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Abstract—Connect Four is a well-studied two-player game for
fixed board sizes, however, the complexity of the generalized game
is still open. Here, we look at a variant of Connect Four that
allows for row shifting. Shift-Tac-Toe is a two-player game similar
to Connect Four with the goal of getting 3-in-a-row to win. What
makes the game unique is that each row is connected and can be
shifted left or right, which causes pieces to fall into a neighboring
column or to be removed from the board. Here, we show that the
standard 3 x 3 game is a first player win and provide a perfect
game-tree Al, and then we look at a generalized version of the
game. We show that as a one-player puzzle, knowing whether n-
in-a-row can be achieved with only shift moves is NP-complete.
We also provide an implementation of the game allowing for
arbitrary board size, shift size, and number of players.

Index Terms—connect 4, shift-tac-toe, board game, game
complexity, algorithmic game theory, puzzle mechanics

I. INTRODUCTION

Shift-Tac-Toe is a game played between two players where
the goal is to get three pieces in a row [20]' . Although the
name implies a variant of Tic-Tac-Toe (Noughts & Crosses),
the game is actually a variation of Connect Four [7]. What
makes the game unique is that players can either place a piece
or they can shift a row left or right. When a row is shifted,
pieces either fall in the new column, or are removed from the
game (See Figure 2a). Thus, unlike Connect Four, the game
is unbounded (or loopy), so play could last indefinitely.

The standard Connect Four game (7 x 6 board) was solved
in 1988 by both Allen [1] and Allis [2] and proven to be a first
player win. Several other board sizes have been investigated
as well [25], [26]. Looking at the complexity of a generalized
version, any game is within PSPACE since the number of
moves and the board is bounded. However, little else has been
proven. Given a board configuration of pieces, it is known to
be NP-hard to determine if that is a legal configuration, i.e.,
whether the configuration can be reached through standard
play [27]. In [14], they show how Connect Four positions
can be encoded in Quantified Boolean Formulas, and it was
shown that infinite cylindrical Connect Four is a draw [30]-
[32], but there has been no significant progress on the general

This research was supported in part by National Science Foundation Grant
CCF-2329918.
! Although no longer sold, there are files to 3D print one [3].

979-8-3503-5067-8/24/$31.00 ©2024 IEEE

Tim Wylie

Computer Science, University of Texas Rio Grande Valley

Edinburg, TX 78539, USA
timothy.wylie @utrgv.edu

complexity. Several other variants of Connect Four and Tic-
Tac-Toe have been explored, but none have investigated this
variant or a row shifting mechanic.

Sliding Tile Mechanics. The concept of shifting or sliding
tiles in a puzzle is one of the oldest puzzle mechanics, and
related to many geometric games and models of computation.
Many games employing a three-match style of play, such as
Bejeweled [13] and Candy Crush [17], have been around for
decades. This style of game is also hard from a complexity
standpoint [15]. However, there seem to be few related games
that have allowed row shifting in this capacity, with a notable
one being Yoshi’s Cookie [24], although the shifting wrapped
the tiles around rather than removing them.

The game is also tangentially related to the tilt model of
self-assembly and robot motion planning, which has several
variations with the two most-studied being the full-tilt [4] and
single-step [5] models. The tilt model gets its name from the
classic Labyrinth tilting marble mazes [8]. Shift-Tac-Toe can
be viewed as full-tilt in one direction (south) and single-step
in any east/west movement along the rows. These mechanics
are the basis of several board games such as Ricochet Robots
[22], Lunar Lockout [33], TILT [23], and several video/mobile
games such as Atomix [18], Mega Maze [19], Jelly No Puzzle
[21], Snakebird [12], and Tomb of the Mask [16]. These types
of puzzles even appear in Pokémon levels as the character
sliding on ice to reach a destination. Knowing whether a
single block can reach a destination space is known to be
hard (PSPACE-complete) in both models [4], [9], and is hard
(NP-complete) in the single-step model even without obstacles
[10].

Algorithmic Game Theory. AGT is motivated by under-
standing how difficult a game, or some aspect of it, is
from a theoretical standpoint. This often has very real-world
consequences to the mechanics that might be incorporated into
the game itself. Certain items or skills are often updated in a
game to balance unforeseen advantages, techniques, or hacks
that they allow in a game. With complexity results focused on
a specific mechanic, the inherent difficulty can often be better
incorporated as part of the world to offer more strategy-based
play. An example of this is the incorporation of moving block
puzzles into the landscape of games such as Pokémon and
Zelda, mazes and one-directional doors or warps in open world
games, or code deciphering through gathered logic clues. Each
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Fig. 1: Game tree starting with a move in the center. Each node represents a move by player two and an optimal counter move.
The leaves are positions where any move by player two will lose. The numbers represent the moves made: 0) add column 0,
1) add column 1, 2) add column 2, 3) shift top row left, 4) shift top row right, 5) shift middle row left, 6) shift middle row
right, 7) shift bottom row left, and 8) shift bottom row right. The maximum depth to win is 8 moves by Player 1.

of these mechanics (or minigames) alone are computationally
hard, and thus the developer has the ability to tweak that aspect
of the game, or the game altogether, to be as easy or difficult
as desired, or to get harder as the game progresses.

In [6], they explore the many different mechanics used in
The Legend of Zelda, and prove which ones are computation-
ally hard, and which are not. This is interesting in demon-
strating how complex the game is, and how much breadth and
depth the developers gave themselves. They can create levels
designed to exploit the complexity of a single mechanic or
feature that in other levels is useless or nonexistent. Each one
can make the gameplay entirely unique.

These results demonstrate the interplay between AGT and
development as researchers seek to understand which mechan-
ics make a game computationally hard and why that is the
case, and developers seeking to make the gameplay novel with
enough depth to build levels around, yet approachable to use.

A simple example to highlight why AGT matters in adding
strategy to larger games is Tic-Tac-Toe. Several games include
a Tic-Tac-Toe component to another skill such as archery,
item throwing, racing, or even item collection where you are
competing to get three-in-a-row before your opponent. This
does not add any additional skill or strategy to the game since
the strategy for Tic-Tac-Toe is simple. This merely adds the
guise of increased difficulty or is just for fun, but is really
only testing their accuracy (which may be intentional in some
cases). If the same basic game mechanic were added but based
on a game such as Hex, Go, or even Connect Four, then you
not only have to be good at the skill, but at the subgame as
well. The one caveat is if a player is unsure of their base skill
or it is timed, they may alter the optimal Tic-Tac-Toe strategy
to ensure a mark on the board, regardless of where.

Contributions. This paper makes a few contributions to the
area of algorithmic game theory and general game understand-
ing and design. First, we show that the standard commercial
version of Shift-Tac-Toe is a first player win, and that the
win only takes 8 moves. We then outline the general strategy.
Following, we generalize the game, and show that even as

a one-player game, it is computationally hard to know if
some number of pieces can be placed in-a-row with only row
shifting. This is an interesting puzzle in itself. We provide
a simulator to setup and play these puzzles or to have
multiplayer arbitrary-sized board games. We outline additional
puzzle variants of interest and discuss other open problems that
might give additional insight into the algorithmic complexity
of Connect Four.

II. SHIFT-TAC-TOE 1S A FIRST-PLAYER WIN

The shifting mechanic drastically changes the game com-
pared to Connect Four. A 3 x 3 board of Connect Four (three)
is an easy combinatorial game with only 869 possible posi-
tions [26]. However, with shifting, there are 91,125 possible
positions. This is still fewer than the standard 7 x 6 Connect
Four board, so even though game play may be quite different
and may repeat positions, we can analyze the game in a fairly
straightforward manner with a game tree.

In a standard Shift-Tac-Toe board, there are nine spots
and each row can be shifted to three positions. Since each
spot can be empty or a player piece, the total number of
board configurations is 312 = 531, 441. However, this includes
invalid positions without a gravity constraint, so the total is
actually only 91, 125. Most of these positions can be reached
on either player’s turn. With the shift mechanic, it is possible
for both players to get 3-in-a-row in the same move, which
is the only draw condition. Since pieces can be removed, the
game does not actually have a draw configuration that you
can not leave. However, players may repeat moves indefinitely
triggering a draw through repetition.

Game Tree Pruning. Given the size of the game tree (9" for
n moves), several rules were employed to prune unnecessary
plays and subtrees. We employ symmetry pruning since the
board has horizontal symmetry. Shifting empty rows leads
to immediate losses, so we ignore these moves. We count
repeated positions as a draw through repetition. If we identify
one guaranteed winning path for a player, we prune the other
options. For instance, the first player wins if they move in the
center or a side column, so the Al just picks one and prunes
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the other subtree. If no winning branch exists, a draw move
is chosen, and if one does not exist, it picks a losing branch
at random.

Theorem 1. The standard Shift-Tac-Toe board of size 3 x 3
with a shift of 2 (centered initially) is a first-player win.

Proof. This is a proof through exhaustive search on the game
tree. Within 8 moves (by the first player), the first player can
always win. A game tree analysis and optimal Al are available
at [11], [29] and the game tree is given in Figure 1.

Strategy. The 8-move strategy is fairly straightforward and
it does not matter where the first piece is placed, but for
simplicity, we assume a move in the center. Figure 1 shows
the full game tree for this start with each node representing
two moves (a move from player two, and the response). The
numbers say what the two moves were (given in the caption).
Any options not given are moves where player one would
immediately win. The leaves are positions where P1 wins
regardless of the move P2 makes. O

III. SHIFTING GRAVITY PUZZLES ARE NP-COMPLETE

Another interesting game stems from using the board as
the basis for different types of puzzles. Here, we look at
generalized Shift-Tac-Toe, and show that it is NP-complete
to know if you can make n-in-a-row on an n x n board with
only shift moves. We show this via a reduction from Directed
Hamiltonian Path by setting up a board where a shift move
corresponds to selecting the next vertex to visit.

Definition 1 (Generalized Shift-Tac-Toe). A Shift-Tac-Toe
board B is given as an m X n board with r-shift on each
row (r < n). A given configuration consists of the number
each row is shifted (< r) and the pieces on the board. The
goal is to get some k < n pieces in a row.

Path Gadget. For a Hamiltonian path on n vertices,
(po,P1,---,Pn—1) Where pg = s and p,_1 = t, we define
path gadgets. For our reduction, the only row that could create
n-in-a-row is row k = [n/2]. Each path gadget consists of
two columns: the vertex choice column and the path selector
column (p; gadget highlighted in Figure 3). Each vertex
column has k£ — 1 blue pieces and one red piece on row k.
Every row above k is associated with a vertex. For p;, the
pieces above row k are red if that vertex could be visited as
the ' node in the path (determined by looking at vertices
from p;_1), and blue otherwise.

For the path selector column in gadget p;, there are ¢ empty
spots starting at row k. Thus, those columns have n — k — ¢
pieces in the column (all blue but the top one). The one red
piece is so n-in-a-row is not possible with blue pieces.

Theorem 2. Given an nxn Shift-Tac-Toe configuration with a
shift of [n/2], determining whether a k-in-a-row configuration
(k <nand k = O(n)) is reachable with O(n) shift moves is
NP-complete.

Proof. Given an instance of directed Hamiltonian Path H =
(G,s,t) s.t. G = (V,E), where s,t € V, and V(a,b) € E,
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Fig. 2: (a) Original boxes of the English and French editions
[20]. (b) Simulator that allows for arbitrary board size, shift
size, and number of players [28]. (c) An example reduction
from Directed Hamiltonian Path. Note that every row has a
shift of 5, but for clarity, it only shows the amount that is
possible to use (or the line is immediately impossible). The
columns represent which vertex is chosen along the path. The
rows represent the vertices to choose from. Note that when a
vertex is chosen, its row is removed so the vertex rows above
it move down one (See Figure 3).

a,b € V, we construct a Shift-Tac-Toe instance as described
above. For convenience, let n = |V| — 1. Create a 2n X 2n
board B. Assign the vertices V' \ {s} to the top n rows. Then
build the path gadgets as described for p; through p,,. From
this configuration, a 2n-in-a-row position is reachable with n
shifts if and only if G has a Hamiltonian path from s to t.
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Fig. 3: The steps to walk a Hamiltonian path in the Example
of Figure 2c. Vertex s is pg. Choose vertex a for p;, b for po,
c for ps, d for py, and t for ps.
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(a) Pattern Puzzle (b) Match-Three Puzzle

Fig. 4: (a) An example easy shifting puzzle with a starting
configuration and ending pattern to make. (b) A standard tile-
matching puzzle based on shifting the rows where three-in-a-
row causes the tiles to disappear and the tiles above to fall.

The proof of correctness is omitted due to space constraints.

Membership. This problem is in NP since this version does
not allow adding pieces to the board, and is bounded to a
polynomial number of shifts. O

IV. CONCLUSION

Here, we have taken some steps towards understanding how
additional movement affects Connect Four, but there are many
algorithmic and complexity questions that remain, and other
areas to explore related to shifting puzzles in general.

One-player questions. For better understanding the general-
ized game, is the current problem still NP-hard with a constant
shift size and a constant k-in-a-row? Figure 4a shows an
example puzzle to make a pattern using this basic mechanic.
How interesting are these types of puzzles? Is pattern making
also NP-hard? In a related question, relocation of a piece is
clearly easy, but is reconfiguration in & moves hard? Clearly,
for a 1-player game, adding pieces to make a line is easy. Is
some combination of shifts and adding pieces of interest for
line building, pattern building, or reconfiguration in general?

Two-player questions. Is the Shift-Tac-Toe legality problem
(retrograde Shift-Tac-Toe) hard? With a 2-player generalized
version, the game is likely to be PSPACE-complete. For what
size board does this occur? Is there a starting setup/condition

of the 3 x 3 board that is a second-player win or draw? For
other board sizes, is it always a first-player win?

Other questions. The complexity of Connect Four is still
open. What other variants might give insight into the com-
plexity of the game?
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