = 0,

lim
n→∞

nhd
n = ∞,

(5)

which implies that the bandwidth parameter hn decays slower than n−1/d and converges to 0. The standard
shift-invariant kernel function k(·) is a bounded, symmetric probability density function with a zero first
moment and a finite second moment. That is, the following properties hold∫

Rd

k(x)dx = 1,

∫
Rd

xk(x)dx = 0,∫
Rd

xx⊤k(x)dx = µ2(k)I,∫
Rd

k2(x)dx = R(k),

(6)

where µ2(k) < ∞ and R(k) < ∞ are constants decided by the choice of kernel k.

It is easy to verify that several popular shift-invariant kernels k(x − y) (e.g., Gaussian kernel) satisfy the
above assumption with proper normalization. We also put mild assumptions on the density functions and
true mapping.
Assumption 2. The true density function p(x) is differentiable and the ℓ2-norm of its gradient is bounded.
The underlying true function f : X → Z, (i.e., M1 → M2) has a bounded gradient and Hessian in the norm
sense, and we have z = f(x) + ϵ, where ϵ is an isotropic noise vector from N (0, σ2I).
Theorem 1. Under Assumption 1 and Assumption 2, the NW kernel regression estimator f̂(x) in Equation (4)
with an isotropic shift-invariant kernel of bandwidth H = hnI yields an estimation error e(x) ≜ f̂(x) − f(x)
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that asymptotically converges in distribution as√
nhd

n

(
e(x) − h2d

n µ2(k)Ψ(x)
p(x)

)
d−→ N (0,

R(k)σ2

p(x) I), (7)

where x ∈ Rd, and the i-th entry of Ψ(x) is

Ψ(i)(x) = 1
2p(x)Tr

[
∇2f (i)(x)

]
+ Tr

[
∇f (i)(x)∇p(x)⊤

]
, (8)

where ∇2f (i)(x) and ∇f (i)(x) are the Hessian and gradient of i-th entry of the true function with respect to
x, ∇p(x) is the gradient of the true density function, and Tr [·] is the trace operator.

The proof is provided in the Appendix. The above theorem shows that with proper kernel function, the
estimation error e(x) → 0 as n → ∞ under Assumption 1 and Assumption 2. This suggests that under an
ideal latent space transformation, more unlabeled data helps drive the estimation error to zero. We also
observe that the error term e(x) converges to a sequence that scales with the factor µ2(k), which implies
kernel functions with lower µ2(k) might contribute to a smaller e(x) in the non-asymptotic regime.

4 The Attention Patch

In this section, we formally propose The Attention Patch (TAP) by showing that the NW kernel regression
formulation in Equation (3) with linear latent space transformation results in the popular "cross-attention"
module (Vaswani et al., 2017). We then propose a batch training strategy for scalability.

4.1 Cross-Attention Module

In Equation (3), we showed how to estimate the missing information using the reference cross-modal data
Z. However, implementing this mechanism requires learning the latent space transformations ϕ1, ϕ2, ϕ3.
Fortunately, a neural network integration of such formulation will allow the latent space transformation to
be learned in parallel with the main learning objective. To be more specific, we can define the latent space
transformations ϕ1, ϕ2, ϕ3 with learnable linear weight matrices Wk, Wv, Wq, and we can see that the RHS
of Equation (3) now becomes the kernelized version of the "cross-attention" module (Vaswani et al., 2017).
Furthermore, as shown in Figure 2, TAP can be inserted between any two consecutive layers in a deep neural
network with minimal modification to the original network. The integration process is equivalent to applying
a patch to an existing neural network, hence the name The Attention Patch (TAP).

Now, we formally propose The Attention Patch in the following corollary.
Corollary 1. For an output x of a layer in a deep neural network and an unlabeled cross-modal reference
dataset Z, the TAP integration means calculating the following

m̂2 ≈
nz∑
i=1

k(Wqx, Wkzi)Wvzi∑nz

j=1 k(Wqx, Wkzj)
, (9)

and concatenating x and m̂2 for downstream tasks. The parameters Wq, Wk, Wv are learned in parallel with
the original neural network. k(·, ·) is a shift-invariant kernel of choice, and a Gaussian kernel is recommended.

Note that Equation (9) allows for easy implementation of TAP by feeding the whole set of reference data
Z as keys and values in a cross-attention module during the training process. However, the latent space
transformation can go beyond linear, as we will discuss later in the simulation.

4.2 Batch Training

The attention formulation of cross-modal learning in Equation (9) requires setting the keys and values to be
the set of unlabeled reference data points Z. Theorem 1 suggests that using more reference data for the model
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Figure 2: The Attention Patch (TAP) neural network integration visualization: TAP takes the output
of a layer to calculate the missing representation using reference data Z, and the output of TAP will be
concatenated with TAP input and fed to the next layer. The only modification to the original deep neural
network (DNN) is increasing the input dimension of the integration layer (blue layer).

will potentially result in a lower estimation error. However, the computation complexity of the cross-attention
module scales linearly with respect to the sequence length of keys and values, which is equivalent to the
number of reference points nz in Z ∈ Rnz×dz . So, it is not practical to feed all the reference points at once,
mainly due to memory limitations.

Therefore, we can break the reference dataset Z into m batches {Zi}m
i=1 and train each epoch by iterating

over the set of reference batches together with input batches of primary data points. This is similar in vein
to training with stochastic gradient descent.

Each batch of reference points Zi will make the neural network yield an output in space Y. Evaluating
all batches {Zi}m

i=1 will in turn yield m outputs, which can be used in different ways depending on the
application, like the ensemble approach (Dietterich et al., 2002; Sagi & Rokach, 2018) in classification tasks.

In a nutshell, TAP integration without batch training will incur an additional memory cost of O(dznz), and
batch training reduces the memory cost to O( dznz

m ). For reference, the additional memory required for a
forward path in TAP integrated model (written in PyTorch) is around 1.3GB for one training data point and
100K reference data of dimension 98.

5 Numerical Experiments

5.1 Performance Evaluation

In this subsection, we evaluate TAP by plugging it into neural network classifiers. We show the effectiveness
of TAP by comparing the performance of TAP-integrated networks with other variants. The simulations are
implemented on three real-world datasets in different areas. Full implementation details for all experiments
in this section can be found in the Appendix for reproducibility.

Datasets: To ensure a comprehensive evaluation of the performance of TAP integration, we select/create
three real-world cross-modal datasets in three different areas. All datasets are open-access and can be found
online. A detailed dataset and pre-processing description can be found in the Appendix.
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• Computer Vision: We start with the MNIST dataset (MNIST) (Deng, 2012). We crop the upper
half of all images as the primary modality X for digit prediction and use the lower half of all images
as the reference modality Z (without labels and without pairing). This creates two data modes that
have guaranteed complementary information while having different distributions. In model inference
(testing), the test data points are upper-half images from the primary modality that are not present
in the training set.

• Healthcare: We use the Activity dataset (Activity) (Mohino-Herranz et al., 2019), where the
Electrodermal Activity (EDA) signals are the primary modality X for predicting the subject activity.
Thoracic Electrica Bioimpedance (TEB) signals are used as the reference dataset Z (without labels
and without pairing). In model inference (testing), the test data points are EDA signals from the
primary modality that are not present in the training set.

• Remote Sensing: We also choose the Crop dataset (Crop) (Khosravi et al., 2018; Khosravi &
Alavipanah, 2019), where the optical features X are used to predict the crop type, and the radar
readings are used as reference dataset Z (without labels and without pairing). In model inference
(testing), the test data points are optical features from the primary modality that are not present in
the training set.

There is no overlapping instance among the training data (in space X ), reference data (in space Z), and test
data (in space X ).

Models: It is difficult to directly compare the effectiveness of TAP against existing state-of-the-art neural
network architectures since this work is the first to propose cross-modal learning from a fully unlabeled data
modality. However, we can show the effectiveness of TAP by carefully examining the performance difference
across different variants of TAP.

Our Baseline competitor is a single-modal neural network without TAP integration at all. However, TAP
integration will bring three changes to the baseline model, including depth increase, the addition of cross-
attention structure, and the reference data Z. To examine the contribution of these three aspects, we further
propose three competitors as follows:

1. FFN: We replace TAP with a feedforward network to create the FFN variant. So, if FFN performs
worse than TAP, we are able to factor out the impact of depth increase with TAP integration.

2. Control Group: We replace the real reference data Z in TAP with random noise of the same mean
and variance. So, if Control Group performs worse than TAP, it suggests that the addition of a
cross-attention structure is not the main reason for TAP to work, and using meaningful reference
data (like Z) is important.

3. TAP w/o Batch: We disregard batch training strategy by incorporating the whole reference dataset
throughout the training process. So, if we observe TAP w/o Batch outperforms TAP, it would suggest
the model is learning from the reference data, and more reference data will help.

We now highlight some important details here: First, the normalization parameter in the attention module
of TAP is set to

√
d(nz/m)−1/d, such that it follows the bandwidth Assumption 1 while being close to the

generally recommended normalization constant
√

d. Second, at each Monte-Carlo simulation, the set of
training data, reference data, and evaluation data are shuffled while keeping the amount the same. The
Control Group also generates a new set of random reference data at each Monte-Carlo simulation.

Results: The simulation results are shown in Figure 3. The error bars are calculated over 20 Monte-Carlo
simulations to reflect the statistical significance of the results. As we can see, there is a consistent performance
hierarchy among all the benchmark models throughout all datasets in different areas. First, we see that
TAP integration always leads to a performance improvement compared to the baseline classifier. Second,
we see that the FFN variant shows no performance advantage against the baseline model, which rules out
the possibility that the depth increase in TAP is the major factor causing performance improvement. Third,
we observe the worst generalization performance across all benchmark models for the Control Group. This
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Figure 3: Simulation results on three real-world datasets. TAP integration shows a consistent performance
advantage compared to other variants.
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Figure 4: Reference batch size comparison on three real-world datasets. The generalization accuracy increases
as the reference batch size becomes larger.

shows that feeding irrelevant information will exacerbate the generalization performance. Finally, we see that
batch training and evaluation for TAP results in a slightly worse generalization performance compared to
TAP w/o Batch, which trains directly with the whole reference dataset. Therefore, having more reference
data indeed helps.

5.2 Ablation Study

In this subsection, we further conduct an ablation study for TAP to investigate its best configuration in
practice. We discuss the batch size comparison and the choice of kernel function for TAP. Next, we look at
the impact of nonlinear latent space transformation on TAP. Then, we examine the compatibility of TAP
with large backbone feature extractors (for vision and language). Finally, we investigate shared space learning
and dummy reference modality.

Reference Batch Size Comparison: To further evaluate the effect of batch training, we look at the
performance of different reference batch sizes. The total number of reference data nz is five times of labeled
data nx. Figure 4 shows the prediction accuracy with respect to "unlabeled to labeled ratio", which is defined
as the reference batch size divided by nx.

The performance of the baseline model is shown as the horizontal dotted line. The standard errors are
calculated over 10 Monte-Carlo simulations. We observe that the generalization performance of TAP improves
as the reference batch size increases, even though the total number of reference data remains the same. This
observation is consistent with the estimation error characterization in Theorem 1. In practice, this suggests
that one can increase the reference batch size as much as possible until the memory limit is reached.

Choice of Kernels: Theorem 1 suggests that the estimation error diminishes as the number of reference data
points goes to infinity. However, we observe that the error term is also related to µ2(k), which is a constant
determined by the choice of the kernel function. This connection is asymptotically negligible, but it might
still be relevant in finite-sample cases. The choice of kernels in kernelized attention literature (Peng et al.,
2020; Choromanski et al., 2020; Chen et al., 2021; Luo et al., 2021; Xiong et al., 2021) has been empirically
studied, but these works have not suggested the theoretical intuition behind the kernel choices. Here, we
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compare three kernels, namely the Gaussian kernel, Laplace kernel, and Inverse Multiquadric kernel. Notice
that the µ2(k) value is the smallest for the Gaussian kernel, larger for the Laplace kernel, and unbounded for
the Inverse Multiquadric kernel.

Table 1: The prediction accuracy of TAP / TAP w/o Batch on three datasets. Gaussian kernel moderately
outperforms the other two, and the Laplace kernel is slightly better than the Inverse Multiquadric kernel
within the margin of error.

Gaussian Laplace Inverse Multiquadric
MNIST 70.3 ± 0.25/70.9 ± 0.33 69.9 ± 0.21/70.1 ± 0.23 69.7 ± 0.20/70.1 ± 0.24
Activity 37.4 ± 0.25/38.1 ± 0.19 37.1 ± 0.22/38.4 ± 0.22 37.3 ± 0.28/38.5 ± 0.16

Crop 72.3 ± 0.21/74.1 ± 0.19 72.2 ± 0.15/72.8 ± 0.17 71.9 ± 0.14/72.5 ± 0.25

The results are shown in Table 1. The standard errors are calculated over 20 Monte-Carlo simulations. We
observe that for TAP, the Gaussian kernel consistently outperforms the other two kernels. The general
performance hierarchy is also consistent with the order of µ2(k) value for three kernels. So, we recommend
using the Gaussian kernel for the TAP integration.

Nonlinear Latent Space Transformation: We further investigate whether nonlinear latent space transfor-
mation will benefit TAP. We compare TAP with a variant where the latent space transformations ϕ1, ϕ2, ϕ3
are modeled with multi-layer perceptrons (MLP). The results are shown in Table 2.

Table 2: The prediction accuracy of TAP / TAP w/o Batch on three datasets. MLP variant shows little to
no improvements compared to the linear version of TAP.

Linear MLP
MNIST 70.3 ± 0.25/70.9 ± 0.22 70.3 ± 0.27/70.4 ± 0.25
Activity 37.4 ± 0.25/38.1 ± 0.19 37.8 ± 0.22/38.2 ± 0.16

Crop 72.3 ± 0.21/74.1 ± 0.19 73.7 ± 0.16/74.4 ± 0.26

The standard errors are calculated over 10 Monte-Carlo simulations. We observe that MLP variants in
general provide an accuracy that is no worse than the linear version of TAP. The only statistical advantage of
MLP can be found in the Crop dataset, where the data are radar and optical images, which are information-
rich and often require nonlinear mappings for feature extraction. We suggest using nonlinear latent space
transformation, including backbone feature extractors for vision or language data, but adhering to linear
transformation for tabular data for computational purposes.

Backbone Compatibility: We note that TAP considers cross-modal learning from a probability theory
standpoint, which is domain agnostic. However, given the popularity of computer vision and large language
models, it is appealing to see if TAP is compatible with pre-trained feature extractors, such as Convolutional
Neural Networks (CNNs) for images and Transformers for language.

Table 3: The prediction accuracy (%) and F1 score comparison between baseline model and TAP integrated
model. TAP integration shows a clear advantage in both accuracy and F1 score.

Accuracy(%) F1 Score
Baseline 44.56 ± 1.07 0.453 ± 0.005

TAP 47.68 ± 0.48 0.470 ± 0.006

We carry out the test on a fourth dataset, Memotion 7K dataset (Sharma et al., 2020). Specifically, we focus
on sentiment classification tasks with images as the primary modality and text as the secondary modality.
We investigate a modified TAP integration as shown in Figure 5. We choose pre-trained EfficientNet-B0 (Tan
& Le, 2019) as the image feature extractor and pre-trained distilled-RoBERTa (Sanh et al., 2019) as the text
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Figure 5: TAP integration with pre-trained feature extractors: The primary modality prediction model takes
a meme image as input to predict the sentiment of the meme. A text set of batch size 100 is used as the
reference secondary modality in TAP. The text data goes through pre-trained distilled-RoBERTa before being
used in TAP.

feature extractor. The implementation details can be found in the Appendix. The test accuracy and F1 score
are tabulated in Table 3. We observe that TAP integration improves both test accuracy and F1 score, which
is the main objective for the imbalanced Memotion 7K dataset.

Shared Space Learning: The benefit of TAP relies on finding a shared information space M1, such that
similar samples in the primary modality and reference modality are close to each other in the space M1 (i.e.,
after proper transformations). Although we have observed clear generalization advantage, it is still important
to examine whether TAP is able to find such suitable space M1. To this end, we look at the kernel values in
TAP after training for x and z with the same/different labels. The results are shown in Table 4.

Table 4: The kernel evaluations between data (one from the primary modality and one from the reference
modality) that shares the same label against data with different labels.

Dataset Same Label Different Label
MNIST 0.4008 ± 0.0001 0.3945 ± 0.0001
Activity 0.7655 ± 0.0004 0.7606 ± 0.0003

Crop 0.6424 ± 0.0001 0.6398 ± 0.0001

The standard errors are calculated over all evaluation data. We observe that the kernel value k(Wqx, Wkz)
is larger when x and z share the same label, which means TAP is able to find the appropriate shared space
M1 without accessing label information for reference modality Z. This observation helps explain why TAP
can provide better generalization performance.

Dummy Reference Modality: To further verify the claim that the "extra information" in the reference
modality improves learning, we carry out a simulation tricking TAP by creating dummy reference modalities
for all previous three real-world datasets. To be specific, we create the reference modality in Section 5.1 by
transforming the training data in the primary modality using randomly initialized feedforward neural networks
(with the same output dimension as the reference data). For example, for Crop dataset, we randomly initialize
a neural network with input dimension 76 (for optical features) and output dimension 98 (for radar features)
to transform the primary modality training data into the reference dataset. Using this we have created a
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"reference-like" dataset without any relevant cross-modal information. With 20 Monte-Carlo simulations, we
get the performance results shown in Table 5.

Table 5: The performance comparison of the baseline model compared to TAP with dummy reference
modality.

Dataset Baseline TAP with dummy reference
MNIST 69.91 ± 0.37 70.11 ± 0.24
Activity 36.99 ± 0.26 36.78 ± 0.15

Crop 70.52 ± 0.42 68.6 ± 0.36

We observe that TAP with "dummy" reference modality has no statistically significant performance gain over
the baseline model if not being worse. This is intuitive as the embedded cross-modal information does not
carry any extra information.

6 Conclusion and Discussion of Future Directions

This paper investigates a novel perspective on cross-modal learning, where the objective is to transfer
knowledge from an unlabeled secondary modality to improve generalization in the primary modality. We
showed that the missing information in the primary modality can be estimated using an NW kernel regression
formulation. This perspective leads to the design of a cross-attention module in neural network integration,
which we refer to as The Attention Patch (TAP). We demonstrated the effectiveness of TAP integration on
four real-world cross-modal datasets in different domains, highlighting its performance advantage and domain
robustness.

We hope that this work will inspire new perspectives on knowledge transfer from the data level for neural
networks, showing how seemingly unusable data can be leveraged for improved generalization. However, our
work can still be improved in the future in certain aspects. For example, having the secondary modality as
keys and values requires large computation memory in the forward pass for large datasets, and there is also
no guarantee that a shared space and an exclusive space exist between the two modalities. Therefore, there
are several promising directions for future research. For example, developing approaches that can efficiently
store and reference unlabeled modalities could significantly benefit the technique, given the wide availability
of massive datasets. Additionally, a principled framework for selecting relevant reference datasets, as seen in
cross-modal and semi-supervised learning, could help guide the data selection process.
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A Appendix

The organization of this Appendix is as follows:

• Subsection A.1 presents the experimental details, including dataset descriptions, preprocessing
descriptions, and training details for reproducibility.

• In Subsection A.2, we provide the proof for all of the theoretical claims in the paper.

A.1 Experimental Details

A.1.1 Dataset

Dataset Description:

MNIST is a well-known dataset with 784 pixel value features. We crop the upper half of images as the
primary modality, which corresponds to the first 392 features in the dataset, and the other 392 features form
the lower half images. In this case, we know for sure that the two modalities are located in different spaces
and carry complementary information.

Activity is an activity prediction dataset that predicts the status of a person through wearable physiological
measurements. There are 151 features for Thoracic Electrical Bioimpedance (TEB) readings and 208 features
for Electrodermal Activity (EDA) readings, including 104 for left arm readings and 104 for right arm readings.
The objective is to predict the activity that the subject is going through, including neutral, mental, emotional,
and physical activities.

Crop is a crop type prediction dataset that predicts the type of crop a land grows using satellite and radar
readings. There are 76 optical features collected with RapidEye satellites and 98 radar features collected
with the Unmanned Aerial Vehicle Synthetic Aperture Radar system. The labels contain seven crop types,
including Corn, Peas, Canola, Soybeans, Oats, Wheat, and Broadleaf.

Memotion 7K is a meme image and text caption dataset. This dataset has several prediction objectives, and
we implement sentiment prediction in our simulation. For each meme image and its text caption, the instance
can be labeled as very negative, negative, neutral, positive, and very positive. We treat the image dataset as
the primary modality and the unlabeled text caption dataset as the secondary modality.

Data Pre-processing:

Similar to semi-supervised learning, the motivation behind utilizing unlabeled data points is the limited
availability of labeled data. So, we randomly sample 200 data points in the primary modality to serve as the
training data for each dataset. We further randomly sample 1000 data points in the secondary modality to
serve as the cross-modal reference data. For MNIST, it means 200 upper half images as primary modality
training data and 1000 lower half images as reference data. All the remaining data points will be the
evaluation data.

The memotion 7K dataset requires more training data to learn a model. So, we randomly sample 5000 data
as the training set, 1000 data as the reference data, and the rest of data points are the evaluation data.

A.1.2 Performance Evaluation

Parameter Setting:

In the performance evaluation, the reference batch size for TAP is chosen as 250, which is 1.25 times the
training data. The training data batch size is set to 100. As shown in the reference batch size comparison, 250
is not the best-performing choice, but it always yields better generalization accuracy on first three datasets.

The backbone neural network structure for all three datasets is a two-hidden-layer neural network with 64
hidden neurons at each layer. The activation function is ReLU with a dropout rate of 0.5. Layer normalization
is implemented after each hidden layer. TAP is integrated between the two hidden layers. For TAP, TAP
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w/o Batch, FFN, and Control Group, the second hidden layer still has 64 neurons, except the linear layer
that takes input from R128 and outputs R64.

The hidden dimension in TAP is set to 64, and the output dimension is also 64. FNN replaces the attention
module in TAP with a linear layer from R64 to R64. Layer normalization is implemented in TAP (including
TAP w/o Batch and Control Group) and FNN as well. The normalization parameter in the attention module
of TAP is set to

√
d(nz/m)−1/d, such that it follows the bandwidth Assumption 1 while being close to the

generally recommended normalization constant
√

d.

At each Monte-Carlo Simulation, the set of training data, reference data, and evaluation data are shuffled
while keeping the amount the same. The Control Group also generates a new set of random reference data at
each Monte-Carlo simulation.

Network Training:

All benchmark variant models share a similar backbone structure; therefore, the training process is also
similar. All models are trained with the cross-entropy loss using the Adam optimizer with a fixed learning
rate of 0.0001. All models are trained for 1000 epochs (8000 in the Crop dataset) except for TAP. Since
TAP updates the model several times within one epoch, the total training epochs for TAP is reduced to
1000/m, where m is the number of reference batches. For example, in the case of performance evaluation
where the reference batch size is 250, there are four batches of reference data, and the total training epochs is
250 for TAP. The prediction accuracy is calculated as the lowest five-moving-average of validation accuracy
throughout the training process, which is a common practice in neural network performance evaluation.

The batch evaluation of TAP is done by having each batch of reference data generate a prediction class and
finding the majority vote among all batches just like ensemble methods.

A.1.3 Ablation Study

Reference Batch Size Comparison: The experimental settings in this section of the simulation are very
much identical to the previous section. The reference batch sizes are chosen as 100, 200, 250, 500, 1000, which
corresponds to the unlabeled to labeled ratios of 1/2, 1, 5/4, 5/2, 5, respectively. The corresponding training
epochs are 100, 200, 250, 500, 1000, respectively. For the Crop dataset, all training epochs are multiplied by 8
since it takes longer to train.

Choice of Kernels: This section adds two kernel variants of TAP integration. The only difference between
standard TAP and these two variants is the kernel function in Equation (9). The Laplace kernel function is
set to

k(x, y) = e− ∥x−y∥1
h2 , (10)

where ∥ · ∥1 denotes the ℓ1-norm, and the normalizing factor h is chosen the same as the Gaussian kernel
bandwidth in TAP. The Inverse Multiquadric kernel is set to

k(x, y) = 1√
∥x − y∥2 + 1

. (11)

All the other training settings are kept the same as the performance evaluation section for first three datasets.

Nonlinear Latent Space Transformations: This section adds the MLP variant of TAP integration.
In this variant, linear transformations are replaced with a two-hidden-layer neural network with a ReLU
activation function. All the other training settings are kept the same as the performance evaluation section
for first three datasets.

Backbone Compatibility: In this simulation, the classifier appended to feature extractors is a two-hidden-
layer neural network with 16 neurons at each layer. The learning rate is set to 0.00002 for both baseline and
TAP integration. Each model is trained for 20 epochs, where we observe the validation accuracy stabilizes.
The reported accuracy is the average of the last five validation accuracy values.

Shared Space Learning: The model and learning process are the same as experiments in performance
evaluation. We use the trained-model with the highest accuracy in the last Monte-Carlo simulation to evaluate
the kernel values.
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A.2 Theory of TAP

A.2.1 Proof of Proposition 1

We rewrite the conditional expectation in Equation (1) as follows

E(m2|m1) =
∫

m2
p1(m2, m1)

p2(m1) dm2

=
∫

ϕ2(z)p1(m2, m1)
p2(m1) dϕ2(z).

(12)

Next, plugging the density estimations in Equation (2) back into the above equation, we have the following

E(m2|m1) ≈
∫

ϕ2(z) p̂1(m2, m1)
p̂2(m1) dϕ2(z)

=
nz∑
i=1

∫
ϕ2(z)k(ϕ3(x), ϕ1(zi))k1(ϕ2(z), ϕ2(zi))dϕ2(z)∑nz

j=1 k(ϕ3(x), ϕ1(zj))

=
nz∑
i=1

k(ϕ3(x), ϕ1(zi))
∫

ϕ2(z)k1(ϕ2(z), ϕ2(zi))dϕ2(z)∑nz

j=1 k(ϕ3(x), ϕ1(zj))
,

=
nz∑
i=1

k(ϕ3(x), ϕ1(zi))ϕ2(zi)∑nz

j=1 k(ϕ3(x), ϕ1(zj))
,

(13)

where the last line simply follows from the fact that kernel function k1(·, µ) has a mean µ. The proof is
complete.

A.2.2 Lemma

Lemma 1. Under Assumptions 1 and 2, a kernel density estimator

p̂(x) = 1
n

n∑
i=1

kH(x, xi), (14)

is consistent, i.e., it converges in probability to the true density function p(x),

p̂(x) p−→ p(x). (15)

This is a well-known result that can be found in the existing literature (Devroye & Wagner, 1979).

A.2.3 Proof of Theorem 1

Throughout the proof, all integrals are Riemann integral
∫
Rd , and we omit the subscript for simplicity. Since

we only consider shift-invariant kernels, we will use kH(x − xi) to represent an isotropic kernel function with
bandwidth H = hnI, where kH(x − xi) = 1

|H| k( x−xi

|H| ) for a standard shift-invariant kernel function k(·). The
determinant of the bandwidth matrix by definition is |H| = hd

n. We will further omit the subscripts of h for
simplicity.
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Consider the j-th element in zi, which we simply write as z(j). Then, we have the following

f̂ (j)(x) =
1
n

∑n
i=1 kH(x − xi)z(j)

p̂(x)

=
1
n

∑n
i=1 kH(x − xi)(f (j)(x) + f (j)(xi) − f (j)(x) + ϵ

(j)
i )

p̂(x)

= f (j)(x) +
1
n

∑n
i=1 kH(x − xi)(f (j)(xi) − f (j)(x))

p̂(x) +
1
n

∑n
i=1 kH(x − xi)ϵ(j)

i

p̂(x)

≜ f (j)(x) + B(x)
p̂(x) + V (x)

p̂(x) ,

(16)

where we theoretically characterize the properties of B(x) and V (x). We refer to the i-th term in the
summation B(x) and V (x) as bi(x) and vi(x), and the subscripts will be omitted from now on for simplicity.

We first look at the term v(x), and it is easy to see that E[v(x)] = 0 due to our assumption on the noise term
ϵ. For the variance, we have the following asymptotic equality

E[|H|v2(x)] = E[ϵ2]|H|
∫

k2
H(x − y)p(y)dy

= σ2

|H|

∫
k2(x − y

|H|
)p(y)dy

= σ2
∫

k2(z)p(x − |H|z)dz

= σ2
∫

k2(z)(p(x) + o(1))dz

≍ R(k)p(x)σ2,

(17)

where the last line follows from omitting the higher order term. Since V (x) is the sample mean of random
variables v(x), we can apply the central limit theorem to show that

√
nhdV (x) d−→ N (0, R(k)p(x)σ2). (18)

Since p̂(x) p−→ p(x) following Lemma 1, we can make the claim following Slutsky’s theorem

√
nhdV (x)
p̂(x)

d−→ N (0,
R(k)σ2

p(x) ). (19)
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Then, let us look at the term b(x). We have the following

E[b(x)] = 1
|H|

E
[
k(xi − x

|H|
)(f (j)(xi) − f (j)(x))

]
= 1

|H|

∫
k(y − x

|H|
)(f (j)(y) − f (j)(x))p(y)dy

=
∫

k(z)(f (j)(x + |H|z) − f (j)(x))p(x + |H|z)dz

≍
∫

k(z)
(

(|H|z)⊤∇f (j)(x) + 1
2(|H|z)⊤∇2f (j)(x)(|H|z)

)(
p(x) + (|H|z)⊤∇p(x)

)
dz

≍|H|
∫

k(z)z⊤∇f (j)(x)p(x)dz + |H|2Tr
[∫

k(z)p(x)1
2∇2f (j)(x)zz⊤dz

]
+ |H|2Tr

[∫
k(z)∇f (j)(x)∇p(x)⊤zz⊤dz

]
=|H|2µ2(k)

(1
2p(x)Tr

[
∇2f (j)(x)

]
+ Tr

[
∇f (j)(x)∇p(x)⊤

] )
≜|H|2µ2(k)Ψ(j)(x) = h2dµ2(k)Ψ(j)(x).

(20)

Any term that is o(|H|2) is omitted as it asymptotically vanishes.

For the term E[b2(x)], we use a similar expansion by omitting terms of o(|H|2) as follows

E[b2(x)] = 1
|H|2

E
[
k2(xi − x

|H|
)(f (j)(xi) − f (j)(x))2

]
= 1

|H|2

∫
k2(y − x

|H|
)(f (j)(y) − f (j)(x))2p(y)dy

= 1
|H|

∫
k2(z)(f (j)(x + |H|z) − f (j)(x))2p(x + |H|z)dz

≍ 1
|H|

∫
k2(z)((|H|z)⊤∇f (j)(x))2p(x)dz

=O

(
|H|∇f (j)(x)⊤∇f (j)(x)p(x)µ2(k)

)
.

(21)

This suggests that the variance of b(x) is of a higher order than the variance of
√

|H|v(x). Thus, we know
√

nhd(B(x) − h2dµ2(k)Ψ(j)(x)) p−→ 0. (22)

Combining with the convergence in probability for density estimator p̂(x), we have

√
nhd(B(x)

p̂(x) − h2dµ2(k)Ψ(j)(x)
p(x) ) p−→ 0. (23)

Finally, we conclude that

√
nhd(e(x) − h2dµ2(k)Ψ(x)

p(x) )

=
√

nhd(B(x)
p̂(x) − h2dµ2(k)Ψ(x)

p(x) + V(x)
p̂(x) ) d−→ N (0,

R(k)σ2

p(x) I),
(24)

where B(x) and V(x) are the vectorization of B(x) and V (x), respectively. The vectorization follows the
isotropic assumption on noise ϵ.

The proof is complete.
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