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Abstract—Differential Pressure Sensors are widely deployed to
monitor critical environments. However, our research unveils
a previously overlooked vulnerability: their high sensitivity to
pressure variations makes them susceptible to acoustic side-
channel attacks. We demonstrate that the pressure-sensing
diaphragms in DPS can inadvertently capture subtle air
vibrations caused by speech, which propagate through the
sensor’s components and affect the pressure readings. Exploiting
this discovery, we introduce BaroVox, a novel attack that
reconstructs speech from DPS readings, effectively turning
DPS into “a fly on the wall.” We model the effect of sound on
DPS, exploring the limits and challenges of acoustic leakage. To
overcome these challenges, we propose two solutions: a signal-
processing approach using a unique spectral subtraction method
and a deep learning-based approach for keyword classification.
Evaluations under various conditions demonstrate BaroVox’s
effectiveness, achieving a word error rate of 0.29 for manual
recognition and 90.51% accuracy for automatic recognition.
Our findings highlight the significant privacy implications of
this vulnerability. We also discuss potential defense strategies
to mitigate the risks posed by BaroVox.

Index Terms—Differential pressure sensors; Side-channel at-
tacks; Privacy

1. Introduction

Differential Pressure Sensors (DPS) have become ubig-
uitous in various environments, ranging from industrial
facilities and cleanrooms to residential buildings, offices,
hotels, and hospitals [1]-[3]. These sensors are designed
to measure minute pressure differences between two points,
enabling precise control and monitoring of critical systems
such as HVAC, airflow management, and room pressure
regulation [2], [4]. While DPS find applications in various
sectors, their role is particularly critical in the semiconductor
industry, where they are essential for maintaining cleanroom
integrity. However, the widespread deployment of DPS has
inadvertently introduced a hidden vulnerability that can be
exploited for eavesdropping.

In many real-world applications, audio systems, including
speakers and intercoms, are often installed in close proximity

to DPS. This practice is driven by various factors, such as
the need for effective communication, audio notifications, or
entertainment purposes. For instance, intercoms are used in
industrial cleanrooms to facilitate coordination among work-
ers without compromising the controlled environment [2].

While the co-location of audio systems and DPS serves
practical purposes, it unintentionally creates an acoustic side
channel that attackers can exploit. DPS’s high sensitivity to
pressure variations makes them susceptible to unintended
acoustic coupling. When sound waves from nearby speakers
or intercoms impinge upon the DPS, they induce minute
vibrations on the sensor’s diaphragm, causing measurable
changes in its output. This unintended interaction effectively
transforms the DPS into a makeshift microphone, allowing
potential attackers to eavesdrop on confidential conversations
or recover sensitive audio information.

In this paper, we introduce BaroVox, a novel side-channel
attack that exploits DPS’s acoustic vulnerability to recover
speech from their output signals. BaroVox leverages audio
systems’ close proximity to DPS, which is a common
deployment scenario in various real-world settings. By
carefully analyzing the pressure variations captured by the
DPS, BaroVox enables the reconstruction of speech signals,
effectively turning these ubiquitous sensors into unintended
listening devices.

We argue that if an attacker manages to get the pressure
reading of this DPS, they can process the pressure data
and partially reconstruct speech to still confidential infor-
mation. The main challenge in realizing BaroVox lies in
extracting intelligible audio from the low-bandwidth, noisy
signals captured by DPS, which are primarily designed for
measuring pressure differences rather than recording sound.
The sensor’s non-linear frequency response adds another
layer of complexity. BaroVox offers a unique Pressure-
Acoustic Transformation (PAT) to mitigate these challenges,
presenting two approaches for eavesdropping conversations.

The first design solution employs PAT for speech recon-
struction and then focuses on enhancing the reconstructed
speech’s signal-to-noise ratio (SNR). This enhancement is
achieved by integrating multiple digital signal processing
techniques, comprising a novel spectral subtraction method,
normalization, high-pass filtering, and equalization. In the
spectral subtraction phase, first, our design divides the recon-



structed speech into percussive and harmonic segments using
median filtering [5], [6]. Then, after evaluating the statistical
property of noise in the target environment, we apply tailored
spectral noise removal to both components, adjusting the
degree of removal for each before their reintegration. This
results in an improved SNR of the speech while keeping the
integrity of other speech elements.

The second design solution leverages deep learning
techniques to extract pertinent audio features, classifying
words from a specific vocabulary dataset. Our Automatic
Speech Recognition (ASR) model introduces denoising
autoencoder and equalization layers on top of ResNet
to address the challenges posed by low SNR and non-
linear frequency response of the sensor. This solution can be
preferred by attackers when more precision is desired, and
focus is required on specific critical keywords.

We extensively evaluate the effectiveness of BaroVox
through real-world experiments, considering various factors
that influence the success of the attack. We evaluate the first
solution’s capability in Manual Speech Recognition (MSR)
by engaging 18 volunteers to transcribe 20 reconstructed
speeches from pressure data. The performance metrics are
Mean Opinion Score (MOS) [7] and Word Error Rate
(WER) [8]. Our results demonstrate BaroVox’s alarming
efficacy. The proposed signal processing pipeline achieves
a WER of 0.29, comprehending over 70% of the discourse.
The second solution’s efficacy was gauged on its word
classification prowess within a restricted vocabulary dataset.
Our ASR model achieved an impressive 90.51% accuracy
for a 35-keyword, speaker-independent classification.

These findings highlight the serious privacy implications
of BaroVox. Attackers can exploit this vulnerability to eaves-
drop on sensitive conversations, compromise confidential
information, or invade privacy without physical access to
the targeted premises. The implications are particularly
severe in critical environments such as industrial facilities,
corporate offices, and healthcare institutions, where the loss
of sensitive data can have far-reaching consequences. Our
main contributions are summarized as follows:

(1) We discover a previously overlooked acoustic side-
channel vulnerability in deploying DPS in proximity to sound
sources.

(2) We characterize the limits and challenges of speech
recovery from pressure reading. We propose BaroVox to
overcome these challenges. To the best of our knowledge,
BaroVox is the first side-channel attack on pressure sensors.

(3) We evaluate BaroVox on MSR and ASR tasks and
show an attacker can partially reconstruct a speech with
0.29 WER using MSR and 90.51% accuracy using ASR. We
present sample reconstructed audio for demonstration here:
BaroVox.

(4) We propose practical countermeasures and defense
strategies to mitigate the risks associated with BaroVox.

2. Background

In this section, we discuss DPSs and their applications
across various domains, as well as the privacy implications

of deploying DPS in close proximity to audio systems.

2.1. Physics of Differential Pressure Sensors

The structure of a DPS is illustrated in Fig. 1. A DPS
consists of three fundamental components: 1) pressure ports,
2) a pressure-sensing element, and 3) a transducer. Pressure
ports are openings in the sensor where pressure gets applied
and are connected directly to the pressure-sensing element.

The pressure-sensing element is a force collector con-
structed of a flexible diaphragm such as a thin semiconductor
material film, a silicon membrane, or another material that
responds to the measured pressure. In our attack, we show
that the thin and flexible nature of the diaphragm enables
the sensing element to respond to tiny vibrations created by
sound waves. We then utilize these vibrations collected by
the sensing element to reconstruct speech.

Various physical mechanisms, such as thermal mass-flow,
capacitive sensing, or piezoresistive sensing, could form the
basis of the transducer element. Of all DPSs, thermal mass-
flow and piezoresistive sensing-based DPSs are widely used
in various applications. However, thermal mass-flow-based
DPSs are preferable due to their high measuring accuracy
even on long connecting hoses [9]. For this reason, we used a
thermal mass-flow DPS to show the feasibility of our attack.
Specifically, we utilized the SDP800 [3] DPS from Sensirion,
and we will provide a detailed explanation of its structure
below. Importantly, the vulnerability we have discovered is
inherent to the fundamental design of DPS, specifically the
flexible diaphragm used as a force collector. This diaphragm-
based sensing mechanism is common across various DPS
types. This makes all DPSs vulnerable to our attack as they
can pick up tiny vibrations.

Thermal mass-flow DPS: Fig. 1 depicts the structure of
a thermal mass-flow DPS. This DPS uses a pressure-sensing
element which consists of a thin semiconductor diaphragm
(Silicon Nitrate film), two temperature sensors, and a heating
element. As air moves across this diaphragm, it prompts
a temperature differential between the temperature sensors.
This temperature shift, which correlates with the mass flow
rate of the air, is then adeptly translated by the transducer
into an electrical signal, reflecting the differential pressure.

Electronics inside of DPSs: DPS has other electronic
circuits to condition and relay signals. These circuits process
the signal derived from the sensing element, ultimately
generating an output indicative of the measured differential
pressure. The circuitry amplifies the output signal, including
any pressure differential captured by the pressure-sensing
element due to sound vibration. As illustrated in Fig.1, this
processing sequence involves components like an amplifier,
a Digital Signal Processor (DSP), and an Analog-to-Digital
Converter (ADC). Once digitized, the signal is directed to a
microcontroller via the Communication Interface (CI). The
ADC’s sampling rate might constrain data transfer to the
controller, influencing the sampling rate of the pressure
reading — an aspect detailed in Sec. 5.3.
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Figure 1. Components of a DPS.

2.2. DPS’s Critical Role in Controlled Environments

DPS are widely used in applications that require mon-
itoring the pressure difference between two points in a
system. These sensors regulate airflow and maintain specific
pressure levels within controlled environments. DPS offers
high sensitivity, accuracy, and reliability.

While DPS find applications in various sectors, their
role is particularly critical in the semiconductor industry,
where they are essential for maintaining cleanroom integrity.
Cleanrooms in semiconductor manufacturing serve as highly
controlled environments designed to minimize airborne
contaminants [10], [11]. Recent contamination incidents
at major companies like Samsung and TSMC, resulting in
losses exceeding $1 billion [12], [13], underscore the critical
nature of maintaining cleanroom integrity.

Besides cleanrooms, DPSs are commonly used in HVAC
systems for buildings, offices, and hotels. Monitoring and
controlling airflow enable efficient temperature regulation,
air quality management, and energy optimization. DPSs
are also employed in smart home systems, where they
contribute to creating a comfortable and energy-efficient
living environment. DPSs are also used in healthcare settings,
commonly in Negative Pressure Rooms (NPRs), to measure
the negative pressure in the facility [14].

To contextualize our BaroVox attack, we examine the
deployment of DPSs and sound systems in semiconductor
cleanrooms as an example of a secure pressure-regulated
facilities. The following sections dissect the cleanroom com-
ponents pertinent to this attack, focusing on the integration
of pressure sensors and audio systems.

2.3. Components of a real-world cleanroom

Cleanrooms may vary in design and specifications across
different organizations. However, the primary objective re-
mains consistent: to prevent contamination by maintaining a
sterile environment. Fig. 2 illustrates a standard cleanroom
design. The process begins with intake vents that channel
outdoor air into the HVAC system. This system filters and
conditions air by adjusting temperature and humidity, which
are crucial for semiconductor production. Air pumps and
compressors then push the air through HEPA filters, which
remove contaminants, ensuring a clean environment. The
RPM system is instrumental in constantly overseeing the pres-
sure differences across cleanroom areas. The Room Pressure
Monitoring (RPM) feeds data from the DPS into the HVAC,
directing adjustments in airflow. The ensuing subsections

spotlight the deployment of DPSs and sound systems within
cleanrooms, given their significance to BaroVox.
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Figure 2. Components of a semiconductor cleanroom.

2.3.1. Sound Systems in Cleanrooms and Their Deploy-
ment. Cleanroom operations demand robust communication
for coordination and safety adherence. Consequently, these
environments often feature comprehensive sound systems [2].
Intercoms serve a dual purpose of ensuring clear commu-
nication while reducing contamination risk. Additionally,
cleanroom personnel often use protective clothing with inte-
grated microphones, enabling efficient communication with-
out removing protective gear, thus preserving the controlled
environment. Wall-mounted speakers are strategically placed
to broadcast announcements and facilitate communications.

These audio systems, crucial for operational efficiency,
are frequently installed in close proximity to DPS due to
space constraints and the need for integrated environmental
control and communication. Moreover, the audio systems
are channels for disseminating proprietary and confidential
data — encompassing process parameters, recipes, design
information, and quality control protocols.

2.3.2. DPS Deployment in Cleanrooms. DPSs are typically
mounted in the cleanroom walls or close to the Building
Management System (BMS). Each DPS employs a dual-port
system connected to sampling tubes, strategically positioned
to monitor pressure differentials between the cleanroom
and adjacent spaces. One sensor port often connects to the
cleanroom interior, while the other links to a reference point,
usually via sampling tubes, enabling accurate pressure dif-
ferential measurements. The RPM system utilizes these DPS
to continuously monitor cleanroom pressure, transmitting
readings to the BMS.

2.4. Privacy implications of DPS deployment

In this research, we show that the deployment of DPS
in close proximity to audio systems, such as intercoms and
speakers, raises significant privacy concerns. While this co-
location is often necessary for facilitating communication [2],
[15], [16], it inadvertently creates an acoustic side-channel
that can be exploited by attackers.

The high sensitivity of DPS to pressure variations makes
them vulnerable to unintentional acoustic coupling. Sound
waves from nearby audio systems can induce minute Vvi-
brations on the sensor’s diaphragm, causing measurable
changes in the DPS output. Consequently, the DPS effectively



functions as a makeshift microphone, allowing attackers
to analyze the output variations and partially reconstruct
the original audio signal. This enables eavesdropping on
confidential conversations.

The privacy implications of this vulnerability are par-
ticularly concerning in environments where confidential
discussions occur, such as cleanrooms, corporate meetings,
healthcare consultations, or personal conversations in residen-
tial settings. Attackers may leverage this to gather valuable
intelligence, compromise trade secrets, or invade personal
privacy, all without the need for physical intrusion. Amid the
rising IP war, this can be costly with IP and national security
at stake. Privacy implications of BaroVox in cleanrooms are
discussed in detail in Appx. A.

3. Related work

In this section, we comparatively discuss BaroVox with
state-of-the-art works in the following two categories.

Side-channel speech eavesdropping: Side-channel
eavesdropping has been considerably studied in academic
literature [17]-[26]. Several works, such as [17]-[21], [23],
[27]-[30], have investigated the vulnerabilities of motion
sensor eavesdropping, most notably in mobile devices. Sami
et al. [31] devised a novel acoustic side-channel threat using
the lidar sensors found in consumer-grade robot vacuums.
Roy et al. [32] looked into the practicality of using a mobile
device’s vibration motor as a sound sensor. Nassi et al. [33]
exploit the vibrations of a hanging bulb inside a room to
retrieve sound from desk lamp light bulbs through an optical
side-channel attack. [34]-[40] are other works that focus on
acoustic signal eavesdropping. These studies raised public
awareness of the feasibility of recovering sound by analyzing
non-acoustic data. Our work takes a unique approach to side-
channel attacks by demonstrating the first-ever use of this
technique on pressure sensors, adding a new dimension to
this field of study.

Attacks on pressure sensors: Tu et al. [41] reveal
threats of Electromagnetic interference spoofing attacks on
tire pressure sensors to over/under-inflate car tire. Barua et
al. designed malicious music to create resonance in pressure
sensors to fool the pressure sensor used in the RPM systems
of a negative pressure room (NPR) to turn NPR’s negative
pressure into positive one [42]. Our research distinguishes
itself by highlighting the sensitivity of pressure sensors
across a range of frequencies beyond the resonant frequency.
Moreover, while both papers engage DPS sensors, they
diverge significantly in focus and methodology. Barua et al.
exploit resonant frequencies to manipulate pressure readings
and create hazardous conditions — an integrity attack. In
contrast, our work reveals the potential of DPS as a covert
channel for leaking acoustic information — a confidentiality
attack. Additionally, we demonstrate the potential to extract
sound signals from minor fluctuations in pressure readings,
a new avenue for exploiting pressure sensors.

4. Threat Model

Fig. 3 depicts an overview of our attack model, out-
lining the attacker’s target system, goals, capabilities, and
assumptions.

Attacker’s Target: We consider a scenario in which the
attacker targets a sensitive conversation or meeting taking
place in an environment equipped with DPSs, such as a
corporate boardroom, a secure research facility, a cleanroom
in a semiconductor manufacturing plant, or any pressure-
regulated room. The participants in the conversation are
unaware of the potential for eavesdropping through the DPSs
and assume that their discussion is confidential.

Attacker’s Goal: The attacker aims to reconstruct speech
stealthily or recover sensitive information from the environ-
ment by exploiting the acoustic side-channel vulnerability
in DPSs. The attacker could use this data for malicious
activities, including espionage, blackmail, and theft.

Attacker’s Capabilities: The attacker is assumed to
know the type and characteristics of the DPS deployed in the
target environment. This information can be obtained through
technical specifications or by studying similar systems as
discussed in Sec. 5. The attacker also possesses the necessary
technical skills and resources to process and analyze the
captured pressure data using signal processing and machine
learning techniques.

Attack Scenarios: BaroVox can be used for either
targeted eavesdropping, where the attacker targets specific
individuals, conversations, or events, or broad-spectrum
eavesdropping, where the attacker indiscriminately monitors
the environment to recover any valuable or sensitive audio
content.

These attacks can be executed across various settings. In
industrial and corporate environments, attackers can intercept
confidential discussions about trade secrets or strategic plans.
The vulnerability extends to private spaces, where DPSs in
smart home or hotel HVAC systems could capture personal
conversations. In healthcare facilities, government buildings,
or military installations, BaroVox could be used to eavesdrop
on confidential patient-doctor conversations or gather classi-
fied intelligence. The attack’s effectiveness may vary based
on factors like DPS model and environmental conditions,
but the range of potential scenarios underscores the critical
need to address this acoustic side-channel vulnerability.

Attacker’s Access Level: We assume that the attacker
does not have physical access to the targeted environment
or the ability to tamper with the DPS hardware. Instead,
the attacker relies on remote access to the pressure sensor
readings, either through a compromised system, a malicious
insider, or by intercepting the sensor data transmitted over a
network.

Attackers may obtain pressure reading data by exploiting
personnel with clearance to access pressure sensor logs
but not necessarily the targeted environment itself, such
as a rogue employee, visitor, or maintenance worker. Our
attack model focuses on situations where security measures
protecting pressure log data are less stringent than those
within the targeted environment.
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Attackers may also tamper with the pressure monitoring
system during delivery or installation, enabling it to transmit
data via the Interne. Modern RPMs often have internet mod-
ules that allow remote connections, which can be exploited
by the attacker to intercept data without being physically
present [43]. Attackers may also access archived pressure
sensor logs, which are often overlooked but preserved for
diagnostics or maintenance. Studies have shown that attackers
exploit vulnerabilities in log security, using techniques like
mapping sensor locations through security alerts or bypassing
log protections [44], [45].

Assumptions: We assume that the DPSs in the target
environment are deployed in proximity to audio sources,
such as speakers, intercoms, or areas where conversations
occur. This assumption is based on the common practice of
integrating audio systems with DPSs for various purposes.

5. Feasibility Study

Exploiting DPSs’ acoustic side-channel vulnerability to
recover speech signals requires a thorough understanding of
the sensor’s behavior, sampling rate, and frequency response.
Sensor datasheets often conceal these details, which presents
challenges for attackers attempting to reconstruct audio
from pressure readings. Our analysis aims to highlight these
challenges and demonstrate the attack’s feasibility.

5.1. Experimental setup

The experimental setup is depicted in Fig. 4. To showcase
our attack’s feasibility, we use the SDP800 DPS [3] (see 2.1),

securely mounted to avoid movement-related noise. A Sony
XB13 [46] speaker is placed 5 cm directly underneath one of
the pressure ports to play the audio clips. To prevent sound
signals from influencing the pressure in the other port, we
connect a sampling tube to it, isolated by positioning its
opening a meter away, shielded by a hard surface. Signals
from the sensor are read using a Raspberry Pi 3 Model
B [47]. We employ a custom Python script to convert the
pressure readings into a format an attacker can process.

5.2. Primary observation

Fig. 5 compares the Short-Time Fourier Transform
(STFT) spectrum of the word “one” captured by an iPhone
13 microphone (right) and the SDP800 DPS (left). The spec-
trum demonstrates the variations in power across different
audio frequency components over time. Notably, the DPS’s
response is discernibly feebler and less extensive than the
microphone’s, especially in frequencies surpassing 0.4 kHz.
Distortions are observable even in zones of ostensibly strong
signals (0.4 - 0.85 kHz). Furthermore, the DPS fails to
register signals exceeding 0.9 kHz. A comparative analysis of
the Fast Fourier Transform (FFT) plots in Fig. 6 echoes these
observations, with the DPS showing subpar responsiveness
to signals above 0.4 kHz. This indicates a notable loss in
acoustic fidelity when reconstructing speech from the DPS
data (also see Fig. 7).

5.3. Challenges

A successful attack requires recovery of information lost
from pressure readings, at least partially. Here, we examine
the challenges attackers may face during this process.

5.3.1. Low sampling rate. The sensor’s low sampling rate
is a significant challenge in executing the BaroVox attack.
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For example, the SDP800 sensor used in our experiment
has a theoretical maximum sampling rate of 2.2 kHz [3].
However, as demonstrated in Fig. 6, it only captures fre-
quencies up to approximately 0.9 kHz, with notably weak
signals within the 0.6 - 0.9 kHz range. Consequently, given
Nyquist’s theorem [48], the sensor’s effective sampling rate
is approximated at 1.8 kHz, a shortfall of 0.4 kHz from its
potential. This limitation restricts speech recovery within the
sub-0.9 kHz range, significantly below the 4 kHz threshold
necessary for intelligible speech [49], [50], causing aliasing
and complicating the recovery stage.

5.3.2. Non-linear frequency response. DPS can be depicted
as a second-order dynamic system since it employs an
elastic diaphragm for pressure force collection [S1]. This
leads to a non-linear frequency response to sound waves
of varying frequencies. To investigate this, we construct an
audio file with a sine sweep wave ranging from 1 Hz to
2 kHz. We play the audio file through a speaker using the
setup specified in Sec. 5.1. We then reconstruct audio from
pressure reading and analyze the data using FFT plots. FFT
plots of the reconstructed audio (Fig. 7) show reduced signal
strength across frequencies compared to the original. The
original audio has consistent power up to 2 kHz, whereas
the reconstructed signal loses power as frequency increases,
dropping sharply after 0.4 kHz. At frequencies above 0.65
kHz, its power nears mere noise levels. These insights can
be leveraged to equalize the signal by boosting the strength
of the affected frequencies (see Sec.6.3.3).

5.3.3. Low Signal-to-Noise Ratio (SNR). DPSs yield non-
zero readings even in the absence of sound due to the
presence of ambient noise and pressure fluctuations. Acoustic
disturbances like machinery operation, air conditioning noise,
and door activities further affect the readings. These ambient
noises introduce unwanted interference to the sensor’s data,
lowering the SNR and degrading the quality of reconstructed
speech. To mitigate this issue, we applied filters and spectral
subtraction techniques to improve the audio recovery quality
(see Sec. 6.3).

6. Attack Design and Implementation

This section outlines the attack system design. We begin
with a mathematical model to demonstrate sound waves’
impact on DPSs and introduce two BaroVox design solutions.
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Figure 7. Non-linear frequency response of the SDP800 DPS for a sine
sweep wave with a frequency range of 1 to 2 kHz.

6.1. Modeling effects of sound on DPSs

Sound waves, as disturbances propagating through matter,
create varying local pressures by compressing and expanding
air. Thus, sound can be modeled as a pressure wave. If a
sound is played at a frequency f with an initial phase ¢
and a wavelength of ), then the change in pressure due to
sound (APs(t)) at a distance = from the sound source can
be represented:

AP(t,x) = Az, f, 1) - Pomaz - sin(kz £ ft+¢) (1)

where Pgq. 1 the maximum pressure change due to sound
and A(z, f) represents the attenuation of a sound wave,
which depends on distance = and frequency f of the audio
source and noise .

If there is a DPS at a distance x = x¢ from a sound
source, we model the perturbation in the reading of the DPS
as a result of a sound wave as follows:

P(t) = Py(t) + AP,(t, 20) 2)

where P(t) is the total measured pressure by the DPS, and
P,(t) is the original pressure and noise read by the DPS
without sound.

6.2. Design solutions: overview

BaroVox offers two design approaches to address chal-
lenges discussed in Sec. 5.3. Both designs pivot on a Pressure-
Acoustic Transformation (PAT) outlined below. Fig. 3 sum-
marizes how these designs integrate into the attack model.

Pressure-Acoustic Transformation (PAT): PAT converts
DPS readings into wave files. PAT reduces the influence of
the normal differential pressure of the target environment
using Eqn. 3.

S(t) = P(t) - P(1) 3

where S(t) is the amplitude of the sound wave at time ¢, P(t)
is the instantaneous pressure reading from the DPS and P(t)
is the mean value of P(¢). This levels the DC offset due to
the normal differential pressure of the room by subtracting
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the mean of the pressure signal (P(t)) from P(t). S(t) is
further refined using either of the design solutions discussed
below.

Design Solution I (DS-I): DS-I aims to enhance the SNR
of reconstructed speech (S(t)) using a series of cascaded digi-
tal signal processing techniques for improved audio quality. It
employs a smart spectral subtraction method in conjunction
with standard normalization, high-pass filtering, and DC-
offset reduction techniques. This approach proves valuable for
attackers when the retrieved speech is substantially distorted
by noise, efficiently mitigating noise and other audio signal
distortions. Furthermore, DS-I is not bound by vocabulary
size, providing flexibility in recognizing a wide range of
words and phrases. Sec. 6.3 discusses DS-I in detail.

Design Solution II (DS-II): DS-ITI develops an Auto-
mated Speech Recognition system employing Deep Learning.
It utilizes SpeechCommands datasets and utilizes a classifica-
tion model. Attackers may prefer DS-II when more precision
is desired and focus is required on specific critical words,
numbers, or instructions in the target environment setting.

6.3. Design solution I (DS-I)

Fig. 8 provides a comprehensive overview of the tech-
niques used in DS-I. Below, we delve into a deeper analysis
of each technique.

6.3.1. High-pass filter. A high-pass filter refines the recov-
ered audio (S(¢)) by enhancing its SNR. We initially acquire
samples from the DPS without sound to observe acoustical
disturbances induced by various environmental conditions in
the target environment. The FFT of this noise data, shown
in Fig. 7 (red line), displays dispersed noise energy across
frequency components. However, the speech recorded by an
iPhone 13 in Fig. 5 (right) does not contain speech data
in frequencies less than 40 Hz. In contrast, the audio from
the SDP800 DPS in Fig. 5 (left) is filled with noise below
40 Hz, which is undesirable. Therefore, we apply a 3rd-
order Butterworth high-pass filter with a cutoff frequency
of 40 Hz to remove the low-frequency component of the
noise. If not removed fully during PAT (see Eqn. 3), the DC

offset generated by the ambient pressure in the room would
likewise be nullified using the filter.

To further study the filter’s influence, we record a short
three-second speech and reconstructed the audio from the
sensor data using Eqn. 3. The speech reads: “All good
things come to an end.” The resulting SNR value of the
reconstructed speech is 7.464 dB. With the high pass filter,
SNR rises to 8.888 dB — 19.08% improvement. This effect
is evident in Fig. 8 (C)’s spectrum and waveform plot. Post
PAT transformation from pressure wave (A) to speech data
(B), prominent power in the low-frequency domain emerges.
However, after the high-pass filter application, this noise
diminishes (C), making the waveform more congruent with
the original audio.

Given the noise in other frequency ranges overlaps with
speech data (see Fig. 5 (right)), a more sophisticated method
to eliminate this is discussed in the upcoming subsection.

6.3.2. Spectral subtraction. Spectral subtraction subtracts
an estimate of the noise spectrum from the speech spectrum
to get a denoised spectrum. Direct subtraction of noise from
speech is theoretically ideal but can distort elements of
the speech signal with noise-like characteristics. To address
this, we differentiate between two sound types within the
speech signal: percussive and harmonic components, and
their susceptibility to noise.

Percussive components: Characterized by their brief,
non-steady nature, percussive sounds lack a clear pitch or
tonal quality [52]. Examples include consonants like plo-
sives and non-pulmonic sounds produced by rapid, irregular
vibrations within the vocal tract [53]. With sharp attack and
decay times, these components exhibit noise-like spectral
characteristics.

Harmonic components: In contrast, harmonic compo-
nents possess a clear, identifiable pitch or tone, produced
by steady-state vibrations of the vocal cords [52]. These
components encompass vowels and voiced consonants like
‘I’, ‘n’, and ‘r’, exhibiting periodic characteristics [54].

Given the noise-like attributes of percussive sounds,
they are inherently vulnerable to distortion during spectral
subtraction, impacting the speech signal’s integrity [55],
[56]. Consequently, while employing spectral subtraction,



emphasis should be on mitigating noise within harmonic
components. Subtraction should be cautiously applied to
percussive elements to preserve crucial signal information.
Fig. 11 in Appx B.2 illustrates the spectral subtraction
process. Hereafter, we comprehensively analyze each part
of the process separately.

Algorithm 1: PHS using median filtering.

Input: s: Input audio, W: Window size, H: Hop size, n_iter:
Number of iterations
Output: P: Complex spectrogram of percussive component,
H: Complex spectrogram of the harmonic component
1 S[n_iter, K] < STFT of s with window size W and hop size
H, where N is the time frame index, and K is the frequency
index
2 S_mag <+ magnitude spectrogram of S
3 S_phase < phase spectrogram of S
4 for n =1 to n_iter do
5 Compute the harmonic component energy envelope:

o0
Eh[n7 k} <~ Z S—mag[naj ) k]
j=1

6 Compute the percussive component energy envelope:
Eyn, k] < max _S_mag[n,j-kl;
J#0,5- k<K
7 Compute the percussive mask:
Eyn,k
Myln, b bl
8 Compute the harmonic mask:
Ep[n,k
Mhln. k] & g
9 Compute the complex spectrogram of the percussive
component:
Pln, k] < Mp[n, k] - S[n, k] - exp(i- S_phase[n, k])
10 Compute the complex spectrogram of the harmonic
component:
Hin,k] < Mp[n, k] - S[n, k] - exp(i- S_phase[n, k])
11 return P, H

Percussive-Harmonic Separation (PHS): PHS is the
initial step in spectral subtraction (see Fig. 11 (B)). We use
a technique based on median filtering to separate the speech
signal into harmonic and percussive components [5], [6].
Median filtering is a signal processing technique that aims to
remove noise from a signal by replacing each sample with the
median value of a group of neighboring samples. Algorithm 1
shows the technique we used for PHS. First, the STFT of
the signal is calculated (line 1), followed by computing
the magnitude and phase of the spectra (lines 2-3). Median
filtering is then applied to the magnitude spectra across
sequential frames, enhancing percussive components and
suppressing harmonic ones (line 5). Subsequently, median
filtering across frequency bins is performed on magnitude
spectra to bolster harmonic components while suppressing
percussive events (line 6). We use the two resulting median-
filtered spectrograms to generate masks (lines 7-8). These
masks are applied to the original spectrogram to separate
the harmonic and percussive parts of the signal (lines 9-
10). The algorithm yields two signals: one containing only
percussive components and one containing only harmonic
components (line 11) (also see Fig. 11 (B)).

Characterizing noise: Before implementing noise re-
duction, it is vital to model the noise properties [57], [58].
To characterize the statistical features of noise, we capture a
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Figure 9. (Left) Frequency response of the SDP800 DPS for a sine sweep
wave (1 Hz - 2 kHz). (Right) The gain factor for each frequency band.

segment of noise in the target environment and produce its
power spectrum.

Spectral subtraction: We then apply spectral subtraction
only to the harmonic signal using an estimate of the residual
noise spectrum obtained above (see Fig. 11 (C)). This step
results in an enhanced harmonic signal with minimized noise
artifacts. Prior to applying spectral subtraction to the percus-
sive component, the residual noise spectrum is downscaled
to prevent compromising the speech signal quality. The
optimal downscale factor is determined through subjective
listening tests. Subsequently, a denoised speech signal is
reconstructed by combining the adjusted harmonic and
percussive signals. Fig. 8 (D) demonstrates the amalgamated
effect of spectral subtraction and equalization (see Sec. 6.3.3)
on the spectrum and waveform plot, highlighting the noise
reduction across various frequency ranges. Notably, applying
spectral subtraction alone leads to an 11.6% increase in the
SNR of the reconstructed speech, improving it from 8.888
to 9.921 dB. The ensuing section will address the final step
of DS-I: equalization.

6.3.3. Equalization. As noted in Sec. 5.3.2, DPS exhibits a
non-linear frequency response. To rectify this, we implement
equalization, aiming to establish a desired tonal balance and
sound quality. This process involves adjusting the gain of
various frequency components of the signal to offset any
deviations from a flat frequency response. We use frequency-
domain equalization technique to modify the sensor’s
frequency response. This technique efficiently amplifies or
diminishes specific frequency ranges without influencing
other portions of the signal [59].

Frequency-Domain Equalizer (FDE): We design our
FDE using a bank of bandpass filters. The design process
involves choosing the right number of filters, setting their
center frequencies and bandwidths, and defining the necessary
gain or attenuation for each frequency [60]. An experiment
was conducted to define these parameters: a sine wave with
frequencies ranging from 1 to 1 kHz was played and recorded
using the SDP800 DPS. Normalized FFT plots of both the
original and the DPS-reconstructed signals are presented in
Fig. 9 (left). It is clear that the sensor’s non-linear response
affected the reconstructed signal.

Filter specifications: The number of bandpass filters
required is determined by various parameters, including
the signal’s frequency range (1 kHz in our case), desired
frequency resolution, and the filter bank’s complexity. A bal-
ance between filter bank complexity and required frequency



resolution is needed for optimal computational efficiency
and equalization accuracy. Our approach uses 40 bandpass
filters, each with 25 Hz equal-width bands. Subjective tests
indicated that increasing the filter count did not significantly
improve sound quality, guiding our decision for 40 filters.

To calculate the gain at each frequency band, we used
the reconstructed signal and the original sine wave. We put
them through Fourier transformation to get their frequency
spectrums. The gain for each band is computed as the ratio
of the original sine wave’s amplitude to the amplitude of the
reconstructed signal at the band’s center frequency. Fig. 9
depicts the gain factor for each frequency band. These
gain factors were then applied to the output signal for
each frequency band to produce an equalized signal that
balanced the non-linear response of the DPS. Fig. 8 depicts
the result of the equalization process, in which the higher
frequencies of the input signal are amplified after passing
through the equalizer, increasing the SNR value by 55.04%
from 9.921 dB to 15.382 dB.

6.4. Design solution II (DS-II)

DS-I offers enhanced audio with a lower SNR, enabling
attackers to perform partial manual speech recognition.
However, there are times when the attacker wants to get
a more precise and accurate recognition of words spoken
inside the target environment. For this purpose, we develop
an Automated Speech Recognition (ASR) DL model. The
ASR solution classifies the pressure signals into their textual
representations.

6.4.1. Task and dataset selection. With DS-II in operation,
the attacker aims to automatically extract and categorize
spoken words from the captured pressure signals. Given com-
munication inside sensitive environments is often restricted
for clarity and brevity, we want our model to learn to classify
pressure wave signals into a limited set of keywords. For this,
we focus on types of speech containing critical information;
specifically, we target spoken digits and commands. For
example, the sentence “Load 3.1-millimeter wafers” presents
insight into both the manufacturing process and product
specification within a semiconductor manufacturing clean-
room through the command ”load” and the number 73.1,”
respectively. We focus on digit and command classification
using the SpeechCommands [61] dataset. SpeechCommands
contains common speech commands from multiple speakers
in various environments. An overview of the datasets is
available in Appx. B.3.

Considerations on vocabulary limitations: While it is
evident that real-world applications would present a more
diverse vocabulary, the current task is focused on unveiling
the latent risks tied to this unexplored side-channel attack.
Employing a constrained vocabulary for this proof-of-concept
might not entirely reflect the breadth of real-world scenarios,
yet it aptly illustrates the potential of the proposed approach.
Generating a comprehensive dataset is undoubtedly resource-
intensive and costly. However, it is crucial to emphasize
that the primary aim here is to spotlight potential security

vulnerabilities. In a scenario where confidential information
is the target, it is reasonable to assume that attackers,
understanding the value of the information at stake, would
not balk at investing in a robust dataset to realize their illicit
objectives.

6.4.2. Dataset transformation. As the dataset involves
perfect microphone recordings of speech utterances, we use
an acoustic-pressure transformation strategy to transform
them into pressure-wave datasets. Given sound clips and
keyword labels, denoted as (z;(t),y;), we play the speech
through a speaker in the proximity of a pressure sensor. The
data is collected in a research facility, with varying distances
and orientations between the speaker and the pressure sensor,
as discussed in Sec. 7. This creates a new dataset that pairs
each sound signal z;(t) with the recorded pressure P;(t).
We then process P;(t) by using PAT (see Sec. 6.2) yielding
the signal S;(t). We create a final dataset by pairing the
reconstructed speech signal S;(¢) with their original keyword
labels, forming pairs (S;(¢),y;). An attacker can use this
new dataset to train models.

6.4.3. ASR model architecture. While numerous time series
classification models are available in the literature [62]-[64],
not all of them are well-suited for our specific application
due to the challenges posed by the low SNR and the low
sampling rate of the sensor. We build upon ResNet [65], [66],
known for extracting information from sparse signals [67].
Our contribution centers around our ASR model, designed
to address the challenges posed by low SNR and non-linear
frequency response of the DPS. This includes learnable
denoising autoencoder and equalization layers, providing
a robust solution to these specific issues. It also employs
a spectrogram representation defined by FFT bins, window
length, and hop size parameters. We sweep these parameters
to find the optimal receptive field for our transformed dataset.
The full explanation of each spectrogram parameter and the
model architecture is included in Appx. C.

7. Evaluation

This section evaluates BaroVox’s design solutions across
various metrics and scenarios. The experiments are con-
ducted in a seminar room of an anonymous research lab,
simulating real-world conditions while ensuring a controlled
environment for data collection.

7.1. Methodology and metrics

7.1.1. Manual Speech Recognition (MSR). We evaluate
DS-I using MSR. For this task, we recruited 18 volunteers
from our institution. The survey includes people with diverse
linguistic backgrounds, with only eight considering English
as their primary language. Others speak languages from
Africa, South Asia, and East Asia. We use the setup discussed
in Sec. 5.1 to prepare the evaluation dataset. We record
20 sentences focused on general conversations, scientific
theories, and semiconductor fabrications using an iPhone 13



microphone and DPS. We use DS-1 to perform pressure-
acoustic transformation, remove background noise, and
improve the overall quality of the speech. We then use the
word error rate (WER) and the mean opinion score (MOS)
metrics for evaluation. For both metrics, each volunteer is
kept in a quiet room for listening.

WER: WER is a standard measure for speech recognition
tasks [8]. To calculate WER, we play the reconstructed
audio data from the DPS separately for each volunteer and
request them to transcribe it based on their comprehension.
WER is computed by comparing the transcription to the
actual spoken words and counting errors using the formula:
WER=(S+D+1)/N. S, D, and I denote the number
of incorrectly transcribed, missing, and incorrectly added
words by the volunteer, while N represents the total number
of words in the actual spoken recording. A lower WER
indicates greater intelligibility of the reconstructed audio.

MOS: MOS serves as a subjective measure of the per-
ceived speech quality [7]. MOS assesses how well volunteers
can comprehend the content of the reconstructed speech.
Participants are instructed to listen to the reconstructed
speech first and then the original audio. Subsequently, they
rate the content-wise similarity between the two on a scale
of 1 to 5. For instance, if volunteers perceive that the
reconstructed audio is understandable and resembles the
original audio content, they assign a score of 5. Conversely, if
they believe that the reconstructed speech differs significantly
from the original speech, they assign a score of 1. This
approach allows us to quantify how effectively our system
reconstructs speech that is understandable and akin to the
original content.

7.1.2. Automatic Speech Recognition (ASR). We eval-
uate DS-II on automated classification tasks through the
transformed SpeechCommands [61] datasets. We mainly use
accuracy as the evaluation metric to measure our model’s
ability to accurately and truthfully recognize the given classes.

7.2. Results for MSR

7.2.1. Performance on general speech. Table 5 in Appx. D
shows the average WER and MOS of each ground truth
sentence over the responses of the 18 volunteers. On average,
participants had a WER of 0.35, and a MOS of 4.09/5. A
WER of 0.35 means volunteers can reconstruct more than
60% of the speech effectively, a significant achievement
from the attacker’s perspective. A MOS of 4.09/5 also shows
volunteers perceived a notable content resemblance between
the reconstructed speech and the original audio. These results
show that humans can identify and reconstruct everyday
speech partially from pressure-wave signals.

7.2.2. Performance on sensitive information. To assess the
impact of targeted eavesdropping on sensitive information,
we focus on sentences containing confidential data related
to semiconductor manufacturing processes. A detailed dis-
cussion of the key components of a cleanroom, including
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WER
IWER!
0.38/0.20

MOS
IMOS!
3457350

Breach
Type?
TC

Ground Truth Sentence

Run the diffusion process at three hun-
dred kelvin for nine minutes

Use process B for the trench isolation
Etch the pattern using SF6 plasma
Sputter a one hundred and fifty nano
meter layer of Aluminum copper alloy
for contacts

The defect rate for lot number seven is
two percent

Overheating issues impacted four per-
cent of the latest batch

Decrease metal layer flowrate

Use different etching gas for oxide layer
Perform a defect analysis on the wafer
batch

Reduce the concentration of the clean-
ing solution.

Average 0.45/0.29 | 3.36/3.71
1: WER & MOS: Volunteers’ scores after receiving context.

2: TC - Trade secret, QC - Quality control

NB: IRB exemption approval obtained to conduct the survey.

TABLE 1. PERFORMANCE ON SEMICONDUCTOR-FOCUSED SENTENCES.

0.62/0.32
0.40/0.25
0.48/0.45

3.00/3.88
3.55/3.25
3.00/3.38

TC
TC
TC

0.30/0.15 | 3.27/3.88 | TC&QC

0.28/0.23 | 3.64/4.00 | QC
TC
TC

TC&QC

0.67/0.65
0.40/0.29
0.39/0.29

3.00/2.75
3.36/3.50
3.55/3.50

0.53/0.29 | 3.82/4.50 | TC&QC

the deployment of DPSs and sound systems, is provided
in Appx. A to contextualize the BaroVox attack in such
environments. Table 1 shows the aggregated responses of
the 10 volunteers on the chosen sentences and the type of
confidentiality breach each sentence target. The results are
an average WER and MOS of 0.45 and 3.36/5, respectively.
These results confirm that humans can partially understand
speech related to semiconductor fabrication from pressure-
wave signals even without extensive field knowledge. The
results are comparatively lower than the performance on
general speech, and this is due to the participants’ limited fa-
miliarity with semiconductor cleanroom contexts. To validate
that, we conduct the survey on the remaining 8 volunteers,
but at this time, we provide them with a short text about
the semiconductor manufacturing process. The content of
the text is available in Appx. E.1. The survey results in an
average WER score of 0.29 and MOS score of 3.71. The
score for each individual sentence is provided in Tab. 1.
Given an attacker’s presumed familiarity with the content
in Appx. E.1, we infer that employing the BaroVox attack
could enable them to accurately reconstruct over 70% of
cleanroom speech. In the semiconductor industry, even frag-
ments of information about processes or specifications can be
valuable to competitors, making this level of reconstruction
particularly concerning.

We demonstrate the effect of DS-I on some of the
sentences that we used in the survey in the following link:
BaroVox.

FFT size
64

Our ASR Model
80.37%

ResNet
68.16
70.35
80.14

Models
SpeechCommand64
SpeechCommand128 128 86.82%
SpeechCommand256 256 90.51%
TABLE 2. PERFORMANCE METRICS OF AS




7.3. Results for ASR

7.3.1. Performance on the testing dataset. Table 2
demonstrates the performance of the model when trained
across various FFT bin sizes, specifically 256, 128, and
64 bins. A clear correlation between the number of bins
and performance is observed, with larger bins yielding
improved results. In particular, models using 256 FFT bins
(SpeechCommand256) outperform the others, achieving
accuracy of 90.51%. This is not surprising since larger
bins imply a more receptive field, which provides better
frequency resolution. We compare our model’s performance
to others who conducted word classification on the original
SpeechCommand dataset. We find that the current state-of-
the-art ML technique achieves 98.32% accuracy [68]. This
difference is deemed acceptable, given the speech signals
used in the original model have a higher sampling rate (16
kHz). To demonstrate the impact of our contribution — the
addition of denoising autoencoder and equalization layers —
we trained and tested the unmodified ResNet model, and as
shown in Table 2, the performance drops by 10.37% percent.
Using a 2 m sampling tube reduces our model’s performance
to 72.8% (see Appx. F). Subsequently, we evaluate BaroVox
in different scenarios that influence the recovered speech
quality.

7.3.2. Performance analysis under various scenarios.
Evaluation setup. We investigate BaroVox’s responses to
speaker volume, distance, and orientation variations. Our
experiments cover distances from 5cm to 2m and sound
levels from 65dB to 90dB, reflecting common deployments
in cleanrooms and other DPS environments. This range of
configurations allows us to evaluate the attack’s viability
across realistic scenarios. Initially, the model’s generalized
parameters led to suboptimal performance due to their lack
of specificity to the nuanced conditions of each scenario.
Without fine-tuning, the model struggles with reduced SNRs
during lower volume levels or increased distances, impairing
its classification accuracy. Different orientations present
additional challenges by introducing phase variations and
amplitude alterations, which the unadjusted model could not
effectively handle. To mitigate these performance issues, fine-
tuning is deemed essential. The process involves retraining
our ASR model using scenario-specific datasets, each reflect-
ing the unique acoustical and signal characteristics associated
with particular volume, distance, and orientation variations.
Through this focused retraining, the model’s parameters are
recalibrated, allowing it to more accurately navigate and
adapt to the challenges within each scenario, leading to
improved performance.

Varying the volume of the audio source. To investigate
the speaker volume’s effect (measured in dB) on audio
recovery, we record pressure readings at 90 dB, 80 dB, and
65 dB of volume. Table 3 reveals a significant correlation
between volume and the classification model’s efficacy. As
the volume decreases from 90 dB to 65 dB, there’s a notable
decline in accuracy from 90.51% to 81.38%. Furthermore,
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Table 3 shows fine-tuning the model for this specific scenario
boosted ASR model performance by a huge margin.

Performance (in %)
Factors Fine-tunned / Unmodified
Speaker Orientation
Volume | Distance 0° 90° 180°
5¢m [90.51/90.51(82.16 / 13.87(82.19 / 10.15
90dB | 50cm [ 78757724 155.00/4.27]69.8177.24
im 78.27 12.48 | 23.27/2.57 | 30.76 / 3.41
5¢m [ 86.65/12.91(86.47 /13.61| 57.45/9.47
80dB | 50cm [46.2176.45]43.5073.82[31.1376.62
Im [68.59/242(19.94/1.97|49.25/2.58
5¢m | 81.38 /17.13(75.44 /12.39| 80.83 / 8.98
65dB | 50cm [65.68 /6.19]77.36 /3.46|55.3476.03
Im [56.3072341(2580/2.43]33.71/3.00

TABLE 3. PERFORMANCE OF BAROVOX IN DIFFERENT SCENARIOS.

Varying the distance of the audio source. We explore
the effect of increasing speaker-DPS distance on attack
accuracy, testing at distances of 5¢m, 50cm, and 1m. The
results are depicted in Table 3. Unsurprisingly, the model’s
performance varies inversely to the distance, given that sound
amplitudes drop off with respect to the square of the distance.
While the attack’s effectiveness decreases with distance, this
is a fundamental limitation shared by all sensor-based side-
channel attacks that rely on sound waves. However, our
attack model demonstrates robust performance up to 2m,
which is comparable to or exceeds the effective range of
many other sensor-based side-channel attacks. This range is
sufficient for numerous real-world scenarios, particularly in
cleanrooms and healthcare settings where DPS and sound
sources are often in close proximity.

To further evaluate the BaroVox’s robustness at a larger
distance, we experimented by putting the speaker at a distance
of 2m from the DPS. The classifiers’ accuracy was 36.09%,
much higher than random-guess accuracy. Nevertheless, the
attacker must employ improved ASR models to overcome
the distance limitation. We defer this task to future research,
but the motivation is explained in Appx. F.

Varying the orientation of the sound source from
the DSP. Given that human speech and speakers produce
directed sound waves, we probe how a source’s angle to the
sensor influences ASR performance. We mount the pressure
sensor at 0°, 90°, and 180°(when the speaker and DPS
face similar direction) from the speaker and we report the
result in Table 3. The results indicate that there exists a
considerable effect on accuracy. The accuracy is higher at
0° because the sound wave’s energy will be focused in the
direction of the DPS, potentially creating a strong vibration.
The performance reduced to 82.19% accuracy at 180°.

8. Discussion

8.1. Potential Outcomes and their Implications

Our study reveals a critical security vulnerability in
DPSs, demonstrating the feasibility of extracting speech
from pressure data.



8.1.1. Information leakage across industries. Our eval-
uation demonstrates significant potential for information
leakage. The Mean Opinion Score (MOS) of 3.36/5 for
semiconductor-focused sentences indicates substantial seman-
tic content in the reconstructed speech. The semiconductor
industry exemplifies the potential impact of BaroVox. Given
past IP theft incidents and the presence of sensitive informa-
tion in cleanrooms (Appendices A.2 and E), even fragments
of reconstructed information could be highly valuable to com-
petitors. In healthcare settings, similar reconstruction rates
could lead to breaches of patient confidentiality, potentially
violating regulations and trust.

8.1.2. Automated threat scaling. Our ASR model’s 90.51%
accuracy on the SpeechCommand256 dataset represents a
significant threat escalation. This high accuracy enables
potential automated, large-scale eavesdropping in real-world
scenarios. It could facilitate continuous monitoring, data
mining of partially reconstructed speech, and contextual
attacks based on identified key terms.

The combination of accurate speech reconstruction, high-
performance ASR, and increasing connectivity of DPS in
smart building systems creates a scenario where automated
eavesdropping becomes a tangible threat.

8.1.3. Attack effectiveness in various conditions. Our com-
prehensive evaluation of BaroVox reveals its effectiveness
across various real-world conditions. The attack demon-
strates high accuracy at close range (90.51% at Scm) and
maintains significant effectiveness up to 1m (78.27% after
fine-tuning), with detectable speech components persisting
at 2m. This performance curve aligns with many real-
world DPS deployments. Notably, BaroVox adapts well to
different volume levels, maintaining 81.38% accuracy at
conversational volume (65dB) at close range. The attack
also shows remarkable resilience to source orientation, with
accuracy remaining above 82% even at perpendicular and
opposite angles to the sound source.

These results indicate BaroVox’s adaptability to diverse
environments, from industrial settings to quieter spaces like
offices or healthcare facilities. When compared to other
sensor-based side-channel attacks, BaroVox demonstrates
comparable or superior performance, suggesting that DPS
are as vulnerable to acoustic side-channel attacks as sensors
more commonly associated with such vulnerabilities. The
significant improvements achieved through fine-tuning (e.g.,
from 2.48% to 78.27% at 1m) indicate potential for further
enhancements, implying that the attack’s effectiveness could
increase with more sophisticated processing techniques. In
conclusion, BaroVox presents a practical and adaptable attack
vector, with its performance characteristics closely aligning
with real-world DPS deployment scenarios, underscoring the
urgent need for comprehensive countermeasures.

8.1.4. Technological trends and future enhancements. The
increasing integration of DPS into IoT and smart building
systems amplifies BaroVox’s potential impact. The trend
towards networked, often under-secured sensors significantly
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expands the attack surface. Future enhancements could
further increase the threat level, including advanced signal
processing techniques like adaptive noise cancellation, ma-
chine learning improvements such as attention mechanisms
or transformers, and multi-sensor fusion in environments with
multiple DPS. These improvements could extend the attack’s
effective range beyond 2m and enhance its performance in
challenging acoustic environments.

8.2. Limitation

While our research demonstrates the significant potential
of BaroVox, it’s important to consider the context and
limitations of our findings. The attack’s effectiveness depends
on the attacker’s ability to access pressure sensor readings,
which varies across different deployment scenarios. This
aspect highlights the importance of secure data handling
practices in DPS-equipped environments.

The performance of BaroVox is influenced by the specific
characteristics of the DPS employed and environmental fac-
tors such as the proximity of sound sources. Our experiments
with the ASR model in DS-II showed that fine-tuning might
be necessary to adapt to diverse scenarios, indicating the
attack’s adaptability but also the need for scenario-specific
optimizations.

Our controlled experiments, while providing crucial in-
sights, represent a first step in understanding this vulnerability.
Real-world environments may present additional complexities
not fully captured in our current study. Nonetheless, our work
serves as a foundation for understanding the risks associated
with the acoustic side-channel vulnerability in DPS and
highlights the need for further research and development of
countermeasures.

8.3. Countermeasures

Potential defenses against BaroVox attacks include:

Sound dampening. Dampening the sound wave by
putting a sound-dampening material around the pressure
ports is an inexpensive countermeasure. We conduct sound-
dampening experiments using 3 materials: acrylic sheet, foam,
and paper box. Using these materials, the performance of
BaroVox decreased to 4.13%, 3.95%, and 4.04%, respec-
tively.

Filtering. Incorporating a low-pass filter into the elec-
tronic components of the DPS can help mitigate the attack.
The low-pass filter smooths the pressure readings and re-
moves higher-frequency data representing speech, making it
more difficult for an attacker to extract sensitive information.
In our experiments, a third-order Butterworth low-pass filter
with a cutoff frequency of 40 Hz successfully prevented the
attack.

Increasing audio source distance. The proximity of
the audio source to the DPS impacts the attack’s efficacy.
Our research indicates that placing the DPS at a distance
exceeding 3.5 m from sound sources effectively thwarts the
attack.



9. Conclusion

We introduce BaroVox, a novel side-channel attack that
exploits the acoustic vulnerabilities of DPS to reconstruct
speech from pressure readings. Our two design solutions,
focusing on signal processing and deep learning, demon-
strate the effectiveness of BaroVox in recovering sensitive
information. The implications of this attack extend beyond
information leakage, potentially impacting finances, com-
petitiveness, and security. Our work highlights the need for
increased awareness and development of countermeasures to
mitigate the risks posed by BaroVox.

Acknowledgment

The authors would like to thank our shepherd and the
anonymous reviewers for their valuable comments, which
greatly improved this paper. We also express our gratitude
to Harsh Thomare for his contributions during the early
stages of this research. This work was partially supported
by the National Science Foundation (NSF) under award
ECCS-2028269. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

References

[1] A. Abacus, “Pressure sensors: The design engineer’s guide,” 2017,
retrieved from Avnet website. [Online]. Available: https://my.avnet.c

om/abacus/solutions/technologies/sensors/pressure-sensors/

(2]

C. Standard, British and B. ISO, “Cleanrooms and associated con-
trolled environments—,” 2004.

[3] T. S. Company, “Datasheet sdp8xx-digital differential pressure
sensor,” 2019, (Accessed: 05-21-2024). [Online]. Available:
https://sensirion.com/media/documents/90500156/6167E43B/Sensir

ion_Differential_Pressure_Datasheet_SDP8xx_Digital.pdf
[4]

C. Bradford, “Understanding your hvac system: Building pressure
monitoring and control,” Buildings IOT website, 2024, accessed:
05-21-2024. [Online]. Available: https://www.buildingsiot.com/blog/
understanding- your-hvac-system-building-pressure-monitoring-and

-control-bd

[5]1 D. Fitzgerald, “Harmonic/percussive separation using median filtering,”
in Proceedings of the International Conference on Digital Audio

Effects (DAFx), vol. 13, 2010, pp. 1-4.
[6]

J. Driedger, M. Miiller, and S. Disch, “Extending harmonic-percussive
separation of audio signals.” in ISMIR, 2014, pp. 611-616.

Y. Leng, X. Tan, S. Zhao, F. Soong, X.-Y. Li, and T. Qin, “Mbnet: Mos
prediction for synthesized speech with mean-bias network,” in JCASSP
2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2021, pp. 391-395.

(71

[8] R. Errattahi, A. El Hannani, and H. Ouahmane, “Automatic speech
recognition errors detection and correction: A review,” Procedia

Computer Science, vol. 128, pp. 32-37, 2018.
(9]

F. S. AG, “How to decide on piezoresistive or thermal measuring
principle,” AZoSensors, October 13 2020. [Online]. Available:

https://www.azosensors.com/article.aspx ?ArticleID=1723

[10] D. W. Cooper, “Particulate contamination and microelectronics manu-
facturing: an introduction,” Aerosol Science and Technology, vol. 5,

no. 3, pp. 287-299, 1986.

13

[11] H. Kitajima and Y. Shiramizu, “Requirements for contamination
control in the gigabit era,” IEEE transactions on semiconductor
manufacturing, vol. 10, no. 2, pp. 267-272, 1997.

[12] A. Shilov, “TSMC’s Fab 14B Photoresist Material Incident: $550
Million in Lost Revenue,” AnandTech, 2019. [Online]. Available:
https://www.anandtech.com/show/13975/tsmcs-tfab- 14b-photoresist

-material-incident- 550-million-in-lost-revenue

[13] L. Yap, “Samsung’s Production Plant Contaminated Resulting in
$560 Million Loss,” Tech Critter, 2018. [Online]. Available: https://

www.tech-critter.com/samsung-manufacturing- plant-contamination/

S. L. Miller, N. Clements, S. A. Elliott, S. S. Subhash, A. Eagan,
and L. J. Radonovich, “Implementing a negative-pressure isolation
ward for a surge in airborne infectious patients,” American journal of
infection control, vol. 45, no. 6, pp. 652-659, 2017.

[14]

[15] L. Audio, “Healthcare operating theatre audio,” 2023, accessed:
05-21-2024. [Online]. Available: https://www.litheaudio.com/healthcar

e-operating-theatre-audio.html

[16] Zenitel, “Cleanroom intercom station ip-cror datasheet,” 2023,
accessed: 05-21-2024. [Online]. Available: https://www.zenitel.com/pr

int/pdf/node/4584

[17] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recogniz-
ing speech from gyroscope signals,” in 23rd {USENIX} Security

Symposium ({USENIX} Security 14), 2014, pp. 1053-1067.

[18] L. Zhang, P. H. Pathak, M. Wu, Y. Zhao, and P. Mohapatra, “Accel-
word: Energy efficient hotword detection through accelerometer,” in
Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, 2015, pp. 301-315.

[19] S. A. Anand and N. Saxena, “Speechless: Analyzing the threat to
speech privacy from smartphone motion sensors,” in 20/8 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2018, pp. 1000-

1017.

[20] S. A. Anand, C. Wang, J. Liu, N. Saxena, and Y. Chen, “Spearphone:
a lightweight speech privacy exploit via accelerometer-sensed rever-
berations from smartphone loudspeakers,” in Proceedings of the 14th
ACM Conference on Security and Privacy in Wireless and Mobile

Networks, 2021, pp. 288-299.

[21] J. Han, A. J. Chung, and P. Tague, “Pitchln: eavesdropping via
intelligible speech reconstruction using non-acoustic sensor fusion,”
in Proceedings of the 16th ACM/IEEE International Conference on

Information Processing in Sensor Networks, 2017, pp. 181-192.

S. Rokka Chhetri and M. A. Al Faruque, “Side channels of cyber-
physical systems: Case study in additive manufacturing,” IEEE Design
& Test, vol. 34, no. 4, pp. 18-25, 2017.

[22]

[23] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone:
Decoding vibrations from nearby keyboards using mobile phone
accelerometers,” in Proceedings of the 18th ACM conference on

Computer and communications security, 2011, pp. 551-562.

Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. Al Faruque, “Stealing
neural network structure through remote fpga side-channel analysis,”
IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 4377-4388, 2021.

M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan, “Acoustic
side-channel attacks on additive manufacturing systems,” in 2016
ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS), 2016, pp. 1-10.

[24]

[25]

[26] S. R. Chhetri, A. Canedo, and M. A. A. Faruque, “Confidentiality
breach through acoustic side-channel in cyber-physical additive
manufacturing systems,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 1,

Dec. 2017. [Online]. Available: https://doi.org/10.1145/3078622

Z. Ba, T. Zheng, X. Zhang, Z. Qin, B. Li, X. Liu, and K. Ren,
“Learning-based practical smartphone eavesdropping with built-in
accelerometer.” in NDSS, 2020, pp. 23-26.

[27]



(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Wang, F. Lin, T. Liu, Z. Liu, Y. Shen, Z. Ba, L. Lu, W. Xu,
and K. Ren, “mmphone: Acoustic eavesdropping on loudspeakers
via mmwave-characterized piezoelectric effect,” in IEEE INFOCOM
2022-1EEE Conference on Computer Communications. 1EEE, 2022,
pp. 820-829.

M. Gao, Y. Liu, Y. Chen, Y. Li, Z. Ba, X. Xu, J. Han, and
K. Ren, “Device-independent smartphone eavesdropping jointly using
accelerometer and gyroscope,” IEEE Transactions on Dependable and
Secure Computing, 2022.

M. Gao, L. Zhang, L. Shen, X. Zou, J. Han, F. Lin, and K. Ren,
“Kite: exploring the practical threat from acoustic transduction attacks
on inertial sensors,” in Proceedings of the 20th ACM Conference on
Embedded Networked Sensor Systems, 2022, pp. 696-709.

S. Sami, Y. Dai, S. R. X. Tan, N. Roy, and J. Han, “Spying with your
robot vacuum cleaner: eavesdropping via lidar sensors,” in Proceedings
of the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 354-367.

N. Roy and R. Roy Choudhury, “Listening through a vibration motor,”
in Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016, pp. 57-69.

B. Nassi, Y. Pirutin, R. Swisa, A. Shamir, Y. Elovici, and B. Zadov,
“Lamphone: Passive sound recovery from a desk lamp’s light bulb
vibrations,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 4401-4417.

A. Kwong, W. Xu, and K. Fu, “Hard drive of hearing: Disks that
eavesdrop with a synthesized microphone,” in 2019 IEEE symposium
on security and privacy (SP). 1EEE, 2019, pp. 905-919.

Y. Long, P. Naghavi, B. Kojusner, K. Butler, S. Rampazzi, and K. Fu,
“Side eye: Characterizing the limits of pov acoustic eavesdropping
from smartphone cameras with rolling shutters and movable lenses,”
arXiv preprint arXiv:2301.10056, 2023.

B. Nassi, Y. Pirutin, T. Galor, Y. Elovici, and B. Zadov, “Glowworm
attack: Optical tempest sound recovery via a device’s power indicator
led,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 1900-1914.

B. Nassi, R. Swissa, J. Shams, B. Zadov, and Y. Elovici, “The little
seal bug: Optical sound recovery from lightweight reflective objects,”
in 2023 IEEE Security and Privacy Workshops (SPW). 1EEE, 2023,
pp- 298-310.

B. Nassi, R. Swissa, Y. Elovici, and B. Zadov, “The little seal bug:
Optical sound recovery from lightweight reflective objects.” JACR
Cryptol. ePrint Arch., vol. 2022, p. 227, 2022.

C. Wang, F. Lin, Z. Ba, F. Zhang, W. Xu, and K. Ren, “Wavesdrop-
per: Through-wall word detection of human speech via commercial
mmwave devices,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 6, no. 2, pp. 1-26, 2022.

S. Basak and M. Gowda, “mmspy: Spying phone calls using mmwave
radars,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 1211-1228.

Y. Tu, V. S. Tida, Z. Pan, and X. Hei, “Transduction shield: A low-
complexity method to detect and correct the effects of emi injection
attacks on sensors,” in Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, 2021, pp. 901-915.

A. Barua, Y. G. Achamyeleh, and M. A. Al Faruque, “A wolf in
sheep’s clothing: Spreading deadly pathogens under the disguise of
popular music,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 277-291.

Primex, “Environmental monitoring solutions: Room pressure moni-
toring,” https://www.primexinc.com/en/solutions/environmental-monit
oring/room-pressure-monitoring, 2021, accessed: 05-21-2024.

S. Lee, W. Choi, H. J. Jo, and D. H. Lee, “How to securely record
logs based on arm trustzone,” in Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, 2019, pp.
664-666.

14

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
danger zone: Race condition attacks and defenses on system audit
frameworks,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 1551-1574.

Sony, “Xb13 extra bass™ portable wireless speaker,” 2021. [Online].
Available: https://www.sony.com/electronics/support/res/manuals/502
5/£505tde429679d4719abd78c1a231ac4/50254675M.pdf

R. Group, “Datasheet: Raspberry Pi 3 Model B,” https://us.rs-online.
com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf, 2018, accessed:
05-21-2024.

P. Vaidyanathan, “Generalizations of the sampling theorem: Seven
decades after nyquist,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 48, no. 9, pp. 1094-1109,
2001.

D. A. Heide and G. S. Kang, “Speech enhancement for bandlimited
speech,” in Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), vol. 1. IEEE, 1998, pp. 393-396.

E. Villchur, “Signal processing to improve speech intelligibility in
perceptive deafness,” The Journal of the Acoustical Society of America,
vol. 53, no. 6, pp. 1646-1657, 1973.

S. A. Whitmore and B. Fox, “Improved accuracy, second-order
response model for pressure sensing systems,” Journal of aircrafft,
vol. 46, no. 2, pp. 491-500, 2009.

P. Ladefoged and K. Johnson, A course in phonetics.
learning, 2014.

M. Gilman, “The science of voice and the body,” The Oxford handbook
of music and the body, pp. 62-78, 2019.

Cengage

E. Moulines and J. Laroche, “Non-parametric techniques for pitch-
scale and time-scale modification of speech,” Speech communication,
vol. 16, no. 2, pp. 175-205, 1995.

E. Cano, M. Plumbley, and C. Dittmar, “Phase-based har-
monic/percussive separation,” in Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

H. Tachibana, N. Ono, H. Kameoka, and S. Sagayama, “Har-
monic/percussive sound separation based on anisotropic smoothness
of spectrograms,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 22, no. 12, pp. 2059-2073, 2014.

L. Zhang, F. Schlaghecken, J. Harte, and K. L. Roberts, “The influence
of the type of background noise on perceptual learning of speech in
noise,” Frontiers in Neuroscience, vol. 15, p. 646137, 2021.

Y. Nishimura, T. Shinozaki, K. Iwano, and S. Furui, “Noise-robust
speech recognition using multi-band spectral features,” The Journal
of the Acoustical Society of America, vol. 116, no. 4, pp. 2480-2480,
2004.

S. Li, W. Yuan, J. Yuan, B. Bai, D. W. K. Ng, and L. Hanzo, “Time-
domain vs. frequency-domain equalization for ftn signaling,” IEEE
transactions on vehicular technology, vol. 69, no. 8, pp. 9174-9179,
2020.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,” IEEE Communications Magazine, vol. 40, no. 4, pp. 58-66,
2002.

P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” ArXiv e-prints, Apr. 2018. [Online]. Available:
https://arxiv.org/abs/1804.03209

B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162-169, 2017.

F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662-1669, 2018.



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

(81]

Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural
networks for time series classification,” 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al.,
“Cnn architectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal processing
(icassp). 1EEE, 2017, pp. 131-135.

K. Koutini, H. Eghbal-zadeh, and G. Widmer, “Receptive field
regularization techniques for audio classification and tagging with deep
convolutional neural networks,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1987-2000, 2021.

A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences
with structured state spaces,” arXiv preprint arXiv:2111.00396, 2021.

F. Cobo, D. Grela, and A. n. Conchal, “Airborne particle monitoring
in clean room environments for stem cell cultures,” Biotechnology
Journal: Healthcare Nutrition Technology, vol. 3, no. 1, pp. 43-52,
2008.

D. Holbrook, “Controlling contamination: the origins of clean room
technology,” History and Technology, vol. 25, no. 3, pp. 173-191,
2009.

T. Times, “TSMC engineer charged with stealing trade secrets,”
Taipei Times. [Online]. Available: https://www.taipeitimes.com/News
/biz/archives/2017/05/03/2003669834

U.S. Attorney’s Office Northern District of California, “Chinese
citizen sentenced for economic espionage, theft of trade secrets,
and conspiracy,” Department of Justice. [Online]. Available:
https://www justice.gov/usao-ndca/pr/chinese-citizen-sentenced-eco
nomic-espionage-theft-trade-secrets-and-conspiracy

U.S. Attorney’s Office District of Connecticut, “Three Chinese
nationals arrested in scheme to steal and illegally export military-grade
carbon fiber from the U.S.” Department of Justice. [Online]. Available:
https://www.justice.gov/usao-ct/pr/three-chinese-nationals-arrested-s
cheme-steal-and-illegally-export-military- grade

U.S. Department of Justice, “Lexington man and semiconductor
company indicted for theft of trade secrets,” https://shorturl.at/imqyG,
2018, accessed: 05-21-2024.

A. Instruments, “Alpha 161 Low-Cost Differential Pressure
Transducer datasheet,” 2021, accessed: 05-21-2024. [Online].
Available: https://www.alphainstruments.com/product/model- 161-diffe
rential-pressure-transmitter/

T. S. . Co. (2017) Testo 6383 data sheet. Accessed: 05-21-2024.
[Online]. Available: https:/static-int.testo.com/media/97/f5/9593eal 16
ffe/testo-6383-EN.pdf

I. Siemens Industry, “Room pressure monitor, technical specification
sheet,” 2020, accessed: 05-21-2024. [Online]. Available: https:
/Isid.siemens.com/v/u/A6V 10322677

N. AG, “PASCAL-ST/ZB Accurate & long-term stable measurement,”
2016, accessed: 05-21-2024. [Online]. Available: https://cesstech.com
/wp-content/uploads/2023/07/Product-flyer_PascalST_ZB_EN_005
391_00-1.pdf

I. Dwyer Instruments, “Room status monitor,” 2021, accessed:
05-21-2024. [Online]. Available: https://www.dwyer-inst.com/PDF_{fil
es/RSME.pdf

SensoScientific, Inc., “Differential pressure sensor data sheet,” https:
/Iwww.laboratory-equipment.com/media/asset-library/d/i/different
ial-pressure-sensor-sensoscientific-data-sheet.pdf, 2017, accessed:
05-21-2024.

E. C. Knight, S. P. Hernandez, E. M. Bayne, V. Bulitko, and B. V.
Tucker, “Pre-processing spectrogram parameters improve the accuracy
of bioacoustic classification using convolutional neural networks,”
Bioacoustics, vol. 29, no. 3, pp. 337-355, 2020. [Online]. Available:
https://doi.org/10.1080/09524622.2019.1606734

15

[82] S. Chang, H. Park, J. Cho, H. Park, S. Yun, and K. Hwang, “Sub-
spectral normalization for neural audio data processing,” 2021.

K. Y. Kamal, “The silicon age: Trends in semiconductor
devices industry,” Journal of Engineering Science and Technology
Review, 2022, accessed: 05-21-2024. [Online]. Available: https:
/Iwww.researchgate.net/publication/360851950_The_Silicon_Age_T
rends_in_Semiconductor_Devices_Industry

C. Nader, W. Van Moer, K. Barbe, N. Bjorsell, and P. Handel,
“Harmonic sampling and reconstruction of wideband undersampled
waveforms: Breaking the code,” IEEE transactions on microwave
theory and techniques, vol. 59, no. 11, pp. 2961-2969, 2011.

C. Nader, N. Bjorsell, and P. Héndel, “Unfolding the frequency
spectrum for undersampled wideband data,” Signal Processing, vol. 91,
no. 5, pp. 1347-1350, 2011.

Y.-A. Chung, Y. Zhang, W. Han, C.-C. Chiu, J. Qin, R. Pang,
and Y. Wu, “W2v-bert: Combining contrastive learning and masked
language modeling for self-supervised speech pre-training,” 2021.

Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V.
Le, and Y. Wu, “Pushing the limits of semi-supervised learning for
automatic speech recognition,” 2022.

R. Hasani, M. Lechner, T.-H. Wang, M. Chahine, A. Amini, and
D. Rus, “Liquid structural state-space models,” arXiv preprint
arXiv:2209.12951, 2022.

[83]

[84]

[85]
[86]
[87]

[88]

Appendix A.
Basics of Cleanrooms

To assess the impact of targeted eavesdropping on
sensitive information, this section explains cleanroom and
IP in the semiconductor manufacturing industry, including
the implication of side-channel eavesdropping in these types
of secure environments.

A.1. Cleanroom in semiconductor industry

Cleanrooms are controlled environments designed to
filter out pollutants, ensuring that airborne contaminants
remain at acceptable low-level concentrations [2], [69].
While employed across various sectors [70], cleanrooms
are paramount in semiconductor manufacturing where even
a single speck of dust can drastically compromise chip
quality [10], [11]. Consequently, cleanrooms are integral to
assuring semiconductor product integrity. Emphasizing their
importance, contamination mishaps at giants like Samsung
and TSMC have previously led to staggering combined losses
of more than $1 billion [12], [13]

A.2. Cleanroom and Intellectual Property (IP)

Cleanrooms not only protect the semiconductor industry
from contaminants but also play a vital role by protecting
proprietary products from unauthorized access and tampering.
With IP and national security at stake, a lapse in cleanroom
security can be costly, especially amid the rising IP war.
Numerous theft incidents underscore this; for instance,
TSMC grappled with a major trade secret theft attempt [71],
and arrests have been made regarding IP theft from US
semiconductor firms [72]-[74]. To counter these threats,
rigorous security protocols are enforced.



A.3. Pressure sensors used in cleanrooms

DPSs are at the heart of maintaining a cleanroom’s
integrity for chip manufacturing. These sensors are crucial
in regulating the airflow and maintaining a specific pressure
level within the cleanroom. Specifically, the cleanroom must
be maintained at a higher static pressure than adjacent
spaces to prevent contaminants from entering. To achieve
this, a Room Pressure Monitoring (RPM) system with
an integrated pressure sensor offers real-time differential
pressure tracking between distinct points. Table 4 shows
popular manufacturers” RPM systems used in semiconductor
cleanrooms, all predominantly incorporating DPSs, providing
evidence of DPSs’ industry prevalence.

S|RPM [Manufacture| Type

1| Alpha 161 [75] Alpha Inst. |Differential

2| Testo 6383 [76] Testo Differential

3[Siemens  547-203 | Siemens Differential
[77]

4| PASCAL-ST/ZB Novasina Differential
[78]

5|RSME-B-003 [79] |Dwyer Differential

6[B20-200-OTA [80] |Sensoscientifi¢cDifferential

TABLE 4. DIFFERENTIAL PRESSURE SENSORS USED IN CLEANROOMS.

Appendix B.
Miscellaneous

B.1. Modeling effects of sound on DPS

Fig. 10 shows the model of sound signal a s a pressure
wave and its effect on a pressure reading.

[ Cleanroom [ Ref. point | P;:\ APs = PynaSin(kx + ft+¢)
Speaker i
x I FR) = Poft) + 0P, xo)
P | P P

Psmax T 7

X

P == ==

— P,(t): DPS reading before sound is applied.
AP(t, x,): pressure change due to sound
wave at distance x = X,.
P(t): DPS reading after sound is applied
Po(t) =P1-Py;

Figure 10. Modeling sound signal as a pressure wave.

B.2. Percussive-Harmoinic Separation using Median
Filtering

Fig 11 visually illustrates the spectral subtraction process.

B.3. SpeechCommands dataset composition

The SpeechCommands v2 dataset [61] is a collection
of spoken commands in English, consisting of 105,829

16

utterances across 35 different words and phrases, such
as ’yes”, ’no”, “’stop”, "go”, “bed”, “bird”, tree”, and
“"wow”. The dataset includes recordings from 2, 618 different
speakers, spanning a wide range of ages and genders. The
dataset was recorded in various acoustic conditions, including
different background noise and reverberation levels, and
contains both clean and noisy recordings. A complete list of

the number of utterances per word can be found in [61].

Appendix C.
ASR Model Architecture Summary

C.1. Spectrogram parameters

This section provides an overview of the primary param-
eters of the Spectrogram transform, which plays a vital
role in time series signal processing. Understanding these
parameters, including N F'F'T’, window length, and window
hop, is essential for effectively analyzing and interpreting
time series data. For a more in-depth analysis of the effect
of these parameters, we refer our readers to [81].

(1) Number of FFT bins (NFFT) is a parameter
in the Spectrogram process determining the frequency
resolution of the spectrogram. A higher N F'F'T" value offers
better frequency resolution but increased computational
complexity. Alternatively, if the NFFT size is increased,
the time resolution of the spectrogram will decrease. This
occurs because the window used for each time segment
becomes larger. As a result, rapid changes in the signal may
be overlooked or smoothed out, leading to a loss of temporal
information. It is important to tune the N F F'T value to fit
the specific purpose of the application. Typically, NFF'T
is set to a power of 2 for optimization. In our experiment
NFFT size of 256 results in better accuracy.

(2) Window length refers to the length of the window
function applied to audio segments in the Spectrogram
process. It affects both time and frequency resolutions, with
longer windows providing better frequency resolution at the
expense of time resolution. Typically, the window length is
equal to or larger than NFF'T.

(3) Window hop defines the distance between adjacent
windows in the Spectrogram process, influencing time
resolution and computational complexity. A smaller window
hop increases overlap and time resolution but also raises
computational complexity.

C.2. Architecture description

Our ASR model is a 2D convolutional neural network
designed for spectrogram-based audio processing. It is
inspired by the ResNet [65], [66] architecture and consists
of a series of normal and transition blocks. Our contribution
centers around the challenges posed by low SNR and non-
linear frequency response of the DPS. Our ASR model
introduces learnable denoising autoencoder and equalization
layers to the ResNet architecture to provide a robust solution
to the specific issues posed by the sensor. The normal
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Figure 11. Spectral subtraction by Percussive-Harmonic Separation using median filtering technique.

blocks contain a residual connection, while the transition
blocks are responsible for reducing the spatial dimensions
and increasing the number of channels. The model em-
ploys SubSpectralNorm [82], a normalization technique
that applies batch normalization across sub-bands in the
frequency domain, improving the model’s performance on
spectrogram-based tasks. ResNet also utilizes depth-wise
separable convolutions for increased efficiency and reduced
computational complexity. The final layers include a depth-
wise convolution, a 1x1 convolution, and a head convolution
for classification. The model is suitable for various audio
tasks, such as speech recognition or sound event detection,
where the input is a time-frequency representation of the
audio signal.

Appendix D.
Performance on General Speech-Focused Sen-
tences

Table 5 shows the average WER and MOS of each ground
truth sentence over the responses of the 18 volunteers.

Ground Truth Sentence WER MOS
An object will remain at rest. 0.5413.89
For every action in nature there is an equal and opposite | 0.49 | 3.89
reaction.

Here is my password 7 5 6 2 3. 0.2914.25
He said the weather will be cold today. 0.4314.06
The white egg is bigger than the green one. 0.21]4.36
A picture is worth a thousand words. 0.20]4.22
A journey of a thousand miles begins with a single step.|0.31[4.11
A bird in the hand is worth two in the bush. 0.30]3.75
Actions speak louder than words. 0.27(4.50
Never put off until tomorrow what you can do today. {0.43|3.86
Average 0.35(4.09

NB: IRB exemption approval obtained to conduct the survey.
TABLE 5. PERFORMANCE ON GENERAL SPEECH-FOCUSED SENTENCES.

Appendix E.
Semiconductor Manufacturing Process

E.1. Process description

As part of our survey, we provided volunteers with
the following information to help them understand the
manufacturing process. Semiconductor manufacturing is the

17

process of creating electronic components from semiconduc-
tor materials, such as silicon. These components are used
in a wide range of electronic devices, from smartphones
to computers to cars. The key stages of this process are
explained as follows [83]:

o Wafer fabrication: In this step, silicon wafers are
created by growing a single crystal of silicon and
slicing it into thin, circular wafers.
Photolitography: A beam of UV light of specific
wavelength is passed through a template mask onto
a layer of photoresistive material on the waffer to
carve a pattern onto the material.

Etching: Chemicals are used to remove material from
the wafer, leaving only the desired pattern behind.
Deposition: A layer of material is deposited onto
the wafer, either by chemical vapor deposition or
physical vapor deposition, to create specific features.
Packaging: The individual chips are cut from the
wafer and packaged into the final product.

Appendix F.
Future Work

Effect of Distance on ASR Model Performance: Based
on the findings in Table 3, we have discovered that the
distance between the DPS and the sound source affects
the accuracy of our ASR model. With increasing distance,
the sensor registers a weaker signal strength. Although
this presents a limitation to the current effectiveness of
the BaroVox approach, further study is warranted. As the
STFT plots in Fig. 12 suggest, even with reduced signal
strength due to increased distance (from 0.5m to 2m), the
pressure sensor continues to detect speech signals. There’s
potential for refining the model by accounting for these
distance variations.

Vocabulary Limitations of the Current Model: The
current model is bound by vocabulary constraints, limiting
its speech recognition capability. A strong attacker can
enhance the capabilities by creating a complete speech-
to-text translation system. Addressing challenges such as
frequency spectrum unfolding for under-sampled pressure
sensor data could provide a pathway to navigate the sampling
rate constraints of the DPS [84], [85].

Exploration of Advanced ASR Models: We plan to
build upon other advanced speech recognition models [86]—
[88]. Leveraging these models alongside digital signal pro-



cessing techniques may offer avenues to mitigate existing
limitations.

Impact of Sampling Rate: In this study, the exploration
of sampling rate’s influence on model performance was
limited due to space constraints. An in-depth investigation
into this aspect remains a subject for future research.
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Figure 12. STFT plot of speech signals recovered from pressure readings
when the sound source is put at various distances from the sensor.
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