
Computing Threshold Circuits with Void

Reactions in Step Chemical Reaction Networks⋆

Rachel Anderson1, Alberto Avila1, Bin Fu1, Timothy Gomez2, Elise Grizzell,
Aiden Massie1, Gourab Mukhopadhyay1, Adrian Salinas1, Robert Schweller1,

Evan Tomai3, and Tim Wylie1

1 University of Texas Rio Grande Valley, Edinburg, TX 78539-2999, USA
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3 University of Texas Dallas, Richardson, TX 75080-3021, USA

Abstract. We introduce a new model of step Chemical Reaction Net-
works (step CRNs), motivated by the step-wise addition of materials in
standard lab procedures. Step CRNs have ordered reactants that trans-
form into products via reaction rules over a series of steps. We study an
important subset of weak reaction rules, void rules, in which chemical
species may only be deleted but never changed. We demonstrate the ca-
pabilities of these simple limited systems to simulate threshold circuits
and compute functions using various configurations of rule sizes and step
constructions, and prove that without steps, void rules are incapable of
these computations, which further motivates the step model. Addition-
ally, we prove the coNP-completeness of verifying if a given step CRN
computes a function, holding even for O(1) step systems.

1 Introduction

Chemical Reaction Networks (CRNs) are one of the most established and longest
studied models of self-assembly [6,7]. CRNs originate in attempting to model
chemical interactions as molecular species that react and create products from
the reaction. This can be represented as an original number of each species and a
set of replacement rules. The fundamental nature of the model is evident in the
independent inception of equivalent models in multiple areas of research through
other motivations [13], such as Vector Addition Systems (VASs) [19] and Petri-
Nets [21]. Further, Population Protocols [3] are a restricted version where the
number of input and output elements are each two.

Step CRNs. We propose and investigate an important but straightforward ex-
tension to the CRN model (and VASs, Petri-Nets) motivated by the desire to
reflect standard laboratory and medical practices (and multi-step distributed
processes). The Step CRN model augments the CRN model with a sequence of
discrete steps where an additional specified amount of chemical species is com-
bined with the existing CRN after running the system to completion. Our goal is

⋆ This research was supported in part by National Science Foundation Grant CCF-
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to explore the computational power of Step CRNs using highly restricted classes
of CRN rules that would otherwise be computationally weak. In particular, we
consider the problem of implementing the powerful, computationally universal
class of Threshold Circuits (TC) using only void rules, a class of rules that are
provably weak without a step augmentation (Theorem 3).

Void Rules. We study the computational power of Step CRNs under an ex-
tremely simple subset of CRN rules termed void rules [1]. General CRN rules are
powerful since they allow the removal, addition, and replacement of species. Im-
pressively, these rules have successful experimental implementations using DNA
strand replacement mechanisms [26]. However, implementing this level of gener-
ality requires sophisticated, and large, DNA complexes that incur practical errors
and constitute one of the primary hurdles limiting the scalable implementation
of molecular computing schemes [11,28].

Here, we focus on void rules, a class of rules that utilize only the removal
feature of CRN rules. Note that by removal, we simply mean that both elements
can no longer be used, which may be that they become some species that is
easily filtered. While simpler, the class of pure void rulse is unable to compute
even simple functions such as the CNOT gate (Theorem 3). We show that void
rules become computationally powerful in the step model with just tri-molecular
or bi-molecular interactions. Specifically, that TCs can be simulated with void
rules using a number of steps linear in the circuit’s depth.

Our Contributions. Table 1 has an overview of the main results of this paper
beyond the introduction of the model and simulation definitions. The most im-
portant results are the ability to simulate the class of TC by simulating AND,
OR, NOT, and MAJORITY gates through a restrictive definition of simulation
while only using small void rules.

In Section 2, we define Step Chemical Reaction Networks and what it means
to compute a function. Following, in Section 3, we show how to simulate the class
of TC with void rules of size (3, 0) using O(D log f) steps, where D is the depth
of the circuit and f denotes the maximum fan-out of the circuit. In Section 4,
we achieve the same result using both (2, 0) and (2, 1) rules and a slightly more
efficient step complexity of O(D). We then use exclusively (2, 1) rules to achieve
this same result by adding a factor of logFmaj to the steps, where Fmaj is the
maximum fan-in of majority gates. In Section 5, we show there exist functions
that require a logarithmic number of steps when restricted to constant reaction
size, as well as the existence of O(1)-depth threshold circuits of fan-out f that
require Ω(log f) steps, which matches the O(D log f) upper bound for (3, 0)
circuits. Finally, we show that it is coNP-complete to know whether a function
can be strictly simulated by a step CRN system.

1.1 Previous Work

Computation in Chemical Reaction Networks. Stochastic Chemical Reac-
tion Networks are only Turing-complete with the possibility for error [25] while
error-free stochastic Chemical Reaction Networks can compute precisely the set
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Function Computation

Rules Species Steps Simulation Family Ref

(3, 0) O(min(W 2, GFout)) O(D logFout) Strict TC Circuits Theorem 1

(2, 0)(2, 1) O(G) O(D) Strict TC Circuits Theorem 2

(2, 1) O(G) O(D logFmaj) Strict TC Circuits Corollary 1

(c, 0) any Ω(log k) Strict k-CNOT Theorem 3

Strict Function Verification

Rules Steps Complexity Ref

(3, 0) O(1) coNP-complete Theorem 6

Table 1: Summary of n-bit circuit simulation results. D is the depth of the circuit,
W is the width, G is the number of gates in a circuit or number of operators
in a formula, Fout is the max fan-out, Fmaj is the max fan-in of majority gates,
and TC is Threshold Circuits. The k-CNOT is a k fan-in generalization of a
Controlled NOT gate. Rule (c, 0) means any size with integer constant c > 0.

of semilinear functions [5,12]. CRNs have also recently been shown to be exper-
imentally viable through DNA Strand Displacement (DSD) systems [26] with
several CRN to DSD compilers now existing.

Boolean Circuits. Using molecules for information storage and Boolean logic
is a deep field of study. Here, we show a few highlights, starting with one of the
first discussions in 1988 [9] and an initial presentation of circuits with CRNs in
1991 [17]. Since then, the area has been extensively studied in CRNs and related
models [8,10,13,18,22,23]. Numerous gates have been built experimentally and
proposed theoretically such as the AND [23,30], OR [14,23], NOT [10], XOR
[10,30], NAND [13,29], NOR [10], Parity [16], and Majority [4,20]. Symmetric
boolean functions of n variables such as Majority have been found to have a
circuit depth of O(log n) when implemented by AND, OR and NOT gates [24].

Void Rules. The reachability problem, with systems of only void rules in proper
CRNs, was studied in [1]. Previous studies had included void rules as a part of
their systems, but were never studied exclusively. They can also be considered
a subcategory of the broader concept of the extinction of rules and species in a
system as referred to in [29].

Mixing Systems. Another generalization of CRNs that is closely related to the
step model is I/O CRNs [15], where additional inputs can be added at timed
intervals. Still, those inputs are read-only in the system (used exclusively as
catalysts). Step CRNs generalize I/O CRNs as the inputs are not read-only and
are rate-independent, unlike I/O CRNs.

2 Preliminaries

Basics. Let Λ = {λ1, λ2, · · · , λ|Λ|} denote some ordered alphabet of species. A

configuration C over Λ is a length-|Λ| vector of integers where the ith entry C[i]
denotes the number of copies of species λi. A rule or reaction is represented as an
ordered pair of configuration vectors R = (Rr, Rp). The application vector of R is
Ra = Rp−Rr, which shows the net change in species counts after applying rule R
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once. For a configuration C and rule R, we say R is applicable to C if C[i] ≥ Rr[i]
for all 1 ≤ i ≤ |Λ|, and we define the application of R to C as the configuration
C ′ = C+Ra. For a set of rules Γ , a configuration C, and rule R ∈ Γ applicable to
C that produces C ′ = C +Ra, we say C →1

Γ C ′, a relation denoting that C can
transition to C ′ by way of a single rule application from Γ . We further use the
notation C →∗

Γ C ′ to signify the transitive closure of →1

Γ and say C ′ is reachable
from C under Γ , i.e., C ′ can be reached by applying a sequence of applicable rules
from Γ to initial configuration C. Here, we use the following notation to depict
a rule R = (Rr, Rp): Rr[1]λ1 + · · · + Rr[|Λ|]λ|Λ| → Rp[1]λ1 + · · · + Rp[|Λ|]λ|Λ|.
For example, a rule turning two copies of species H and one copy of species O

into one copy of species W would be written as 2H +O → W .

Definition 1 (Discrete Chemical Reaction Network). A discrete chemical
reaction network (CRN) is an ordered pair (Λ, Γ ) where Λ is an ordered alphabet
of species, and Γ is a set of rules over Λ.

An initial configuration I and CRN (Λ, Γ ) are together said to be bounded if a
terminal configuration is guaranteed to be reached within some finite number of
rule applications starting from configuration I. We denote the set of reachable
configurations of a CRN as REACHI,Λ,Γ . A configuration is called terminal
with respect to a CRN (Λ, Γ ) if no rule R can be applied to it. We define the
subset of reachable configurations that are terminal as TERMI,Λ,Γ .

Definition 2 (Void rules). A rule R = (Rr, Rp) is a void rule if the applica-
tion vector Rp −Rr has no positive entries and at least one negative entry. We
say its a true void rule if the Rp vector is the 0 vector, and catalytic otherwise.

Definition 3 (Volume and Rule Size). The size/volume of a configuration

vector C is volume(C) =
∑|Λ|

i=1
C[i]. A rule R = (Rr, Rp) is said to be a size-

(i, j) rule if (i, j) = (volume(Rr), volume(Rp)). A reaction is trimolecular if
i = 3 and bimolecular if i = 2.

2.1 Step CRNs
A step CRN is an augmentation of a basic CRN in which a sequence of additional
copies of some system species are added after a terminal configuration is reached.
Formally, a step CRN of k steps is an ordered pair ((Λ, Γ ), (s0, s1, s2, · · · , sk−1)),
where the first element of the pair is a normal CRN (Λ, Γ ), and the second is
a sequence of length-|Λ| vectors of non-negative integers denoting how many
copies of each species to add at each step. Figure 1 shows an example system.

Given a step CRN, we define the set of reachable configurations after each
sequential step. To start off, let REACH1 be the set of reachable configurations of
(Λ, Γ ) with initial configuration s0, which we refer to as the set of configurations
reachable after step 1. Let TERM1 be the subset of configurations in REACH1

that are terminal. Note that after a single step we have a normal CRN, i.e., 1-step
CRNs are just normal CRNs with initial configuration s0. For the second step,
we consider any configuration in TERM1 combined with s1 as a possible starting
configuration and define REACH2 to be the union of all reachable configurations
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An input-strict step CRN computer computes function f if, for all n-bit
strings b and for all terminal configurations of (Λ, Γ, (s0 +X(b), · · · , sk−1)), the
terminal configuration contains at least 1 copy of yFj and 0 copies of yTj if the

jth bit of f(b) is 0, and at least 1 copy of yTj and 0 copies of yFj if the jth bit of
f(b) is 1, for all j from 1 to m.

We use the term strict to denote requiring exactly one copy of each bit
species. See [2] for a recent consideration of non-strict computation that utilizes
bimolecular reactions. Here, we only consider input-strict computation, so we
use input-strict and strict interchangeably.

Relation to CRN Computers. Previous models of CRN computers consid-
ered functions over large domains such as the positive integers. Due to the infi-
nite domain, the input to such systems cannot be bounded. As such, the CRN
computers shown in [12] define the input in terms of the volume of some input
species. In these scenarios, CRN computers are limited to computing semi-linear
functions. Here, we instead focus on computing n-bit functions, and instead en-
code the input per bit with potentially unique species. This is a model more
similar to the PSPACE computer shown in [27].

2.3 Boolean and Threshold Circuits

A Boolean circuit on n variables x1, x2, · · · , xn is a directed, acyclic multi-graph.
The vertices of the graph are generally referred to as gates. The in-degree and
out-degree of a gate are called the fan-in and fan-out of the gate respectively.
The fan-in 0 gates (source gates) are labeled from x1, x2, · · · , xn, or labeled by
constants 0 or 1. Each non-source gate is labeled with a function name, such
as AND, OR, or NOT. Given an assignment of Boolean values to variables
x1, x2, · · · , xn, each gate in the circuit can be assigned a value by first assigning
all source vertices the value matching the labeled constant or labeled variable
value and subsequently assigning each gate the value computed by its labeled
function on the values of its children. Given a fixed ordering on the output gates,
the sequence of bits assigned to the output gates denotes the value computed by
the circuit on the given input.

The depth of a circuit is the longest path from a source vertex to an output
vertex. Here, we focus on circuits that consist of AND, OR, NOT, and MA-
JORITY gates with arbitrary fan-in. We refer to circuits that use these gates as
threshold circuits (TC).

Notation. When discussing a Boolean circuit, we use the following variables
to denote the properties of the circuit: Let D denote the circuit’s depth, G the
number of gates in the circuit, W the circuit’s width, Fout the maximum fan-out
of any gate in the circuit, Fin the maximum fan-in, and Fmaj the maximum
fan-in of any majority gate within the circuit.

3 Computation of Threshold Circuits with (3, 0) Rules

Here, we introduce a step CRN system construction with only true void rules
that can compute TCs. In other words, given any TC and some truth assignment
to the input variables, we can construct a step CRN with only true void rules
that computes the same output as the circuit.
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This section focuses on step CRNs consisting of (3, 0) rules. Section 3.1 shows
how to compute individual logic gates, and we give an example construction of
a circuit in Section 3.2. We then present the general construction of comput-
ing TCs by two different methods, differing in the number of species needed
based on the fan-out and width of the circuit. This results in Theorem 1, which
states that TCs can be strictly computed, even with unbounded fan-out, with
O(min(W 2, GFout)) species, O(D logFout) steps, and O(W ) volume.

3.1 Computing Logic Gates

Indexing. The number of steps to compute an individual depth level of a circuit
varies between 2-8 steps depending on the gates and wiring of the specified
circuit. To convert a circuit into a (3, 0) step CRN system, we index the wires
(input and output) at each level of the circuit in order to ensure the species is
input to the correct gate. An example circuit with bit/wire indexing is shown
in Figure 3c. At each level, we call the indices of the inputs of gates the input
indices, and the indices of the output of each gate the gate indices. Note that
the index numbers may need to change along the wire, or change due to fan-
out/fan-in (see Figure 3c). This is assisted by species of the form tj→i that map
an input index of j to a gate index of i.

Bit Representation. The input bits of a binary gate are represented in a
step CRN with (3, 0) rules by the species xb

n, where n ∈ N and b ∈ {T, F}. n
represents the bit’s index (based on the ordering of all bits into the gates) and
b represents its truth value. Let f in

i be the set of all the indices of input bits
fanning into a gate at index i (gate indices). Let fout

i be the set of all indices of
the output bits fanning out of a gate at index i.

The output bits of a gate are represented by the species ybn,g, where n is
the output bit’s index (input index of the next level) and g denotes the gate
type g ∈ {B,A,O,N,M} (BUFFER, AND, OR, NOT, and MAJORITY). For
example, the outputs of an AND gate, an OR gate, and a NOT gate at index n

are represented by the species ybn,A, ybn,O, and ybn,N , respectively.

AND/OR Gate. The general process to compute an AND gate (an OR gate
is similar) is given in Table 2. First, all input species are converted into a new
species abi,g (step 1). The species retains truth value b as the original input and

includes the gate’s index and type i and g, respectively. The species bbi,g is then
introduced (step 2), which computes the operation of gate g across all existing
species. Any species that do not share the same truth value as the gate’s intended
output are deleted (step 3-4). The species remaining after the operation are then
converted into the correct output species (step 5).

The species ui, vi, wi, and tj→i, where j is the input index and i is the gate
index, are used to assist in removing excess species in certain steps.

AND Example. Consider an AND gate whose gate index is 1 with input bits
1 and 0 as shown in Fig. 2. Here, |f in

i | = 2 and the initial configuration consists
of the species xT

1
and xF

2
. By Table 2, this gate can be computed in five steps.
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Steps Relevant Rules Description

1 Add
|f in

i | · aT
i,g

|f in
i | · aF

i,g

∀j ∈ f in
i : tj→i

∀j ∈ f in
i :

xT
j + aF

i,g + tj→i → ∅
xF
j + aT

i,g + tj→i → ∅

∀j ∈ f in
i , convert xb

j input

species into ab
i,g species.

2 Add

bTi,g
|f in

i | · bFi,g
|f in

i | · ui

ui + aT
i,g + bFi,g → ∅

ui + aF
i,g + bTi,g → ∅

Keep at least one of the correct output
species and delete all incorrect species.

3 Add 2|f in
i | · vi ui + vi + vi → ∅ Delete extra/unwanted species.

4 Add |f in
i | · wi

wi + vi + vi → ∅
wi + aF

i,g + bFi,g → ∅
Delete extra/unwanted species.

5 Add yT
i,g, y

F
i,g, t

bTi,g + yF
i,g + t → ∅

bFi,g + yT
i,g + t → ∅

Convert bbi,g into the proper output

species yb
i,g.

Table 2: (3, 0) rules and steps for an AND gate. To compute an OR gate, add
|f in

i | · bTi,g and one bFi,g in Step 2 instead, and replace wi + aFi,g + bFi,g → ∅ with

wi + aTi,g + bTi,g → ∅ in Step 4.

Steps Relevant Rules Description

1 Add
yT
i,N

yF
i,N

tj→i

yT
i,N + xT

j + tj→i → ∅
yF
i,N + xF

j + tj→i → ∅

The output species (yb
i,N ) that is

the complement of the input species (xb
j)

will be the only species remaining.

Table 3: (3, 0) rules and steps for a NOT gate.

The circuit has four inputs: x1, x2, x3, and x4. At the first depth layer, x1 fans
into a NOT gate and x2 and x3 are both fanned into an OR gate. At the next
depth level, the output of the OR gate is fanned out twice. One of these outputs,
along with the output of the NOT gate, is fanned into an AND gate, while the
other and x4 fans into another AND gate. At the last depth level, both AND
gate outputs fan into an OR gate, which computes the final output of the circuit.

Table 5 shows how to compute the circuit in Figure 3c. The primary inputs of
the circuit in Figure 3c are represented by the species in the initial configuration.
Step 1 converts the primary inputs into input species. If there was any fan out of
the primary inputs, it would be done in this step. Steps 2-6 compute the gates at
the first depth level. Steps 7-8 compute the fan out between the first and second
depth level. Step 9 converts the outputs of the gates at the first depth level into
input species. Steps 10-14 use those inputs to compute the gates at the second
depth level. Step 15 converts the outputs of these gates into inputs. Steps 16-20
compute the final gate. Step 21 converts the output of that gate into an input
species that represents the solution to the circuit (xF

1
).

3.3 Computing Circuits

For TC circuits with a max fan-out of 2, we show two methods of encoding
the gates into the species that yield different results. The method in Lemma 1
reuses the gate species at each level of the circuit, and the method in Lemma
2 assigns unique species for each gate. Theorem 1 is generalized for TC circuits
with arbitrary fan-out and combines the results from the Lemmas.
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Steps Relevant Rules Description

1 Add
|f in

i | · aT
i,M

|f in
i | · aF

i,M

∀j ∈ f in
i : tj→i

∀j ∈ f in
i :

xT
j + aF

i,M + tj→i → ∅
xF
j + aT

i,M + tj→i → ∅

∀j ∈ f in
i , convert xb

j input

species into ab
i,M species.

2 Add

⌊|f in
i |/2⌋ · bTi,M

⌊|f in
i |/2⌋ · bFi,M

(|f in
i | − 1) · ui

ui + aT
i,M + bFi,M → ∅

ui + aF
i,M + bTi,M → ∅

Adding ⌊|f in
i |/2⌋ amounts of bTi,M and

bFi,M species will delete all of the
minority species, leaving some amount

of the majority species remaining.

3 Add 2(|f in
i | − 1) · vi ui + 2vi → ∅ Delete extra/unwanted species.

4 Add (|f in
i | − 1) · wi

wi + 2vi → ∅
wi + aT

i,M + bTi,M → ∅
wi + aF

i,M + bFi,M → ∅
Delete extra/unwanted species.

5 Add
yT
i,M

yF
i,M

t

aT
i,M + yF

i,M + t → ∅
aF
i,M + yT

i,M + t → ∅
Convert ab

i,M into the proper output

species (yb
i,M ).

Table 4: (3, 0) rules and steps for a majority gate.

Lemma 1. Threshold circuits (TC) with a max fan-out of 2 can be strictly com-
puted by a step CRN with only (3,0) rules, O(W 2) species, O(D) steps, and
O(W ) volume.

Proof. The initial configuration of the step CRN should consist of one ybn,B
species for each primary input with the appropriate indices and truth values.
Section 3.1 explains how to compute TC gates. In order to apply a gate, we
convert the outputs at an index i into the inputs for the next gate at index j. To
simulate circuits with O(W 2) species, we also must be able to reuse these input,
output, and helper species. This is accomplished by having unique species for
each gate at a given depth level. Figure 3a shows an example indexing.

When reusing species, we add a unique ti→j species (different from tj→i used
in computing gates) for each gate at index i that converts the output species
into an input species with index j. Converting outputs into inputs is done for all
gates at the same depth level. Table 6 shows the steps and rules for this process.

Fan Out. In order to perform a 2-fan out, we create a second copy of the output
species that is fanning out. Table 7 shows the steps and rules needed for this
duplication. After duplication, the simulation continues as usual. All outputs at
the same depth level can be fanned out at the same time using these two steps.

Complexity. The ti→j approach uses at most W 2 unique species since 1 ≤
i, j ≤ W . All other types of species either have O(1) or O(W ) unique species.
Thus, a simulation of a circuit with a max fan-out of 2 requires O(W 2) species.

All gates at a given depth level are evaluated at the same time, so a simulation
of a circuit with a max fan-out of 2 requires O(D) steps. Additionally, circuits
are evaluated one depth level at a time. Thus, at most, a max width amount
of input, output, and helper species are added at the same time. All of the
input, output, and helper species from previous depth levels get deleted when
progressing to the next depth level, so the simulation requires O(W ) volume.



Threshold Circuits with Void Reactions in Step CRNs 11

Initial Configuration: yT
1,B yT

2,B yT
3,B yF

4,B

Steps Relevant Rules Steps Relevant Rules

1

xT
1 , xT

2 , xT
3 , xT

4

t1→1, t3→3

xF
1 , xF

2 , xF
3 , xF

4

t2→2, t4→4

yT
1,B + xF

1 + t1→1 → ∅
yT
2,B + xF

2 + t2→2 → ∅
yT
3,B + xF

3 + t3→3 → ∅
yF
4,B + xT

4 + t4→4 → ∅

10

2aT
1,A, 2aT

2,A

2aF
1,A, 2aF

2,A

t2→1, t4→2

t1→1, t3→2

xF
1 + aT

1,A + t1→1 → ∅
xT
2 + aF

1,A + t2→1 → ∅
xT
3 + aF

2,A + t3→2 → ∅
xF
4 + aT

2,A + t4→2 → ∅

2

yT
1,N , 2aT

2,O, yT
3,B

t1→1, t3→2

yF
1,N , 2aF

2,O, yF
3,B

t2→2, t4→3

xT
1 + yT

1,N + t1→1 → ∅
xT
2 + aF

2,O + t2→2 → ∅
xT
3 + aF

2,O + t3→2 → ∅
xT
4 + yT

3,B + t4→3 → ∅

11

bT1,A, bT2,A
2u1, 2b

F
1,A

2bF2,A, 2u2

aT
1,A + bF1,A + u1 → ∅

aF
1,A + bT1,A + u1 → ∅

aT
2,A + bF2,A + u2 → ∅

aF
2,A + bT2,A + u2 → ∅

3 2bT2,O, 2u2, b
F
2,O aT

2,O + bF2,O + u2 → ∅ 12 4v1, 4v2 No Rules Apply

4 4v2 u2 + v2 + v2 → ∅
13 2w1, 2w2

w1 + v1 + v1 → ∅
w2 + v2 + v2 → ∅

5 2w2

w2 + v2 + v2 → ∅
w2 + aT

2,O + bT2,O → ∅
14

yT
1,A, yT

2,A, 2t
yF
1,A, yF

2,A

bF1,A + yT
1,A + t → ∅

bF2,A + yT
2,A + t → ∅6 yT

2,O, t, yF
2,O bT2,O + yF

2,O + t → ∅

7 yT
2,O, r, yF

2,O yT
2,O + yT

2,O + r → ∅ 15
xT
1 , xT

2 , t1→1

xF
1 , xF

2 , t2→2

yF
1,A + xT

1 + t1→1 → ∅
yF
2,A + xT

2 + t2→2 → ∅

8 2yT
2,O, 2yF

2,O yF
2,O + yF

2,O + yF
2,O → ∅ 16

2aT
1,O, t1→1

2aF
1,O, t2→1

xF
1 + aT

1,O + t1→1 → ∅
xF
2 + aT

1,O + t2→1 → ∅

9

xT
1 , xT

2 , xT
3 , xT

4

t1→1, t2→3

xF
1 , xF

2 , xF
3 , xF

4

t2→2, t3→4

yF
1,N + xT

1 + t1→1 → ∅
yT
2,O + xF

2 + t2→2 → ∅
yT
2,O + xF

3 + t2→3 → ∅
yF
3,B + xT

4 + t3→4 → ∅

17 2bT1,O, 2u1, b
F
1,O aF

1,O + bT1,O + u1 → ∅
18 4v1 No Rules Apply

19 2w1 w1 + v1 + v1 → ∅
20 yT

1,O, t, yF
1,O bF1,O + yT

1,O + t → ∅
21 xT

1 , t1→1 xF
1 yF

1,O + xT
1 + t1→1 → ∅

Table 5: (3, 0) rules and steps to compute the circuit in Figure 3c based on the
indexing shown in Figure 3a. Note that the ‘Steps’ column shows the number
and types of species being added at the beginning of that step.

Steps Relevant Rules Description

1 Add ∀j ∈ fout
i : xT

j , x
F
j , ti→j

∀j ∈ fout
i :

yT
i,g + xF

j + ti→j → ∅
yF
i,g + xT

j + ti→j → ∅

∀j ∈ fout
i , convert yb

i,g output

species into xb
j input species.

Table 6: (3, 0) rules for converting outputs into inputs per circuit level.

A constant number of species, steps, and volume are needed to perform a 2-fan
out, so a 2-fan out operation does not affect the complexity.

Lemma 2. Threshold circuits (TC) with a max fan-out of 2 can be strictly com-
puted by a step CRN with only (3, 0) rules, O(G) species, O(D) steps, and O(W )
volume.

Theorem 1. Threshold circuits (TC) can be strictly computed by a step CRN
with only (3, 0) rules, O(min(W 2, G · Fout)) species, O(D logFout) steps, and
O(W ) volume.

Proof. This follows by expanding a given TC circuit to a fan-out 2 circuit and
by applying the methods of Lemmas 1 and 2.
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Gate Type Step Relevant Rules Description

AND Add
yT
i

∀j ∈ f in
i : yF

j→i

xT
j + yF

j→i → ∅
xF
j + yT

i → ∅

An input species with a certain
truth value deletes the

complement output species.

OR Add
yF
i

∀j ∈ f in
i : yT

j→i

xT
j + yF

i → ∅
xF
j + yT

j→i → ∅

An input species with a certain
truth value deletes the

complement output species.

NOT Add
yT
i

yF
i

xT
j + yT

i → ∅
xF
j + yF

i → ∅

The input and output species that
share the same truth value delete

each other.

Table 8: (2, 0) rules for AND, OR, and NOT gates.

Steps Relevant Rules Description

1 Add
|f in

i | · aT
i

|f in
i | · aF

i

∀j ∈ f in
i :

xT
j + aF

i → ∅
xF
j + aT

i → ∅

∀j ∈ f in
i , convert xb

j input

species into ab
i species.

2 Add
⌊|f in

i |/2⌋ · bTi
⌊|f in

i |/2⌋ · bFi

aT
i + bFi → ∅

aF
i + bTi → ∅

Adding ⌊|f in
i |/2⌋ amounts of bTi and

bFi species will delete all of the
minority species, leaving some amount

of the majority species remaining.

3 Add
yT
i

yF
i

aT
i + yF

i → ∅
aF
i + yT

i → ∅
Convert ab

i into the proper output

species (yb
i ).

Table 9: (2, 0) rules for majority gates.

input into an AND/OR/NOT gate, a corresponding rule should be created to
remove the output species of the gate with the opposite truth value to the input.
If the output species has a unique j → i index, then only the input with the
corresponding i can delete that output species.

These gates can also be computed with (2,1) catalyst rules by making the xb
j

species a catalyst. For example, the rule xT
j + yTi → ∅ would be replaced by the

rule xT
j + yTi → xT

j .

OR Example. Consider an OR gate whose gate index is 1 with input bits 0
and 1. Here, |f in

i | = 2, and the initial configuration consists of the species xF
1

and a xT
2
. This gate can be computed in one step, following Table 8, by adding

one yT
1→1

, one yT
2→1

, and one yF
1

species to the system. The species xT
2

and yF
1

delete each other. xF
1

and yT
1→1

are also removed together. Only the species yT
2→1

remains, which represents the intended “true” output of the OR gate.

Majority Gate. The general process of computing a majority gate is shown at
Table 9. To compute a majority gate, all input species are converted into a new
species abi (Step 1). The species retain the same truth value b as the original input
and has gate index i. If the number of species fanning into the majority gate is
even, an extra false input species is added. The species bbi is then introduced,
which computes the majority operation across all existing species. Any species
that represent the minority inputs are deleted (Step 2). The species remaining
afterwards are then converted into the correct output species (Step 3).
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Initial Configuration: yF
1 yT

2 yT
3

Steps Relevant Rules Steps Relevant Rules

1 Add dx No Rules Apply 8 Add dx dx + dx → ∅
2 Add dx dx + dx → ∅

9 Add
xT
4 , xF

4

xT
5 , xF

5

xT
6 , xF

6

yF
1→4 + xT

4 → yF
1→4

yF
5 + xT

5 → yF
5

yT
6 + xF

6 → yT
6

3 Add
xT
1 , xF

1

3xT
2 , 3xF

2

xT
3 , xF

3

yF
1 + xT

1 → yF
1

yT
2 + xF

2 → yT
2

yT
3 + xF

3 → yT
3

10 Add dy
yF
1→4 + dy → dy

yF
5 + dy → dy

yT
6 + dy → dy4 Add dy

yF
1 + dy → dy

yT
2 + dy → dy

yT
3 + dy → dy 11 Add dy dy + dy → ∅

5 Add dy dy + dy → ∅
12 Add

yT
4→7, y

T
5→7

yT
6→7, y

F
7

xF
4 + yT

4→7 → ∅
xF
5 + yT

5→7 → ∅
xT
6 + yF

7 → ∅

6 Add

yT
4 , yF

1→4

yT
5 , yF

2→4

yF
5 , yF

2→6

yT
6 , yF

3→6

xF
1 + yT

4 → ∅
xT
2 + yF

2→4 → ∅
xT
2 + yT

5 → ∅
xT
2 + yF

2→6 → ∅
xT
3 + yF

3→6 → ∅

13 Add dx No Rules Apply

14 Add dx dx + dx → ∅
15 Add xT

7 , xF
7 yT

6→7 + xF
7 → yT

6→7

16 Add dy yT
6→7 + dy → dy

7 Add dx No Rules Apply 17 Add dy dy + dy → ∅

Table 10: (2, 0) and (2, 1) rules and steps to compute the circuit in Figure 3d
with Figure 3b’s indexing.

4.2 Examples
With the computation of individual gates demonstrated in our system, we now
expand these features to computing entire circuits. We begin with a simple ex-
ample in Figure 3d to show the concepts before giving the general construction.

Our example circuit has three inputs: x1, x2, and x3. In the first layer, x2 is
fanned out three times. One is fanned into an AND gate with x1, another fanned
into a NOT gate, and the other fanned into an AND gate with x3. Finally, at
the next depth level, the output of all three gates are fanned into an OR gate,
whose output is the final circuit output.

Table 10 shows how to compute the circuit in Figure 3d. The primary inputs
of the circuit in Figure 3d are represented by the species in the initial configu-
ration. Steps 1-5 fan out the second primary input, convert the output species
(ybn) into input species (xb

n), and delete excess species. Step 6 computes the gates
at the first depth level. Steps 7-11 convert the output species into input species
and deletes excess species. Step 12 computes the final gate. Steps 13-17 delete
excess species and converts the output of the final gate into an input species
that represents the solution to the circuit (xT

7
).

4.3 Computing Circuits with (2,0) Void and (2,1) Catalyst Rules
Theorem 2. Threshold circuits (TC) can be strictly computed with (2, 0) void
rules and (2, 1) catalyst rules, O(G) species, O(D) steps, and O(W ) volume.
Due to space constraints, the proof is omitted.

4.4 Computing Circuits with (2,1) Catalyst Rules

Note that (2,1) catalyst rules are able to compute TCs alone. However, there
is no known way to directly compute majority gates with (2,1) void rules, only
(2,0). Thus, any majority gate is computed using AND, OR, and NOT gates
when using only catalyst rules. Furthermore, deleting species that are no longer
needed is slightly more convoluted with (2,1) rules compared to pure void rules.
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Steps Relevant Rules Description

1 Add dx

∀n ∈ {1, · · · , G} :
∀b ∈ {T, F}
dx + xb

n → dx
dx + ab

n → dx
dx + bbn → dx

Delete all input species (xb
n) and helper

species that are no longer needed.

2 Add dx dx + dx → ∅ Remove deleting species dx.

3 Add
|fout

i | · xT
i

|fout
i | · xF

i

yT
i + xF

i → yT
i

yF
i + xT

i → yF
i

∀j ∈ f in
i :

yT
j→i + xF

i → yT
j→i

yF
j→i + xT

i → yF
j→i

Add species representing true and false
inputs and delete the species that are the
complement of the output. A single output

species can assign the truth value for as
many input species as needed.

4 Add dy

∀n ∈ {1, · · · , G} :
dy + yT

n → dy
dy + yF

n → dy
∀j ∈ f in

i :
dy + yT

j→i → dy
dy + yF

j→i → dy

Delete all output species (yb
n) that no

longer needed.

5 Add dy dy + dy → ∅ Remove deleting species dy.

Table 11: (2, 0) and (2, 1) rules and steps for a gate with arbitrary fan out.

Corollary 1. Threshold circuits (TC) can be strictly computed with only (2, 1)
catalyst rules, O(G) species, O(D logFmaj) steps, and O(W ) volume.

Due to space constraints, the proof is omitted. The basic idea, however, is simply
that it takes an additional log steps to handle the fan-in of the majority gates,
which we can easily do with (2, 1) catalyst rules.

5 Lower Bounds and Hardness
In this section, we prove negative results for computing with step CRNs. First,
we show there exists a family of functions that require a logarithmic number
of steps to compute. Then, we show hardness of verifying whether a step CRN
properly computes a given function.

5.1 Step Lower Bound for Controlled NOT

CNOT. The Controlled NOT gate is a 2-bit input and 2-bit output gate taking
inputs X and Y , and outputting X and X⊕Y , i.e., the gate flips Y if X is true.

k-CNOT. We generalize this to a Controlled k-NOT gate. This is a (k+ 1)-bit
gate with inputs X,Y1, · · · , Yk. The Y bits all flip if X is true. We choose this
function since it has the property that changing 1 bit of the input changes a
large number of output bits.

Configuration Distance. Recall configurations are defined as vectors. For two
configurations c0, c1, we say the distance between them is ||c0−c1||1, i.e., the sum
of the absolute value of each entry in c0 − c1 (For two vectors X = (x1, · · · , xn)
and Y = (y1, · · · , yn), ||X − Y ||1 =

∑n

i=1
|xi − yi|).
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Steps Relevant Rules Description

1 Add d′x d′x + d′′x → d′x

Deleting species d′′x makes it possible for
species dx to exist in the next step

without complications.

2 Add dx

dx + d′x → dx
∀n ∈ {1, · · · , G} :

∀b ∈ {T, F}
dx + xb

n → dx
dx + ab

n → dx
dx + bbn → dx

Deleting species d′x makes it possible for
species d′′x to exist in the next step

without complications.

Delete all input species (xb
n) and helper

species that are no longer needed.

3 Add d′′x dx + d′′x → d′′x Removes deleting species dx.

4 Add d′y d′y + d′′y → d′y
Deleting species d′′y makes it possible for species dy

to exist in the next step without complications.

5 Add
xT
i

xF
i

yT
i + xF

i → yT
i

yF
i + xT

i → yF
i

∀j ∈ f in
i :

yT
j→i + xF

i → yT
j→i

yF
j→i + xT

i → yF
j→i

Add species representing true and false
inputs and delete the species that are the
complement of the output. A single output

species can assign the truth value for as
many input species as needed.

6 Add dy

dy + d′y → dy
∀n ∈ {1, · · · , G} :
dy + yT

n → dy
dy + yF

n → dy
∀j ∈ f in

i :
dy + yT

j→i → dy
dy + yF

j→i → dy

Deleting species d′y makes it possible for
species d′′y to exist in the next step

without complications.

Delete all output species (yb
n) that are

no longer needed.

7 Add d′′y dy + d′′y → d′′y Remove deleting species dy.

Table 12: (2, 1) rules and steps for a gate with arbitrary fan out.

Lemma 3. Let r be a positive integer parameter. For all step CRNs Γ with void
rules of size (r1, 0) with r1 ≤ r and pairs of initial configurations cT and cF with
distance 2 and equal volume, for any configuration cTs terminal in the step s

from cT , there exists a configuration cFs terminal in step s from cF such that
the distance between cTs and cFs is at most 2rs.

Due to space constraints, the proof is omitted. The configuration distance be-
tween two output configurations is related to the Hamming distance of the output
strings they represent. Lemma 3 can be used to get a logarithmic lower bound
for the number of steps required when we fix our rule size to be a constant.

Theorem 3. For all constants r, any CRN that strictly computes a k-CNOT
gate with rules of size (r1, 0) satisfying r1 ≤ r requires Ω(log k) steps.

Due to space constraints, the proof is omitted. We also note the k-CNOT can
be computed by k XOR gates in parallel. This implies this lower bound does not
hold with catalytic reactions either as Theorem 2 shows this can be computed
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in O(1) steps or without the input-strict requirement. This is because increasing
the fan-out of the X bit does not incur a cost in the number of steps in both of
these generalizations. Plugging this XOR circuit into Theorem 1 gives a bound
of Θ(log k) steps showing the construction is optimal for some circuits.

5.2 Function Verification Hardness

We have established that void step CRNs can simulate Boolean circuits. We now
discuss the complexity of determining if a given (void) step CRN does compute a
given function. Specifically, we consider the following decision problem, and show
that with void rules it is coNP-hard (Theorem 4), and has coNP membership
(Theorem 5). Due to space, the proofs are omitted.

Definition 4 ((Strict Function Verification)). Given a step CRN CS =
(S,X, Y ) and a Boolean function f(·)4 where f(x1, · · · , xn) = y1 : {0, 1}n →
{0, 1}, decide if CS computes Boolean function f(·). In particular, let f0(x1, · · · , xn)
= false, which is false for all inputs.

Theorem 4. It is coNP-hard to determine if a given O(1)-step CRN CS =
(S,X, Y ) with (3, 0) rules computes the Boolean function f0(x1, · · · , xn).

Theorem 5. Determining if a given s-step CRN CS = (S,X, Y ) with (r, 0)
rules computes the Boolean function f0(x1, · · · , xn) is in coNP.

Theorem 6. It is coNP-complete to determine if a given O(1)-step CRN CS =
(S,X, Y ) with (3, 0) rules computes the Boolean function f0(x1, · · · , xn).
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