CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Building Discrete Self-Similar Fractals in Seeded Tile Automata*

Ryan Knobelf Adrian Salinas’

Abstract

In this paper, we show that a special class of discrete
self-similar fractals is strictly self-assembled (without er-
ror) in the seeded growth-only (no detachments) Tile
Automata model. Additionally, we show that under
a more restrictive version of the problem, the same
class of discrete self-similar fractals is also super-strictly
buildable— where there is the added requirement of
reaching certain intermediate assemblies as the assem-
bly grows. This contrasts with known impossibility re-
sults for the abstract Tile Assembly Model, paving the
way for future work in strictly self-assembling any gen-
eralized discrete self-similar fractal.

1 Introduction

The essence of many organisms and processes of na-
ture can often be described as a collection of simpler,
self-organizing components working together to form
more complex structures. The study of such mecha-
nisms has resulted in numerous advances in designing
artificial programmable systems that accomplish simi-
lar tasks. In [12], Winfree introduced the abstract Tile
Assembly Model (aTAM), in which single non-rotating
‘tiles” attach to growing structures. Other extensions
to this model include the 2-Handed Assembly Model
(2HAM) [8], where two assemblies are allowed to attach;
the Signal-passing Tile Assembly model (STAM) [7],
where glues can turn ‘on’ and ‘off” and assemblies can
detach; and the seeded Tile Automata Model (seeded
TA) [1], where single tiles attach to a base assembly
(seed) and adjacent tiles are allowed to change states.
While mostly theoretical, experiments realized in the
aTAM prove the potential of these programmable sys-
tems to build complex structures [10, 11, 12].

Despite varying nuances between models, building
precise shapes remains a fundamental task. In particu-
lar, one of the most well-studied problems among these
models is the self-assembly of self-similar fractals. In
[6, 9], it was shown that the aTAM can not strictly
(without error) build certain types of self-similar frac-
tals. However, in other models, this does not hold true.
In [3], it was shown that the 2HAM can finitely self-

*This research was supported in part by National Science
Foundation Grant CCF-2329918.

fDepartment of Computer Science, University of Texas Rio
Grande Valley

355

Robert Schweller! Tim Wylief

assemble a scaled-up Sierpinski carpet, while [5] showed
that the 2HAM can finitely self-assemble a larger class
of discrete self-similar fractals. In [7], it was shown that
the Sierpinski triangle could strictly self-assemble in the
STAM if tile detachments are allowed, with [4] provid-
ing constructions for any arbitrary discrete self-similar
fractal with such detachments, while without such de-
tachments, the finite number of times a STAM tile can
change state makes some fractals impossible to build.
The STAM is also capable of simulating Tile Automata
[2] meaning these results can be ported to the STAM,
however, the simulation uses detachments, which is a
known result.

In this paper, we focus on building fractals in the
seeded TA model without tile detachment, a model dif-
fering from the aTAM by the ability for adjacent tiles
to transition states. Particularly, we show that a special
class of discrete self-similar fractals can be super-strictly
built (a more restricted version of strict), leaving a full
treatment for future work. Super-strict assembly of a
fractal essentially requires that each stage of the frac-
tal be built in order on the way to building the infinite
fractal. We feel this is a natural property to strive for as
it implies that any intermediate stage of the assembly
process would represent precisely the transition between
two consecutive stages of the fractal, whereas without,
an intermediate assembly could potentially contain a
mishmash of many different incomplete fractal stages.

2 Preliminaries

This section defines the model, discrete self-similar frac-
tals, and strictly building shapes as defined in [1, 9].
Seeded Tile Automata. Let ¥ denote a set of
states or symbols. A tile ¢ = (o, p) is a non-rotatable
unit square placed at point p € Z? and has a state of
o € X. An affinity function II over a set of states 3 takes
an ordered pair of states (01, 02) € ¥ xX and an orienta-
tion d € D, where D = {L,}, and outputs an element
of Z°F. The orientation d is the relative position to each
other with | meaning vertical and = meaning horizon-
tal, with the o; being the west or north state respec-
tively. A transition rule consists of two ordered pairs of
states (01, 02), (03,04) and an orientation d € D, where
D = {1,}. This denotes that if the states (o1, 02) are
next to each other in orientation d (o7 as the west/north
state) they may be replaced by the states (03,04). An
assembly A is a set of tiles with states in ¥ such that for

36'" Canadian Conference on Computational Geometry, 2022

every pair of tiles t; = (01,p1),t2 = (02,p2),p1 # p2.
Informally, each position contains at most one tile.

Let Bg(A) be the bond graph formed by taking a
node for each tile in A and adding an edge between
neighboring tiles t; = (o1,p1) and ta = (02,p2) with
a weight equal to (o, 02). We say an assembly A is
T—stable for some 7 € Z° if the minimum cut through
Bg(A) is greater than or equal to 7.

A Seeded Tile Automata system is a 6—tuple I' =
(3,AT1, A, 5, 7) where X is a set of states, A C 3 a set
of initial states, IT is an affinity function, A is a set of
transition rules, s is a stable assembly called the seed
assembly, and 7 is the temperature (or threshold). A tile
t = (o,p) may attach to an assembly A at temperature
7 to build an assembly A’ = AUt if A’ is T—stable and
o € A. We denote this as A —5 , A”. An assembly
A can transition to an assembly A’ if there exist two
neighboring tiles t; = (01,p1),t2 = (02,p2) € A (where
t; is the west or north tile) such that there exists a
transition rule in A with the first pair being (o1, 02),
the second pair being some pair of states (o3, 04) such
that A" = (A\ {t1.t2}) U {ts = (03,p1),ta = (01,p2)}.
We denote this as A —+a A’. For this paper, we focus on
systems of temperature 7 = 1, and all bond strengths
are equal to 0 or 1.

An assembly sequence @ = {ag,1,...} in T is a (fi-
nite or infinite) sequence of assemblies such that each
Qi —Ar Qi1 OF o —A Qip1. An assembly sub-
sequence 8 = {af,a},...} in I' is a (finite or infinite)
sequence of assemblies such that for each o}, o ; there
exists an assembly sequence o = {a/, ... Q)

We define the shape of an assembly A, denoted (A)a,
as the set of points (A)x = {p|(o,p) € A}.

Discrete Self-Similar Fractals. Let 1 < ¢,d € N
and X C N2, We say that X is a (¢ x d)-discrete self-

similar fractal if there is a set G C {0,...,¢ — 1} x
{0,...,d — 1} with (0,0) € G, such that X = (J X,
i=1

where X; is the i*" stage of G satisfying Xo = {(0,0)},
X, = G, and X;41 = {(a,b) + (cv,d"u)|(a,b) €
X;, (v,u) € G}. In this case, we say that G gener-
ates X. We say that X is a discrete self-similar fractal
if it is a (¢ x d)-discrete self-similar fractal for some
c,d € N. A generator G is termed feasible if it is a
connected set, and there exist (not necessarily distinct)
points (0,y), (¢ — 1,y), (z,0), (z,d — 1) € G, i.e., a pair
of points on each opposing edge of the generator bound-
ing box that share the same row or column. Note that
the fractal generated by a generator is connected if and
only if the generator is feasible. For the remainder of
this paper we only consider feasible generators.

Strict and Super-strict. Let X be a discrete self-
similar fractal with feasible generator G. Consider a
seeded TA system I' = (X, A, II, A, s, 7) with (s)a = G,
and let S denote the set of all valid assembly sequences

-

Figure 1: From left to right: the generator, the seed
assembly (with the tile in black representing the origin
tile), the assembly at the start of step 4 and the assem-
bly at stage 2 (or the end of stage 1).

for T. T strictly builds X if Vo, = {s,a1,...,0q;,...} €
S, & is infinite and lim;_ o (a;)a = X. We further say
that T' super-strictly builds discrete self-similar fractal
X if Va, € S, there exists a subsequence 3 = {s,a4,...}
of & such that each (af)a = X;.

Other Definitions. Let G be a feasible generator
with corresponding points (0,y), (c—1,y), (z,0), (z,d—
1) € G, X be the discrete self-similar fractal cor-
responding to G, and A be an assembly such that
(A)pr = X, for some i € {1,2,...}. We denote key po-
sitions as four points py, pe, pw,ps € (A)a satisfying
py = (x+c oz, d — 1), pp = (¢ —1Ly+d-y),
pw = (0,y+y-d~1) and ps = (r+c~1-2,0). The four
tiles tn,tg, tw,ts € A with positions py,pE, Pw,Ps,
respectively, are called key tiles. We denote tg € G the
origin tile if ty has position (0,0).

Let Gg = (V, E) be the embedded graph formed by
adding a vertex for each point p € G and adding an
edge between vertices representing neighboring points
p1,p2 € G. Let H = (ho, ..., hy) (m = |G| — 1) denote
a Hamiltonian path in G¢, and let vertex hg represent
the origin of the generator, where each h; represents
pj = (wj,u;). Given X;, the it" stage of generator G,
denote X7 = {(a + cwj,b + d'u;) | (a,b) € X;,j €
{0,...,m}}, where j is the j** step for stage i.

Additionally, we denote a particular assembly A as

J
A if (A)p = X; and A as A if (A)y = U X[, where
k=0

J € {0,...,m}. To refer to a specific sul;assembly of
A corresponding to step j € {O7 . J}' for stage i, we
use A, where A7 C A/ and (A])x = X7.

3 Construction

Given a feasible generator G where the resulting embed-
ded graph G has a Hamiltonian path, we construct a
seeded TA system with seed s ((s)a = G) and origin
tile ¢ that super-strictly builds the corresponding frac-
tal infinitely. To start, the number of points m in the
generator excluding the origin determines the number
of steps m needs to scale the assembly from stage i to
stage i+1. We denote each point in the generator as p;,
where j represents the distance from itself and the ori-
gin pg following a selected Hamiltonian path P in Gg.

356

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

.........

1 T Ikix]=

Figure 2: The Sierpinski triangle starting from stage
3 with m = 2 steps. The tile marked T is sending
a signal (yellow) to place itself at position D. Tiles
marked K are key tiles (origin tile is also a key tile, just
not labeled). Tiles marked * have a cap in the direction
of the gray placed tiles. Tiles marked C had 2 caps, so
the cap shifted to the tiles marked x.

If we let d(p;, pj—1) denote the relative position of p; to
pj—1 (north, east, west or south), then we can represent
the sequence of directions the assembly will grow.
The high-level idea of the construction is as follows:
given an initial assembly A°, translate a copy of A° in
the direction of d(p1,po) and denote the copy as A'.
Repeat for all A7, copying A’ in direction d(pji1,p;)
m

until 5 = m. Set A’ = |J A7, and then continue the
§j=0

process with A° = A’. See Figure 1 for an example.

However, since the seeded TA model is limited to sin-
gle attachments and transitions, a direct implementa-
tion of this high-level idea is not possible. Instead, we
give each tile the responsibility of placing itself in the
correct location, with the final result being a copied
translation from A7 to A7+!. Thus, a crucial part of our
construction is the ability to store information and send
signals through the assembly. This section focuses on
describing each of these components more thoroughly.

3.1 Storing Information

In order to correctly copy the base assembly, every tile
needs specific information. This information can implic-
itly be stored as the state o of the tile.

Current State (STATE(t)). As each tile is respon-
sible for placing itself in the right location at the next
step, it is important to know whether each tile has ei-
ther 1) not placed itself yet, 2) is currently placing it-
self or 3) has already placed itself. STATE(t) denotes
the current state of tile t. In Figure 2, green tiles are
tiles with STATE(t) = complete, red tiles are tiles with
STATE(t) = incomplete and the yellow tile marked T
has STATE(t) = waiting. Gray tiles are tiles that have
been placed from the current step, so they must wait
until the current step finishes.

Direction to Key Tiles (KEYy(t)). With the key
tile information, signals are sent in the direction of the

357

2 [t t]]] t]« AR NERn
o Gl I O
RO |t |<— s %I% Ly e o P I#I# > :I > ¢
= i - t|—|& -1l !

[TTIK 4 v
t]]& 1>l v

[t tl<f] t] ~l~1! el Pl

T i i t v v il

- EeENEENERD [<]t}

Figure 3: An example of the ‘next’ (left) and ‘previous’
(right) directions for each tile. Tiles marked ¢ are ter-
minal tiles, meaning they have no ‘next’ direction. The
only tile without a ‘previous’ direction is the origin tile,
which is the tile located at the bottom left. Note that
the ‘next’ and ‘previous’ directions at each tile do not
always include all adjacent tiles.

correct key tile. For instance, if the assembly is being
copied to the north at step j, signals are sent in the
direction of t), € A . KEY,(t) denotes this direction
for t. To reference all 4 key tiles, we use K EYngws(t).
This is illustrated in Figure 5a.

Next/Previous Tiles (NEXT(t)/PREV(t)). This
serves the purpose of knowing where each tile’s neigh-
bors are (or should be). NEXT(t) denotes the direction
to the ‘next’ tiles from ¢, which usually signifies which
directions the signal can propagate, excluding the source
direction. PREV(t) denotes the direction to the pre-
vious tile from ¢, which usually signifies the direction a
signal comes from. We use NEXT;(t) to denote the tile
adjacent to t in direction NEXT(t) (or similarly, the set
of tiles adjacent to ¢ for each direction in NEXT(t)).
Similarly, PREV,(t) denotes the tile adjacent to ¢ in
direction PREV (t). This is described in Figure 3.

The State of Neighboring Sub-assemblies
(SUBg(t)). This is crucial for several reasons. Firstly,
this creates the order in which tiles are placed. Sec-
ondly, this makes it possible to keep track of which di-
rection the signal is coming from, and once the tile is
placed, where the signal needs to return to. SUBy4(t)
denotes the state of the sub-assembly (whether all tiles
have been placed or not) stemming from the neighbor-
ing tile of ¢ in direction d. To reference the state of
all sub-assemblies adjacent to ¢, we use SUBnNEws(t).
Additionally, we refer to a specific sub-assembly as
SUBASM,(t), denoting the sub-assembly stemming
from tile ¢ in direction d. See Figure 5b for an example.

The Tile being Transferred (TRANS(t)). To dis-
tinguish between different signals, each tile keeps track
of which tile the signal started from. TRANS(t) is used
to denote the tile that the signal is coming from.

Step. Each tile stores which step it is a part of. This
allows an assembly A7 to know which tiles to use (tiles
in Ag) to create sub-assembly Ag“. Additionally, Ag

H . < . J
will only send signals to ¢ Apys1.05)"

36'" Canadian Conference on Computational Geometry, 2022

Figure 4: The Sierpinski triangle resetting at the end
of stage 3. Tiles marked ? are waiting for the sub-
assemblies adjacent to reset (the blue tiles to the north
and west). Gray tiles have been reset. Blue tiles are
transmitting the reset signal. Light blue tiles marked
‘K’ are the new key tiles for the assembly.

Terminal (TERM/(t)). Tiles must know when they
are at the end of a sub-assembly. Once a terminal tile
is placed, the system knows part of the sub-assembly is
complete. TERM (t) is a boolean that denotes whether
tile ¢ is terminal or not. In Figure 3, these tiles are
marked t¢.

Caps (CAP;(t)). Copied assemblies require one ex-
tra piece of information. As the shape grows, there are
points where signals can branch in multiple directions.
To direct this, signals always go ‘left’ when there is a
fork. If the sub-assembly in this direction is already con-
structed, a cap is placed to prevent signals from going
in that direction, and it instead goes to the next path.
If all paths have a cap, then it turns around and the cap
is shifted to reflect that all paths are complete. Caps
start from terminal tiles and gradually shift as the sub-
assemblies are completed. CAP,(t) is a boolean that
denotes whether tile ¢ has a cap in direction d. Figure
2 shows an example of how caps are used and shifted.

3.2 Signal Passing

In addition to the stored information, it is important
that tiles can communicate through signal passing. This
is done via transition rules.

Tile Placement Ordering. The order in which tiles
place themselves follows a ‘left’ first order (described
in Section 3.3). As the tiles place themselves and are
marked complete, transition rules prompt the next tile
to start placing itself. '

Tile Placement Signals. When a tile ¢ is placing
itself, the signal is transmitted from t{ to the tile adja-
cent to the target position for tg . Transition rules make
this possible by transferring the signal between adjacent
tiles. In Figure 2, the transmission of this placement
signal is represented as the sequence of yellow tiles.

Tile Placement Completion Signals. Once the
tile is placed in the correct location, a ‘completion’ sig-
nal gets sent back the same direction as the placement
signal. Once this signal reaches the tile getting placed

v
v
4

P
DIl Il I P P P P |
N D D D R R |

O

(a) (b)

Figure 5: (a) An example of the direction stored at each
tile for tg, the tile marked K. (b) An example of how
sub-assemblies work. The check mark denotes the sub-
assemblies to the south of tile A are completed. The
sub-assemblies to the west and north of A, however, are
not. As a result, SUBg(A) = complete, SUBw (A) =
incomplete and SUBy(A) = incomplete. Tiles marked
with . are part of SUBASMy (A). Note that B does
not start placing itself until SUBw (A) and SUBg(A)
are both marked completed.

A

from Ag , the tile is marked as complete.

Cap Signals. When a terminal tile is placed, as the
‘completion’ signal gets sent back in the sub-assembly
being created, a ‘cap’ is sent back with it to mark the
sub-assembly as complete. This forces future signals to
go a different path to complete a different sub-assembly.

Reset Signals When a stage is completed, reset sig-
nals are sent to update current state, direction to key
tiles, state of neighboring tiles and step, as well as re-
moving any remaining caps. Figure 4 illustrates the
resetting process.

Figure 2 details the construction outlined in Sections
3.1 and 3.2. The following section provides more specific
details to express how the system interacts to create
these fractals.

3.3 Approach

This section describes the process for taking an assem-
bly A; to A;;1, assuming G is a feasible generator for
(Ai)a, H = (ho,...,hy) is a Hamiltonian path in Gg
starting from the origin where m is the number of steps,
i is the stage and to € A? is the origin tile. Additionally,
we denote tﬂ as the key tile for direction d in assembly
Az and d; = d(p;+1,p;). We briefly define some addi-
tional terminology:

OPP(d). This denotes the complement of direction
d, e.g., OPP(north) = south.

LEFT (D). Consider D € {{N},{E}, {W},
{S}H,{N,E},{E,S},{N, W}, {W,S}}, where
N,E,W,S represent north, east, west and south
respectively. LEFT(D) denotes the ‘left’ direction for
D. This is 1) North if D = {N, E} or {N}, 2) East if
D = {E,S} or {E}, 3) West if D = {N,W} or {W}
and 4) South if D = {W, S} or {S}.

Conversely, RIGHT(D) denotes NEXT(D) \
LEFT (D). For atilet, weuse LEFT;(D)/RIGHT;(D)

358

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

to denote the tile adjacent to ¢t in direction
LEFT(D)/RIGHT(D), respectively.

RESFET(t). At the end of stage i, tiles must reset.
This includes 1) updating the direction to the new 4 key
tiles and 2) updating the ‘next’ direction for former key
tiles (see Figure 6). RESET(t) denotes tile ¢ resetting,

defined as follows:
o Ift = tzlj, where p; € X is the key position for d;,
set KEYy,(t) = current tile.

e For each tile t, € NEXT(¢) (if all ¢, have reset) set
each KEY,4(t) = PREV (t) it KEYy(t,) = d(t,14).
If there is a tile such that KEYy(t,) # d(t,t,), set
KEY,(t) = KEY(t,). If t, is a key tile for d, set
KEY,(t) = d(te,t).

o Clear TERM (t.) and update NEXT(t.) if appro-
priate.

3.3.1 Algorithm

Now we describe the algorithm. For better compre-
hension, we describe the algorithm using sub-processes.
Technical descriptions of these sub-processes are in-
cluded in Section 6.

Start with j = 0 and let . = ¢y denote the current tile
getting placed, starting with the origin tile. Let AZH
represent the translated assembly being created at step
J + 1. The following will be repeated until j = m.
While SUBPREV(tJ)() and SUBNEXT(,J)() are

not marked as completed

1. Let ¢, denote the tile
te in direction KFEYy(t.).

send_placement_signal(tc,tOPP(d X td yta, dj)

adjacent to
Run

to send a signal through the assembly to place t.
in the correct location.

2. The placement signal stops at the tile adjacent to
the target position by always traversing ‘left’ until
a tile no longer exists. Run place_tile(t,,t,,p) to
place the tile at this location, where t, is the tile
adjacent to position p, the target position for t..
This places t. in the correct location as ¢..

3. Retrace the signal to the tile that got placed by run-
ning send_completion_signal(t,,,tq,d;). This also
marks the tile as complete.

4. Mark sub-assemblies as complete if needed.
Run mark_completed_sub-assemblies(te, ty) if
TERM (t.) = True, where ¢, is the tile that just
placed itself and ¢, is the tile adjacent to t. such
that STATE(t,) = complete.

5. Choose the next tile to be placed. Let t. de-
note the last tile updated and C' be the tiles in
NEXT, (t.) U PREV, (t.) that have a completed
state. If t, # tilj, repeat from (1) with the new
te=LEFT, (PREV(t.)UNEXT(t.) \ C).

359

Figure 6: The highlighted tile is initially set as terminal.
Since the tile used to be a key tile, resetting also updates
the ‘next’ direction if appropriate.

6. If t. = tgj, j # m (the stage is not yet
completed) and SUBPREV(%)(tgj) and
marked as com-

SUBNEXT(tgj)(tﬁlj) are

pleted (every tile has now been placed), run

1 .
start_next_step(t)), OPP(’ tﬁfﬂ,d d;jy1) to signal
for the next sub- assembly to start being created.
Repeat from (1) with j = j +1, A = AJ™! and
clear TRANS(t.).

7. If instead 5 = m, the initial assembly has now been
up-scaled and has reached the end of stage i. To
repeat this process, the assembly now has to reset.
Run reset(tOPP(dmil)).

8. Repeat the algorithm.

A primary reason as to why this algorithm works is
the existence of a Hamiltonian path in the generator, as
this dictates the directions in which the fractal grows.
This allows growth of the fractal for any step to only
depend on the created sub-assembly from the previous
step, regardless of whether or not the resulting assem-
bly contains a Hamiltonian path or not. If a generator
does not contain a Hamiltonian path, then some sub-
assemblies of the fractal must be used multiple times
to create copies in multiple directions, which results in
synchronicity issues as multiple signals could exist in
the assembly at once.

4 Results

We now show that any feasible generator G with a
Hamiltonian path in G can be super-strictly built by a
seeded TA system I'. Let G be a feasible generator for
discrete self-similar fractal X, with H = (hg,...,hm)
denoting a Hamiltonian path in G such that each
h; corresponds to point p; = (wj,u;) € G. Let
d; = d(pj41,p;), A be the current assembly start-
ing from A = A/ for some J € {0,...,m — 1}, and
A{H, = A\ A/. We denote the copy of a tile t as t'.

Lemma 1 Under the construction from Section 3, tile

tOPP(€ Al must be the first tile to place itself.

Proof. This is due to geometry. While there may be
other adjacent tiles between A and the sub-assembly

36" Canadian Conference on Computational Geometry, 2022

being created, Ag +1/, tle is the only tile that recognizes
the existence of AZ‘H . Thus, the only way to send a
signal to AJT' is through tfij, and the only adjacent
. P i+17 . i
tile to tfij in A7 s tépp(dj). O
Lemma 2 Lett; = (0;,p;) € Al and lett; = (o4,ps) €
Ag+1 represent the tile adjacent to p;, the target location
for t;. A signal will follow exactly 1 path from t; to ty.

Proof. From Section 3.3, signals will always follow one
path in A7 and A7 1" We show that this signal ends
at tile ty. This can be done by comparing the order in
which tiles are chosen to be placed to the direction that
the signal travels.

To, prove equivalence, we show that for each tile in
Ag“ , PREV (t.))UNEXT(t.)\d(tp, t.) = NEXT(t}).
We consider 2 cases:

Case 1: ¢} téﬁp(dj). From Segtion 3.3,
NEXT(t) = NEXT(t]OPP(dj)) U PREV(tz)PP(dj)

\
OPP(d;). Initially, ¢, is the tile in direction OPP()dj)
from t.. This results in PREV (t.) U NEXT(t.) \
d(ty, te).

Case 2: t7 is any other tile. Let 7 denote the tile ad-
jacent to t} from which the signal came from, with ¢,, ¢,
denoting the corresponding tiles from Ag . We consider
2 scenarios.

1. t. € NEXT; (t,). From Section 3.3, NEXT(t}) =
PREV(t.) UNEXT(t.) \ d(tp,t.).

2. t. € PREV,(tp). From Section 3.3,
NEXT(tf) = NEXT(t.) UPREV (t.) \ (d(tp, tc) U
{directions to tiles not in step j}). The only time
there exists a direction to a tile not in step j is
when ¢, is the first tile placed in step j. Since this
is no longer the case for step j + 1, we get rid of
this direction from NEXT(t}), and since the next
tile chosen to be placed from t. does not consider
this direction either, the equivalence holds. g

Lemma 3 Lett; = (o;,p;) € Af andletty = (oy,p5) €
Ag“l represent the tile adjacent to p;, the target location
forti. Tilety will place tile t; at position p; = p;+a-d,
where a —1 € N represents the distance |pa; — popp(d;)l
and df € {0,1}? is a 2-D vector denoting the direction.

Proof. Let d; = [0,1],[1,0],[~1,0],[0,—1] represent
d; = north, east, west and south, respectively. In the
case of topp(q;)’ being the tile placed, the signal will
stop at tile tfij with position pa; = popp(d;) +(a—1) -d3.
Tile t’OPP(dj) is then placed at position p’OPP(dJ_) =
pa; +d; =popp;) +a-d;.

For any other tile ¢;, as described in Lemma 2, we
know 2 things: 1), the signal from tile ¢; will stop at tile
ty adjacent to position p} and 2) the order in which tiles

are chosen to be placed is equivalent to the direction in
which signals are passed. Since the relative position of p)
to t’OPP(dj) is the same as p; to topp(a,) and t/OPP(d]») =
topp(d;) +a - dj, it follows that p} = p; +a - d;.

Lemma 4 Let t; = (0;,p;) € Al and let t, = (o},p}) €
Ag‘H represent the copy of t;. A signal will follow ex-
actly 1 path from t; to t;.

Proof. By Lemma 2, there exists one path from p; to
the tile adjacent to p. Thus, when tile ¢} is placed at
position p}, the converse holds true by retracing this
path. O

Theorem 5 There is at most one tile transmitting a
signal in A.

Proof. By contradiction. Assume that there exists 2
tiles t1 # to transmitting signals through A7 and let
AT AJz C AJ denote 2 sets of tiles such that:

1. Vt, € A1, STATE(t,) = complete.

2.V, € NEXT,, (t,) U PREV,,(t.), t, € A,
STATE(ty) = incomplete or ¢, = 1.

where the same applies for A7 and t,. We consider 2
cases: .
Case 1: A71 N A%z = (). This implies t%)PP(d_)

J

c AJT

J i J
or tOPP(dj) € A’z but not both. By Lemma 1, tOPP(dj)
must be the first tile placed, resulting in a contradiction.

Case 2: A/l N A2 £ 0. Consider a tile
t* such that t; € SUBASMy (t*) and ty €
S(]BAS]\4(12 (t*) Since SUBASMR]GHT({dth})(t*)

must wait for SUBASMpppr({d,,4,})(t*) to be com-
pleted, it must be that di = ds. This implies that
t1 = to. O

Theorem 6 Step j + 2 will start only when step j + 1
is completed.

Proof. By our construction, since téj is the tile

communicating between Ag and Ag H’, both
SUBPREV(tdj)(td]‘) and SUBNEXT(tdj)(tdj) must
be marked as completed before step j + 2 begins. This
is true only when Vt € A}, STATE(t) = complete. O

m .

U Al denote the resulting as-
j=0

sembly at step m for stage i. Every tile will reset before
moving to stage 1 + 1.

Lemma 7 Let AM =

Proof. This is due to our construction. A tile ¢ will
only reset when Vt, € NEXT,(t), t, is reset. The only
time this is not true is when ¢ is terminal, which marks
the end of a sub-assembly. O

360

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

m .
Lemma 8 Let AM = |J Al denote the resulting as-
§=0
sembly at step m for stage i. When tg resets, there will
exist at most 4 key tiles and KEYNpws(t)Vt € AM is

updated to point to these new key tiles.

Proof. We first show that there will exist at most four
key tiles, one for each direction d. From Section 3.3, t4
must appear only in some step j. Thus, as the assembly
resets, ¢/ resets as the new t4 for the up-scaled assembly,
and all other t% Vk # j € {0,...,m} are reset to normal
tiles. This leaves at most four key tiles.

Next, we show that every tile will point to the direc-
tion of the new t4’s. We show this by contradiction.
Assume that there exists a tile ¢ such that KEYy(t) =
PREV (t), but ty € SUBASMypx7(t)(t). This implies
that for t, = PREV;,(ts), KEY4(ts) = PREV(t,),
which is true only if ¢; is not the key tile for direction
d. HGI’ICG, tq € SUBASMNEXT(f) (t) O

Lemma 9 Let A7 C A7 where Vt € A7*, STATE(t) =
complete. At the end of step j+ 1, (AgH/)A = (Ag)A +
a-dj, where a — 1 € N represents the distance |pq; —
popp(ay| and di € {—1,0,1}* is a 2-D vector denoting
the direction.

Proof. We use Lemmas 1 and 3 to construct an induc-
tive proof. Let d} = [0, 1], [1,0],[~1, 0], [0, —1] represent
d; = north, east, west and south, respectively.

Base case. |Al"] = 0, with t; = tJOPP(d]-) being
the first tile copying itself (Lemma 1). By Lemma 3,
t’OPP(dj) is placed at position pi=p+a-d.

Inductive step. |Al*| = k, with t41 being the tile
copying itself. By Lemma 3, ¢}, 41 is placed at position
st = Prsr +a-d5. It holds that (A7), = (49%), +
a-di. Thus, (A7) = (A))x +a-di. O

Theorem 10 At the end of stage i, (AM)r = (Aiy1)a-

Proof. Follows from Lemma 9. For each AKX with
K € {0,...,m — 1}, a new sub-assembly Af“ is con-
structed such that the new assembly AKX T = AKyAF+?
satisfying (AXT1)y = X5 Thus, the final assembly
AM =AMLy AP with (AM)y = U X! = Xipq =

j=0

(Aif1)a- O

Theorem 11 Let X be a discrete self-similar fractal
with feasible generator G in bounding box ¢ x d such
that Gg has a Hamiltonian path (ho, ..., hm,) where hy
represents the origin. There exists a seeded TA system
T with O(|G|) states, O(|G|?) transitions and O(|G|?)
affinities that super-strictly builds X .

Proof. We start by showing I" strictly builds X. This
follows from Theorem 10. We start with seed s, where

361

(s)o = G and each t; € s stores NEXT(t;) =
d(pj+1,p;) (if pj41 exists), PREV(t;) = d(p;j—1,p;) (if
pj—1 exists) and TERM (t,,) = True. Denote the as-
sembly as A;. By Theorem 10, applying the construc-

m .
tion from Section 3 yields a new assembly A, = |J A7
§=0

with shape (A2)a = X5. Repeating this for all A; yields
hmi—)oo(Ai)A = X.

Now we show that I' super-strictly builds X. To do
so, we consider 2 cases:

1. The assembly AM at the end of stage i before reset-
ting. Leading up to this point, the order in which
tiles are placed and signals are passed is determinis-
tic. As aresult, there exists 1 unique valid assembly
sequence from A; to AM.

2. The assembly A,;; after AZM resets. While there
no longer exists 1 unique valid assembly sequence
from AM to A;y1, Lemmas 7 and 8 show that every
tile will reset to point to the 4 new key tiles. From
(1), the rest of the local information at each tile
will remain the same. Thus, every valid assembly
sequence from AZM to A;41 starts with Af\/[and ends
with Ai+1-

Choose 3 = {s, AM AM .} or B={s, Az, A3,...}. It
follows that I' super-strictly builds X.

Disregarding steps, the total number of ways infor-
mation can be locally stored at any tile is O(1) since a
tile has at most 4 neighbors. However, as tiles need to
distinguish between different sub-assemblies represent-
ing different steps, this results in O(|G|) different states.
Similarly, since transition rules and affinities use com-
binations of 2 states, this results in O(]G|?) transition
rules and affinity rules. O

5 Conclusion

In this paper, we present a method to strictly build frac-
tals infinitely under the assumption that the generator
is feasible and contains a Hamiltonian path. This con-
trasts with previously known results from similar (but
slightly differing) models such as the aTAM, where some
fractals, such as the Sierpinski triangle, are shown to
be impossible to build strictly. Additionally, we show
that this class of fractals can be super-strictly built, as
our construction guarantees stopping at unique inter-
mediate assemblies for all possible assembly sequences,
where each intermediate assembly represents a differ-
ent stage of the fractal. However, there remains several
open questions:

e Our construction strictly builds fractals infinitely
with states linear in the size of the generator and
transitions and affinities quadratic in the size of
the generator. Is there an alternative method that
reduces the state, transition and affinity counts?

36" Canadian Conference on Computational Geometry, 2022

e Is it possible to construct all fractals infinitely? If
not, what fractals are impossible to build?

e Does there exist a seeded TA system that can
strictly build any fractal infinitely?

e Our work focuses on systems with temperature 1.
Is it possible to take advantage of systems with
higher temperatures to strictly build these frac-
tals more efficiently, or does higher temperatures
increase the complexity of the problem?

6 Full Details for Algorithm

Below are the full details for the sub-processes used in
the algorithm described in Section 3.3.

send_placement _signal(¢., tjopp(dj), tﬁlj, tar d;):

1. Set STATE(t.) = waiting.
o If te =t} pp(y,) set NEXT(t,) = NEXT(t.)
PREV (t.)\OPP(d;), PREV (t.) = OPP(d;)

and TERM (t!) = False.

Else if STATE(t,) = complete and the num-
ber of tiles from step j in NEXT; (t.) U
PREV, (t.) is = 1, set TERM(t) = True
and PREV (t.) = d(tq, t.).

o Else if STATE(t,) = complete and
t. € PREV,(t,), set NEXT(t) =
NEXT(t.) U PREV(t.) \ (d(te,tc) U
{directions to tiles not in step j}) and
PREV (t.) = d(ta, tc).

e Else, set NEXT(t)) = NEXT(t.) and
PREV(t)) = PREV (t,).

e Set KEYNEws(t::) = KEYNEWS(tC)7
TERM(t)) = TERM(t,) if TERM(t.)

is not defined yet, SUBg, +,)(ta) = waiting
and TRANS(t,) = t..
o Lett. =t,.
2. While ¢, #) :
o Set SUByt, 1,)(ta) = waiting and TRAN S(t,) =
TRANS(t.).
o Lett. =t,.
3. If no tile exists adjacent to t. in direction d;,

stop. Otherwise, set SUBopp(q,)(ta) = waiting
and TRANS(t,) = TRANS(t.).

4. Repeat the following:

(a) Let ¢, =
'CAPLgrr(NEXT(®.)) (L),
t. = RIGHT,,(NEXT(t.)).

(b) If t, exists, set SUBg, +,)(ta) = waiting and
TRANS(t,) = TRANS(t.). Set t. = t, and
repeat from (a).

LEFT, (NEXT(t.)) if
else set

(c) If t, does not exist, stop.

place_tile(t., t.’, p):

L. Place ¢, in position p and set SUBg,)(t.) =
maybe. If TERM (L), set SU B, .)(t.) = maybe
with cap.

send_completion_signal(t., t,, d;):

1. Set SUBy, +.)(te) to its original state, clearing
TRANS(t.) and changing SUBy(t,) = waiting to
SU Bq4(t,) = maybe for the direction d that the sig-
nal came from.

2. If length(NEXT(t.)) = number of caps on t., set
SUBy(t,) = maybe with cap and clear the cap from
t.. Otherwise, set SUBy(t,) = maybe and leave the
cap on t. in direction LEFT(t.).

3. If STATE(t,) = waiting, set SUBg, +,)(tc) to its
original state, clearing TRANS(¢.) and changing
STATE(t,) = waiting to STATE(t,) = complete.
Otherwise, set t. = t4, let t, be the tile adjacent
to t. from which the signal came from and repeat
from (1).

mark_completed_sub-assemblies(¢., t,):

1. Repeat the following until ¢, is not updated:

(a) Set SUBy, 1,)(ta) = complete.

(b) If length(SUBNpws(t.) = complete) =
length(NEXT(t.) U PREV(t.)), set t. =
t, and let t, be the tile next to t. with
STATE(t,) = complete and SUBgyq, +,) =
incomplete.

- - .
start_next_step(t;ppq s 1,0 dir djs1):

j+1
L. Let te = t5ppg,):
J+1 .
te A t)1]:
(a) Let t, denotes the tile adjacent to t. in di-
rection KEYy, ,(t;). Set TRANS(t,) =
TRANS(t.) and clear TRANS(t.). Then let

te = tq.

Set TRANS(t.) = ready. While

reset(tgpp(dm_l)):

L. Set TRANS(t$ppqg,, ,)) = reset. For all tiles
t, adjacent to t. = tgLPP(dm,l) in directions
d € NEXT(t.) U PREV (t.), set TRANS(t,) =
TRANS(t.) and set t. = t,.

2. If TERM(t.), set t. = RESET(t.). For the tile
to € PREV, (t.), set SUBgyq, +,)(ta) = done. Add
d(t.,t,) to NEXT(t,) if not already done.

3. If length(SUBNEws(tc) = done) =
length(NEXT(t.)), then for the tile
te« = PREV, (t.), set t. = RESET(t.) and
set SUBg, t,)(ta) = done.

362

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

References

1]

R. M. Alaniz, D. Caballero, S. C. Cirlos, T. Gomez,
E. Grizzell, A. Rodriguez, R. Schweller, A. Tenorio,
and T. Wylie. Building squares with optimal state
complexity in restricted active self-assembly. Jour-
nal of Computer and System Sciences, 138:103462,
2023.

A. A. Cantu, A. Luchsinger, R. Schweller, and
T. Wylie. Signal Passing Self-Assembly Simulates
Tile Automata. In'Y. Cao, S.-W. Cheng, and M. Li,
editors, 31st International Symposium on Algo-
rithms and Computation (ISAAC 2020), volume
181 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 53:1-53:17, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik.

C. T. Chalk, D. A. Fernandez, A. Huerta, M. A.
Maldonado, R. T. Schweller, and L. Sweet. Strict
self-assembly of fractals using multiple hands.
76(1):195-224, sep 2016.

J. Hendricks, M. Olsen, M. J. Patitz, T. A. Rogers,
and H. Thomas. Hierarchical self-assembly of frac-
tals with signal-passing tiles. Natural computing,
17:47-65, 11 2018.

J. Hendricks and J. Opseth. Self-assembly of
4-sided fractals in the two-handed tile assembly
model. In M. J. Patitz and M. Stannett, editors,
Unconventional Computation and Natural Compu-
tation, pages 113-128, Cham, 2017. Springer Inter-
national Publishing.

J. Hendricks, J. Opseth, M. J. Patitz, and S. M.
Summers. Hierarchical growth is necessary and
(sometimes) sufficient to self-assemble discrete self-
similar fractals. Natural computing, 13:357-374, 12
2020.

J. E. Padilla, M. J. Patitz, R. T. Schweller,
N. C. Seeman, S. M. Summers, and X. Zhong.
Asynchronous signal passing for tile self-assembly:
Fuel efficient computation and efficient assembly

of shapes. International Journal of Foundations of
Computer Science, 25:459-488, 2014.

M. J. Patitz. An introduction to tile-based self-
assembly. In J. Durand-Lose and N. Jonoska,
editors, Unconventional Computation and Natu-
ral Computation, pages 34-62, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

M. J. Patitz and S. M. Summers. Self-assembly
of discrete self-similar fractals. Natural computing,
9:135-172, 08 2010.

363

[10] P. W. K. Rothemund. Theory and experiments in
algorithmic self -assembly. PhD thesis, 2001.

[11] P. W. K. Rothemund, N. Papadakis, and E. Win-
free. Algorithmic self-assembly of dna sierpinski
triangles. PLOS Biology, 2(12):null, 12 2004.

[12] E. Winfree. Algorithmic self-assembly of DNA.
PhD thesis, 1998.

