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Abstract

The Tile Automata (TA) model describes self-assembly systems in which monomers can build
structures and transition with an adjacent monomer to change their states. This paper shows that
seeded TA is a non-committal intrinsically universal model of self-assembly. We present a single
universal Tile Automata system containing approximately 4600 states that can simulate (a) the
output assemblies created by any other Tile Automata system Γ, (b) the dynamics involved in
building Γ’s assemblies, and (c) Γ’s internal state transitions. It does so in a non-committal way:
it preserves the full non-deterministic dynamics of a tile’s potential attachment or transition by
selecting its state in a single step, considering all possible outcomes until the moment of selection.

The system uses supertiles, each encoding the complete system being simulated. The universal
system builds supertiles from its seed, each representing a single tile in Γ, transferring the information
to simulate Γ to each new tile. Supertiles may also asynchronously transition states according to the
rules of Γ. This result directly transfers to a restricted version of asynchronous Cellular Automata:
pairwise Cellular Automata.
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2 Intrinsic Universality in Seeded Active Tile Self-Assembly

1 Introduction

Tile self-assembly is a model that attempts to exploit the computational capabilities of

nucleic acids. DNA molecules can form complex structures, and in controlling the growth

of those structures, we can utilize their powers to perform computations. In recent years,

a diverse set of new abstractions and models have been conceived, the most prominent of

which has been the (two-dimensional) abstract Tile Assembly Model (aTAM) [28]. In this

model, a tile is a non-rotatable unit square with specified glues on each side, modeling a

single monomer. Two tiles can attach if their glues match. A tile assembly system is a set of

these tile types and a temperature τ . Research into these models usually revolves around

the types of assemblies that can be created with specific sets of tile types.

In this paper, we work in a related model, derived by combining elements of tile self-

assembly and the local state changes of asynchronous Cellular Automata: seeded Tile

Automata (TA) [5]. A Tile Automata system Γ has a set of states Σ. These states contain

no glues, contrary to the aTAMs tile types. Instead, tiles with an initial state σ ∈ Λ (Λ ⊆ Σ)

can attach to the seed s if the system contains an affinity rule for their respective tile types

that has an equal or higher strength than the system temperature τ . Should a single pair of

tiles lack sufficient strength to bind to the assembly, they may bind cooperatively by adding

the strengths of affinities of neighboring tiles to reach τ . Contrary to the passive aTAM,

tiles in the active TA system can change their state. More restricted than most Cellular

Automata systems, only two tiles directly adjacent to one another can transition their states

if the system contains the corresponding transition rule.

Here, we study the creation of an intrinsically universal (IU) Tile Automata system ΓU ,

a system with a finite state set capable of creating not only the final assemblies of any other

arbitrary Tile Automata system Γ but also replicating the exact assembly process and any

additional computations achieved via transitions. Our universal tile assembly system can

simulate systems that contain more states than ΣU does and even simulate itself. To do this,

we sacrifice scale. We use many tiles to create a supertile, that simulates a single tile in Γ.

In this paper, we show that non-committal intrinsic universality is impossible in any

passive system, such as the aTAM. This means that the dynamics of attachment and

transitions of a tile assembly system cannot be faithfully simulated by achieving the final

determinations of each in a single step. Instead, they are committal intrinsically universal,

meaning that they need multiple attachment and or transition steps to replicate the decision

process of a single step in the target system. On first sight, this appears to contradict

previous work showing the aTAM is intrinsically universal [8]. However, that paper contained

a subtle error which was later addressed by making the definition of intrinsic universality

(IU) slightly weaker [20]. We will refer to this weakened version as committal IU. Besides our

negative result, we show that the seeded Tile Automata model with its infinite state changes

is in fact non-committal intrinsically universal, using approximately 4600 states.

Intrinsic universality is motivated by creating a universal tile set small enough to be

stored in a lab refrigerator for real-world experimentation. Although 4600 tiles is still a

large number of states and is not optimal, 4600 tiles is about ten million tile types less than

the previously stated committal intrinsic universality result for two-dimensional aTAM [8].

Importantly, our initial state set Λ is only a single tile type. While current laboratory

capabilities lag the ability to implement this universal tile set as of today, there have been

recent advancements in for example the ability to replace tiles experimentally [26, 27] and in

the aTAM a tile set capable of universal 6-bit computation was created [29]. The aTAM has

also been proven to be intrinsically universal in 3D [13], and synchronous Cellular Automata
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have been shown to be intrinsically universal in 1D, 2D, and 3D [2, 11, 19].

The question of whether 2D asynchronous Cellular Automata is intrinsically universal is

currently open, though work towards a 1D version has been done [30]. Tile Automata can be

viewed as a restricted version of asynchronous Cellular Automata in which the neighborhood

size is 2, the radius is 1, the system is non-deterministic, and the updating is asynchronous.

Therefore, our results directly carry over to this restricted version of Cellular Automata.

1.1 Previous Work

Cellular Automata. The study of self-simulation, and new types of universalities is as

old as the field of Cellular Automata itself, with von Neumann introducing the model to

build a self-replicating machine [21]. Though it was Banks in 1970 who explicitly coined

the term intrinsic universality [2], von Neumann’s initial construction was later proven to

be intrinsically universal. Conway’s famous Game of Life cellular automaton was proven

to be intrinsically universal [10]. Intrinsic universality in CA has been extensively studied

[3, 11, 12, 15, 22, 23, 24, 25, 30]. Specifically, four different updating schemes for Asynchronous

CA were shown to be IU in [30]. These updating schemes restrict which cells can be updated at

each time step. The closest related updating scheme to Tile Assembly is “fully asynchronous”

where only one cell may update at a time.1

Passive Self-Assembly. Intrinsic universality first crossed into the self-assembly world in [9],

where a universal tile set was introduced for systems with tiles that bond with exactly

strength 2. Two years later, the first properly intrinsically universal tile set, one that can

simulate the full aTAM at any temperature, was presented in [8]. These papers both used

the definition of intrinsic universality that we call non-committal. However, these definitions

were later corrected to the version that we call committal [20]. It was also shown that

a single polygon tile type with the ability to flip, translate, and rotate can simulate any

aTAM system through several intermediate simulations [6]. The aTAM was found not to be

committal intrinsically universal at Temperature-1 [20], and in directed and non-directed

planar systems [13]. Directed 3D and Spatial aTAM were proven to be IU [13]. The 2-handed

self-assembly model is, in general, not intrinsically universal; however, there are intrinsically

universal tile sets for each temperature [7]. Work towards a universal tile set in Wang Tiles,

which studies whether a given tile set can infinitely, and potentially periodically, tile a plane,

has also been investigated [16, 17, 18].

Simulation between Tile Assembly and CA. The aTAM can simulate some versions of CA.

In particular, it was found that the aTAM can simulate only finite CA [14]. The TA model

does not have this restriction, as we can infinitely tile the plane with our seed assembly and

use transitions to simulate infinite CA. Where the aTAM is asynchronous, nondeterministic,

and finite, Cellular Automata is potentially generally synchronous, deterministic or nonde-

terministic, and infinite. Tile Automata is asynchronous, deterministic or nondeterministic,

and finite. Additionally, Tile Automata is restricted to a neighborhood size of two.

Notable, IU in CA is usually possible with systems that contain a very limited number

of states. However, in self-assembly, the simulating system does not only need to simulate

1 For the case of Tile Automata and Surface Chemical Reaction Networks it better stated as “one rule”
can be applied at a time because two cells can be updated in one update.
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the local interactions between existing states, but importantly also build new tiles in valid

locations. Therefore, IU systems in tile self-assembly tend to use a lot more states.

1.2 Our Contributions

In this paper, we push forward the study of IU systems in a few ways. First, we prove that

any passive self-assembly model (such as the aTAM) and variants of active self-assembly with

bounded state changes cannot adhere to the stronger non-committal definition of intrinsic

universality for self-assembly initially presented in [8]. However, this was later corrected

and since then, a slightly more permissive definition for the simulation of dynamics for

intrinsically universal systems has been used within self-assembly [20]. Although this is

indication that the problem with modeling dynamics within passive models is known, to our

knowledge, this has not been formally proven before.

Then, we show that in 2D, the seeded Tile Automata model, with unbounded state changes,

does indeed adhere to this stronger non-committal definition of intrinsic universality. We do

this by presenting a temperature-1 seeded TA system, and configuration of an initialized seed

assembly, that is IU for all seeded temperature-1 systems in approximately 4600 states. We

then show that any temperature TA system can be simulated by a temperature-1 TA system.

We also prove that the effect of temperature simulation on the scale of the system’s supertiles

is bounded. No additional states in the IU system’s state set are required to simulate systems

greater than temperature-1, extending our result to all seeded TA systems. Following this,

we show that, due to the mechanics of TA, our construction can be adapted to prove that

2D Asynchronous Cellular Automata, with a cardinal radius of 1 and neighborhood size of

2, is also IU in approximately 2600 states, which although inefficient, is the first 2D ACA

IU result. These positive results are summarized in Table 1 together with other known IU

results.

Section 2 starts by giving precise definitions of the model. Then, we show that bounded

state change systems can never be IU in Section 3. Opposing this negative result, we continue

to show that Tile Automata systems with their unlimited state changes are IU. Due to

the volume of necessary details, the paper first gives a high-level overview in Section 4,

that discusses the main gadgets and the framework of how the pieces work together. We

reference the more detailed later sections that follow the overview. Section 5 then covers

the temperature simulation part of the IU framework in depth. Next, sections 6, 7, and 8

detail the supertiles, their construction and how they transition respectively in full detail.

We analyse the number of states in Section 9 and proof the correctness of the simulation

in Section 10. We continue to show how our result transfers over to Cellular Automata in

Section 11. We then summarize the conclusion with Section 12.

2 Preliminaries

In this section, we cover the basics of the Tile Automata model. We use many of the same

definitions as in [1, 5]. An example of a Tile Automata system can be seen in Figure 1.

Tiles. Let Σ be a set of states. A tile t = (σ, p) is a non-rotatable unit square placed at

point p ∈ Z
2 and has a state of σ ∈ Σ. Let σ(t) be the state of t. Let ϕ denote a special

state called the empty state.

Affinity Function. An affinity function Π over a set of states Σ takes an ordered pair of

states (σ1, σ2) ∈ Σ × Σ and an orientation d ∈ D, where D = ¶⊥, ⊢♢, and outputs an element

of Z0+. The orientation d is the relative position of σ1 to σ2, with ⊢ meaning horizontal and
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Intrinsic Universality Across Models

Model D N |T | / |Σ| Scale (S) Reference

aTAM 2D 5 > 10M O(n4 log(n)) [8]

aTAM 3D 7 152 000 O(n2 log(nτ)) [13]

Seeded TA Temp-1 2D 5 4600 O(n3) Theorem 15

Seeded TA 2D 5 4600 O(min((τn)3, n9)) Theorem 18

Async. Cellular Automata 1D 3 O(1) unknown [30]

Block-Pairwise ACA 2D 2 2600 O(n3) Theorem 26

Pairwise ACA 2D 2 O(1) O(n3) Theorem 28

Table 1 An overview of known and new simulation results for types of asynchronous cellular
automata including tile assembly models. D is the dimension, N is neighborhood size of the input
system, |T | and |Σ| are, respectively, the number of tile or state types in the universal system, S is
the scale factor, n is the number of states in the input system, and τ is the system’s temperature.

⊥ meaning vertical. State σ1 is the west or north state respectively. We refer to the output

as the Affinity Strength between these two states.

Transition Rules. A Transition Rule consists of two ordered pairs of states (σ1, σ2), (σ3, σ4)

and an orientation d ∈ D, where D = ¶⊥, ⊢♢. The rule denotes that if the tiles with states

(σ1, σ2) are next to each other in orientation d (σ1 as the west/north state) they may be

replaced by the states (σ3, σ4).

Assembly. An assembly A is a set of tiles (with states in Σ), such that no two tiles

occupy the same position, i.e., for every pair of tiles t1 = (σ1, p1), t2 = (σ2, p2), it holds that

p1 ̸= p2. For an assembly A, let A(x, y) denote the state of the tile with location (x, y) ∈ Z
2

in A if such a tile exists and ϕ (the empty state) otherwise. For a set of states Σ, let AΣ

denote the set of all assemblies over state set Σ.

Let the bond graph BG(A) be formed by taking a node for each tile in A and adding an

edge between neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) in orientation d with a weight

equal to Π(σ1, σ2, d). We say an assembly A is τ -stable for some τ ∈ Z
0+ if the minimum

cut through BG(A) is greater than or equal to τ .

2.1 The Seeded Tile Automata Model

In this paper, we investigate the Seeded Tile Automata model, which differs from the non-

seeded Tile Automata model defined above, by only allowing single tile attachments to a

growing seed, similar to the aTAM. Here we use many of the same definitions as in [1].

Seeded Tile Automata. A Seeded Tile Automata system Γ is a 6-tuple ¶Σ, Λ, Π, ∆, s, τ♢

where Σ is a set of states, Λ ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of

transition rules, s is a stable assembly called the seed assembly consisting of tiles in states

contained in Σ, and τ ∈ Z
+ is the temperature (or threshold). When we refer to a tile set

(or equivalently rule set) we mean the four parameters (Σ, Π, ∆, τ), that is, the states, the

affinity function, the transition rules, and the temperature. A system Γ = ¶Σ, Λ, Π, ∆, s, τ♢

is said to use rule/tile set (Σ, Π, ∆, τ).

Attachment Step. A tile t = (σ, p) may attach to an assembly A at temperature τ to

build an assembly A′ = A
⋃

t if A′ is τ -stable and σ ∈ Λ. We denote this as A →Λ,τ A′.

Transition Step. An assembly A can transition to an assembly A′ if there exist

two neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where t1 is the west or north
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The difference lies in the models concept, see Definition 3. In non-committal IU, this

definition contains a universal quantifier, whereas the committal version contains a weaker

statement. From here on, we focus on two tile Automata systems ΓT and ΓS , where ΓS

denotes a system that purports to simulate system ΓT . Let ΣT and ΣS denote the set of

states used in ΓT and ΓS , respectively.

m-block Supertiles. An m-block supertile over a set of states Σ is a partial func-

tion λ : Zm × Zm → Σ, where Zm = ¶0, 1, . . . , m − 1♢. Let BΣ
m be the set of all m-block

supertiles over Σ. The m-block with no domain is said to be empty. For any assembly A

over state space Σ, define Am
x,y to be the m-block defined by Am

x,y(i, j) = A(mx + i, my + j)

for 0 ≤ i, j < m.

Supertile representation and mapping. We refer to a function R : BΣS

m → ΣT

⋃
¶ϕ♢

as an m-block representation function. We require R(B) = ϕ for the empty m-block, and

for any non-empty m-block B for which R(B) = ϕ, we say B maps to a ghost tile. For a

given m-block representation function R, define the partial function R∗ : AΣS → AΣT such

that R∗(A) = A′ if and only if A′(x, y) = R(Am
x,y) for all (x, y) ∈ Z

2.

c-Fuzz. The concept of c-fuzz is basically that a macroblock may have a bounded

number of “extra” tiles attached to it without altering its mapping. This allows a simulating

system to make minor intermediate attachments while enacting the simulation. Another

way to think of c-fuzz is as a reasonable allowance for limited-size non-empty macro-blocks

(that map to an empty tile in the simulated system) to be used in the simulation process.

Formally, a mapping R∗(A) = A′ is said to map to A with at most c-fuzz, for some c ∈ Z
+,

if and only if for all non-empty blocks Am
x,y it is the case that R(Am

x+u,y+v) ̸= ϕ for some

integers u, v ∈ [−c, c]. In other words, any non-empty macro blocks that map to ϕ (i.e.,

ghost tiles) are only at most c macroblocks away from a macroblock that maps to a real

(non-empty) tile. We say a Tile Automata system achieves c-fuzz under mapping R∗ if each

producible assembly of the system achieves at most c-fuzz when mapped by R∗.

▶ Definition 1 (Equivalent Productions). We say ΓS has equivalent productions to ΓT

(under R) with up to c-fuzz, and write ΓS ⇔c ΓT , if the following hold:

1. ¶R∗(A′)♣A′ ∈ PROD(ΓS)♢ = PROD(ΓT ).

2. ΓS achieves c-fuzz under R∗.

▶ Definition 2 (Follows). We say that ΓT follows ΓS (under R), and write ΓT ⊣R ΓS,

if A′ →ΓS B′, for some A′, B′ ∈ PROD(ΓS), implies that R∗(A′) →ΓT R∗(B′).

▶ Definition 3 (Non-Committally Models). We say that ΓS (non-committally) models ΓT ,

and write ΓS ♣=R ΓT , if A →ΓT B for some A, B ∈ PROD(ΓT ), implies that for all A′ such

that R∗(A′) = A, A′ →ΓS B′ for some B′ ∈ PROD(ΓS) with R∗(B′) = B.

▶ Definition 4 (Non-Committal Simulation). We say ΓS (non-committally) simulates ΓT if

for some c ∈ Z
+, ΓS ⇔c ΓT (equivalent productions), ΓT ⊣R ΓS and ΓS ♣=R ΓT (equivalent

dynamics). We say the simulation is clean if it holds for c = 1, and we say the simulation

achieves c-fuzz more generally.

▶ Definition 5 (Non-committal Intrinsic Universality.). A rule (tile) set I = ¶Σ, Π, ∆, τ♢ is

said to be intrinsically universal for a set of systems U if for all ΓT ∈ U , there exists a

system ΓS = ¶Σ, ΛT , Π, ∆, sT , τ♢ that non-committally simulates ΓT . The set U itself is said

to be intrinsically universal if there exists a rule set I used by some system within U such

that I is intrinsically universal for U . A model is said to be intrinsically universal if the set

of all systems within that model is intrinsically universal.
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We use the term non-committal simulation to emphasize that the simulation definition we

use is stronger than what is used in prior work, which we call committal. For the remainder

of this paper, we deal exclusively with non-committal simulation and will just use the term

simulation when not directly comparing with previous versions of simulation.

3 Impossibility for Passive or Bounded State Change Systems

In this section, we show that systems lacking the full state changing capability of the seeded

Tile Automata model cannot achieve intrinsic universality under non-committal simulation.

This includes well-studied models such as the Abstract Tile Assembly Model (aTAM) [28] and

freezing variants of the seeded Tile Automata Model [5]. The key aspect of non-committal

simulation that is impossible for these models is the non-committal modeling requirement of

our simulation definition. In this section we show the impossibility of simulating a specific

passive system, with the key use of the non-committal modeling requirement being used to

prove Lemma 9.

▶ Definition 6 (k-burnout, bounded, unbounded, passive, freezing). For a non-negative

integer k, a system is a k-burnout system if each tile in an assembly is restricted to only

changing state at most k times. A system is called bounded if it is k-burnout for some k,

and unbounded otherwise. 0-burnout systems are termed as passive. A freezing system [5] is

one in which state change rules are such that a tile can never return to a previous held state.

▶ Observation 7. Any aTAM system is a passive (0-burnout) system, and any freezing

seeded TA system that uses ♣Σ♣ states is bounded and a ♣Σ♣-burnout system.

▶ Definition 8. Define Xn to be the passive seeded Tile Automata system consisting of

states Σ = ¶S, a1, a2, . . . , an♢ with seed tile in state S, and east-west affinity between S and

each ai of strength equal to the system temperature τ . Let s ·ai denote the producible assembly

of this system obtained by attaching a tile of state ai to the east of the seed tile.

For the remainder of this section, let R denote a proposed m-block mapping function

from macro blocks from a proposed simulator system to tiles from the system Xn.

▶ Lemma 9. For any system Y that simulates Xn under mapping R, and for any valid

assembly sequence ⟨Aπ1
, . . . , Aπm

⟩ of Y such that for all 1 ≤ i ≤ m, R∗(Aπi
) = s, either:

1. For all 1 ≤ i ≤ n there exists an assembly Ai such that Aπm
→Y

1 Ai and R∗(Ai) = s · xi,

or

2. there exists an assembly Aπm+1
such that Aπm

→Y
1 Aπm+1

and R∗(Aπm+1
) = s.

Proof. Suppose constraint (1) does not hold for such a sequence ⟨Aπ1
, . . . Aπm

⟩ of Y , i.e.

suppose that for some 1 ≤ i ≤ n there does not exists an assembly Ai such that Aπm
→Y

1 Ai

and R∗(Ai) = s · ai. Since Y ♣=R Xn (Y non-committally models Xn), and s →Xn s · ai,

it must be that there exists some assembly Ai such that Aπm
→Y Ai and R∗(Ai) = s · ai,

which by definition means there exists an assembly sequence ⟨Aπm
, B, . . . , Ai⟩. There-

fore, Aπm
→Y

1 B, and since Xn ⊣R Y (Xn follows Y ), we know that R∗(B) = s, which means

the sequence ⟨Aπ1
, . . . , Aπm

⟩ can be extend with assembly B to satisfy constraint (2). ◀

▶ Lemma 10. For any bounded system Y that simulates Xn under mapping R there must

exist A, A1, . . . , An ∈ PRODY such that R∗(A) = s, and for all 1 ≤ i ≤ n, R∗(Ai) = s · ai

and A →Y
1 Ai.
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Proof. Suppose a bounded system Y simulates Xn. Since Y is bounded, there must ex-

ist M ∈ Z
+ such that for all assembly sequences ⟨Aπ1

, . . . , Aπm
⟩ of Y where R∗(Aπi

) = s,

it is the case that m ≤ M . This is the case since each assembly Aπi
maps to a single

tile under R∗, thereby limiting the size of each Aπi
to a finite integer based on the (finite)

scale-factor of the simulation and the (finite) fuzz factor c of the simulation. The number of

state changes and tile attachments for each assembly Aπi
therefore has a finite bound in a

system with a finite burnout number.

Since the length of such sequences cannot be extended infinitely, there must exist a

sequence ⟨Aπ1
, . . . Aπm

⟩ for which no additional Aπm+1
exists for which Aπm

→Y
1 Aπm+1

and

R∗(Aπm+1
) = s. For this sequence that must exist, Lemma 9 implies that for all 1 ≤ i ≤ n

there exists an assembly Ai such that Aπm
→Y

1 Ai and R∗(Ai) = s · xi. Therefore, there

must exist A = Aπm
, A1, . . . , An ∈ PRODY that satisfy the requirements of the lemma. ◀

▶ Lemma 11. A bounded seeded TA system with fewer than n
1
5 states cannot simulate Xn.

Proof. If a bounded system Y simulates Xn, then by Lemma 10 it must be the case that

there exists A, A1, . . . , An ∈ PRODY such that R∗(A) = s, and for all 1 ≤ i ≤ n it holds

that R∗(Ai) = s · ai and A →Y
1 Ai. Since A →Y

1 Ai for each Ai, we know that each pair of

assemblies Ai and Aj differ at either a single point or two adjacent points (corresponding to

a tile attachment or a pairwise state change). We now consider two cases:

Case 1: Suppose there exists an i and j such that Ai and Aj differ at non-overlapping

points. In this case, we know that the rule or attachment applied to A to attain Ai is also

applicable to Aj , and vice versa. This implies there exists a common assembly Ai⊕j such that

Ai →Y Ai⊕j and Aj →Y Ai⊕j . But since Xn ⊣R Y (Xn follows Y ), it must then be the case

that R∗(Ai) →Xn R∗(Ai⊕j) and R∗(Aj) →Xn R∗(Ai⊕j). This implies that R∗(Ai⊕j) = s · ai

and R∗(Ai⊕j) = s · aj , which is a contradiction.

Case 2: Suppose the points of difference for all assemblies Ai overlap each other in at

least one of their points. Since each assembly’s pair of points are adjacent (in the case that

there are two), this implies that the union of all such points of difference is at most 5 points.

If Y has ♣ΣY ♣ states, then there are at most ♣ΣY ♣5 distinct state assignments possible for

this 5-tile region. Thus, if ♣ΣY ♣ < n
1
5 , then there are fewer than n distinct 5-tile regions,

implying that Ai = Aj for some i ̸= j, which is a contradiction since R(Ai) ̸= R(Aj). ◀

▶ Lemma 12. A passive seeded TA system with fewer than n states cannot simulate Xn.

Proof. Suppose a proposed system Y with fewer than n states simulates Xn with representa-

tion function R∗. By Lemma 10 there exists A, A1, . . . , An ∈ PRODY such that R∗(A) = s,

and for all 1 ≤ i ≤ n, R∗(Ai) = s · ai and A →Y
1 Ai. As each Ai is attained by attaching

a single tile to A, let point pi denote the point of this attached tile in assembly Ai. Now

consider two cases:

Case 1: Suppose there exist 1 ≤ i, j ≤ n such that pi ≠ pj . In this case the tile

attached to form Aj from A can also be attached to Ai, and vice versa, implying that the

assembly consisting of attaching both such tiles, call it Ai⊕j , is such that Ai →Y Ai⊕j and

Aj →Y Ai⊕j . But since Xn ⊣R Y (Xn follows Y ), it must be that R∗(Ai) →Xn R∗(Ai⊕j)

and R∗(Aj) →Xn R∗(Ai⊕j), which implies that R∗(Ai⊕j) = s · ai and R∗(Ai⊕j) = s · aj ,

which is a contradiction.

Case 2: Suppose instead that pi = pj for all 1 ≤ i, j ≤ n. Since Y has less than n states,

there must exist some 1 ≤ i, j ≤ n such that Ai and Aj use the same state at point pi = pj .

This implies that Ai = Aj , which is a contradiction since R∗(Ai) ̸= R∗(Aj). ◀
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Lemmas 11 and 12 show that without the unbounded state change capability of the full

seeded Tile Automata model, there exists a simple class of passive systems that cannot be

simulated under non-committal simulation without arbitrarily larger state spaces. This gives

us the following negative results for two established models in regards to non-committal

simulation, directly following from Lemma 12 and 11:

▶ Theorem 13. The Abstract Tile Assembly Model (aTAM) is not intrinsically universal

under non-committal simulation.

▶ Theorem 14. The Freezing Seeded Tile Automata model is not intrinsically universal

under non-committal simulation.

4 Overview of Intrinsic Universality in TA

Now that we have shown that any bounded system cannot be intrinsically universal under

non-committal simulation, we will show that Tile Automata (TA), with its unbounded state

changes, is non-committal intrinsically universal. We do so by characterizing a TA system

that can simulate any other TA system. For ease of presentation, we first give a high-level

overview of the framework and some of the main techniques used to achieve the simulation of

any TA system with the one presented. Both a detailed exposition of the techniques, as well

as any proofs omitted in this section can be found in the later sections covering the details.

We show that seeded TA is IU by first showing that temperature-1 seeded TA is IU at

scale O(♣Σ♣3) with constant states. We then show how we can simulate a seeded TA system

at any temperature with a temperature-1 system at scale-1 with O(min(♣Σ♣3, τ ♣Σ♣)) states.

These combine to create a general IU result for any seeded TA system by bounding the

number of states to a constant for any temperature, or by scaling based on the temperature.

4.1 Temperature-1 Seeded TA is Intrinsically Universal

Section 5 gives the full details for the IU results with temperature-1. We show that there

exists an intrinsically universal temperature-1 system with a constant number of states if

we increase the scale factor to O(♣Σ♣3). Here, we give an overview of the framework used to

prove the following.

▶ Theorem 15. There exists a tile set (ΣU , ΛU , ΠU , ∆U ) such that, for all systems Γ =

(Σ, Λ, Π, ∆, s, 1), there exists a Γ′ = (ΣU , ΛU , ΠU , ∆U , sU , 1) that simulates Γ at scale O(♣Σ♣3).

Supertiles. Supertiles are m × m blocks that map to a specific tile in some state from the

original system that is being simulated. Each supertile contains all information necessary for

the simulation. For specifics, please refer to the detailed walk-through of the operations in

Section 6.

Figure 2 shows a simplified diagram of a single supertile. Every supertile has binding

sites on each of the four sides, and wires on each side that lead to a central lookup table

corresponding to valid affinities and transitions for the system being simulated. Within the

table each column represents a state in the system being simulated and each row a state and

direction of a neighboring supertile. There are datacells at each intersection.

The supertile makes use of several small gadgets for effective and correct communication

and information transmission, as well as ensuring non-committal simulation. The most

important gadgets are listed here. For a complete explanation of their workings and purpose,

see Section 6.
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Lookup Table. Each supertile contains a lookup table that contains all the affinity and

transition information of the system to be simulated. Thus, every tile has all information

necessary to update itself from its neighbors.

Transition Storage Area. All of the transitions for a pair of states are stored within a

storage area in ordered data strings. For each transition rule, only the halves of pairs

pertaining to the current supertile are stored.

Datacells. For each directed pair of states in the system, a datacell stores the possible

transitions and affinity status between them. The datacell is a compound gadget comprised

of a transition storage area, and a single tile containing the affinity and current state

status. For non-committal IU, the affinity must be chosen in one step, which is why the

affinity is stored in a single tile.

Transition Selection. For non-committal IU, any change to the mapping of a supertile

must occur with a single tile placement or transition. This requires careful collaboration

and ordering around the tiles that can change this mapping. Most of the information

must be obtained from the lookup table and brought to the edge. The transition selection

gadget contains this reversible process of getting the supertile (or supertiles) ready to

change the mapping (or mappings) irreversibly in such a way that it could be reversed at

any point up until the single mapping transition. Once the state mapping has changed,

it must communicate this information to the rest of the supertile.

Attachments. The attachment process for a new supertile works approximately as follows,

the details of which can be found in Section 7. Attachment is triggered by a supertile, when

it discovers that no neighbor exists adjacent to it. The builder supertile finds that an affinity

in that direction exists, it prepares itself for construction, by locking its outer edge, wiping

its wires, and deactivating its gadgets.

Next, it starts building the new supertile. Should the supertile find a competitor trying

to build in this spot, one of the two nondeterministically prevails. The builder supertile then

copies over each part of the supertile one by one.

Once built, the new supertile requests the states of all its neighbors to select its own

state. From the valid states, one is chosen nondeterministically, and the representative state

column is activated. Finally, the new supertile’s state is sent to its neighbors.

Transitions. The process of transitioning happens in seven general phases. The full details

can be found in Section 8.

1. The existence of one or more transitions between two neighboring supertiles is confirmed,

and each supertile’s table is locked for the duration of the transition process.

2. The data strings within the transition storage area of the datacell at each supertile’s

respective intersections are copied and transmitted to the transition selection gadget.

3. Agents within the transition selection gadget nondeterministically select the new states

associated with a transition rule or abort the transition altoghether.

4. Once a transition has been chosen, the new states are copied and transmitted to each

supertile’s respective tables for updating.

5. In the table, the old state is deselected, and the new state is activated.

6. The transition selection gadget is wiped.

7. The tables are unlocked, and new states are transmitted to neighboring supertiles.
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4.3 Seeded TA is Intrinsically Universal

By taking Theorem 15 in conjunction with Lemmas 16 and 17, we achieve the desired result

that seeded Tile Automata is non-committal intrinsically universal. This follows by directly

plugging in the state-scaling into the temperature-1 construction.

▶ Theorem 18. There exists a tile set (ΣU , ΠU , ∆U , 1) such that, for all systems Γ =

(Σ, Λ, Π, ∆, s, τ), there exists a Γ′ = (ΣU , ΛU , ΠU , ∆U , s′, 1) that simulates Γ with 1-fuzz at

scale factor O(min((τ ♣Σ♣)3, ♣Σ♣9).

5 Temperature Simulation

We now give a detailed construction of our universal Tila Automata system. We show how

any Tile Automata system Γ = (Σ, Λ, Π, ∆, s, τ) of any temperature τ can be simulated by

temperature 1 with 1-fuzz by using ghost tiles and adding intermediary states.

In order to attach tiles that require cooperative binding, the necessity of needing mul-

tiple neighbors to attach a single tile in order to reach necessary affinity strength, we use

intermediary states to add together the affinity strengths of surrounding tiles to the interim

state tile that is attempting to be placed at that location, see Figure 3 for an example, and

Figure 4 for the assemblies it produces.

▶ Lemma 16. For all Tile Automata systems Γτ = (Σ, Λ, Π, ∆, s, τ) there exists a system

Γ1 = (Σ1, Λ1, Π1, ∆1, s1, 1) that simulates it with 1-fuzz at scale-1 such that ♣Σ1♣ = O(τ ♣Σ♣).

Proof. The set of states Σ1 contains τ states for each σ ∈ Σ. We simulate the system in

Figure 1 with the one in Figure 3, which contains the following states:

An unlocked state σ for every σ ∈ Σ.

Locked states σLd for d ∈ ¶N, S, E, W♢ for the directions. The lock L is represented by a

lock icon in Figure 3.

Counting states σi,Q numbered from 1 to τ − 1, where Q is all subsets of ¶N, S, E, W♢.

Success unlocking neighbor states σQ,✓.

Failure unlocking neighbor states σQ,×.

An empty state g, which we call a ghost tile.

Empty States. The state g has affinity with all non-ghost tiles σ, the states which

map to something. This ghost state transitions with unlocked tiles adjacent to it to enter a

counting state representing a tile which may attach. This process is outlined in Figure 4. If

the strength of the affinity is greater than or equal to the input system temperature, then the

counting tile immediately transitions to a success state and starts unlocking its neighbors.

If the sum is not yet τ the neighbor state is transitioned to locked and the counting tile

increased based on the new binding strength.

Additionally, the attachment may nondeterministically choose to fail and begin the

unlocking process of all locked surrounding states at any time. This has two functions. First,

if the tile does not have 4 neighbors and it cannot reach the affinity strength, then it would

be unable to detect the lack of neighbor on its own. The second reason is to ensure that the

strict definition of simulation can be met.

Simulation. A ghost tile may not attach to another ghost tile or to a tile with a

temporary state, nor can a temporary state affect its own affinity strength count. This

ensures the system has 1-fuzz. A tile can only transition from a ghost tile to simulate
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6 Supertiles

A supertile is a block of m by m tiles that maps to a single tile in the system it is simulating

via the m-block representation function. Each supertile contains the complete rules of

the system it is simulating and, hence, can perform attachment and transition operations

locally with its neighboring supertiles. To do this, the supertile contains a lookup table that

stores the possible transition rules and affinities for each combination of states and neighbor

directions.

Each state of the system to simulate is first mapped to a unary encoding. The table

contains four smaller subtables, one for each neighboring direction. Each of these subtables

is constructed as a matrix. The column indicates the state this supertile represents, and the

row the states the neighbor can represent. We call an entry in this matrix a datacell. A

datacell that is part of the East subtable stores at position (i, j) the affinities and transition

rules that apply if this supertile represents state j and the East supertile would represent

state i. Lastly, each supertile has an active column. This column indicates which state the

supertile currently represents.

Besides the lookup table, a supertile contains wires that connect the table to the edges of

the supertile and gadgets for reading, writing, and locking the table.

6.1 Agents & Gadgets

A supertile is comprised of several gadgets, groups of tiles that together perform a specific

function, such as facilitating data traversal or table lookup queries. Agents are small packets

of information encoded by tile states that traverse a supertile and can transport information

from one part of the system to another. Figure 2 shows a single agent that has traversed

from the supertile neighboring to the south to perform a lookup in the table. Other tasks

specific agents can perform include locking the edges of a supertile or its table, clearing wires,

or coordinating construction functions.

Gadgets are groups of tiles that together serve a specific purpose. They are reset after

each use and are, therefore, reusable. Whereas agents move through the system, gadgets

are largely stationary. Agents can interact with gadgets, and each gadget serves a specific

purpose.

Wire. The simplest gadget is the wire. The only purpose of a wire is to allow the one-way

traversal of an agent from one part of the system to another. A wire is a one-wide string

of tiles. The states of the wire tiles not only indicate it is a wire tile, but also indicate

which direction the wire is going. An agent can traverse a wire by swapping states with a

neighboring wire tile if the direction of that wire tile allows it.

Wires connect supertiles and allow them to communicate. Since a supertile has a wire

connected to its neighbor for each state it can be in, the specific wire on which a supertile S

communicates with its neighbor is an implicit communication of the state of S, see Figure 2.

Data Strings. Data strings are a series of tiles carrying data capable of traveling down

wires. Transition related data string consist of a start data string tile, a string of unary 1

tiles, an end data string and on occasion a prepended instruction.

Door. Doors are tiles placed along wires to control the flow of data and construction. They

consist of two parts. The first part is the actual door, placed on the wire in question. The
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Once it has reached the other corner, it goes back to the Copy Checkpoint, which can then

initiate the next phase.

Copying Placement General Notes.

Before explaining the next phase, we will first detail the standard copy procedure. This

procedure is used to copy the rest of the supertile. It uses a Copy Director, which acts in the

original supertile and sends copies of tiles to the Placement Director, which is located in the

newly constructed tile, and places the copies on the correct locations. The copies are send

over the outline wires and/or construction wires of the tiles. For this to work, the route from

the Copy Director to the Placement Director needs to be clear and doors along this path

need to be set correctly to ensure copies of tiles end up in the correct spot.

The setup is done by a copy agent send out from the Copy Checkpoint. It first places the

Placement Director in the appropriate spot. Then, it goes to place the Copy Director. It

takes the same path as the copied tiles will take. While going over this wire, it ensures all

wire tiles are pointing in the correct direction and doors that lead in the wrong direction are

closed.

Once at the correct spot, it transitions into the Copy Director and starts copying tiles

and send them to the Placement director via the path it just created. As soon as all tiles of

this part are copied, it goes to the Placement Director, deletes it, and finally returns back to

the Copy Checkpoint, which can then start the next phase of copying.

The Copy Process.

For each tile that needs copying, the Copy Director follows the following scheme, visualized

in Figure 16. First, the Copy Director sends a direction to the Placement Director (North/-

South/East/West). Then, it swaps with the tile that needs copying. This tile then spawns a

copy of itself on the wire that also goes to the Placement Director. Lastly, the Copy Director

swaps back with the tile that now has copied itself.

The Placement Director ensures it is always at the end of the part that is built. It

first receives a direction. It then swaps with that direction tile which attaches an empty

construction tile. Then, when the copy arrives, the Placement Director swaps with the copy,

and the copy can transfer its state to the newly attached empty construction tile. Then, the

Placement Director swaps back with the now copied tile and deletes it in the process. This

process is shown in Figure 17.

Not every tile is copied over individually, to reduce the number of states, we copy the

crossover gadget in one go. Instead of sending a copy of every tile in the crossover gadget, we

send a single tile containing a template of full information of the crossover gadget. To stop

the directionality from being an issue our copy director will send a second special direction

tile before a crossover gadget. This way the agent may be in the middle of the gadget

attaching blank tiles and transitioning the surrounding doors into them without knowing

the direction from which the crossover came. Each door remain in waiting state until it has

attached its handle. The placement director will lock any necessary doors when construction

is complete.

Constructing Adjacent Supertile Outline Wires.

This copy process is used to build the other edges of the supertile, see Figure 18. At this

point, only the mirror edge has been constructed. We use the copy process to build one edge

at a time. For horizontal attachments, we first build the top edge, then the bottom edge.
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locations requires an additional 31 agent states, and 24 door states. Selecting the new state

within the gadget, copying out the data string for the new state, and wiping or aborting the

transition requires 34 states.

9.2 Copying States

General Copy States and Agents. Each direction of placement tiles requires an inactive,

active, complete, and special crossover double state, adding to 16 states.

Copying Crossovers. Each of the crossover doors (regular and reversed) must have a state

indicating they should copy themselves, a state indicating to spawn the same agent, an agent

which must traverse 2 steps to the center of the crossover gadget then check off that the

doors (not reversed) have been attached at each side. As this requires 15 states and there

are 42 crossovers, this adds 630 states.

Locking Agents. Each step that requires a locking agent needs a spawn/waiting state for

the copy director and the locking agent itself needs an active, lock door 1, lock door 2, exit

crossover, and locking complete state. Nearly every locking agent also needs the copy director

and an unlocking agent with the same states for a total of 14 states. There are a total of

10 phases that require locking agents, but the state transmission wire construction needs

these for each side. In addition, there are 30 other miscellaneous states that are used across

various phases. This brings the total of these to 212 states associated with copy locking.

Placement Director. The placement director has an awaiting direction tile, an overwrite

completed direction tile, a waiting state tile, an overwrite state tile, a waiting crossover agent

completion, overwrite crossover agent, lock door 1, lock door 2, exit crossover, and complete

states, making 10 states over 4 construction directions for 40 states. This standard version

applies to 4 phases, but cycling is done 11 times due to subphases for a total of 462 states.

Additionally, the copy director and/or placement director will spawn placement directors

or subordinate placement directors and wait for their completion 22 times. Doing this for 4

directions for 44 states per directions makes for 176 states added.

Aborting Process. The abort construction process (not including reactivation) takes 10

states to overwrite, wipe, and inform the copy checkpoint/director for each direction, adding

a total of 40 states.

Traversing Opposite. In 13 phases and subphases the copy director must traverse to the

opposite side of the tile. Adding 52 states.

Datacell Outlines. The subordinate prime placement director must be spawned, place a

wire to the south, door to the west and a border tile to the east before moving on, when

it runs into a no state tile to its south it will instead place an exit door and mark itself

complete. As this doesn’t depend on the direction, it only adds 6 states.

Filling Datacell. Copying each transition rule requires the copy director to activate each

tile for copying, flipping through them without sending direction tiles at this phase; they will

mark themselves complete in addition to the copy director, the placement director and tiles

do in this in reverse on the opposite side. With the necessary checkpoints included this adds

22 states.
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Vertical Table Wires. In addition to the check off states (counted above) the south traversal

agents need to skip crossovers and the final one needs to lock on the way up adding 6 states.

State Transmission Wires. As each copy and placement director needs to check off first

and last for each direction and crossovers need to be skipped there are 32 states added.

Reactivating Neighboring Supertile. The agent must delete the checkpoint, traverse to the

top of the table to spawn a generic sub-agent that doesn’t depend on construction direction,

unlock the table, check for where the active state column is, spawn an activation agent, and

let the newly finished tile know this process is complete adding 12 new states.

Activating New Table. In the new supertile the table doors must be moved into special

door states added to the east and west of each table edge state transmission wire crossover.

This adds 14 new states.

Requesting, Receiving, and Selecting States. Requesting and receiving states requires

and agent to send them from each direction in the active state column, the state requesting

agents themselves, and special state transmission agents. Selecting the state requires abort

and select, if the state is not a full state then an additional special agent is required, adding

9 states.

Activation, Unlocking, and Transmitting. The activation of the new column, doing a

special unlock of the table the self and neighboring tiles outlines and transmission of the new

state adds 11 new states.

9.3 Final Count

There are an additional 40 miscellaneous states used in the construction bringing the total

number of states to 4600, including 2600 non-copy states for our final ACA state count.

10 Correctness of Construction

Here we give proofs of correctness. We first (re)state our main lemma.

▶ Theorem 15. There exists a tile set (ΣU , ΛU , ΠU , ∆U ) such that, for all systems Γ =

(Σ, Λ, Π, ∆, s, 1), there exists a Γ′ = (ΣU , ΛU , ΠU , ∆U , sU , 1) that simulates Γ at scale O(♣Σ♣3).

We prove this via the following lemmas which each satisfy a condition of simulation. We

start with a helper Lemma.

▶ Lemma 19. For any assemblies A ∈ PROD(Γ) and AU ∈ PROD(ΓU ) such that A =

R∗(AU ), any assembly BU such that AU →1 BU satisfies either R∗(AU ) = R∗(BU ) or

R∗(AU ) →Γ
1 R∗(BU ).

Proof. An attachment can never change a mapping because if a supertile is incomplete it

maps to the empty state. Once the datacell has been built it sends a signal to it’s neighbors.

Its neighbors will respond by sending an agent which walks into the table. If it reaches an

intersection in the table where there is an affinity rule it immediately changes the mapping to

the new state simulating an attachment. The next available transitions mark the remaining

tiles in the active state column.

Until a superstate transition is selected none of the changes that can be made in the

supertile change the mapping since they do not change the active state column. ◀
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Equivalent Production.

▶ Lemma 20. For any assembly AU ∈ PROD(ΓU ), the assembly R∗(AU ) ∈ PROD(Γ).

Proof. Any producible supertile either (1) maps to a empty state, (2) has only an active

column which signifies the state in Σ it represents, or (3) has an active column and a selected

transition in which case it maps to the state after the transition.

We will use induction along with Lemma 19 to prove that all assemblies are producible.

For our base case we consider the seed in both systems. We replace each tile in the seed

s by supertiles representing that tile to get seed assembly sU . Then by Lemma 19 every

move we make on assemblies AU in PROD(ΓU ) creates an assembly BU which represents

an assembly B that is reachable by A in Γ. ◀

▶ Lemma 21. For all AU ∈ PROD(ΓU ), AU maps cleanly to R∗(AU ) with 1-fuzz.

Proof. The seed sU we create maps cleanly to the original seed s as we only place supertiles

in locations where tiles take place.

Each ghost tile is built from a neighbor boundary first. Once the boundaries are built,

the ghost tile copies the contents of the supertile. It is not until the supertile is complete

and has selected a state that it begins to attempt to build neighboring ghost tiles. Therefore

each ghost tile is adjacent to at least one properly mapped tile. ◀

Equivalent Dynamics.

▶ Lemma 22. For all A, B ∈ PROD(Γ) such that A →Γ B, it holds that for all AU such

that R∗(AU ) = A, we have AU →ΓU BU for some BU ∈ PROD(ΓU ) with R∗(BU ) = B.

Proof. Consider any pair of assemblies A, B ∈ PROD(Γ) such that A →Γ
1 B. Pick an

arbitrary AU such that R∗(AU ) = A. If this transition was achieved via an attachment the

agent selects the active tile column by traversing the datacells at an intersection. It may also

chose to not stop at the intersection and continue on or go backwards to select another tile.

This allows AU to achieve any attachment performed by A.

For transitions, all available rules will be loaded up into the transition selection gadget. If

the two agents meet they may select the transition and instantly change the mapping of both

tiles, transitioning from AU to BU based on our mapping. However, the non-deterministic

process may not select a transition at all and will allow the agents to keep walking to select

any transition, or abort. ◀

▶ Lemma 23. If AU →ΓU BU for some AU , BU ∈ PROD(ΓU ), then R∗(AU ) →Γ R∗(BU )

or R∗(AU ) = R∗(BU ).

Proof. If a attachment or transition does not change its mapping then we satisfy R∗(AU ) =

R∗(BU ). For a ghost tile to transition to a valid mapped tile, it must have an active

state column. This active state column is only build and actually activated if there was a

neighboring supertile that had the appropriate affinity.

For a transition the agents must both match and find the same transition in order to

change the mapping of the tile. Only proper legal transition may be placed in the table so

all of these must be valid transitions from R ∗ (A′) to R∗(B). ◀
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Transitivity of Simulation.

Here we show the definition of simulation is transitive, and hence we may chain many

simulations together. It is possible that chaining 1-fuzz simulations results in an increase

in fuzz by a constant factor. However, in our case we preserve 1-fuzz which we prove in

Theorem 25.

▶ Lemma 24. The definition of simulation is transitive. If each simulation is 1-fuzz and has

scale factor larger than 1 then the resulting simulation has at most 3-fuzz.

Proof. First consider a chain of k simulating systems where Γi simulates Γi+1 for 0 ≤ i < k.

Condition 1 from equivalent productions, and both the follows and models conditions

of equivalent dynamics are all preserved by the fact we may compose the representation

functions.

The second condition of equivalent productions, namely the c-fuzz bound, requires more

care as the fuzz of a simulation is not immediately preserved. However, we can ensure that

the fuzz will be bounded by at most 3. At each simulation step, the size of a supertile is

getting smaller by a fraction α ≤ 1

2
. Since each simulation has at most one ghost tile next to

its valid parts of the assembly, every simulation can add at most one ghost tile neighboring

the previous one, which is a fraction α smaller than the previous. Since α ≤ 1

2
, this geometric

series in the plane can reach a distance of at most 3 from the original supertile. ◀

Even though chaining 1-fuzz simulations can lead to a simulation using 3-fuzz, chaining

our specific construction would never lead to more than 1-fuzz.

▶ Theorem 25. Chaining our simulations results in a 1-fuzz simulation.

Proof. The individual tiles of a supertile S would never go outside the boundingbox of

S. Take an individual tile t on the edge of S. If we would chain simulations, t would be

simulated using a supertile S′. Supertile S′ would only build a new ghosttile outside of S if t

would want to build outside of S. Since this never happens, chaining our simulation only

results in 1-fuzz. ◀

Universality Results.

▶ Theorem 18. There exists a tile set (ΣU , ΠU , ∆U , 1) such that, for all systems Γ =

(Σ, Λ, Π, ∆, s, τ), there exists a Γ′ = (ΣU , ΛU , ΠU , ∆U , s′, 1) that simulates Γ with 1-fuzz at

scale factor O(min((τ ♣Σ♣)3, ♣Σ♣9).

Proof. Lemma 15 states that temp-1 is IU for itself.

Chaining these two simulations will still result in a 1-fuzz simulation as ghost tiles are

only built where a new tile may attach. Our construction in Theorem 16 has 1-fuzz and

the ghost tiles that attach do not have any other affinities with neighboring tiles. Thus the

supertile simulating them in Lemma 15 will not place any additional ghost tiles. For the

same reason any assembly which has no attachments will not build any ghost tiles and thus

have no fuzz. ◀

11 IU TA Simulates 2D Asynchronous CA N = 2

Previously, a partial proof of 1D asynchronous cellular automata (ACA) being intrinsically

universal was shown in [30]. Here, we apply techniques used throughout this paper to show

two subsets of asynchronous cellular automata are intrinsically universal. We start by defining

pairwise and block-pairwise ACA.
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Basically, all tiles around the two 3 × 3 macroblocks change before changing the states. This

locks them into the transitions, and is reversible until state b8 changes to x17. The x’s then

change to y’s after the A → C and B → D change. The y’s then turn to c’s and d’s. ◀

▶ Theorem 28. The Asynchronous Cellular Automata model with a cardinal-direction

neighborhood of size-2 and radius-1 (pairwise ACA) is strongly intrinsically universal.

Proof. Pairwise ACA is a special case of block-pairwise ACA. However, any cell transitions

based on its neighbors. Thus, all transitions are single-sided in terms of Tile Automata. Thus,

we modify the block-pairwise IU result from Theorem 26 to only use single-sided transitions

through scaling as shown in Lemma 37. This means that there is a constant-size set of states

that is intrinsically universal. ◀

12 Conclusion

We showed that no passive or freezing tile assembly model can be non-committal intrinsically

universal. However, we showed that the seeded Tile Automata model, with its unbounded

state changes, is non-committal intrinsically universal. This is done by showing TA is

intrinsically universal even under temperature 1 using 1-fuzz. Moreover, a Tile Automata

system using temperature τ > 1 can be simulated using a system that uses temperature at

most 1. Chaining these two simulations shows that there exists a tile set that can simulate

any Tile Automata system. This intrinsic universality result has direct implications for

certain Cellular Automata. Moreover, the result directly implies that the original aTAM

model can be simulated using Tile Automata.

There is significant room to optimize and minimize the tile set. For example, the number

of tile states necessary to copy a supertile is large, whereas big sections of the supertile

will always be the same, independent of what system we are simulating. Furthermore, the

temperature simulation, and consequently the universal simulation, uses a lot of states. It

might be possible to combine both simulations into one, by storing the affinity strength in

the datacell. A ghost tile would then need to check all neighboring supertiles for their affinity

strengths and add them up, before deciding which state it will become.

Another obvious open problem is that of dimensions other than two. It is still unknown

whether the Tile Automata model is intrinsically universal if you extend the model to one,

or to three or higher dimensions. Even though our simulation could technically simulate a

one dimensional tile set, the supertiles would still use two dimensions themselves.

Finally, as in the aTAM model, our construction heavily relies on the fact that (locally)

only a single tile can attach at a time. Because of this, our current construction only shows

the seeded Tile Automata model to be intrinsically universal. Hence, the question arises

whether or not the non-seeded Tile Automata model is intrinsically universal.
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