
CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

Building Discrete Self-Similar Fractals in Seeded Tile Automata∗

Ryan Knobel† Adrian Salinas† Robert Schweller† Tim Wylie†

Abstract

In this paper, we show that a special class of discrete
self-similar fractals is strictly self-assembled (without er-
ror) in the seeded growth-only (no detachments) Tile
Automata model. Additionally, we show that under
a more restrictive version of the problem, the same
class of discrete self-similar fractals is also super-strictly
buildable− where there is the added requirement of
reaching certain intermediate assemblies as the assem-
bly grows. This contrasts with known impossibility re-
sults for the abstract Tile Assembly Model, paving the
way for future work in strictly self-assembling any gen-
eralized discrete self-similar fractal.

1 Introduction

The essence of many organisms and processes of na-
ture can often be described as a collection of simpler,
self-organizing components working together to form
more complex structures. The study of such mecha-
nisms has resulted in numerous advances in designing
artificial programmable systems that accomplish simi-
lar tasks. In [12], Winfree introduced the abstract Tile
Assembly Model (aTAM), in which single non-rotating
‘tiles’ attach to growing structures. Other extensions
to this model include the 2-Handed Assembly Model
(2HAM) [8], where two assemblies are allowed to attach;
the Signal-passing Tile Assembly model (STAM) [7],
where glues can turn ‘on’ and ‘off’ and assemblies can
detach; and the seeded Tile Automata Model (seeded
TA) [1], where single tiles attach to a base assembly
(seed) and adjacent tiles are allowed to change states.
While mostly theoretical, experiments realized in the
aTAM prove the potential of these programmable sys-
tems to build complex structures [10, 11, 12].
Despite varying nuances between models, building

precise shapes remains a fundamental task. In particu-
lar, one of the most well-studied problems among these
models is the self-assembly of self-similar fractals. In
[6, 9], it was shown that the aTAM can not strictly
(without error) build certain types of self-similar frac-
tals. However, in other models, this does not hold true.
In [3], it was shown that the 2HAM can finitely self-

∗This research was supported in part by National Science

Foundation Grant CCF-2329918.
†Department of Computer Science, University of Texas Rio

Grande Valley

assemble a scaled-up Sierpinski carpet, while [5] showed
that the 2HAM can finitely self-assemble a larger class
of discrete self-similar fractals. In [7], it was shown that
the Sierpinski triangle could strictly self-assemble in the
STAM if tile detachments are allowed, with [4] provid-
ing constructions for any arbitrary discrete self-similar
fractal with such detachments, while without such de-
tachments, the finite number of times a STAM tile can
change state makes some fractals impossible to build.
The STAM is also capable of simulating Tile Automata
[2] meaning these results can be ported to the STAM,
however, the simulation uses detachments, which is a
known result.

In this paper, we focus on building fractals in the
seeded TA model without tile detachment, a model dif-
fering from the aTAM by the ability for adjacent tiles
to transition states. Particularly, we show that a special
class of discrete self-similar fractals can be super-strictly
built (a more restricted version of strict), leaving a full
treatment for future work. Super-strict assembly of a
fractal essentially requires that each stage of the frac-
tal be built in order on the way to building the infinite
fractal. We feel this is a natural property to strive for as
it implies that any intermediate stage of the assembly
process would represent precisely the transition between
two consecutive stages of the fractal, whereas without,
an intermediate assembly could potentially contain a
mishmash of many different incomplete fractal stages.

2 Preliminaries

This section defines the model, discrete self-similar frac-
tals, and strictly building shapes as defined in [1, 9].

Seeded Tile Automata. Let Σ denote a set of
states or symbols. A tile t = (σ, p) is a non-rotatable
unit square placed at point p ∈ Z

2 and has a state of
σ ∈ Σ. An affinity function Π over a set of states Σ takes
an ordered pair of states (σ1, σ2) ∈ Σ×Σ and an orienta-
tion d ∈ D, where D = {⊥,

⊥

}, and outputs an element
of Z0+. The orientation d is the relative position to each
other with ⊥ meaning vertical and

⊥

meaning horizon-
tal, with the σ1 being the west or north state respec-
tively. A transition rule consists of two ordered pairs of
states (σ1, σ2), (σ3, σ4) and an orientation d ∈ D, where
D = {⊥,

⊥

}. This denotes that if the states (σ1, σ2) are
next to each other in orientation d (σ1 as the west/north
state) they may be replaced by the states (σ3, σ4). An
assembly A is a set of tiles with states in Σ such that for

355

36th Canadian Conference on Computational Geometry, 2022

being created, Aj+1′

i , tjdj
is the only tile that recognizes

the existence of Aj+1′

i . Thus, the only way to send a

signal to A
j+1′

i is through t
j
dj
, and the only adjacent

tile to t
j
dj

in A
j+1′

i is tj
′

OPP (dj)
. □

Lemma 2 Let ti = (σi, pi) ∈ A
j
i and let tf = (σf , pf) ∈

A
j+1′

i represent the tile adjacent to p′i, the target location
for t′i. A signal will follow exactly 1 path from ti to tf .

Proof. From Section 3.3, signals will always follow one

path in A
j
i and A

j+1′

i . We show that this signal ends
at tile tf . This can be done by comparing the order in
which tiles are chosen to be placed to the direction that
the signal travels.
To prove equivalence, we show that for each tile in

A
j+1′

i , PREV (tc)∪NEXT (tc)\d(tp, tc) = NEXT (t∗c).
We consider 2 cases:
Case 1: t∗c = t

j+1
OPP (dj)

. From Section 3.3,

NEXT (t∗c) = NEXT (tj
OPP (dj)

) ∪ PREV (tj
OPP (dj)

) \

OPP (dj). Initially, tp is the tile in direction OPP (dj)
from tc. This results in PREV (tc) ∪ NEXT (tc) \
d(tp, tc).
Case 2: t∗c is any other tile. Let t∗p denote the tile ad-

jacent to t∗c from which the signal came from, with tp, tc

denoting the corresponding tiles from A
j
i . We consider

2 scenarios.

1. tc ∈ NEXTtp(tp). From Section 3.3, NEXT (t∗c) =
PREV (tc) ∪NEXT (tc) \ d(tp, tc).

2. tc ∈ PREVtp(tp). From Section 3.3,
NEXT (t∗c) = NEXT (tc)∪PREV (tc)\ (d(tp, tc)∪
{directions to tiles not in step j}). The only time
there exists a direction to a tile not in step j is
when tc is the first tile placed in step j. Since this
is no longer the case for step j + 1, we get rid of
this direction from NEXT (t∗c), and since the next
tile chosen to be placed from tc does not consider
this direction either, the equivalence holds. □

Lemma 3 Let ti = (σi, pi) ∈ A
j
i and let tf = (σf , pf) ∈

A
j+1′

i represent the tile adjacent to p′i, the target location
for t′i. Tile tf will place tile t′i at position p′i = pi+a·d∗j ,
where a− 1 ∈ N represents the distance |pdj

−pOPP (dj)|
and d∗j ∈ {0, 1}2 is a 2-D vector denoting the direction.

Proof. Let d∗j = [0, 1], [1, 0], [−1, 0], [0,−1] represent
dj = north, east, west and south, respectively. In the
case of tOPP (dj)’ being the tile placed, the signal will

stop at tile tjdj
with position pdj

= pOPP (dj)+(a−1)·d∗j .

Tile t′
OPP (dj)

is then placed at position p′
OPP (dj)

=

pdj
+ d∗j = pOPP (dj) + a · d∗j .

For any other tile ti, as described in Lemma 2, we
know 2 things: 1), the signal from tile ti will stop at tile
tf adjacent to position p′i and 2) the order in which tiles

are chosen to be placed is equivalent to the direction in
which signals are passed. Since the relative position of p′i
to t′

OPP (dj)
is the same as pi to tOPP (dj) and t′

OPP (dj)
=

tOPP (dj) + a · dj , it follows that p
′
i = pi + a · d∗j . □

Lemma 4 Let ti = (σi, pi) ∈ A
j
i and let t′i = (σ′

i, p
′
i) ∈

A
j+1′

i represent the copy of ti. A signal will follow ex-
actly 1 path from t′i to ti.

Proof. By Lemma 2, there exists one path from pi to
the tile adjacent to p′i. Thus, when tile t′i is placed at
position p′i, the converse holds true by retracing this
path. □

Theorem 5 There is at most one tile transmitting a
signal in A.

Proof. By contradiction. Assume that there exists 2
tiles t1 ̸= t2 transmitting signals through A

j
i and let

Aj∗1 , Aj∗2 ⊂ A
j
i denote 2 sets of tiles such that:

1. ∀ta ∈ Aj∗1 , STATE(ta) = complete.

2. ∀tb ∈ NEXTta(ta) ∪ PREVta(ta), tb ∈ Aj∗1 ,
STATE(tb) = incomplete or tb = t1.

where the same applies for Aj∗2 and t2. We consider 2
cases:

Case 1: Aj∗1 ∩ Aj∗2 = ∅. This implies t
j

OPP (dj)
∈ Aj∗1

or tj
OPP (dj)

∈ Aj∗2 , but not both. By Lemma 1, tj
OPP (dj)

must be the first tile placed, resulting in a contradiction.

Case 2: Aj∗1 ∩ Aj∗2 ̸= ∅. Consider a tile
t∗ such that t1 ∈ SUBASMd1

(t∗) and t2 ∈
SUBASMd2

(t∗). Since SUBASMRIGHT ({d1,d2})(t
∗)

must wait for SUBASMLEFT ({d1,d2})(t
∗) to be com-

pleted, it must be that d1 = d2. This implies that
t1 = t2. □

Theorem 6 Step j + 2 will start only when step j + 1
is completed.

Proof. By our construction, since t
j
dj

is the tile

communicating between A
j
i and A

j+1′

i , both
SUBPREV (tdj)

(tdj
) and SUBNEXT (tdj)

(tdj
) must

be marked as completed before step j + 2 begins. This
is true only when ∀t ∈ A

j
i , STATE(t) = complete. □

Lemma 7 Let AM
i =

m⋃

j=0

A
j
i denote the resulting as-

sembly at step m for stage i. Every tile will reset before
moving to stage i+ 1.

Proof. This is due to our construction. A tile t will
only reset when ∀ta ∈ NEXTt(t), ta is reset. The only
time this is not true is when t is terminal, which marks
the end of a sub-assembly. □

360

CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

Lemma 8 Let AM
i =

m⋃

j=0

A
j
i denote the resulting as-

sembly at step m for stage i. When t0 resets, there will
exist at most 4 key tiles and KEYNEWS(t)∀t ∈ AM

i is
updated to point to these new key tiles.

Proof. We first show that there will exist at most four
key tiles, one for each direction d. From Section 3.3, td
must appear only in some step j. Thus, as the assembly
resets, tjd resets as the new td for the up-scaled assembly,
and all other tkd ∀k ̸= j ∈ {0, . . . ,m} are reset to normal
tiles. This leaves at most four key tiles.

Next, we show that every tile will point to the direc-
tion of the new td’s. We show this by contradiction.
Assume that there exists a tile t such that KEYd(t) =
PREV (t), but td ∈ SUBASMNEXT (t)(t). This implies
that for ta = PREVtd(td), KEYd(ta) = PREV (ta),
which is true only if td is not the key tile for direction
d. Hence, td ̸∈ SUBASMNEXT (t)(t). □

Lemma 9 Let Aj∗ ⊆ A
j
i where ∀t ∈ Aj∗, STATE(t) =

complete. At the end of step j +1, (Aj+1′

i)Λ = (Aj
i)Λ +

a · d∗j , where a − 1 ∈ N represents the distance |pdj
−

pOPP (dj)| and d∗j ∈ {−1, 0, 1}2 is a 2-D vector denoting
the direction.

Proof. We use Lemmas 1 and 3 to construct an induc-
tive proof. Let d∗j = [0, 1], [1, 0], [−1, 0], [0,−1] represent
dj = north, east, west and south, respectively.

Base case. |Aj∗
i | = 0, with t1 = t

j

OPP (dj)
being

the first tile copying itself (Lemma 1). By Lemma 3,
t′
OPP (dj)

is placed at position p′1 = p1 + a · d∗j .

Inductive step. |Aj∗
i | = k, with tk+1 being the tile

copying itself. By Lemma 3, t′k+1 is placed at position

p′k+1 = pk+1+ a · d∗j . It holds that (A
j+1′

i)Λ = (Aj∗)Λ+

a · d∗j . Thus, (A
j+1
i)Λ = (Aj

i)Λ + a · d∗j . □

Theorem 10 At the end of stage i, (AM
i)Λ = (Ai+1)Λ.

Proof. Follows from Lemma 9. For each AK
i with

K ∈ {0, . . . ,m − 1}, a new sub-assembly Ak+1
i is con-

structed such that the new assembly AK+1
i = AK

i ∪Ak+1
i

satisfying (AK+1
i)Λ = XK+1

i . Thus, the final assembly

AM
i = AM−1

i ∪ Am
i with (AM

i)Λ =
m⋃

j=0

X
j
i = Xi+1 =

(Ai+1)Λ. □

Theorem 11 Let X be a discrete self-similar fractal
with feasible generator G in bounding box c × d such
that GG has a Hamiltonian path ⟨h0, . . . , hm⟩ where h0

represents the origin. There exists a seeded TA system
Γ with O(|G|) states, O(|G|2) transitions and O(|G|2)
affinities that super-strictly builds X.

Proof. We start by showing Γ strictly builds X. This
follows from Theorem 10. We start with seed s, where

(s)Λ = G and each tj ∈ s stores NEXT (tj) =
d(pj+1, pj) (if pj+1 exists), PREV (tj) = d(pj−1, pj) (if
pj−1 exists) and TERM(tm) = True. Denote the as-
sembly as A1. By Theorem 10, applying the construc-

tion from Section 3 yields a new assembly A2 =
m⋃

j=0

A
j
i

with shape (A2)Λ = X2. Repeating this for all Ai yields
limi→∞(Ai)Λ = X.
Now we show that Γ super-strictly builds X. To do

so, we consider 2 cases:

1. The assembly AM
i at the end of stage i before reset-

ting. Leading up to this point, the order in which
tiles are placed and signals are passed is determinis-
tic. As a result, there exists 1 unique valid assembly
sequence from Ai to AM

i .

2. The assembly Ai+1 after AM
i resets. While there

no longer exists 1 unique valid assembly sequence
from AM

i to Ai+1, Lemmas 7 and 8 show that every
tile will reset to point to the 4 new key tiles. From
(1), the rest of the local information at each tile
will remain the same. Thus, every valid assembly
sequence from AM

i to Ai+1 starts with AM
i and ends

with Ai+1.

Choose β = {s,AM
2 , AM

3 , . . .} or β = {s,A2, A3, . . .}. It
follows that Γ super-strictly builds X.

Disregarding steps, the total number of ways infor-
mation can be locally stored at any tile is O(1) since a
tile has at most 4 neighbors. However, as tiles need to
distinguish between different sub-assemblies represent-
ing different steps, this results in O(|G|) different states.
Similarly, since transition rules and affinities use com-
binations of 2 states, this results in O(|G|2) transition
rules and affinity rules. □

5 Conclusion

In this paper, we present a method to strictly build frac-
tals infinitely under the assumption that the generator
is feasible and contains a Hamiltonian path. This con-
trasts with previously known results from similar (but
slightly differing) models such as the aTAM, where some
fractals, such as the Sierpinski triangle, are shown to
be impossible to build strictly. Additionally, we show
that this class of fractals can be super-strictly built, as
our construction guarantees stopping at unique inter-
mediate assemblies for all possible assembly sequences,
where each intermediate assembly represents a differ-
ent stage of the fractal. However, there remains several
open questions:

• Our construction strictly builds fractals infinitely
with states linear in the size of the generator and
transitions and affinities quadratic in the size of
the generator. Is there an alternative method that
reduces the state, transition and affinity counts?

361

36th Canadian Conference on Computational Geometry, 2022

• Is it possible to construct all fractals infinitely? If
not, what fractals are impossible to build?

• Does there exist a seeded TA system that can
strictly build any fractal infinitely?

• Our work focuses on systems with temperature 1.
Is it possible to take advantage of systems with
higher temperatures to strictly build these frac-
tals more efficiently, or does higher temperatures
increase the complexity of the problem?

6 Full Details for Algorithm

Below are the full details for the sub-processes used in
the algorithm described in Section 3.3.

send placement signal(tc, t
j

OPP (dj)
, tjdj

, ta, dj):

1. Set STATE(tc) = waiting.

• If tc = t
j

OPP (dj)
, set NEXT (t′c) = NEXT (tc) ∪

PREV (tc)\OPP (dj), PREV (t′c) = OPP (dj)
and TERM(t′c) = False.

• Else if STATE(ta) = complete and the num-
ber of tiles from step j in NEXTtc(tc) ∪
PREVtc(tc) is = 1, set TERM(t′c) = True
and PREV (t′c) = d(ta, tc).

• Else if STATE(ta) = complete and
tc ∈ PREVta(ta), set NEXT (t′c) =
NEXT (tc) ∪ PREV (tc) \ (d(ta, tc) ∪
{directions to tiles not in step j}) and
PREV (t′c) = d(ta, tc).

• Else, set NEXT (t′c) = NEXT (tc) and
PREV (t′c) = PREV (tc).

• Set KEYNEWS(t
′
c) = KEYNEWS(tc),

TERM(t′c) = TERM(tc) if TERM(t′c)
is not defined yet, SUBd(tc,ta)(ta) = waiting
and TRANS(ta) = t′c.

• Let tc = ta.

2. While tc ̸= t
j
dj
:

• Set SUBd(tc,ta)(ta) = waiting and TRANS(ta) =
TRANS(tc).

• Let tc = ta.

3. If no tile exists adjacent to tc in direction dj ,
stop. Otherwise, set SUBOPP (dj)(ta) = waiting
and TRANS(ta) = TRANS(tc).

4. Repeat the following:

(a) Let ta = LEFTtc(NEXT (tc)) if
!CAPLEFT (NEXT (tc))(tc), else set
ta = RIGHTtc(NEXT (tc)).

(b) If ta exists, set SUBd(tc,ta)(ta) = waiting and
TRANS(ta) = TRANS(tc). Set tc = ta and
repeat from (a).

(c) If ta does not exist, stop.

place tile(tc, tc’, p):

1. Place t′c in position p and set SUBd(tc,t′c)
(t′c) =

maybe. If TERM(t′c), set SUBd(tc,t′c)
(t′c) = maybe

with cap.

send completion signal(tc, ta, dj):

1. Set SUBd(ta,tc)(tc) to its original state, clearing
TRANS(tc) and changing SUBd(ta) = waiting to
SUBd(ta) = maybe for the direction d that the sig-
nal came from.

2. If length(NEXT (tc)) = number of caps on tc, set
SUBd(ta) = maybe with cap and clear the cap from
tc. Otherwise, set SUBd(ta) = maybe and leave the
cap on tc in direction LEFT (tc).

3. If STATE(ta) = waiting, set SUBd(ta,tc)(tc) to its
original state, clearing TRANS(tc) and changing
STATE(ta) = waiting to STATE(ta) = complete.
Otherwise, set tc = ta, let ta be the tile adjacent
to tc from which the signal came from and repeat
from (1).

mark completed sub-assemblies(tc, ta):

1. Repeat the following until ta is not updated:

(a) Set SUBd(tc,ta)(ta) = complete.

(b) If length(SUBNEWS(tc) = complete) =
length(NEXT (tc) ∪ PREV (tc)), set tc =
ta and let ta be the tile next to tc with
STATE(ta) = complete and SUBd(tc,ta) =
incomplete.

start next step(tj+1
OPP (dj)

, tj+1
dj+1

, dj, dj+1):

1. Let tc = t
j+1
OPP (dj)

. Set TRANS(tc) = ready. While

tc ̸= t
j+1
dj+1

:

(a) Let ta denotes the tile adjacent to tc in di-
rection KEYdj+1

(tc). Set TRANS(ta) =
TRANS(tc) and clear TRANS(tc). Then let
tc = ta.

reset(tm
OPP (dm−1)

):

1. Set TRANS(tm
OPP (dm−1)

) = reset. For all tiles
ta adjacent to tc = tm

OPP (dm−1)
in directions

d ∈ NEXT (tc) ∪ PREV (tc), set TRANS(ta) =
TRANS(tc) and set tc = ta.

2. If TERM(tc), set tc = RESET (tc). For the tile
ta ∈ PREVtc(tc), set SUBd(tc,ta)(ta) = done. Add
d(tc, ta) to NEXT (ta) if not already done.

3. If length(SUBNEWS(tc) = done) =
length(NEXT (tc)), then for the tile
ta = PREVtc(tc), set tc = RESET (tc) and
set SUBd(tc,ta)(ta) = done.

362

CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

References

[1] R. M. Alaniz, D. Caballero, S. C. Cirlos, T. Gomez,
E. Grizzell, A. Rodriguez, R. Schweller, A. Tenorio,
and T. Wylie. Building squares with optimal state
complexity in restricted active self-assembly. Jour-
nal of Computer and System Sciences, 138:103462,
2023.

[2] A. A. Cantu, A. Luchsinger, R. Schweller, and
T. Wylie. Signal Passing Self-Assembly Simulates
Tile Automata. In Y. Cao, S.-W. Cheng, and M. Li,
editors, 31st International Symposium on Algo-
rithms and Computation (ISAAC 2020), volume
181 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 53:1–53:17, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[3] C. T. Chalk, D. A. Fernandez, A. Huerta, M. A.
Maldonado, R. T. Schweller, and L. Sweet. Strict
self-assembly of fractals using multiple hands.
76(1):195–224, sep 2016.

[4] J. Hendricks, M. Olsen, M. J. Patitz, T. A. Rogers,
and H. Thomas. Hierarchical self-assembly of frac-
tals with signal-passing tiles. Natural computing,
17:47–65, 11 2018.

[5] J. Hendricks and J. Opseth. Self-assembly of
4-sided fractals in the two-handed tile assembly
model. In M. J. Patitz and M. Stannett, editors,
Unconventional Computation and Natural Compu-
tation, pages 113–128, Cham, 2017. Springer Inter-
national Publishing.

[6] J. Hendricks, J. Opseth, M. J. Patitz, and S. M.
Summers. Hierarchical growth is necessary and
(sometimes) sufficient to self-assemble discrete self-
similar fractals. Natural computing, 13:357–374, 12
2020.

[7] J. E. Padilla, M. J. Patitz, R. T. Schweller,
N. C. Seeman, S. M. Summers, and X. Zhong.
Asynchronous signal passing for tile self-assembly:
Fuel efficient computation and efficient assembly
of shapes. International Journal of Foundations of
Computer Science, 25:459–488, 2014.

[8] M. J. Patitz. An introduction to tile-based self-
assembly. In J. Durand-Lose and N. Jonoska,
editors, Unconventional Computation and Natu-
ral Computation, pages 34–62, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[9] M. J. Patitz and S. M. Summers. Self-assembly
of discrete self-similar fractals. Natural computing,
9:135–172, 08 2010.

[10] P. W. K. Rothemund. Theory and experiments in
algorithmic self -assembly. PhD thesis, 2001.

[11] P. W. K. Rothemund, N. Papadakis, and E. Win-
free. Algorithmic self-assembly of dna sierpinski
triangles. PLOS Biology, 2(12):null, 12 2004.

[12] E. Winfree. Algorithmic self-assembly of DNA.
PhD thesis, 1998.

363

