
Computing Threshold Circuits
with Bimolecular Void Reactions in Step

Chemical Reaction Networks

Rachel Anderson1, Bin Fu1, Aiden Massie1, Gourab Mukhopadhyay1,
Adrian Salinas1, Robert Schweller1, Evan Tomai2, and Tim Wylie1(B)

1 University of Texas Rio Grande Valley, Edinburg, TX 78539-2999, USA
timothy.wylie@utrgv.edu

2 University of Texas Dallas, Richardson, TX 75080-3021, USA

Abstract. Step Chemical Reaction Networks (step CRNs) are an aug-
mentation of the Chemical Reaction Network (CRN) model where addi-
tional species may be introduced to the system in a sequence of “steps.”
We study step CRN systems using a weak subset of reaction rules, void

rules, in which molecular species can only be deleted. We demonstrate
that step CRNs with only void rules of size (2,0) can simulate threshold
formulas (TFs) under linear resources. These limited systems can also
simulate threshold circuits (TCs) by modifying the volume of the system
to be exponential. We then prove a matching exponential lower bound on
the required volume for simulating threshold circuits in a step CRN with
(2,0)-size rules under a restricted gate-wise simulation, thus showing our
construction is optimal for simulating circuits in this way.

1 Introduction

Chemical Reaction Networks (CRNs) are a well-established model of chemistry.
In this model, chemical interactions are modeled as molecular species that react
to create products according to a set of reaction rules. CRNs have been exten-
sively studied since their standard formulation in the 1960s [6,7]. Several equiv-
alent models were also introduced around the same time with Vector Addition
Systems (VASs) [20] and Petri-nets [24]. Further, Population Protocols [3] are a
restricted form of the model focused on bimolecular reactions.

Step CRNs. These models all assume a discrete starting number of species or
elements and reaction rules that dictate how they can interact. Thus, any change
in species numbers is only through these interactions. Motivated by standard
laboratory procedures where additional chemical species may be added to an
initial container of species after a set of reactions has passed, we utilize an
extension to the CRN model known as the Step Chemical Reaction Network
model (step CRN) first introduced in [2]. The step CRN model adds a sequence

This research was supported in part by National Science Foundation Grant CCF-
2329918.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D.-J. Cho and J. Kim (Eds.): UCNC 2024, LNCS 14776, pp. 253–268, 2024.
https://doi.org/10.1007/978-3-031-63742-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63742-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-63742-1_18

254 R. Anderson et al.

Table 1. Results in the paper related to computing circuits with (2, 0) void rules in
step CRN systems. D is the circuit’s depth, G is the number of gates in a circuit, and
Fout is the maximum fan-out of a gate in the circuit.

Function Computation

Rules Species Steps Volume Simulation Family Ref

(2, 0) O(G) O(D) O(G) Gate-Wise TF Formulas Theorem 1

(2, 0) O(G) O(D) O(GFout
D) Gate-Wise TC Circuits Theorem 2

(2, 0) - - 2Ω(D) Gate-Wise TC Circuits Theorem 3

of discrete steps where additional species can be added to the existing CRN
configuration after waiting for all possible reaction rules to occur in the system.

Bimolecular Void Rules. In this paper, we use the terms reaction and rule inter-
changeably to denote a reaction rule. We focus on step CRN systems that include
only bimolecular void rules ((2, 0) rules) which are CRN rules that have two reac-
tants and no products, and thus can only delete existing species. Void rules of
size (2, 0) and (3, 0) were first studied within the standard CRN model in the
context of the reachability problem [1]. While standard CRN rules are power-
ful thanks to their ability to replace, delete or create new species, (2,0) rules
have extremely limited power to compute even simple functions in a standard
CRN [2]. In contrast, we show (2, 0) void rules become capable of computing
Threshold Formulas (TF) and Threshold Circuits (TC) in the step CRN model.
Threshold circuits are a computationally universal class of Boolean circuits that
have practical application in deep learning, and consist of any Boolean circuit
made of AND, OR, NOT, and MAJORITY gates.

Computation in Chemical Reaction Networks. Computation within Chemical
Reaction Networks is a well-studied topic. Within stochastic Chemical Reac-
tion Networks with some possibility for error, the systems are Turing-complete
[27]. In contrast, error-free stochastic CRNs are capable of computing semi-
linear functions [5,12]. Further, molecules themselves have long been studied
as a method of information storage and Boolean logic computation. In partic-
ular, CRNs and similar models have been extensively studied in these areas
[8,9,11,13,15,19,21,25,26]. Logic gates such as AND [11,14,22,26,28,30], OR
[11,14,26,28], NOT [11], XOR [11,30], NAND [11,13,15,29], NOR [11], Parity
[16–18] and Majority [4,10,23] have also been explored.

Our Contributions. Table 1 gives an overview of our results, and the paper is
formatted to introduce the general techniques and then expand into the necessary
details to prove these results. Section 3.2 shows how a step CRN, using (2,0)
void rules, computes individual logic gates. We then show how these gates can
be combined to build a general construction of threshold formulas in Sect. 3.4.
Theorem 1 shows how a step CRN with only (2, 0) rules is capable of computing
threshold formulas with O(G) species, O(D) steps, and O(G) volume, where G

is the number of gates in a circuit and D is the depth of a circuit.

Bimolecular Void Rules for Threshold Circuits 255

In Sect. 4, we modify this construction to compute threshold circuits with
O(G) species, O(D) steps, and O(GFout

D) volume, where Fout is the maximum
fan-out of the circuit. Finally, in Sect. 5 we show that the volume lower bound
for simulating a circuit using gate-wise simulation in a step CRN with (2,0) rules
is 2Ω(D). This lower bound is of note in that it shows the exponential volume
utilized by the positive result is needed for this style of computation, and it
shows a provable change in power from the polynomial volume achievable with
(3, 0) void rules [2].

2 Preliminaries

2.1 Chemical Reaction Networks

Basics. Let Λ = {λ1, λ2, . . . , λ|Λ|} denote some ordered alphabet of species. A
configuration over Λ is a length-|Λ| vector of non-negative integers that denotes
the number of copies of each present species. A rule or reaction has two multisets,
the first containing one or more reactant (species), used for creating resulting
product (species) contained in the second multiset. Each rule is represented as
an ordered pair of configuration vectors R = (Rr, Rp). Rr contains the minimum
counts of each reactant species necessary for reaction R to occur, where reactant
species are either consumed by the rule in some count or leveraged as catalysts
(not consumed); in some cases a combination of the two. The product vector Rp

has the count of each species produced by the application of rule R, effectively
replacing vector Rr. The species corresponding to the non-zero elements of Rr

and Rp are termed reactants and products of R, respectively.
The application vector of R is Ra = Rp − Rr, which shows the net change

in species counts after applying rule R once. For a configuration C and rule
R, we say R is applicable to C if C[i] ≥ Rr[i] for all 1 ≤ i ≤ |Λ|, and we
define the application of R to C as the configuration C ′ = C + Ra. For a set
of rules Γ , a configuration C, and rule R ∈ Γ applicable to C that produces
C ′ = C + Ra, we say C →1

Γ C ′, a relation denoting that C can transition
to C ′ by way of a single rule application from Γ . We further use the notation
C �Γ C ′ to signify the transitive closure of →1

Γ and say C ′ is reachable from C

under Γ , i.e., C ′ can be reached by applying a sequence of applicable rules from
Γ to initial configuration C. Here, we use the following notation to depict a rule

R = (Rr, Rp):
∑|Λ|

i=1 Rr[i]si →
∑|Λ|

i=1 Rp[i]si.
Using this notation, a rule turning two copies of species H and one copy of

species O into one copy of species W would be written as 2H + O → W .

Definition 1 (Discrete Chemical Reaction Network). A discrete chemical
reaction network (CRN) is an ordered pair (Λ, Γ) where Λ is an ordered alphabet
of species, and Γ is a set of rules over Λ.

We denote the set of reachable configurations for a CRN (Λ, Γ) from initial
configuration I as REACHI,Λ,Γ . A configuration is called terminal with respect
to a CRN (Λ, Γ) if no rule R ∈ Γ can be applied to it. We define the subset

256 R. Anderson et al.

Fig. 1. An example step CRN system. The test tubes show the species added at each
step and the system with those elements added. The CRN species and void rule-set are
shown on the left.

of reachable configurations that are terminal as TERMI,Λ,Γ . For an initial con-
figuration I, a CRN (Λ, Γ) is said to be bounded if a terminal configuration is
guaranteed to be reached within some finite number of rule applications starting
from configuration I.

2.2 Void Rules

Definition 2 (Void and Autogenesis Rules). A rule R = (Rr, Rp) is a void
rule if Ra = Rp − Rr has no positive entries and at least one negative entry. A
rule is an autogenesis rule if Ra has no negative values and at least one positive
value. If the reactants and products of a rule are each multisets, a void rule is
a rule whose product multiset is a strict submultiset of the reactants, and an
autogenesis rule one where the reactants are a strict submultiset of the products.
There are two classes of void rules, catalytic and true void. In catalytic void
rules, one or more reactants remain after the rule is applied. In true void rules,
such as (2, 0) and (3, 0) rules, there are no products remaining.

Definition 3. The size/volume of a configuration vector C is volume(C) =∑
C[i].

Definition 4 (Size-(i, j) Rules). A rule R = (Rr, Rp) is said to be a size-(i, j)
rule if (i, j) = (volume(Rr), volume(Rp)). A reaction is bimolecular if i = 2.

2.3 Step Chemical Reaction Networks

A step CRN is an augmentation of a basic CRN in which additional copies of
some system species are added after each of a sequence of steps. Formally, a
step CRN of k steps is a ordered pair ((Λ, Γ), (s0, s1, s2, . . . sk−1)), where the
first element of the pair is a normal CRN (Λ, Γ), and the second is a sequence
of length-|Λ| vectors of non-negative integers denoting how many copies of each
species type to add after each step.

Given a step CRN, we define the set of reachable configurations after each
sequential step. To start off, let REACH1 be the set of reachable configurations

Bimolecular Void Rules for Threshold Circuits 257

of (Λ, Γ) with initial configuration s0, which we refer to as the set of configu-
rations reachable after step 1. Let TERM1 be the subset of configurations in
REACH1 that are terminal. Note that after just a single step we have a normal
CRN, i.e., 1-step CRNs are just normal CRNs with initial configuration s0. For
the second step, we consider any configuration in TERM1 combined with s1

as a possible starting configuration and define REACH2 to be the union of all
reachable configurations from each possible starting configuration attained by
adding s1 to a configuration in TERM1. We then define TERM2 as the subset
of configurations in REACH2 that are terminal. Similarly, define REACHi to
be the union of all reachable sets attained by using initial configuration ci−1 at
step si−1 plus any element of TERMi−1, and let TERMi denote the subset of
these configurations that are terminal.

The set of reachable configurations for a k-step CRN is the set REACHk, and
the set of terminal configurations is TERMk. A classical CRN can be represented
as a step CRN with k = 1 steps and an initial configuration of I = s0.

2.4 Computing Functions in Step CRNs

Here, we define what it means for a step CRN to compute a function
f(x1, . . . , xn) = (y1, . . . , ym) that maps n-bit strings to m-bit strings. For each
input bit, we denote two separate species types, one representing bit 0, and the
other bit 1. An input configuration to represent a desired n-bit input string is
constructed by selecting to add copies of either the 0 species or the 1 species for
each bit in the target bit-string. Similarly, each output bit has two species rep-
resentatives (for 0 and 1), and we say the step CRN computes function f if for
any given n-bit input x1, . . . , xn, the system obtained by adding the species for
the string x1, . . . , xn to the initial configuration of this system in step 1 results
in a final configuration whose output species encode the string f(x1, . . . , xn).
Note that for a fixed function f , the species si added at each step are fixed to
disallow outside computation. We now provide a more detailed formalization of
this concept.

Input-Strict Step CRN Computing. Given a Boolean function f(x1, . . . , xn) =
(y1, . . . , ym) that maps a string of n bits to a string of m bits, we define the
computation of f with a step CRN. An input-strict step CRN computer is a
tuple Cs = (S, X, Y) where S = ((Λ, Γ), (s0, s1, . . . , sk−1)) is a step CRN, and
X = ((xF

1 , xT
1), . . . , (xF

n , xT
n)) and Y = ((yF

1 , yT
1), . . . , (yF

m, yT
m)) are sequences

of ordered-pairs with each xF
i , xT

i , yF
j , yT

j ∈ Λ. Given an n-input bit string b =
b1, . . . , bn, configuration X(b) is defined as the configuration over Λ obtained by
including one copy of xF

i only if bi = 0 and one copy of xT
i only if bi = 1 for each

bit bi. We consider this representation of the input to be strict, as opposed to
allowing multiple copies of each input bit species. The corresponding step CRN
(Λ, Γ, (s0 + X(b), . . . , sk−1)) is obtained by adding X(b) to s0 in the first step,
which conceptually represents the system programmed with input b.

An input-strict step CRN computer computes function f if, for all n-bit
strings b and for all terminal configurations of (Λ, Γ, (s0 + X(b), . . . , sk−1)), the
terminal configuration contains at least 1 copy of yF

j and 0 copies of yT
j if the

258 R. Anderson et al.

jth bit of f(b) is 0, and at least 1 copy of yT
j and 0 copies of yF

j if the jth bit of
f(b) is 1, for all j from 1 to m.

We use the term strict to denote requiring exactly one copy of each bit
species. While previous work has focused on strict computation [2], the focus
here is a relaxation of this requirement in which multiple copies of each input
species are permitted.

Multiple Input Relaxation. In this paper, we focus on a relaxation to strict com-
puting that allows for multiple copies of each input bit species, i.e., we modify
the strict definition by allowing some number greater or equal to 1 of each xF

i or
xT

i species in the initial configuration (but still requiring 0 copies of the alternate
choice species). A system that computes a function under this relaxation is said
to be multiple input relaxed.

Gate-Wise Simulation. In this paper, we utilize a method of simulation we term
gate-wise simulation, where the output of each gate is represented by a unique
species and the gates are computed in the order of their depth level. In other
words, multiple gates cannot use the exact same species to represent their output
and a gate can only be computed once all gates in the previous depth levels have
been computed. We use this method when simulating formulas and circuits with
a step CRN in Sects. 3 and 4. A formal definition of gate-wise simulation is
provided in Sect. 5.

2.5 Boolean and Threshold Circuits

A Boolean circuit on n variables x1, x2, . . . , xn is a directed, acyclic multi-graph.
The vertices of the graph are referred to as gates. The in-degree and out-degree
of a gate are called the fan-in and fan-out of the gate, respectively. The fan-in
0 gates (source gates) are labeled from x1, x2, . . . , xn, or from the constants 0
or 1. Each non-source gate is labeled with a function name, such as AND, OR,
or NOT. Fan-out 0 gates may or may not be labeled as output gates. Given an
assignment of Boolean values to variables x1, x2, . . . , xn, each gate in the circuit
can be assigned a value by first assigning all source vertices the value matching
the labeled constant or labeled variable value, and subsequently assigning each
gate the value computed by its labeled function on the values of its children.
Given a fixed ordering on the output gates, the sequence of bits assigned to the
output gates denotes the value computed by the circuit on the given input.

The depth of a circuit is the longest path from a source vertex to an output
vertex. A circuit is a called a formula if all non-source vertices have fan-out
1, and there is exactly 1 output gate. Here, we focus on circuits that consist
of AND, OR, NOT, and MAJORITY gates with arbitrary fan-in. We refer to
circuits that use these gates as Threshold Circuits (TC).

Notation. When discussing a Boolean circuit, the following variables are used to
denote the properties of the circuit: G denotes the number of gates in the circuit,
D the circuit’s depth, and Fout the maximum fan-out of any gate in the circuit.

Bimolecular Void Rules for Threshold Circuits 259

Fig. 2. (a) The input bits of a threshold formula and their representation as species.(b)
An indexed threshold formula with the input species shown in Fig. 2a.

3 Computation of Threshold Formulas with (2, 0) Rules

Section 3.1 and Sect. 3.2 introduce how a step CRN using only (2,0) rules repre-
sents bits and logic gates of a Threshold Formula (TFs), respectively. An exam-
ple construction of a formula is provided in Sect. 3.3. Section 3.4 then shows the
general construction of building TFs, and we prove how the system computes
TFs with O(G) species, O(D) steps, and O(G) volume in Theorem 1.

3.1 Bit Representation

Here, we show how the bits of a TF are represented in our model. We first
demonstrate a system for indexing the TF’s wires before introducing the species
used to represent bits.

Indexing. Every wire of the TF has a unique numerical index. The input and
output bits that traverse these wires also use the wire’s index. If a wire fans out,
the fanned-out wires share the same index as the original. This indexing ensures
that the bit species only use the rules that compute their respective gates. Note
that gates may also be denoted with an index, where its index is that of its
output wire.

Bits. Every input bit of a binary gate is represented by the species xb
n, where

n ∈ N and b ∈ {T, F}. n represents the bit’s index and b represents its truth
value. An example of these species is shown in Fig. 2a. Every output bit of a
binary gate is represented by the species yb

n or yb
j→i, where j represents the

input bit’s (xb) index and i represents the output bit’s (yb) index.

3.2 Logic Gate Computation

We now show how the logic gates of a TF are computed. Let f in
i be the set of

all the indexes of the inputs fanning into a gate at index i.

AND Gate. To compute an AND gate such as the one shown in Fig. 3a, a single
true output species yT

i and |f in
i | copies of the false output species yF

j→i are
added in. In one step, the true input and false output species delete each other.
Additionally, if at least one false input species exists, it deletes the lone true

260 R. Anderson et al.

Fig. 3. (a) A threshold formula consisting of a single three-input AND gate. (b) Reac-
tion rules and added species for the step CRN that compute the formula in Fig. 3a. (c)
The step CRN computing the formula in Fig. 3a. The black lines connecting species
represents a reaction applied to them. (d) The step CRN computing the circuit in
Fig. 3a, but with three true inputs.

output species along with itself, guaranteeing a false output as shown in the
example steps in Fig. 3c. The only output species remaining after the step are
those whose truth value matches the intended output.

AND Gate Example. Consider an AND gate with index 4 and a fan-in of three;
the first two inputs are true and the last is false. For computing this gate with
our model, the system’s initial configuration consists of xT

1 , xT
2 , and xF

3 . We
then add yT

4 , representing a true output and yF
1→4, yF

2→4, and yF
3→4, representing

false outputs. The rules xT
1 + yF

1→4 → ∅, xT
2 + yF

2→4 → ∅, and xF
3 + xT

1 → ∅
are then applied to the system, removing all reactant species in these rules. The
remaining species is yF

3→4, indicating a false output.

OR Gate. To compute an OR gate, a single false output species yF
i and |f in

i |
copies of the true output species yT

j→i are added in. In one step, the false input
and true output species delete each other. Additionally, if at least one true
input species exists, it deletes the lone false output species along with itself,
guaranteeing a true output. The only output species remaining after the step
are those whose truth value matches the intended output.

NOT Gate. To compute a NOT gate, a single copy of the true and false output
species are added in. In a single step, the input and output species that share
the same truth value b delete each other, leaving the complement of the input
species as the remaining output species (Table 2).

Bimolecular Void Rules for Threshold Circuits 261

Table 2. (2, 0) rules and steps for computing AND, OR, and NOT gates.

Gate Type Step Relevant
Rules

Description

AND Add yT
i

∀j ∈ f in
i :

yF
j→i

xT
j +yF

j→i →
∅
xF

j +yT
i → ∅

An input species with a
certain truth value
deletes the complement
output species

OR Add yF
i

∀j ∈ f in
i :

yT
j→i

xT
j +yF

i → ∅
xF

j +yT
j→i →

∅

An input species with a
certain truth value
deletes the complement
output species

NOT Add yT
i yF

i xT
j +yT

i → ∅
xF

j +yF
i → ∅

The input and output
species that share the
same truth value delete
each other

Table 3. (2, 0) rules and steps for computing majority gates.

Steps Relevant Rules Description

1 Add |f in
i | · aT

i

|f in
i | · aF

i

∀j ∈ f in
i :

xT
j + aF

i → ∅
xF

j + aT
i → ∅

∀j ∈ f in
i , convert xb

j input species
into ab

i species

2 Add ⌊|f in
i |/2⌋ · bT

i

⌊|f in
i |/2⌋ · bF

i

aT
i + bF

i → ∅
aF

i + bT
i → ∅

Adding ⌊|f in
i |/2⌋ amounts of bT

i and
bF
i species will delete all of the

minority species, leaving some
amount of the majority species
remaining

3 Add yT
i yF

i aT
i + yF

i → ∅
aF

i + yT
i → ∅

Convert ab
i into the proper output

species (yb
i)

Majority Gate. To compute a majority gate, all input species are first converted
into a new species ab

i (Step 1). These species retain the same index and truth
value of their original inputs. If the number of bits inputted into a majority
gate is even, then an extra false input species should be added in. The species
bb
i is then added (Step 2). This species performs the majority operation across

all ab
i species. Any species that represents the minority inputs are deleted. The

remaining species are then converted into the matching output species (Step 3)
(Table 3).

3.3 Formula Computation Example

We demonstrate a simple example of computing a threshold formula under our
constructions. The formula is the same as in Fig. 2b. It has four inputs: x1, x2,
x3, and x4. At the first depth level, x1 and x2 fan into an AND gate, as does

262 R. Anderson et al.

x3 and x4. Both gate outputs are then fanned into an OR gate, whose output
represents the final value of the formula.

The initial configuration consists of bit species that correlate to the input
values for the formula. Step 1 converts the species into input species for the first
depth level. Step 2 then performs all gate operations at the first depth level. Step
3 converts the output species of the gates into input species for the next and
final depth level. Step 4 computes the last gate. Finally, Step 5 coverts the gate;s
output into an input species that represents the final output of the formula. A
more detailed explanation of computing the formula is in Table 4a.

3.4 Threshold Formula Computation

We now introduce another step with rules that convert the output species of one
depth level into input species for the next level, enabling the complete compu-
tation of a TF. We then prove the computational complexity of computing TFs
within our system.

Depth Traversal. To enable the traversal of every gates’ bits at a specific depth
level to the next level, every output species is converted into an input species in
one step. The same truth value and index is retained between the output and
input species. Table 4b shows how to compute depth level traversal for an output
bit with index i.

Table 4. (a) (2, 0) rules and steps for computing the formula in Fig. 2b. (b) (2, 0) rules
and step for converting outputs to inputs per depth level. Add species for that represent
true and false inputs. Delete the species that are the complement of the output. Only
the correct input species remains.

Initial Configuration: yT
1 , yF

2 , yF
3 , yT

4

Step Relevant Rules

1 Add
xT

1 , xT
2 , xT

3 , xT
4

xF
1 , xF

2 , xF
3 , xF

4

yT
1 + xF

1 → ∅
yF
2 + xT

2 → ∅
yF
3 + xT

3 → ∅
yT
4 + xF

4 → ∅

2 Add
yT
5 , yF

1→5, yF
2→5

yT
6 , yF

3→6, yF
4→6

xT
1 + yF

1→5 → ∅
xF

2 + yT
5 → ∅

xF
3 + yT

6 → ∅
xT

4 + yF
4→6 → ∅

3 Add
xT

5 , xT
6

xF
5 , xF

6

yF
2→5 + xT

5 → ∅
yF
3→6 + xT

6 → ∅

4 Add yT
5→7, yT

6→7, yF
7

yF
5→7 + xT

5 → ∅
yF
6→7 + xT

6 → ∅

5 Add xT
7 , xF

7 yF
7 + xT

7 → ∅

(a)

Step Relevant Rules

Add
xT

i

xF
i

yT
i + xF

i → ∅
yF

i + xT
i → ∅

yT
j→i + xF

i → ∅
yF

j→i + xT
i → ∅

(b)

Bimolecular Void Rules for Threshold Circuits 263

Theorem 1. Threshold formulas (TF) can be computed with multiple-input
relaxation by a step CRN with only (2, 0) rules with upper bounds of O(G) species,
O(D) steps, and O(G) volume.

Proof. Each gate of a TF is represented by a constant number of species, result-
ing in O(G) unique species. All gates at a given depth level are computed simul-
taneously in constant steps. Computing a TF therefore requires O(D) steps.

It is possible not all species that are no longer needed after computing a
specific gate are deleted. For example, computing an AND gate with three false
inputs leaves two of those species in the configuration. While this does not cause
computation errors, the volume will increase. Therefore, it is possible for only
a fraction of the O(G) species added throughout the simulation to be deleted,
resulting in O(G) volume. �

4 Computation of TCs with Exponential Volume

Fig. 4. (a) A NOT gate with a fan-out of three. (b) Computing the NOT gate in Fig. 4a
in (2, 0) rules.

In this section, we slightly alter the approach presented in Sect. 3 to enable
computation of Threshold Circuits (TC). We show in Sect. 4.1 how modifying
our volume to be exponentially-sized allows the system to account for unbounded
fan-out outside of the first depth level, enabling the computation of TCs. The-
orem 2 shows our system computes TCs with O(G) species, O(D) steps, and
O(GFout

D) volume.

4.1 Threshold Circuit Computation

Here, we demonstrate how to account for unbounded fan-out when computing
TCs, and show the computational complexity of computing TCs with our system.

Bits and Gates. Section 3.1 shows how input bits, output bits, and indexing are
represented. Individual gates and depth traversal are computed using the same
methods shown in Sects. 3.2 and 3.4, respectively.

Unbounded Fan-Out. To allow the output of a gate at index i to fan-out k > 1,
such as in the NOT gate shown in Fig. 4a, the count of the species added for all

264 R. Anderson et al.

the gates whose output eventually fans into gate i should be multiplied by k.
The gate computes all input species concurrently with each other, and result in
the gate’s output species being equivalent in quantity to the fan-out. Figure 4b
shows an example of this process for a NOT gate with a fan-out of three.

Unbounded Fan-Out Example. Consider an AND gate with a fan-in and fan-out
of two. Let the two input bits be true and false. To compute the gate with
the correct amount of fan-out, our system’s initial configuration consists of two
copies of each input species (xT

1 , xT
1 , xF

2 , and xF
2). We then apply the relevant

rules to the configuration. Afterwards, we are left with two copies of yF
2→1.

Theorem 2. Threshold circuits (TC) can be computed with multiple-input relax-
ation by a step CRN with only (2, 0) rules with upper bounds of O(G) species,
O(D) steps, and O(GFout

D) volume.

5 Exponential Volume Lower Bound for Gate-Wise
Simulation

In this section, we derive an exponential lower bound for the volume of a step
CRN with (2, 0) rules that simulates boolean circuits of depth D. Our lower
bound almost matches the upper bound.

To prove the lower bound, we design a circuit that is able to be simulated by
any step CRN using only (2, 0) rules as follows. The circuit has D stages such
that each stage of the circuit has O(1) layers. We establish a recursive inequality
for the CRN volume over three consecutive stages which implies an exponential
lower bound for species in the input stage. We show a proof that the lower bound
of volume in a step CRN that uses gate-wise simulation to simulate a boolean
circuit with only (2, 0) rules is 2Ω(D).

Definition 5. A step CRN uses gate-wise simulation to simulate a circuit V (·)
if each gate g is assigned c1,g copies of species 1g, which represents output 1, and
c0,g copies of 0g, which represents output 0. When gate g computes an output, it
will be either c1,g copies of species 1g for the case 1, or c0,g copies of species 0g

for the case 0. We define C(g) = c1,g + c0,g to be the number of species used for
gate g. There is a special case that g is one of the input bits (source gates with
fan-in 0) that satisfies c1,g = 0 or c0,g = 0, as each input bit is either 0 or 1. Let
a step CRN have k steps 0, 1, · · · , k − 1 as defined in Sect. 2.4. It also satisfies
the conditions:

– Every gate g enters its complete state at exactly one step i, which is denoted
by complete(g) = i. After step i, the system releases ca,g copies of species
ag and removes all copies of species (1 − a)g to represent gate g having the
output a. After step complete(g), the system does not generate any additional
copy of 1g or 0g (it may keep some existing copies of ag). The output of gate
g determines the simulation according to the logic of circuit.

– For two different gates g1 and g2, if there is a directed path from g1 to g2

(g1’s output may affect g2’s output) in the circuit V (·), then complete(g1) <

complete(g2).

Bimolecular Void Rules for Threshold Circuits 265

If a circuit V (·) computes a function f(x1, · · · , xn) = y1, · · · , ym ({0, 1}n →
{0, 1}m) and V (·) is simulated using gate-wise simulation in a step CRN, define
1f(·),i to represent the case yi to be 1 and 0f(·),i to represent the case yi to be 0.

By Definition 5, when gate g outputs 1, all the c0,g copies of 0g are removed
and it has c1,g copies of 1g to enter the next layer of a circuit. The step CRN
given in Sect. 4 uses gate-wise simulation to simulate threshold circuits. Our
lower bound result in this section shows that the exponential volume is required.

Lemma 1. Assume that a step CRN with (2, 0) rules simulates a circuit V (·).
Let b ∈ {1g, 0g} be the output species. If one copy of a species is removed or
added, it results in at most one difference in the number of copies of species b.

Lemma 2. Let f(x1, · · · , xn) = y1, · · · , ym be a function {0, 1}n → {0, 1}m

such that each variable xi and yj has a value in {0, 1}. If a step CRN with (2, 0)
rules computes f(·), and changing variable xj to 1 − xj will change yi1 , · · · , yit

to 1 − yi1 , · · · , 1 − yit
, respectively, then C(xj) ≥

∑t

k=1 C(yik
).

Definition 6. A list of Boolean circuits {Hn(·)} is uniform if there is a Turing
machine M(·) such that each Hn(·) can be generated by M(1n) in a polynomial
p(n) steps.

Theorem 3. There exist uniform Boolean circuits {VD(x1, x2, x3)}
+∞
D=1 with

each VD(x1, x2, x3) : {0, 1}3 → {0, 1}3 s.t. each VD(x1, x2, x3) has depth O(D),
size O(D), 3 output bits, and requires C(g) = 2Ω(D) for at least one input gate
g in a step CRN using gate-wise simulation to simulate VD(·) with (2, 0) rules.

Proof. We construct a circuit that has O(D) layers. It is built in D stages. Each
stage has a circuit of depth O(1) to compute function s(x1, x2, x3) = y1y2y3.
The function s(·) has the properties:

s(1, 1, 1) = 111, (1) s(0, 1, 1) = 000, (2) s(1, 0, 1) = 011, (3)

s(1, 1, 0) = 101, (4) s(0, 0, 0) = 110 (5)

Define function s(1)(x1, x2, x3) = s(x1, x2, x3) and s(k+1)(x1, x2, x3) =
s(s(k)(x1, x2, x3)) for all integers k > 1. The circuit V (x1, x2, x3) =
s(D)(x1, x2, x3). We can also represent the circuit V (x1, x2, x3) =
s(D)(x1, x2, x3) = sD−1 ◦ sD−2 ◦ · · · ◦ s0(x1, x2, x3), where si(·) represent the
function s(·) at stage i. The circuit V (x1, x2, x3), which computes s(D)(x1, x2, x3)
links the D circuits Vs(x1, x2, x3) that compute the function s(x1, x2, x3). The
three output bits for sk(·) at stage k become three input bits of sk−1(·) at stage
k − 1.

Let the output of the circuit be stage 0. The input stage has the largest stage
index. Consider the general case. Let Ck(u) be the number of copies of species
u in stage k. If u is computed by a gate g, we let Ck(u) = C(g). Let vi,k be the
variable vi at stage k. As we have three output bits y1,0, y2,0, y3,0 in the last layer
(layer D), each bit yi,0 must have a copy of species to represent its 0, 1-value
(see Definition 5). Thus,

266 R. Anderson et al.

CD(y1,0) ≥ 1, CD(y2,0) ≥ 1, CD(y3,0) ≥ 1. (6)

When x1x2x3 is changed from 111 to 011 (by flipping x1), the output y1y2y3

is changed from 111 to 000. By Equations (1) and (2) and Lemma 2, we have

Ck(x1,k) ≥ Ck(y1,k) + Ck(y2,k) + Ck(y3,k). (7)

When x1x2x3 is changed from 111 to 101 (by flipping x2), the output y1y2y3

is changed from 111 to 011. By Equations (1) and (3) and Lemma 2, we have
Equation 8 below. When x1x2x3 is changed from 111 to 110 (by flipping x3),
the output y1y2y3 is changed from 111 to 101. By Equations (1) and (4) and
Lemma 2, we have Equation 9 below.

Ck(x2,k) ≥ Ck(y1,k) (8) Ck(x3,k) ≥ Ck(y2,k) (9)

When yi,k is equal to xi,k−1 as the output of sk(·) becomes the input of
sk−1(·). We have

Ck(yi,k) ≥ Ck−1(xi,k−1) for i = 1, 2, 3. (10)

In each stage, the input to the function s(·) can reach all cases 000, 011, 101,

110,111 by adjusting the 3 input bits of the circuit. When the input is 111, the
function s(·) gives the same output 111 at all phases. Through a simple repetition
of the above inequalities, we derive a 2Ω(D) volume lower bound.

Ck(x1,k) ≥ Ck−1(x1,k−1) + Ck−1(x2,k−1) + Ck−1(x3,k−1)(by (7), (10)) (11)

≥ Ck−1(x1,k−1) + Ck−1(y1,k−1) (by inequality (8)) (12)

≥ Ck−1(x1,k−1) + Ck−2(x1,k−2). (by inequality (10)) (13)

Let a0, a1, · · · be the Fibonacci series with a0 = a1 = 1 and recursion ak =
ak−1 + ak−2 for all k > 1. By inequalities (6), (7), and the fact that every input
bit affects the output bit in s(·), we have C0(x1,0) ≥ 1 and C1(x1,1) ≥ 1. This is
because when the three input bits are 111, we need bit x1 to make the output
bits 111. By inequality (13), we have Ck(x1,k) ≥ ak for all k ≥ 0. �

6 Conclusions and Open Problems

In this paper we show how bimolecular void rules, a subset of reaction rules with
low power compared to traditional CRNs, become capable of computing thresh-
old formulas and circuits in the step CRN model under gate-wise simulation. We
also prove that simulating circuits under this technique requires an exponential
lower bound volume that matches the upper bound of our construction methods.

These results naturally lead to some promising future research directions. One
approach is constructing another method for simulating threshold circuits under

Bimolecular Void Rules for Threshold Circuits 267

only (2,0) rules. A more general simulation technique could have the benefit of
computing circuits without the exponential-sized volume gate-wise simulation
requires. Furthermore, our step CRN definition requires the system to reach a
terminal configuration before moving to the next step. Relaxing this definition
so that a system may reach a step without entering a terminal configuration can
make the model more valuable to general CRNs, where reachability to a terminal
configuration is not guaranteed.

References

1. Alaniz, R.M., et al.: Reachability in restricted chemical reaction networks. arXiv
preprint arXiv:2211.12603 (2022)

2. Anderson, R., et al.: Computing threshold circuits with void reactions in step
chemical reaction networks. arXiv preprint arXiv:2402.08220 (2024)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

4. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21, 87–102 (2008)

5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. (2007)

6. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions.
Ration. Mech. Anal. 19(2), 81–99 (1965)

7. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions II.
Some addenda. Ration. Mech. Anal. 27(5), 356–364 (1968)

8. Arkin, A., Ross, J.: Computational functions in biochemical reaction networks.
Biophys. J . 67(2), 560–578 (1994)

9. Beiki, Z., Dorabi, Z.Z., Jahanian, A.: Real parallel and constant delay logic cir-
cuit design methodology based on the dna model-of-computation. Microprocess.
Microsyst. 61, 217–226 (2018)

10. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2(1), 656 (2012)

11. Cardelli, L., Kwiatkowska, M., Whitby, M.: Chemical reaction network designs for
asynchronous logic circuits. Nat. Comput. 17, 109–130 (2018)

12. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

13. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Algorithmic Bioprocesses, pp. 543–584 (2009)

14. Dalchau, N., Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Probabilistic
analysis of localized DNA hybridization circuits. ACS Synth. Biol. 4(8), 898–913
(2015)

15. Ellis, S.J., Klinge, T.H., Lathrop, J.I.: Robust chemical circuits. Biosystems 186,
103983 (2019)

16. Eshra, A., El-Sayed, A.: An odd parity checker prototype using dnazyme finite
state machine. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 316–324 (2013)

17. Fan, D., Fan, Y., Wang, E., Dong, S.: A simple, label-free, electrochemical DNA
parity generator/checker for error detection during data transmission based on
“aptamer-nanoclaw”-modulated protein steric hindrance. Chem. Sci. 9(34), 6981–
6987 (2018). https://doi.org/10.1039/C8SC02482K

http://arxiv.org/abs/2211.12603
http://arxiv.org/abs/2402.08220
https://doi.org/10.1039/C8SC02482K

268 R. Anderson et al.

18. Fan, D., Wang, J., Han, J., Wang, E., Dong, S.: Engineering DNA logic systems
with non-canonical DNA-nanostructures: basic principles, recent developments and
bio-applications. Sci. China Chem. 65(2), 284–297 (2022)

19. Jiang, H., Riedel, M.D., Parhi, K.K.: Digital logic with molecular reactions. In:
International Confernce on Computer-Aided Design (ICCAD) (ICCAD 2013), pp.
721–727 (2013)

20. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

21. Lin, Y.C., Jiang, J.H.R.: Mining biochemical circuits from enzyme databases via
Boolean reasoning. In: 39th International Conference on Computer-Aided Design,
pp. 1–9 (2020)

22. Magri, D.C.: A fluorescent and logic gate driven by electrons and protons. New J.
Chem. 33(3), 457–461 (2009)

23. Mailloux, S., Guz, N., Zakharchenko, A., Minko, S., Katz, E.: Majority and minor-
ity gates realized in enzyme-biocatalyzed systems integrated with logic networks
and interfaced with bioelectronic systems. J. Phys. Chem. B 118(24), 6775–6784
(2014). https://doi.org/10.1021/jp504057u

24. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Rheinisch-
Westfälischen Institutes für Instrumentelle Mathematik an der Universität
Bonn (1962)

25. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

26. Qian, L., Winfree, E.: A simple dna gate motif for synthesizing large-scale circuits.
J. R. Soc. Interface 8(62), 1281–1297 (2011)

27. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

28. Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement sys-
tems. In: 21st International Conference on DNA Computing and Molecular Pro-
gramming (DNA 2015), pp. 133–153. Springer (2015)

29. Winfree, E.: Chemical reaction networks and stochastic local search. In: 25th
International Conference on DNA Computing and Molecular Programming (DNA
2019), pp. 1–20 (2019)

30. Xiao, W., Zhang, X., Zhang, Z., Chen, C., Shi, X.: Molecular full adder based on
DNA strand displacement. IEEE Access 8, 189796–189801 (2020)

https://doi.org/10.1021/jp504057u

