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Abstract. We introduce a new model of step Chemical Reaction Net-
works (step CRNs), motivated by the step-wise addition of materials in
standard lab procedures. Step CRNs have ordered reactants that trans-
form into products via reaction rules over a series of steps. We study an
important subset of weak reaction rules, void rules, in which chemical
species may only be deleted but never changed. We demonstrate the ca-
pabilities of these simple limited systems to simulate threshold circuits
and compute functions using various configurations of rule sizes and step
constructions, and prove that without steps, void rules are incapable of
these computations, which further motivates the step model. Addition-
ally, we prove the coNP-completeness of verifying if a given step CRN
computes a function, holding even for O(1) step systems.

1 Introduction

Chemical Reaction Networks (CRNs) are one of the most established and longest
studied models of self-assembly [6,7]. CRNs originate in attempting to model
chemical interactions as molecular species that react and create products from
the reaction. This can be represented as an original number of each species and a
set of replacement rules. The fundamental nature of the model is evident in the
independent inception of equivalent models in multiple areas of research through
other motivations [13], such as Vector Addition Systems (VASs) [19] and Petri-
Nets [21]. Further, Population Protocols [3] are a restricted version where the
number of input and output elements are each two.

Step CRNs. We propose and investigate an important but straightforward ex-
tension to the CRN model (and VASs, Petri-Nets) motivated by the desire to
reflect standard laboratory and medical practices (and multi-step distributed
processes). The Step CRN model augments the CRN model with a sequence of
discrete steps where an additional specified amount of chemical species is com-
bined with the existing CRN after running the system to completion. Our goal is

* This research was supported in part by National Science Foundation Grant CCF-
2329918.



2 Anderson, R. et al.

to explore the computational power of Step CRNs using highly restricted classes
of CRN rules that would otherwise be computationally weak. In particular, we
consider the problem of implementing the powerful, computationally universal
class of Threshold Circuits (T'C') using only void rules, a class of rules that are
provably weak without a step augmentation (Theorem 3).

Void Rules. We study the computational power of Step CRNs under an ex-
tremely simple subset of CRN rules termed void rules [1]. General CRN rules are
powerful since they allow the removal, addition, and replacement of species. Im-
pressively, these rules have successful experimental implementations using DNA
strand replacement mechanisms [26]. However, implementing this level of gener-
ality requires sophisticated, and large, DNA complexes that incur practical errors
and constitute one of the primary hurdles limiting the scalable implementation
of molecular computing schemes [11,28].

Here, we focus on wvoid rules, a class of rules that utilize only the removal
feature of CRN rules. Note that by removal, we simply mean that both elements
can no longer be used, which may be that they become some species that is
easily filtered. While simpler, the class of pure void rulse is unable to compute
even simple functions such as the CNOT gate (Theorem 3). We show that void
rules become computationally powerful in the step model with just tri-molecular
or bi-molecular interactions. Specifically, that T'C's can be simulated with void
rules using a number of steps linear in the circuit’s depth.

Our Contributions. Table 1 has an overview of the main results of this paper
beyond the introduction of the model and simulation definitions. The most im-
portant results are the ability to simulate the class of TC' by simulating AND,
OR, NOT, and MAJORITY gates through a restrictive definition of simulation
while only using small void rules.

In Section 2, we define Step Chemical Reaction Networks and what it means
to compute a function. Following, in Section 3, we show how to simulate the class
of TC with void rules of size (3,0) using O(D log f) steps, where D is the depth
of the circuit and f denotes the maximum fan-out of the circuit. In Section 4,
we achieve the same result using both (2,0) and (2, 1) rules and a slightly more
efficient step complexity of O(D). We then use exclusively (2, 1) rules to achieve
this same result by adding a factor of log Fi,,,; to the steps, where F,q; is the
maximum fan-in of majority gates. In Section 5, we show there exist functions
that require a logarithmic number of steps when restricted to constant reaction
size, as well as the existence of O(1)-depth threshold circuits of fan-out f that
require {2(log f) steps, which matches the O(Dlog f) upper bound for (3,0)
circuits. Finally, we show that it is coNP-complete to know whether a function
can be strictly simulated by a step CRN system.

1.1 Previous Work

Computation in Chemical Reaction Networks. Stochastic Chemical Reac-
tion Networks are only Turing-complete with the possibility for error [25] while
error-free stochastic Chemical Reaction Networks can compute precisely the set
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l Function Computation

Rules Species Steps Simulation| Family Ref
(3,0) [O(min(W?,GFout))| O(Dlog Fout)| Strict |TC Circuits| Theorem 1
(2,0)(2,1) O(G) O(D) Strict  |TC Circuits| Theorem 2
(2,1) O(G) O(Dlog Fraj) Strict | TC Circuits|Corollary 1
(c,0) any 2(log k) Strict k-CNOT | Theorem 3

l Strict Function Verification ‘
Rules|Steps| Complexity Ref

(3,0) | O(1) |coNP-complete| Theorem 6
Table 1: Summary of n-bit circuit simulation results. D is the depth of the circuit,
W is the width, G is the number of gates in a circuit or number of operators
in a formula, Fy,; is the max fan-out, F,q; is the max fan-in of majority gates,
and TC is Threshold Circuits. The k-CNOT is a k fan-in generalization of a
Controlled NOT gate. Rule (¢,0) means any size with integer constant ¢ > 0.

of semilinear functions [5,12]. CRNs have also recently been shown to be exper-
imentally viable through DNA Strand Displacement (DSD) systems [26] with
several CRN to DSD compilers now existing.

Boolean Circuits. Using molecules for information storage and Boolean logic
is a deep field of study. Here, we show a few highlights, starting with one of the
first discussions in 1988 [9] and an initial presentation of circuits with CRNs in
1991 [17]. Since then, the area has been extensively studied in CRNs and related
models [8,10,13,18,22,23]. Numerous gates have been built experimentally and
proposed theoretically such as the AND [23,30], OR [14,23], NOT [10], XOR
[10,30], NAND [13,29], NOR [10], Parity [16], and Majority [4,20]. Symmetric
boolean functions of n variables such as Majority have been found to have a
circuit depth of O(logn) when implemented by AND, OR and NOT gates [24].

Void Rules. The reachability problem, with systems of only void rules in proper
CRNs, was studied in [1]. Previous studies had included void rules as a part of
their systems, but were never studied exclusively. They can also be considered
a subcategory of the broader concept of the extinction of rules and species in a
system as referred to in [29).

Mixing Systems. Another generalization of CRNs that is closely related to the
step model is I/O CRNs [15], where additional inputs can be added at timed
intervals. Still, those inputs are read-only in the system (used exclusively as
catalysts). Step CRNs generalize I/O CRNs as the inputs are not read-only and
are rate-independent, unlike I/O CRNs.

2 Preliminaries

Basics. Let A = {A1,A2,---, A4} denote some ordered alphabet of species. A
configuration C' over A is a length-|A| vector of integers where the i*" entry C[i]
denotes the number of copies of species A;. A rule or reaction is represented as an
ordered pair of configuration vectors R = (R, Rp). The application vector of R is
R, = R,— R,, which shows the net change in species counts after applying rule R
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once. For a configuration C and rule R, we say R is applicable to C if C[i] > R,[i]
for all 1 <i < |A|, and we define the application of R to C as the configuration
C" = C+R,. For a set of rules I', a configuration C, and rule R € I" applicable to
C that produces C’ = C' + R,, we say C' —1% C’, a relation denoting that C' can
transition to C’ by way of a single rule application from I'. We further use the
notation C' —% C” to signify the transitive closure of —1 and say C” is reachable
from C under I', i.e., C’ can be reached by applying a sequence of applicable rules
from I" to initial configuration C. Here, we use the following notation to depict
arule R = (RT,RP)Z Rr[l])\l + -+ RTHAH)‘lAl — Rp[].])\l +---+ Rp[|AH>\|A|
For example, a rule turning two copies of species H and one copy of species O
into one copy of species W would be written as 2H + O — W.

Definition 1 (Discrete Chemical Reaction Network). A4 discrete chemical
reaction network (CRN) is an ordered pair (A, I') where A is an ordered alphabet
of species, and I' is a set of rules over A.

An initial configuration I and CRN (A, I') are together said to be bounded if a
terminal configuration is guaranteed to be reached within some finite number of
rule applications starting from configuration I. We denote the set of reachable
configurations of a CRN as REACH a r. A configuration is called terminal
with respect to a CRN (A, I") if no rule R can be applied to it. We define the
subset of reachable configurations that are terminal as TERM;j 4 r.

Definition 2 (Void rules). A rule R = (R, Rp) is a void rule if the applica-
tion vector R, — R, has no positive entries and at least one negative entry. We
say its a true void rule if the R, vector is the 0 vector, and catalytic otherwise.

Definition 3 (Volume and Rule Size). The size/volume of a configuration
vector C' is volume(C) = EL/:HI Cli]. A rule R = (R,,R)) is said to be a size-
(¢,7) rule if (i,j) = (volume(R,), volume(R,)). A reaction is trimolecular if
1 = 3 and bimolecular if i = 2.

2.1 Step CRNs
A step CRN is an augmentation of a basic CRN in which a sequence of additional
copies of some system species are added after a terminal configuration is reached.
Formally, a step CRN of k steps is an ordered pair ((A, I'), (so, $1, 2, "+ , Sk—1)),
where the first element of the pair is a normal CRN (4,1I"), and the second is
a sequence of length-|A| vectors of non-negative integers denoting how many
copies of each species to add at each step. Figure 1 shows an example system.
Given a step CRN, we define the set of reachable configurations after each
sequential step. To start off, let REACH; be the set of reachable configurations of
(A, I') with initial configuration sg, which we refer to as the set of configurations
reachable after step 1. Let TERM; be the subset of configurations in REACH;
that are terminal. Note that after a single step we have a normal CRN, i.e., 1-step
CRNs are just normal CRNs with initial configuration sg. For the second step,
we consider any configuration in TERM; combined with s; as a possible starting
configuration and define REAC H; to be the union of all reachable configurations
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Fig. 1: An example step CRN system. The test tubes show the species added at
each step and the system with those elements added. The CRN species and void
rule-set are shown on the left.

from each possible starting configuration attained by adding s; to a configuration
in TERM;. We then define TERM5 as the subset of configurations in REACH,
that are terminal. Similarly, define REACH; to be the union of all reachable
sets attained by using initial configuration s; 1 plus any element of TERM; 1,
and let T'E RM; denote the subset of these configurations that are terminal. The
set of reachable configurations for a k-step CRN is the set REACH, and the set
of terminal configurations is TERMy,. A classical CRN can be represented as a
step CRN with k£ = 1 steps and an initial configuration of I = sg.

Our definitions assume only the terminal configurations of a given step are
passed on to seed the subsequent step. This makes sense if we assume we are
dealing with bounded systems, as this represents simply waiting long enough for
all configurations to reach a terminal state before proceeding to the next step.
In this paper we only consider bounded void-rule systems.

2.2 Computing Functions in Step CRNs

Here, we define what it means for a step CRN to compute a function f(z1, - ,z,)
= (Y1, ,Ym) that maps n-bit strings to m-bit strings. For each input bit, we
denote two separate species types, one representing bit 0, and the other bit 1. We
add one copy for each bit to encode an input n-bit string. Similarly, each output
bit has two representatives (for 0 and 1), and we say the step CRN computes
function f if for any given n-bit input xy,--- ,x,, the system results in a final
terminal configuration whose output species encode the string f(z1,- - , ). For
a fixed function f, the set of species s; added at each step is fixed for all inputs
to prevent encoding the output of the function within the configurations s;.

Input-Strict Step CRN Computing. Given a Boolean function f(xy,--- ,x,)
= (y1, - ,Ym) that maps a string of n bits to a string of m bits, we define
the computation of f with a step CRN. An input-strict step CRN computer is
a tuple C5 = (S, X,Y) where S = ((A,I'),(s0,51, -+ ,Sk—1)) is a step CRN,
and X = ((mf,xf), (xF € )) and Y = ((yf>y{)’ 7(%1;_‘”?4;1;1)) are se-
quences of ordered-pairs with each xf" 2T 2 Yj ,y]T € A. Given an n-input bit
string b = by, -+, by,, configuration X (b) is defined as the configuration over A
obtained by including one copy of = only if b; = 0 and one copy of ] only
if b; = 1 for each bit b;. We consider this input to be strict, as opposed to al-
lowing multiple copies of each input bit species. The corresponding step CRN
(A, T, (so+ X (D), ,sk_1)) is obtained by adding X (b) to s¢ in the first step,
which conceptually represents the system programmed with specific input b.
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An input-strict step CRN computer computes function f if, for all n-bit
strings b and for all terminal configurations of (A, I', (so + X (b), -+, sk—1)), the
terminal configuration contains at least 1 copy of yf and 0 copies of ij if the
4™ bit of f(b) is 0, and at least 1 copy of y7 and 0 copies of y" if the j* bit of
f(b) is 1, for all j from 1 to m.

We use the term strict to denote requiring exactly one copy of each bit
species. See [2] for a recent consideration of non-strict computation that utilizes
bimolecular reactions. Here, we only consider input-strict computation, so we
use input-strict and strict interchangeably.

Relation to CRN Computers. Previous models of CRN computers consid-
ered functions over large domains such as the positive integers. Due to the infi-
nite domain, the input to such systems cannot be bounded. As such, the CRN
computers shown in [12] define the input in terms of the volume of some input
species. In these scenarios, CRN computers are limited to computing semi-linear
functions. Here, we instead focus on computing n-bit functions, and instead en-
code the input per bit with potentially unique species. This is a model more
similar to the PSPACE computer shown in [27].

2.3 Boolean and Threshold Circuits

A Boolean circuit on n variables x1, x3, - - - , x, is a directed, acyclic multi-graph.
The vertices of the graph are generally referred to as gates. The in-degree and
out-degree of a gate are called the fan-in and fan-out of the gate respectively.
The fan-in 0 gates (source gates) are labeled from x1,zs,: -+ ,x,, or labeled by
constants 0 or 1. Each non-source gate is labeled with a function name, such
as AND, OR, or NOT. Given an assignment of Boolean values to variables
Z1,%2, -+ ,Tp, each gate in the circuit can be assigned a value by first assigning
all source vertices the value matching the labeled constant or labeled variable
value and subsequently assigning each gate the value computed by its labeled
function on the values of its children. Given a fixed ordering on the output gates,
the sequence of bits assigned to the output gates denotes the value computed by
the circuit on the given input.

The depth of a circuit is the longest path from a source vertex to an output

vertex. Here, we focus on circuits that consist of AND, OR, NOT, and MA-
JORITY gates with arbitrary fan-in. We refer to circuits that use these gates as
threshold circuits (TC).
Notation. When discussing a Boolean circuit, we use the following variables
to denote the properties of the circuit: Let D denote the circuit’s depth, G the
number of gates in the circuit, W the circuit’s width, F,,; the maximum fan-out
of any gate in the circuit, Fj, the maximum fan-in, and Fj,,; the maximum
fan-in of any majority gate within the circuit.

3 Computation of Threshold Circuits with (3, 0) Rules

Here, we introduce a step CRN system construction with only true void rules
that can compute TCs. In other words, given any TC and some truth assignment
to the input variables, we can construct a step CRN with only true void rules
that computes the same output as the circuit.
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This section focuses on step CRNs consisting of (3, 0) rules. Section 3.1 shows
how to compute individual logic gates, and we give an example construction of
a circuit in Section 3.2. We then present the general construction of comput-
ing TCs by two different methods, differing in the number of species needed
based on the fan-out and width of the circuit. This results in Theorem 1, which
states that TCs can be strictly computed, even with unbounded fan-out, with
O(min(W?2,GF,,;)) species, O(Dlog F,,;) steps, and O(W) volume.

3.1 Computing Logic Gates

Indexing. The number of steps to compute an individual depth level of a circuit
varies between 2-8 steps depending on the gates and wiring of the specified
circuit. To convert a circuit into a (3,0) step CRN system, we indez the wires
(input and output) at each level of the circuit in order to ensure the species is
input to the correct gate. An example circuit with bit/wire indexing is shown
in Figure 3c. At each level, we call the indices of the inputs of gates the input
indices, and the indices of the output of each gate the gate indices. Note that
the index numbers may need to change along the wire, or change due to fan-
out/fan-in (see Figure 3c). This is assisted by species of the form ¢;_,; that map
an input index of j to a gate index of 3.

Bit Representation. The input bits of a binary gate are represented in a
step CRN with (3,0) rules by the species z¥, where n € N and b € {T,F}. n
represents the bit’s index (based on the ordering of all bits into the gates) and
b represents its truth value. Let fi™ be the set of all the indices of input bits
fanning into a gate at index ¢ (gate indices). Let f°“! be the set of all indices of
the output bits fanning out of a gate at index 1.

The output bits of a gate are represented by the species y,l;g, where n is
the output bit’s index (input index of the next level) and g denotes the gate
type g € {B,A,O0, N, M} (BUFFER, AND, OR, NOT, and MAJORITY). For
example, the outputs of an AND gate, an OR gate, and a NOT gate at index n
are represented by the species yfl A 92,07 and ny’ N> respectively.

AND/OR Gate. The general process to compute an AND gate (an OR gate
is similar) is given in Table 2. First, all input species are converted into a new
species a?’ 9 (step 1). The species retains truth value b as the original input and
includes the gate’s index and type i and g, respectively. The species bg g is then
introduced (step 2), which computes the operation of gate g across all existing
species. Any species that do not share the same truth value as the gate’s intended
output are deleted (step 3-4). The species remaining after the operation are then
converted into the correct output species (step 5).

The species u;, v;, w;, and t;_,;, where j is the input index and 7 is the gate
index, are used to assist in removing excess species in certain steps.
AND Example. Consider an AND gate whose gate index is 1 with input bits

1 and 0 as shown in Fig. 2. Here, | f{"| = 2 and the initial configuration consists
of the species #7" and x". By Table 2, this gate can be computed in five steps.
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Ti:l Add:
X il F
i:2 );A
xf— :

System:

Fig.2: Example AND gate and steps to compute using (3,0) rules. Note the
gate indexing of the wires (¢ : 1 and 7 : 2) and the input indexing for the next
level (i : 1 since there is only one gate). The process of computing the gate is
shown on the right in steps. The new species added at each step are above and
the remaining ones are below. The lines show the rules that would be executed
during each step. To see the added species and rules in detail, see Table 2.

1. Two afA, two afA, one t;_.1, and one to_,; species are added to the system.
This converts the two input species of the gate into af 4 and af 4 (causes
all species except a{ 4 and af 4 to be deleted).

2. One b{ 4, two bfj 4, and two u; species are added. All species except a single
bf 4 are deleted by reactions.

3. Four vy species are added to remove excess species. There are none, so no
reactions occur.

4. Two w; are added to delete excess species. Now, only a bfA species remains.

5. One yfm one yfA and one t species are added. The bf_A species cause
the y{A and t species to be deleted. The yfA species is the only species
remaining, which represents the intended “false” output of the AND gate.

NOT Gate. Table 3 shows the general process to computing NOT gates. To
compute a NOT gate, only the output species and species t are added in. In NOT
gates specifically, the input species and the output species that share the same
truth value b remove each other, leaving the complement of the input species as
the remaining and correct output species.

Majority Gate. The majority gate outputs 1 if and only if more than half of
its inputs are 1. Otherwise, it returns 0. The general step process is overviewed
in Table 4. To compute a majority gate, all input species are converted into a
new species a? ,; (step 1). The species retains the same index i and truth value
b as the original input. If the fan-in of the majority gate is even, an extra false
input species is added in. The species bi?_ a is then introduced, which computes
the majority operation across all existing species. Any species that represent the
minority inputs are deleted (step 2). The species remaining after the operation
are converted into the correct output (gate index) species (step 5). The species
Us, Vi, Wy, and t;_,;, where j is the input index and ¢ is the gate index, are used
to assist in removing excess species in certain steps.

3.2 (3,0) Circuit Example

With the computation of individual gates demonstrated in our system, we now

expand these features to computing entire circuits. We begin with a simple ex-
ample (Figure 3c) to show the concepts before giving the general construction.
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Steps Relevant Rules Description
|fi"] - aig vje fi":

o .
Vj € fi", convert z§ input

1{Add |fin|-af  |z] +aly+tjmi =0 o :
im0 g species into a? , species.
Vi€ fin i tma|m +alg + it — 0 P bo 5P
bT
2| Add |fm|”gbp ui +aj,+ by — 0 |Keep at least one of the correct output
| ;m| &’g u; + afj g T b;fg — () |species and delete all incorrect species.
3|Add  2|fi"| - v ui + v +v; =0 Delete extra/unwanted species.

wi +vi +vi =0
wi +af g +bly—0
bzg + yfg +t—0 Convert bi?’g into the proper output
b+ yl,+t— 0 species y? .

4|Add |- ws Delete extra/unwanted species.

5|Add Yl Yy, t

Table 2: (3, 0) rules and steps for an AND gate. To compute an OR gate, add
|fin| - bg:g and one bfg in Step 2 instead, and replace w; + afg + bfg — 0 with
w; + ag:g + bfq — () in Step 4.

Steps Relevant Rules Description
T The output species (y? x) that is
yzﬁvN y;-‘FN + mJT + tj%i — 0 P P .(yl’N) . b
1|Add 47 7% Vo the complement of the input species (x;)
tisi| will be the only species remaining.

Table 3: (3, 0) rules and steps for a NOT gate.

The circuit has four inputs: 1, x2, 3, and x4. At the first depth layer, x; fans
into a NOT gate and x5 and x3 are both fanned into an OR gate. At the next
depth level, the output of the OR gate is fanned out twice. One of these outputs,
along with the output of the NOT gate, is fanned into an AND gate, while the
other and x4 fans into another AND gate. At the last depth level, both AND
gate outputs fan into an OR gate, which computes the final output of the circuit.

Table 5 shows how to compute the circuit in Figure 3c. The primary inputs of
the circuit in Figure 3c are represented by the species in the initial configuration.
Step 1 converts the primary inputs into input species. If there was any fan out of
the primary inputs, it would be done in this step. Steps 2-6 compute the gates at
the first depth level. Steps 7-8 compute the fan out between the first and second
depth level. Step 9 converts the outputs of the gates at the first depth level into
input species. Steps 10-14 use those inputs to compute the gates at the second
depth level. Step 15 converts the outputs of these gates into inputs. Steps 16-20
compute the final gate. Step 21 converts the output of that gate into an input
species that represents the solution to the circuit (z1').

3.3 Computing Circuits

For TC circuits with a max fan-out of 2, we show two methods of encoding
the gates into the species that yield different results. The method in Lemma 1
reuses the gate species at each level of the circuit, and the method in Lemma
2 assigns unique species for each gate. Theorem 1 is generalized for TC circuits
with arbitrary fan-out and combines the results from the Lemmas.
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Steps Relevant Rules Description

|f"] - ai vje fi":
Add |fi"] - afy |2+ aia i =0
V] € f;m : tj%i IEf + az:hf + tjﬁ)i -0

LIf1/2]) - i
Add [|£"1/2] - bia
(IF" = 1) - wi

Add 2()f") = 1) v u; + 2v; — 0 Delete extra/unwanted species.

Vj € fi", convert xé’v input

species into al{,M species.

[y

Adding [|f/"|/2] amounts of b] ,; and
u; + an + bEM —0 be species will delete all of the
u; + af M+ bEM — () |minority species, leaving some amount
of the majority species remaining.

N

«w

w; +2v; — 0
Add (|fi*] = 1) - wi |wi + aia +biy — 0 Delete extra/unwanted species.
wi—l—an-i-be —>®

N

T
y%’M aZ:M + ny +t— 0 | Convert aé”M into the proper output

5|Add ! .
y’%M aij + yZM +t—0 species (yf,M).

Table 4: (3, 0) rules and steps for a majority gate.

Lemma 1. Threshold circuits (TC) with a maz fan-out of 2 can be strictly com-
puted by a step CRN with only (3,0) rules, O(W?) species, O(D) steps, and
O(W) wvolume.

Proof. The initial configuration of the step CRN should consist of one yfih B
species for each primary input with the appropriate indices and truth values.
Section 3.1 explains how to compute TC gates. In order to apply a gate, we
convert the outputs at an index ¢ into the inputs for the next gate at index j. To
simulate circuits with O(W?2) species, we also must be able to reuse these input,
output, and helper species. This is accomplished by having unique species for
each gate at a given depth level. Figure 3a shows an example indexing.

When reusing species, we add a unique ¢,_,; species (different from ¢;_,; used
in computing gates) for each gate at index 4 that converts the output species
into an input species with index j. Converting outputs into inputs is done for all
gates at the same depth level. Table 6 shows the steps and rules for this process.

Fan Out. In order to perform a 2-fan out, we create a second copy of the output
species that is fanning out. Table 7 shows the steps and rules needed for this
duplication. After duplication, the simulation continues as usual. All outputs at
the same depth level can be fanned out at the same time using these two steps.

Complexity. The ¢;_,; approach uses at most W? unique species since 1 <
i,7 < W. All other types of species either have O(1) or O(W) unique species.
Thus, a simulation of a circuit with a max fan-out of 2 requires O(W?) species.

All gates at a given depth level are evaluated at the same time, so a simulation
of a circuit with a max fan-out of 2 requires O(D) steps. Additionally, circuits
are evaluated one depth level at a time. Thus, at most, a max width amount
of input, output, and helper species are added at the same time. All of the
input, output, and helper species from previous depth levels get deleted when
progressing to the next depth level, so the simulation requires O(W) volume.
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Initial Configuration: ny ygB y3T73 yﬁB
Steps Relevant Rules Steps Relevant Rules

xi, w3, x5, o]
t1-1, t33
:'E{'7 1‘5‘7 xg‘? l‘f
tao, L4y

y11,3+13f + 151 —0
y2T,3+iB§+t2a2—>®
yg:B+5U§+t3~>3—>®
F T

Yin+xs +tasa—0

10

20’{,A7 Qaé,A
20/{:14, QGQF:A
ta—1, tas2
t11, t352

l‘f -‘raf’A“rtl—»l —>®
$2T+a£,4+t2a1 — 0
:E3T+Q§7A+t3a2—>0
F T

Ty +as 4 +tasy =0

T T T
Yi,N> 2‘12,07 Y3,B

z1 +yf,N +tin1 — 0

af,A—&-bf,A—&—ul —>®

b 4, b3
o|tis1, t3o2 x5 +aso+tasz — 0 11 LA gFA aia+bia+u —0
F FoF |7, ¥ 2u1, 2b1 4 7 P
Y1,N> 20,2’0, Y3,B|T3 +az o + t3s2 — 0 ngA Qo as A + bQ,A +uz — 0
tas2, t43 ol oyl Ftas— 0 - af A4V tus— 0
3|207.0, 2uz, b5 o laz.o + b0 +uz — 0 |[12[4vy, 4vy No Rules Apply
4]4v, Uy + Vo +v2 — 0 1312w: . 2w wi +v1 +v1 — 0
5/2w, wa + v2 +v2 — 0 b 2 wa +va +v2 — 0
) . 11112+02T?+52T,o =0 14 Yia Yaar 2t |blatyiat+t—0
6|y2.0, &, ¥2.0 br.o +y2.0 +t =0 Yl As Y a b£A+y2TTA+t—>®
t +ai +tis1 =0
7 T’T7 F T o4l 4r s 15$179ﬂ271—>1 Yi,A 1
Y2,0 Y2,0 Y2,0 T Y2,0 xf, xg’ toso ygA _|_1,2T tto o — 0

295 05 2Y5.0

yQF,o +y5,o +y5,o =0

16

1

2a3,0, t1—1
F

2a; 0 ta—1

xt + afyo +tis1 =0
25 +alo+tas =0

T T T _T
L1, T2, T3, Ty
t1-1, tas

F ,F _F _F
Ty, Ty, T3, Ty

tos2, t354

yf’]\]‘f‘x?‘i‘tlal%@
yg:o+l'§+t2~>2—>®
T F

Y2.0 + T3 +tamz — 0
y§B+x4T+t3_>4—>@

17)2b1 o, 2u1, bl plalo +bio +tui = 0
18|4v; No Rules Apply
19[2w; wi +v1 +v1 = 0
20|yi 0, t, Yi.0 bio+yio+t—0

21

T F
x1, i1 Ty

Yiot+al +tini—0

Table 5: (3,0) rules and steps to compute the circuit in Figure 3¢ based on the
indexing shown in Figure 3a. Note that the ‘Steps’ column shows the number
and types of species being added at the beginning of that step.

Steps

Relevant Rules

Description

[

Add Vj € fout

T | F
"I/'J ,IJ 7tz~>]

vj € fr

yiT,g+:er+ti_>j—>®
Yig+ 3] +tin; =0

Vi € fo¥, convert yﬁ-’,g output
species into x? input species.

Table 6: (3, 0) rules for converting outputs into inputs per circuit level.

A constant number of species, steps, and volume are needed to perform a 2-fan
out, so a 2-fan out operation does not affect the complexity.

Lemma 2. Threshold circuits (TC) with a maz fan-out of 2 can be strictly com-
puted by a step CRN with only (3,0) rules, O(G) species, O(D) steps, and O(W)
volume.

Theorem 1. Threshold circuits (TC) can be strictly computed by a step CRN
with only (3,0) rules, O(min(W?2,G - F,u;)) species, O(Dlog F,,:) steps, and
O(W) wolume.

Proof. This follows by expanding a given TC circuit to a fan-out 2 circuit and
by applying the methods of Lemmas 1 and 2.
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Steps Relevant Rules Description
@/z‘T,g n ?Jz‘T,g N thTou.tput s bit (e.g. if species
Vo a Yi,q is present, then delete
Yig +¥ig +7 0 it and preserve y;,)
Delete all copies of the negation
y,T g+ yLT g+ y,T , — 0|of the initial input, and preserve
yl, +yty+yb, — 0| the two copies of the input
that were just added.

[

Add T Yiger

1,99

N

Add Qng, 2yfg

Table 7: (3,0) rules and steps for 2-fan out.

1Bit Indices

(a (b) (c) (d)
Fig.3: (a) Example indexing pattern of wires for the step CRN method using
O(W?) species. (b) Example indexing pattern of wires for the step CRN method
using O(G) species. (¢) Example circuit (with indexing) for Table 5. (d) Example
circuit (with indexing) for Table 10.

4 TCs with (2, 0) and (2, 1) Catalyst Rules

Having established computation results with step CRNs using only true void
rules, we now examine step CRNs whose rule-sets contain catalytic rules. These
rulesets can either consist of only (2,1) rules or both (2,1) and (2,0) rules.
Subsection 4.1 shows how the computation of logic gates is possible in step
CRNs with just (2,0) or (2,1) rules. We then demonstrate with Theorem 4.3
how the system can compute TCs with O(G) species, O(D) steps, and O(W)
volume. Subsection 4.4 then shows that TCs can also be calculated (with more
steps) with only the (2,1) catalyst rules.

4.1 Computing Logic Gates

Bit Representation and Indexing. The inputs of a binary gate are con-
structed as in Section 3.1. However, with catalysts, we modify our indexing
scheme. When fanning out, we do not split the output of the gate into input
species with different indices because the catalyst rules remove the need to dif-
ferentiate the input species. Let fi™ be the set of all indices of the inputs fanning
into a gate at index i. Let f“* be the set of all the indices of the inputs fanning
out of a gate at index i. The output of a gate is represented by the species yf or
y;’ _,;» where j is the index of the input bit and ¢ is the index of the gate.

AND/OR/NOT Gate. Table 8 shows the general process to computing AND,
OR, and NOT gates. To compute an AND gate, we add a single copy of the
species representing a true output (y ) and a species representing a false output
for each input (Vj € fin : yjllz) To compute an OR gate instead, we add a
species representing a true output (y]T ";) for each input and a single yI” species.
To compute NOT gates, we add one copy of each output species (y?). For every
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Gate Type Step Relevant Rules Description
An input species with a certain
T T F
AND |Ad Yi j Ui = 0 truth value deletes the

d.,. in. F F T
Vi€t yim| @y tys =0 complement output species.

An input species with a certain
truth value deletes the
complement output species.

F T, F
i oy =0

OR |Add_. Y o

Vi€ fi" iyl = vyl =0

The input and output species that
share the same truth value delete
each other.

i al +yl =0

NOT Add JF I

Table 8: (2, 0) rules for AND, OR, and NOT gates.

Steps Relevant Rules Description
. vjefi":
[ -af
Jolar | a0
g t i +al =0

. ; b -
Vi € fi", convert x; input

b

1|Add L .
species into a; species.

_ Adding [[f"|/2] amounts of b7 and

Add Hfmm|/2j | al b =0 bf" species will delete all of the
L1£im/2] -bF| af +bF — @  |minority species, leaving some amount

of the majority species remaining.

N

yF al +yf =0 Convert a? into the proper output

A
8| Add yF al +y7 =0 species (y?).

Table 9: (2, 0) rules for majority gates.

input into an AND/OR/NOT gate, a corresponding rule should be created to
remove the output species of the gate with the opposite truth value to the input.
If the output species has a unique j — ¢ index, then only the input with the
corresponding i can delete that output species.

These gates can also be computed with (2,1) catalyst rules by making the .Z‘?—
species a catalyst. For example, the rule x]T +yI' — () would be replaced by the
rule x;F +yl — x?

OR Example. Consider an OR gate whose gate index is 1 with input bits 0
and 1. Here, |f{"| = 2, and the initial configuration consists of the species z{’
and a x1. This gate can be computed in one step, following Table 8, by adding
one yI',;, one yI',,, and one y" species to the system. The species 23 and yf’
delete each other. x¥" and y?_,; are also removed together. Only the species y2

remains, which represents the intended “true” output of the OR gate.

Majority Gate. The general process of computing a majority gate is shown at
Table 9. To compute a majority gate, all input species are converted into a new
species a? (Step 1). The species retain the same truth value b as the original input
and has gate index ¢. If the number of species fanning into the majority gate is
even, an extra false input species is added. The species b? is then introduced,
which computes the majority operation across all existing species. Any species
that represent the minority inputs are deleted (Step 2). The species remaining
afterwards are then converted into the correct output species (Step 3).
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Initial Configuration: y¥" ¢ 7
Steps Relevant Rules Steps Relevant Rules
1[Add d, No Rules Apply || 8 [Add d. de +des — 0
2| Add d, do +dy =0 Ti, T |Yiea +Th = Yl
at, x|yl +ai —yl || 9|Add 2l 2l |yf 4+ af - yf
3|Add 323, 3x3 |y3 + a5 — y3 zg, xf  |yg +ag —yg
N A A e Yia +dy — dy
yi +dy — dy 10| Add d, vF 1+ d, — d,
4|Add d, ys +dy = dy ud +dy — d,
i +d, —d, |[11[Addd, dy+d, =0
5 Add d, dy+dy =0 T n gl |¥E Ty =0
v oF |7 +yi =0 12| Add yé}:: y%ﬂ x; +y5}7 e
Ll el i 2 +up 0
6l Add ygl,:, y%?4 ol 0 13| Add dy No Rules Apply
Ys 5 Y26 o I N 14Addd:j . deFdz?@ ;
yg, ngG 7 + i S0 15|Add z7, z7 Y67 + T7 — Yo7
T3 T Ys—e 16[Add d, Ve r + dy — d,
7| Add d, No Rules Apply ||17]|Add d, dy+dy, — 0

Table 10: (2, 0) and (2, 1) rules and steps to compute the circuit in Figure 3d
with Figure 3b’s indexing.

4.2 Examples

With the computation of individual gates demonstrated in our system, we now
expand these features to computing entire circuits. We begin with a simple ex-
ample in Figure 3d to show the concepts before giving the general construction.

Our example circuit has three inputs: x1, z2, and x3. In the first layer, x5 is
fanned out three times. One is fanned into an AND gate with 1, another fanned
into a NOT gate, and the other fanned into an AND gate with x3. Finally, at
the next depth level, the output of all three gates are fanned into an OR gate,
whose output is the final circuit output.

Table 10 shows how to compute the circuit in Figure 3d. The primary inputs
of the circuit in Figure 3d are represented by the species in the initial configu-
ration. Steps 1-5 fan out the second primary input, convert the output species
(y?) into input species (x%), and delete excess species. Step 6 computes the gates
at the first depth level. Steps 7-11 convert the output species into input species
and deletes excess species. Step 12 computes the final gate. Steps 13-17 delete
excess species and converts the output of the final gate into an input species
that represents the solution to the circuit (22).

4.3 Computing Circuits with (2,0) Void and (2,1) Catalyst Rules
Theorem 2. Threshold circuits (TC) can be strictly computed with (2,0) void
rules and (2,1) catalyst rules, O(G) species, O(D) steps, and O(W) volume.
Due to space constraints, the proof is omitted.

4.4 Computing Circuits with (2,1) Catalyst Rules

Note that (2,1) catalyst rules are able to compute TCs alone. However, there
is no known way to directly compute majority gates with (2,1) void rules, only
(2,0). Thus, any majority gate is computed using AND, OR, and NOT gates
when using only catalyst rules. Furthermore, deleting species that are no longer
needed is slightly more convoluted with (2,1) rules compared to pure void rules.
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Steps Relevant Rules Description
vne{l,---,G}:
Vbe {T,F
g '} Delete all input species (z%) and helper
1|Add do do + Tn = ds species that are no longer needed
d, +al, — d, P 8 '
dy + b5, — ds
2| Add dy de +dy — 0 Remove deleting species d.
yl +af = oF Add species representing true and false
o] - 2T yF +of - yF | inputs and delete the species that are the
3| Add |fzout| b Vje fi": complement of the output. A single output
¢ T y}-;i +a2F - ij%i species can assign the truth value for as
Y+ al =yl many input species as needed.
vne{l,---,G}:
dy + vy, — dy
4l Add d dy +yb — dy Delete all output species (y%) that no
Yy - n
Vje fi": longer needed.
dy + yf;i — dy
5| Add dy dy +dy — 0 Remove deleting species d.

Table 11: (2, 0) and (2, 1) rules and steps for a gate with arbitrary fan out.

Corollary 1. Threshold circuits (TC) can be strictly computed with only (2,1)
catalyst rules, O(G) species, O(D log Fy,q;) steps, and O(W) volume.

Due to space constraints, the proof is omitted. The basic idea, however, is simply
that it takes an additional log steps to handle the fan-in of the majority gates,
which we can easily do with (2,1) catalyst rules.

5 Lower Bounds and Hardness

In this section, we prove negative results for computing with step CRNs. First,
we show there exists a family of functions that require a logarithmic number
of steps to compute. Then, we show hardness of verifying whether a step CRN
properly computes a given function.

5.1 Step Lower Bound for Controlled NOT

CNOT. The Controlled NOT gate is a 2-bit input and 2-bit output gate taking
inputs X and Y, and outputting X and X @Y, i.e., the gate flips Y if X is true.

k-CNOT. We generalize this to a Controlled k-NOT gate. This is a (k + 1)-bit
gate with inputs X, Y7, -+ ,Yy. The Y bits all flip if X is true. We choose this
function since it has the property that changing 1 bit of the input changes a
large number of output bits.

Configuration Distance. Recall configurations are defined as vectors. For two
configurations cg, ¢1, we say the distance between them is ||co—¢1]|1, i.e., the sum
of the absolute value of each entry in ¢y — ¢; (For two vectors X = (zq,- - ,x,)
and Y = (y1,- -, yn), [X =Y = 300, [z — wil)-
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Steps [ Relevant Rules Description

Deleting species d, makes it possible for
1|Add d.| d,+d — d, species d, to exist in the next step
without complications.

!
Vndze—’{_ldm: _> Cév} : Deleting species d, makes it possible for
Vb e 7{T 1’:} species d., to exist in the next step
2| Add d do + 2b ; d without complications.
dz " a{f N dm Delete all input species (z5) and helper
dz . bé‘ N dz species that are no longer needed.
3|Add d)| d.+d) —d) Removes deleting species d.

Deleting species dg makes it possible for species dy

4| Add d, d, +d. —d, S . L
v y Ty v to exist in the next step without complications.

yI +af =T Add species representing true and false
27 yf +al — yF inputs and delete the species that are the
5|Add "% Vje fi": complement of the output. A single output
Ti | T F T : :
Yioi T Ti = Yjss species can assign the truth value for as
yf;i +a2l — yJFHZ- many input species as needed.
dy +dy, — dy
Yne{l,---,G}: Deleting species dj, makes it possible for
dy +yL —d, species d;, to exist in the next step
6|Add d,| d, +yl —d, without complications.
Vjie fi": Delete all output species (y%) that are
dy + y]T_,i — dy no longer needed.
dy + yini = dy
7T|Add dy | dy+dy —d Remove deleting species dy,.

Table 12: (2, 1) rules and steps for a gate with arbitrary fan out.
Lemma 3. Let r be a positive integer parameter. For all step CRNs I with void
rules of size (r1,0) with r1 < r and pairs of initial configurations cr and cp with
distance 2 and equal volume, for any configuration crs terminal in the step s
from cr, there exists a configuration cps terminal in step s from cp such that
the distance between crs and cps is at most 2r°.

Due to space constraints, the proof is omitted. The configuration distance be-
tween two output configurations is related to the Hamming distance of the output
strings they represent. Lemma 3 can be used to get a logarithmic lower bound
for the number of steps required when we fix our rule size to be a constant.

Theorem 3. For all constants v, any CRN that strictly computes a k-CNOT
gate with rules of size (r1,0) satisfying r1 < r requires 2(logk) steps.

Due to space constraints, the proof is omitted. We also note the k-CNOT can
be computed by & XOR gates in parallel. This implies this lower bound does not
hold with catalytic reactions either as Theorem 2 shows this can be computed
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in O(1) steps or without the input-strict requirement. This is because increasing
the fan-out of the X bit does not incur a cost in the number of steps in both of
these generalizations. Plugging this XOR circuit into Theorem 1 gives a bound
of ©(log k) steps showing the construction is optimal for some circuits.

5.2 Function Verification Hardness

We have established that void step CRNs can simulate Boolean circuits. We now
discuss the complexity of determining if a given (void) step CRN does compute a
given function. Specifically, we consider the following decision problem, and show
that with void rules it is coNP-hard (Theorem 4), and has coNP membership
(Theorem 5). Due to space, the proofs are omitted.

Definition 4 ((Strict Function Verification)). Given a step CRN Cg =
(S,X,Y) and a Boolean function f(-)* where f(x1,---,x,) = y1 : {0,1}" —
{0,1}, decide if C's computes Boolean function f(-). In particular, let fo(z1, - ,2n)
= false, which is false for all inputs.

Theorem 4. It is coNP-hard to determine if a given O(1)-step CRN Cg =
(S, X,Y) with (3,0) rules computes the Boolean function fo(x1,- - ,2n).

Theorem 5. Determining if a given s-step CRN Cs = (S, X,Y) with (r,0)
rules computes the Boolean function fo(x1,--- ,xy,) is in coNP.

Theorem 6. It is coNP-complete to determine if a given O(1)-step CRN Cg =
(S, X,Y) with (3,0) rules computes the Boolean function fo(x1,: - ,n).
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