2407.11545v1 [nlin.CG] 16 Jul 2024

arxiv

Intrinsic Universality in
Seeded Active Tile Self-Assembly

Tim Gomez &
MIT - CSAIL, United States

Elise Grizzell =2
UTRGYV, United States

Asher Haun &
UTRGYV, United States

Ryan Knobel =
UTRGYV, United States

Tom Peters =
TU Eindhoven, The Netherlands

Robert Schweller =
UTRGYV, United States

Tim Wylie &
UTRGYV, United States

——— Abstract

The Tile Automata (TA) model describes self-assembly systems in which monomers can build
structures and transition with an adjacent monomer to change their states. This paper shows that
seeded TA is a non-committal intrinsically universal model of self-assembly. We present a single
universal Tile Automata system containing approximately 4600 states that can simulate (a) the
output assemblies created by any other Tile Automata system I', (b) the dynamics involved in
building I'’s assemblies, and (c) I'’s internal state transitions. It does so in a non-committal way:
it preserves the full non-deterministic dynamics of a tile’s potential attachment or transition by
selecting its state in a single step, considering all possible outcomes until the moment of selection.

The system uses supertiles, each encoding the complete system being simulated. The universal
system builds supertiles from its seed, each representing a single tile in I', transferring the information
to simulate I" to each new tile. Supertiles may also asynchronously transition states according to the
rules of I'. This result directly transfers to a restricted version of asynchronous Cellular Automata:
pairwise Cellular Automata.

2012 ACM Subject Classification Theory of computation — Models of computation

Keywords and phrases Intrinsic Universality, Tile Automata, Simulation, Cellular Automata, Self-
assembly

Funding This research was supported in part by National Science Foundation Grant CCF-2329918.

Intrinsic Universality in Seeded Active Tile Self-Assembly

1 Introduction

Tile self-assembly is a model that attempts to exploit the computational capabilities of
nucleic acids. DNA molecules can form complex structures, and in controlling the growth
of those structures, we can utilize their powers to perform computations. In recent years,
a diverse set of new abstractions and models have been conceived, the most prominent of
which has been the (two-dimensional) abstract Tile Assembly Model (aTAM) [28]. In this
model, a tile is a non-rotatable unit square with specified glues on each side, modeling a
single monomer. Two tiles can attach if their glues match. A tile assembly system is a set of
these tile types and a temperature 7. Research into these models usually revolves around
the types of assemblies that can be created with specific sets of tile types.

In this paper, we work in a related model, derived by combining elements of tile self-
assembly and the local state changes of asynchronous Cellular Automata: seeded Tile
Automata (TA) [5]. A Tile Automata system I' has a set of states ¥. These states contain
no glues, contrary to the aTAMs tile types. Instead, tiles with an initial state o € A (A C X)
can attach to the seed s if the system contains an affinity rule for their respective tile types
that has an equal or higher strength than the system temperature 7. Should a single pair of
tiles lack sufficient strength to bind to the assembly, they may bind cooperatively by adding
the strengths of affinities of neighboring tiles to reach 7. Contrary to the passive aTAM,
tiles in the active TA system can change their state. More restricted than most Cellular
Automata systems, only two tiles directly adjacent to one another can transition their states
if the system contains the corresponding transition rule.

Here, we study the creation of an intrinsically universal (IU) Tile Automata system 'y,
a system with a finite state set capable of creating not only the final assemblies of any other
arbitrary Tile Automata system I' but also replicating the exact assembly process and any
additional computations achieved via transitions. Our universal tile assembly system can
simulate systems that contain more states than X;; does and even simulate itself. To do this,
we sacrifice scale. We use many tiles to create a supertile, that simulates a single tile in T.

In this paper, we show that non-committal intrinsic universality is impossible in any
passive system, such as the aTAM. This means that the dynamics of attachment and
transitions of a tile assembly system cannot be faithfully simulated by achieving the final
determinations of each in a single step. Instead, they are committal intrinsically universal,
meaning that they need multiple attachment and or transition steps to replicate the decision
process of a single step in the target system. On first sight, this appears to contradict
previous work showing the aTAM is intrinsically universal [8]. However, that paper contained
a subtle error which was later addressed by making the definition of intrinsic universality
(IU) slightly weaker [20]. We will refer to this weakened version as committal IU. Besides our
negative result, we show that the seeded Tile Automata model with its infinite state changes
is in fact non-committal intrinsically universal, using approximately 4600 states.

Intrinsic universality is motivated by creating a universal tile set small enough to be
stored in a lab refrigerator for real-world experimentation. Although 4600 tiles is still a
large number of states and is not optimal, 4600 tiles is about ten million tile types less than
the previously stated committal intrinsic universality result for two-dimensional aTAM [8].
Importantly, our initial state set A is only a single tile type. While current laboratory
capabilities lag the ability to implement this universal tile set as of today, there have been
recent advancements in for example the ability to replace tiles experimentally [26, 27] and in
the aTAM a tile set capable of universal 6-bit computation was created [29]. The aTAM has
also been proven to be intrinsically universal in 3D [13], and synchronous Cellular Automata

T. Gomez et al.

have been shown to be intrinsically universal in 1D, 2D, and 3D [2, 11, 19].

The question of whether 2D asynchronous Cellular Automata is intrinsically universal is
currently open, though work towards a 1D version has been done [30]. Tile Automata can be
viewed as a restricted version of asynchronous Cellular Automata in which the neighborhood
size is 2, the radius is 1, the system is non-deterministic, and the updating is asynchronous.
Therefore, our results directly carry over to this restricted version of Cellular Automata.

1.1 Previous Work

Cellular Automata. The study of self-simulation, and new types of universalities is as
old as the field of Cellular Automata itself, with von Neumann introducing the model to
build a self-replicating machine [21]. Though it was Banks in 1970 who explicitly coined
the term intrinsic universality [2], von Neumann’s initial construction was later proven to
be intrinsically universal. Conway’s famous Game of Life cellular automaton was proven
to be intrinsically universal [10]. Intrinsic universality in CA has been extensively studied
(3,11, 12, 15, 22, 23, 24, 25, 30]. Specifically, four different updating schemes for Asynchronous
CA were shown to be IU in [30]. These updating schemes restrict which cells can be updated at
each time step. The closest related updating scheme to Tile Assembly is “fully asynchronous”
where only one cell may update at a time.!

Passive Self-Assembly. Intrinsic universality first crossed into the self-assembly world in [9],
where a universal tile set was introduced for systems with tiles that bond with exactly
strength 2. Two years later, the first properly intrinsically universal tile set, one that can
simulate the full aTAM at any temperature, was presented in [8]. These papers both used
the definition of intrinsic universality that we call non-committal. However, these definitions
were later corrected to the version that we call committal [20]. It was also shown that
a single polygon tile type with the ability to flip, translate, and rotate can simulate any
aTAM system through several intermediate simulations [6]. The aTAM was found not to be
committal intrinsically universal at Temperature-1 [20], and in directed and non-directed
planar systems [13]. Directed 3D and Spatial aTAM were proven to be IU [13]. The 2-handed
self-assembly model is, in general, not intrinsically universal; however, there are intrinsically
universal tile sets for each temperature [7]. Work towards a universal tile set in Wang Tiles,
which studies whether a given tile set can infinitely, and potentially periodically, tile a plane,
has also been investigated [16, 17, 18].

Simulation between Tile Assembly and CA. The aTAM can simulate some versions of CA.
In particular, it was found that the aTAM can simulate only finite CA [14]. The TA model
does not have this restriction, as we can infinitely tile the plane with our seed assembly and
use transitions to simulate infinite CA. Where the aTAM is asynchronous, nondeterministic,
and finite, Cellular Automata is potentially generally synchronous, deterministic or nonde-
terministic, and infinite. Tile Automata is asynchronous, deterministic or nondeterministic,
and finite. Additionally, Tile Automata is restricted to a neighborhood size of two.
Notable, TU in CA is usually possible with systems that contain a very limited number
of states. However, in self-assembly, the simulating system does not only need to simulate

L For the case of Tile Automata and Surface Chemical Reaction Networks it better stated as “one rule”
can be applied at a time because two cells can be updated in one update.

Intrinsic Universality in Seeded Active Tile Self-Assembly

the local interactions between existing states, but importantly also build new tiles in valid
locations. Therefore, IU systems in tile self-assembly tend to use a lot more states.

1.2 Our Contributions

In this paper, we push forward the study of IU systems in a few ways. First, we prove that
any passive self-assembly model (such as the aTAM) and variants of active self-assembly with
bounded state changes cannot adhere to the stronger non-committal definition of intrinsic
universality for self-assembly initially presented in [8]. However, this was later corrected
and since then, a slightly more permissive definition for the simulation of dynamics for
intrinsically universal systems has been used within self-assembly [20]. Although this is
indication that the problem with modeling dynamics within passive models is known, to our
knowledge, this has not been formally proven before.

Then, we show that in 2D, the seeded Tile Automata model, with unbounded state changes,
does indeed adhere to this stronger non-committal definition of intrinsic universality. We do
this by presenting a temperature-1 seeded TA system, and configuration of an initialized seed
assembly, that is IU for all seeded temperature-1 systems in approximately 4600 states. We
then show that any temperature TA system can be simulated by a temperature-1 TA system.
We also prove that the effect of temperature simulation on the scale of the system’s supertiles
is bounded. No additional states in the IU system’s state set are required to simulate systems
greater than temperature-1, extending our result to all seeded TA systems. Following this,
we show that, due to the mechanics of TA, our construction can be adapted to prove that
2D Asynchronous Cellular Automata, with a cardinal radius of 1 and neighborhood size of
2, is also 1U in approximately 2600 states, which although inefficient, is the first 2D ACA
IU result. These positive results are summarized in Table 1 together with other known IU
results.

Section 2 starts by giving precise definitions of the model. Then, we show that bounded
state change systems can never be IU in Section 3. Opposing this negative result, we continue
to show that Tile Automata systems with their unlimited state changes are IU. Due to
the volume of necessary details, the paper first gives a high-level overview in Section 4,
that discusses the main gadgets and the framework of how the pieces work together. We
reference the more detailed later sections that follow the overview. Section 5 then covers
the temperature simulation part of the IU framework in depth. Next, sections 6, 7, and 8
detail the supertiles, their construction and how they transition respectively in full detail.
We analyse the number of states in Section 9 and proof the correctness of the simulation
in Section 10. We continue to show how our result transfers over to Cellular Automata in
Section 11. We then summarize the conclusion with Section 12.

2 Preliminaries

In this section, we cover the basics of the Tile Automata model. We use many of the same
definitions as in [1, 5]. An example of a Tile Automata system can be seen in Figure 1.

Tiles. Let X be a set of states. A tile t = (o, p) is a non-rotatable unit square placed at
point p € Z? and has a state of 0 € X. Let o(t) be the state of t. Let ¢ denote a special
state called the empty state.

Affinity Function. An affinity function II over a set of states 3 takes an ordered pair of
states (01,02) € ¥ x ¥ and an orientation d € D, where D = {L,F}, and outputs an element
of Z%+. The orientation d is the relative position of o, to o5, with - meaning horizontal and

T. Gomez et al.

’ Intrinsic Universality Across Models ‘

Model D | N ||T|/ X Scale (S) Reference
aTAM 2D | 5 | >10M O(n*log(n)) (8]
aTAM 3D | 7 | 152000 O(n®log(nT)) [13]
Seeded TA Temp-1 2D | 5 4600 O(n®) Theorem 15
Seeded TA 2D | 5 4600 O(min((tn)?,n°)) | Theorem 18
Async. Cellular Automata | 1D | 3 o(1) unknown [30]
Block-Pairwise ACA 2D | 2 2600 O(n®) Theorem 26
Pairwise ACA 2D | 2 o(1) O(n?) Theorem 28

Table 1 An overview of known and new simulation results for types of asynchronous cellular
automata including tile assembly models. D is the dimension, N is neighborhood size of the input
system, |T| and |X| are, respectively, the number of tile or state types in the universal system, S is
the scale factor, n is the number of states in the input system, and 7 is the system’s temperature.

1 meaning vertical. State o is the west or north state respectively. We refer to the output
as the Affinity Strength between these two states.

Transition Rules. A Transition Rule consists of two ordered pairs of states (o1, 02), (03, 04)
and an orientation d € D, where D = {1 ,}. The rule denotes that if the tiles with states
(01,02) are next to each other in orientation d (o1 as the west/north state) they may be
replaced by the states (o3, 04).

Assembly. An assembly A is a set of tiles (with states in X), such that no two tiles
occupy the same position, i.e., for every pair of tiles t; = (01, p1), t2 = (02, p2), it holds that
p1 # po. For an assembly A, let A(x,y) denote the state of the tile with location (x,y) € Z2
in A if such a tile exists and ¢ (the empty state) otherwise. For a set of states ¥, let A”
denote the set of all assemblies over state set 3.

Let the bond graph Ba(A) be formed by taking a node for each tile in A and adding an
edge between neighboring tiles t; = (01,p1) and to = (02, p2) in orientation d with a weight
equal to II(oy,09,d). We say an assembly A is 7-stable for some 7 € Z°F if the minimum
cut through Bg(A) is greater than or equal to 7.

2.1 The Seeded Tile Automata Model

In this paper, we investigate the Seeded Tile Automata model, which differs from the non-
seeded Tile Automata model defined above, by only allowing single tile attachments to a
growing seed, similar to the aTAM. Here we use many of the same definitions as in [1].

Seeded Tile Automata. A Seeded Tile Automata system I is a 6-tuple {2, A, II, A, s, 7}
where ¥ is a set of states, A C X a set of initial states, Il is an affinity function, A is a set of
transition rules, s is a stable assembly called the seed assembly consisting of tiles in states
contained in ¥, and 7 € Z* is the temperature (or threshold). When we refer to a tile set
(or equivalently rule set) we mean the four parameters (3,11, A, 7), that is, the states, the
affinity function, the transition rules, and the temperature. A system I' = {X, A, I, A, s, 7}
is said to use rule/tile set (X,I1, A, 7).

Attachment Step. A tile t = (0, p) may attach to an assembly A at temperature 7 to
build an assembly A" = A|J¢ if A’ is 7-stable and 0 € A. We denote this as A —5 , A’

Transition Step. An assembly A can transition to an assembly A’ if there exist
two neighboring tiles t1 = (o1,p1),t2 = (02,p2) € A (where ¢; is the west or north

Intrinsic Universality in Seeded Active Tile Self-Assembly

Temperature States/Initial States Affinities Transitions

4 ElA] |A|A| AlB]| A|c|I
[<][]|([TE]

5 5 pplcn S5 90 8
o] [e]fe o] "o [e]

Strength =1 Strength =2 Strength =3

Lefe]—[a]c]

A|B|C A|B|C A|B|C A | Al|C A|lA|C

D A D E|A E|A E|A
an ;
pssombly Rosoy

Figure 1 Example of a Tile Automata system with 6 states, a system temperature of 4, affinities
of strengths 1, 2, and 3 vertical and horizontal transitions, and a seed assembly. The assembly
sequence to a terminal assembly is also shown with the changes highlighted. Due to the affinity
strengthening restriction, there is no detachment.

tile) such that there exists a transition rule in A with the first pair being (o1,02) and
A" = (A\ A{t1,t2}) U{ts = (03,p1),ts = (04,p2)}. We denote this as A — A’

Affinity Strengthening. We only consider transitions rules that are affinity strengthen-
ing, meaning for each transition rule ((o1,02), (03,04),d), the bond between (o3, 04) must
be at least the affinity strength of (o1, 02) and it must also maintain or increase any other
neighbor affinities. Formally, (o3, 04,d) > II(01, 09,d) and II(o3,0;,d) > (01,04, d) and
II(04,04,d) > II(02,04,d) Vi,j € X. This ensures that transitions may not induce cuts in
the bond graph.

Producibles. We refer to both attachment and transition steps as production steps
and say that A —! A’ if either A —5, A’ or A —a A’. For any sequence of assemblies
{Ay, Ay, ... A} such that A; —1 A,y for all 1 <i < k, we say that Ay, is producible from
Ay, and write A; =T Aj. Note that for any assembly 4, A - A. We say A —L, B if
A —T B and A # B. For a Tile Automata system I' = {3, A, I, A, 5,7} we refer to the set
PROD(T) = {s} U{A|s —=' A} as the producible assemblies of T.

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system
I ={%AI,A,s,7} is written as TERM (T"). This is the set of assemblies that cannot
grow or transition any further. Formally, an assembly A € TERM (T') if A € PROD(T") and
there does not exists any assembly A’ € PROD(T') such that A —1 A’.

Unique Assembly. A Tile Automata system I' = {X, A, II, A, s, 7} uniquely assembles
an assembly A if A € TERM (T), and for all A’ € PROD(T), A’ -1 A.

2.2 Simulation

In this section, we formally define the concept of one tile automata system non-committally
simulating another. We use a standard m-block simulation in which each tile of an assembly
is simulated by a larger m x m block of tiles in the simulating system. The definition
presented here is the same as that originally presented in [8], which we call non-committal
IU. However, as stated before, that paper contained a subtle error that was later corrected
to become committal IU.

T. Gomez et al.

The difference lies in the models concept, see Definition 3. In non-committal IU, this
definition contains a universal quantifier, whereas the committal version contains a weaker
statement. From here on, we focus on two tile Automata systems I'r and I'g, where I'g
denotes a system that purports to simulate system I'r. Let ¥ and X g denote the set of
states used in I'r and I'g, respectively.

m~-block Supertiles. An m-block supertile over a set of states ¥ is a partial func-
tion A : Zy, X Zpy, — %, where Z,, = {0,1,...,m — 1}. Let BX be the set of all m-block
supertiles over ¥. The m-block with no domain is said to be empty. For any assembly .4
over state space %, define A7, to be the m-block defined by A}, (7, j) = A(mz +i,my + j)
for 0 <i,5 < m.

Supertile representation and mapping. We refer to a function R : B>s — S (J{¢}
as an m-block representation function. We require R(B) = ¢ for the empty m-block, and
for any non-empty m-block B for which R(B) = ¢, we say B maps to a ghost tile. For a
given m-block representation function R, define the partial function R* : A¥S — A*7 such
that R*(A) = A’ if and only if A’(z,y) = R(AJ",) for all (z,y) € Z*.

c-Fuzz. The concept of c-fuzz is basically that a macroblock may have a bounded
number of “extra” tiles attached to it without altering its mapping. This allows a simulating
system to make minor intermediate attachments while enacting the simulation. Another
way to think of c-fuzz is as a reasonable allowance for limited-size non-empty macro-blocks
(that map to an empty tile in the simulated system) to be used in the simulation process.
Formally, a mapping R*(A) = A’ is said to map to A with at most c-fuzz, for some c € Z™,
if and only if for all non-empty blocks A7', it is the case that R(A}, ,,,) # ¢ for some
integers u,v € [—c¢,c]. In other words, any non-empty macro blocks that map to ¢ (i.e.,
ghost tiles) are only at most ¢ macroblocks away from a macroblock that maps to a real
(non-empty) tile. We say a Tile Automata system achieves c-fuzz under mapping R* if each
producible assembly of the system achieves at most c-fuzz when mapped by R*.

» Definition 1 (Equivalent Productions). We say I's has equivalent productions to T'p
(under R) with up to c-fuzz, and write T's <. Tr, if the following hold:
1. {R*(A")|A’ € PROD(T's)} = PROD(T'y).

2. I's achieves c-fuzz under R*.

» Definition 2 (Follows). We say that I't follows T's (under R), and write T'r —g Tg,
if A" —=1's B, for some A’, B’ € PROD(Ts), implies that R*(A') =T R*(B’).

» Definition 3 (Non-Committally Models). We say that T's (non-committally) models T'r,
and write U's |=r U7, if A =TT B for some A, B € PROD(T'r), implies that for all A’ such
that R*(A') = A, A’ —»T's B’ for some B' € PROD(T's) with R*(B') = B.

» Definition 4 (Non-Committal Simulation). We say I's (non-committally) simulates I'r if
for some c € Z%, s <. Uy (equivalent productions), Ut <g U's and T's =g I'r (equivalent
dynamics). We say the simulation is clean if it holds for ¢ = 1, and we say the simulation
achieves c-fuzz more generally.

» Definition 5 (Non-committal Intrinsic Universality.). A rule (tile) set I = {3, 11, A, 7} is
said to be intrinsically universal for a set of systems U if for all T € U, there exists a
system Ts = {3, A, II, A, sp, 7} that non-committally simulates Tr. The set U itself is said
to be intrinsically universal if there exists a rule set I used by some system within U such
that I is intrinsically universal for U. A model is said to be intrinsically universal if the set
of all systems within that model is intrinsically universal.

Intrinsic Universality in Seeded Active Tile Self-Assembly

We use the term non-committal simulation to emphasize that the simulation definition we
use is stronger than what is used in prior work, which we call committal. For the remainder
of this paper, we deal exclusively with non-committal simulation and will just use the term
stmulation when not directly comparing with previous versions of simulation.

3 Impossibility for Passive or Bounded State Change Systems

In this section, we show that systems lacking the full state changing capability of the seeded
Tile Automata model cannot achieve intrinsic universality under non-committal simulation.
This includes well-studied models such as the Abstract Tile Assembly Model (aTAM) [28] and
freezing variants of the seeded Tile Automata Model [5]. The key aspect of non-committal
simulation that is impossible for these models is the non-committal modeling requirement of
our simulation definition. In this section we show the impossibility of simulating a specific
passive system, with the key use of the non-committal modeling requirement being used to
prove Lemma 9.

» Definition 6 (k-burnout, bounded, unbounded, passive, freezing). For a non-negative
integer k, a system is a k-burnout system if each tile in an assembly is restricted to only
changing state at most k times. A system is called bounded if it is k-burnout for some k,
and unbounded otherwise. 0-burnout systems are termed as passive. A freezing system [5] is
one in which state change rules are such that a tile can never return to a previous held state.

» Observation 7. Any aTAM system is a passive (0-burnout) system, and any freezing
seeded TA system that uses |X| states is bounded and a |X|-burnout system.

» Definition 8. Define X,, to be the passive seeded Tile Automata system consisting of
states X = {S,a1,az,...,a,} with seed tile in state S, and east-west affinity between S and
each a; of strength equal to the system temperature 7. Let s-a; denote the producible assembly
of this system obtained by attaching a tile of state a; to the east of the seed tile.

For the remainder of this section, let R denote a proposed m-block mapping function
from macro blocks from a proposed simulator system to tiles from the system X,,.

» Lemma 9. For any system Y that simulates X,, under mapping R, and for any valid
assembly sequence (Ar,, ..., Ax,) of Y such that for all 1 < i< m, R*(Ar,) = s, either:

1. For all 1 <i < n there exists an assembly A; such that A, —1 A; and R*(A;) = s - a3,
or

2. there exists an assembly Ay, ., such that A, -7 Ag, oy and R*(Ay .) =s.

Proof. Suppose constraint (1) does not hold for such a sequence (A,,,... A,) of Y, ie.
suppose that for some 1 < i < n there does not exists an assembly A; such that A, —1 A;
and R*(A;) = s-a;. Since Y =r X,, (Y non-committally models X,,), and s =% s - a;,
it must be that there exists some assembly A; such that A, —Y A; and R*(4;) = s - a;,

which by definition means there exists an assembly sequence (A, ,B,...,A;). There-
fore, A, —Y B, and since X,, 1g Y (X, follows Y), we know that R*(B) = s, which means
the sequence (A, ,..., Ay,) can be extend with assembly B to satisfy constraint (2). <

» Lemma 10. For any bounded system Y that simulates X,, under mapping R there must
exist A, Ay, ..., A, € PRODy such that R*(A) = s, and for all1 <i<mn, R*(4;) =s-a;
and A =Y A;.

T. Gomez et al.

Proof. Suppose a bounded system Y simulates X,,. Since Y is bounded, there must ex-
ist M € Z* such that for all assembly sequences (A, ,...,Ar) of Y where R*(A,,) = s,
it is the case that m < M. This is the case since each assembly A, maps to a single
tile under R*, thereby limiting the size of each A, to a finite integer based on the (finite)
scale-factor of the simulation and the (finite) fuzz factor ¢ of the simulation. The number of
state changes and tile attachments for each assembly A, therefore has a finite bound in a
system with a finite burnout number.

Since the length of such sequences cannot be extended infinitely, there must exist a
sequence (Ar,,... Az,) for which no additional A, exists for which A, —} A, ., and
R*(Ay, ,,) = s. For this sequence that must exist, Lemma 9 implies that for all 1 <i <n
there exists an assembly A; such that A, —) A; and R*(A;) = s - ;. Therefore, there
must exist A=A, _,A,..., A, € PRODy that satisfy the requirements of the lemma. <«

» Lemma 11. A bounded seeded TA system with fewer than ns states cannot simulate X,,.

Proof. If a bounded system Y simulates X,,, then by Lemma 10 it must be the case that
there exists A, Ay,..., A, € PRODy such that R*(A) = s, and for all 1 < i < n it holds
that R*(A4;) = s-a; and A —) A;. Since A —) A; for each A;, we know that each pair of
assemblies A; and A; differ at either a single point or two adjacent points (corresponding to
a tile attachment or a pairwise state change). We now consider two cases:

Case 1: Suppose there exists an 7 and j such that A; and A; differ at non-overlapping
points. In this case, we know that the rule or attachment applied to A to attain A; is also
applicable to A;, and vice versa. This implies there exists a common assembly A;g; such that
A; =Y Ajg; and A; —Y Aig;. But since X, 4g Y (X, follows Y'), it must then be the case
that R*(A4;) =X R*(A;a;) and R*(A;) =% R*(Aip;). This implies that R*(A;g;) = s-a;
and R*(Aig;) = s - a;, which is a contradiction.

Case 2: Suppose the points of difference for all assemblies A; overlap each other in at
least one of their points. Since each assembly’s pair of points are adjacent (in the case that
there are two), this implies that the union of all such points of difference is at most 5 points.
If Y has |Sy| states, then there are at most |Zy|® distinct state assignments possible for
this 5-tile region. Thus, if |[Sy| < n3, then there are fewer than n distinct 5-tile regions,
implying that A; = A; for some i # j, which is a contradiction since R(A;) # R(A4;). <

» Lemma 12. A passive seeded TA system with fewer than n states cannot simulate X,,.

Proof. Suppose a proposed system Y with fewer than n states simulates X,, with representa-
tion function R*. By Lemma 10 there exists A, Ay, ..., A, € PRODy such that R*(A) = s,
and for all 1 <i < n, R*(4;) = s-a; and A = A;. As each A; is attained by attaching
a single tile to A, let point p; denote the point of this attached tile in assembly A;. Now
consider two cases:

Case 1: Suppose there exist 1 < 4,5 < n such that p; # p;. In this case the tile
attached to form A; from A can also be attached to A;, and vice versa, implying that the
assembly consisting of attaching both such tiles, call it A;g;, is such that A; =Y A5, and
Aj =Y A;e;. But since X,, 4g Y (X,, follows Y), it must be that R*(4;) =% R*(A;a;)
and R*(A;) =% R*(Aia;), which implies that R*(A;g;) = s-a; and R*(Ajs;) = s - aj,
which is a contradiction.

Case 2: Suppose instead that p; = p; for all 1 <4,5 < n. Since Y has less than n states,
there must exist some 1 <4, j < n such that 4; and A; use the same state at point p; = p;.
This implies that A; = A;, which is a contradiction since R*(4;) # R*(4;). <

10

Intrinsic Universality in Seeded Active Tile Self-Assembly

Lemmas 11 and 12 show that without the unbounded state change capability of the full
seeded Tile Automata model, there exists a simple class of passive systems that cannot be
simulated under non-committal simulation without arbitrarily larger state spaces. This gives
us the following negative results for two established models in regards to non-committal
simulation, directly following from Lemma 12 and 11:

» Theorem 13. The Abstract Tile Assembly Model (aTAM) is not intrinsically universal
under non-committal simulation.

» Theorem 14. The Freezing Seeded Tile Automata model is not intrinsically universal
under non-committal simulation.

4 Overview of Intrinsic Universality in TA

Now that we have shown that any bounded system cannot be intrinsically universal under
non-committal simulation, we will show that Tile Automata (TA), with its unbounded state
changes, is non-committal intrinsically universal. We do so by characterizing a TA system
that can simulate any other TA system. For ease of presentation, we first give a high-level
overview of the framework and some of the main techniques used to achieve the simulation of
any TA system with the one presented. Both a detailed exposition of the techniques, as well
as any proofs omitted in this section can be found in the later sections covering the details.

We show that seeded TA is IU by first showing that temperature-1 seeded TA is TU at
scale O(|X|?) with constant states. We then show how we can simulate a seeded TA system
at any temperature with a temperature-1 system at scale-1 with O(min(|X|?, 7|3|)) states.
These combine to create a general IU result for any seeded TA system by bounding the
number of states to a constant for any temperature, or by scaling based on the temperature.

4.1 Temperature-1 Seeded TA is Intrinsically Universal

Section 5 gives the full details for the IU results with temperature-1. We show that there
exists an intrinsically universal temperature-1 system with a constant number of states if
we increase the scale factor to O(|2]%). Here, we give an overview of the framework used to
prove the following.

» Theorem 15. There exists a tile set (Xy, Ay, Uy, Ay) such that, for all systems T' =
(3,AT1 A, 8, 1), there exists a TV = (Sy, Ay, iy, Ay, su, 1) that simulates T at scale O(|X)?).

Supertiles. Supertiles are m x m blocks that map to a specific tile in some state from the
original system that is being simulated. Each supertile contains all information necessary for
the simulation. For specifics, please refer to the detailed walk-through of the operations in
Section 6.

Figure 2 shows a simplified diagram of a single supertile. Every supertile has binding
sites on each of the four sides, and wires on each side that lead to a central lookup table
corresponding to valid affinities and transitions for the system being simulated. Within the
table each column represents a state in the system being simulated and each row a state and
direction of a neighboring supertile. There are datacells at each intersection.

The supertile makes use of several small gadgets for effective and correct communication
and information transmission, as well as ensuring non-committal simulation. The most
important gadgets are listed here. For a complete explanation of their workings and purpose,
see Section 6.

T. Gomez et al.

Lookup Table. Each supertile contains a lookup table that contains all the affinity and
transition information of the system to be simulated. Thus, every tile has all information
necessary to update itself from its neighbors.

Transition Storage Area. All of the transitions for a pair of states are stored within a
storage area in ordered data strings. For each transition rule, only the halves of pairs
pertaining to the current supertile are stored.

Datacells. For each directed pair of states in the system, a datacell stores the possible
transitions and affinity status between them. The datacell is a compound gadget comprised
of a transition storage area, and a single tile containing the affinity and current state
status. For non-committal IU, the affinity must be chosen in one step, which is why the
affinity is stored in a single tile.

Transition Selection. For non-committal U, any change to the mapping of a supertile
must occur with a single tile placement or transition. This requires careful collaboration
and ordering around the tiles that can change this mapping. Most of the information
must be obtained from the lookup table and brought to the edge. The transition selection
gadget contains this reversible process of getting the supertile (or supertiles) ready to
change the mapping (or mappings) irreversibly in such a way that it could be reversed at
any point up until the single mapping transition. Once the state mapping has changed,
it must communicate this information to the rest of the supertile.

Attachments. The attachment process for a new supertile works approximately as follows,
the details of which can be found in Section 7. Attachment is triggered by a supertile, when
it discovers that no neighbor exists adjacent to it. The builder supertile finds that an affinity
in that direction exists, it prepares itself for construction, by locking its outer edge, wiping
its wires, and deactivating its gadgets.

Next, it starts building the new supertile. Should the supertile find a competitor trying
to build in this spot, one of the two nondeterministically prevails. The builder supertile then
copies over each part of the supertile one by one.

Once built, the new supertile requests the states of all its neighbors to select its own
state. From the valid states, one is chosen nondeterministically, and the representative state
column is activated. Finally, the new supertile’s state is sent to its neighbors.

Transitions. The process of transitioning happens in seven general phases. The full details
can be found in Section 8.

1. The existence of one or more transitions between two neighboring supertiles is confirmed,
and each supertile’s table is locked for the duration of the transition process.

2. The data strings within the transition storage area of the datacell at each supertile’s
respective intersections are copied and transmitted to the transition selection gadget.

3. Agents within the transition selection gadget nondeterministically select the new states
associated with a transition rule or abort the transition altoghether.

4. Once a transition has been chosen, the new states are copied and transmitted to each
supertile’s respective tables for updating.

5. In the table, the old state is deselected, and the new state is activated.

6. The transition selection gadget is wiped.

7. The tables are unlocked, and new states are transmitted to neighboring supertiles.

11

12

Intrinsic Universality in Seeded Active Tile Self-Assembly

Lol Lol

East

North O\

el] 3
™8 T | %
-y =
O ||
[
l o I
1s
T[T 3
(%]

Figure 2 An overview of a supertile. (1) An agent inside of the supertile. (2) Wires connecting
supertiles from each edge to the lookup table. West wires are drawn individually. (3) The lookup
table storing the information about the system being simulated. (4) A row containing the information
about the state of the east neighbor of the supertile. (5) The active column, representing the current
state of the supertile. (6) A group of datacells storing all information for the north side. (7) A single
datacell, in this case, storing the affinities and transitions for when both this supertile and the East
supertile are in state 1. (8) The table control edge, with an agent waiting to enter. (9) Transition
selection gadget at each edge, dictating the transition of this supertile with its east neighbor.

4.2 Temperature Simulation at Scale-1

Using these techniques we will show that seeded TA at temperature-1 is intrinsically universal.
We also show that at scale-1, we can simulate a seeded TA system at any temperature if
we scale the number of states in the system. We provide two bounds on the scale factor:
O(min(7|%|, |%]?). Resulting in the following two Lemmata.

» Lemma 16. For all Tile Automata systems I'r = (2, A, II, A, s,7) there exists a system
Ty = (21,A1,104, Ay, 81, 1) that simulates it with 1-fuzz at scale-1 such that |X1] = O(7|X]).

» Lemma 17. For all Tile Automata systems I, = (X, A, T, A, s,7) there exists a system
Ty = (31,A1, 10, Ay, s1,1) that simulates it with 1-fuzz at scale-1 such that |21| = O(|X[?).

T. Gomez et al.

4.3 Seeded TA is Intrinsically Universal

By taking Theorem 15 in conjunction with Lemmas 16 and 17, we achieve the desired result
that seeded Tile Automata is non-committal intrinsically universal. This follows by directly
plugging in the state-scaling into the temperature-1 construction.

» Theorem 18. There exists a tile set (Xy, Iy, Ay, 1) such that, for all systems T' =
(X, IL A s,7), there exists a T = (Zy, Ay, Hy, Ay, s', 1) that simulates T' with 1-fuzz at
scale factor O(min((]X|)3, |Z]%).

5 Temperature Simulation

We now give a detailed construction of our universal Tila Automata system. We show how
any Tile Automata system I' = (X, A, I, A, s, 7) of any temperature 7 can be simulated by
temperature 1 with 1-fuzz by using ghost tiles and adding intermediary states.

In order to attach tiles that require cooperative binding, the necessity of needing mul-
tiple neighbors to attach a single tile in order to reach necessary affinity strength, we use
intermediary states to add together the affinity strengths of surrounding tiles to the interim
state tile that is attempting to be placed at that location, see Figure 3 for an example, and
Figure 4 for the assemblies it produces.

» Lemma 16. For all Tile Automata systems I', = (2, A, I, A, s,7) there exists a system
Iy = (31,A1,104, Ay, 81, 1) that simulates it with 1-fuzz at scale-1 such that |X1] = O(7|X]).

Proof. The set of states ¥, contains 7 states for each o € ¥. We simulate the system in
Figure 1 with the one in Figure 3, which contains the following states:

An unlocked state o for every o € X.

Locked states o4 for d € {N, S, E, W} for the directions. The lock L is represented by a
lock icon in Figure 3.

Counting states o; g numbered from 1 to 7 — 1, where @ is all subsets of {N, S, E,W}.
Success unlocking neighbor states oqg ..

Failure unlocking neighbor states og x.

An empty state g, which we call a ghost tile.

Empty States. The state g has affinity with all non-ghost tiles o, the states which
map to something. This ghost state transitions with unlocked tiles adjacent to it to enter a
counting state representing a tile which may attach. This process is outlined in Figure 4. If
the strength of the affinity is greater than or equal to the input system temperature, then the
counting tile immediately transitions to a success state and starts unlocking its neighbors.
If the sum is not yet 7 the neighbor state is transitioned to locked and the counting tile
increased based on the new binding strength.

Additionally, the attachment may nondeterministically choose to fail and begin the
unlocking process of all locked surrounding states at any time. This has two functions. First,
if the tile does not have 4 neighbors and it cannot reach the affinity strength, then it would
be unable to detect the lack of neighbor on its own. The second reason is to ensure that the
strict definition of simulation can be met.

Simulation. A ghost tile may not attach to another ghost tile or to a tile with a
temporary state, nor can a temporary state affect its own affinity strength count. This
ensures the system has 1-fuzz. A tile can only transition from a ghost tile to simulate

13

14

Intrinsic Universality in Seeded Active Tile Self-Assembly

Temperature States Affinities

Locked by
Input Neighbor
States Adding States
N NE
1 EY |- [E¥]...

m
| nz
2

Initial State

By o [BN | - |ES

Ghost

m
o=
[o][]]=]

HF

m|.
T2

W
EY;

E =l [=]R=1E:

Unlock Neighbors States
Success

N | e |EWSE
Failure
h
X| X

Ghost

[=]
[=l=] [=[=]
[+[=] -1
W] [o]~]
Bl
-1
[=To] EIE
[=1=] [~[=]

Strength = 1

Transitions

G| == B

[] — [Aa[=]
(o] — [&le] [e]e] — [al

[c]e] — [Ca

1
A

Fy

[o[s] — b

5] [8] _, [e]
o
ol

[e] [l
Figure 3 The temperature-1 system that simulates the system in Figure 1.

EY

NEW NEW|
=

S
n E1
— eee

attachment if there exists enough locked neighbors which reach 7 so we know every assembly
in PROD(I';) maps to something in PROD(I"). This shows equivalent production.

For following and strongly modeling we note that transitions are simulated in one step so
the rules in A C A;. For every attachment that could take place in I we simulate this via
the adding states. The failure states serve two purposes, first if we select a tile that does not
have enough affinity it will eventually be abandoned and another will be selected. Second it
allows us to satisfy the Strongly Models definition as when an assembly A’ € PROD(T';),
which represents A € PROD(T'), can abandon any attachment step to circle back and reach
an assembly which represents any B such that A —! B. |

5.1 Alternate Upper Bound

The dominating factor of the tile set is the adding tiles. We may replace these by instead of
storing the temperature we may store the current neighbors. This is a better bound in the
case that 7 > O(%2).

T. Gomez et al.

Simulated Attachment of E Success Simulated Attachment Failure

Ghost Tile Attaches Counting Strength Transition Blocked

Figure 4 The construction process that the Tile Automata in Figure 3 builds, representing the
same attachments and transitions as in Figure 1

» Lemma 17. For all Tile Automata systems T'y = (X, A,TI, A, s,7) there exists a system
Iy = (X1,A1, 101, Ar, 51, 1) that simulates it with 1-fuzz at scale-1 such that |21 = O(|Z]?).

Proof. Consider an alternate set of adding states, which store the current neighbors of the
ghost tile instead of adding the strength. This encodes IT into A directly without adding up
7. We only need to store up to 3 neighbors as the fourth neighbor will be read in the final
transition. <

15

16

Intrinsic Universality in Seeded Active Tile Self-Assembly

6 Supertiles

A supertile is a block of m by m tiles that maps to a single tile in the system it is simulating
via the m-block representation function. Each supertile contains the complete rules of
the system it is simulating and, hence, can perform attachment and transition operations
locally with its neighboring supertiles. To do this, the supertile contains a lookup table that
stores the possible transition rules and affinities for each combination of states and neighbor
directions.

Each state of the system to simulate is first mapped to a unary encoding. The table
contains four smaller subtables, one for each neighboring direction. Each of these subtables
is constructed as a matrix. The column indicates the state this supertile represents, and the
row the states the neighbor can represent. We call an entry in this matrix a datacell. A
datacell that is part of the East subtable stores at position (4, 7) the affinities and transition
rules that apply if this supertile represents state j and the East supertile would represent
state ¢. Lastly, each supertile has an active column. This column indicates which state the
supertile currently represents.

Besides the lookup table, a supertile contains wires that connect the table to the edges of
the supertile and gadgets for reading, writing, and locking the table.

6.1 Agents & Gadgets

A supertile is comprised of several gadgets, groups of tiles that together perform a specific
function, such as facilitating data traversal or table lookup queries. Agents are small packets
of information encoded by tile states that traverse a supertile and can transport information
from one part of the system to another. Figure 2 shows a single agent that has traversed
from the supertile neighboring to the south to perform a lookup in the table. Other tasks
specific agents can perform include locking the edges of a supertile or its table, clearing wires,
or coordinating construction functions.

Gadgets are groups of tiles that together serve a specific purpose. They are reset after
each use and are, therefore, reusable. Whereas agents move through the system, gadgets
are largely stationary. Agents can interact with gadgets, and each gadget serves a specific
purpose.

Wire. The simplest gadget is the wire. The only purpose of a wire is to allow the one-way
traversal of an agent from one part of the system to another. A wire is a one-wide string
of tiles. The states of the wire tiles not only indicate it is a wire tile, but also indicate
which direction the wire is going. An agent can traverse a wire by swapping states with a
neighboring wire tile if the direction of that wire tile allows it.

Wires connect supertiles and allow them to communicate. Since a supertile has a wire
connected to its neighbor for each state it can be in, the specific wire on which a supertile S
communicates with its neighbor is an implicit communication of the state of S, see Figure 2.

Data Strings. Data strings are a series of tiles carrying data capable of traveling down
wires. Transition related data string consist of a start data string tile, a string of unary 1
tiles, an end data string and on occasion a prepended instruction.

Door. Doors are tiles placed along wires to control the flow of data and construction. They
consist of two parts. The first part is the actual door, placed on the wire in question. The

T. Gomez et al.

- GOES - GEEE - EEEE

Figure 5 The door in action. Once an agent asks to pass the door, the door first confirms with
its handle, after which it goes into an open state. The agent can then pass the door. The door goes
into an orange warning state, after which it is only allowed to swap with a wire tile to go back to its
original position.

other is its handle. When an agent or data string reaches a door, it can pass if the door
allows it.

Each door has a specific direction dependent on the wire it is on. If the wire the door is
on switches directions, then the door’s direction will also flip. An agent trying to pass an
open door swaps states with the door as if it were a normal wire. The door then enters a
reset state, indicating it recently let an agent through and is currently not connected to its
handle. No other agent is allowed to pass in this state. Once the agent has moved on, the
door can swap states with the new wire tile on its original spot, resetting the door. This
prevents doors from getting lost or mis-matched to the wrong handle, see Figure 5.

When a door swaps with a wire tile, the wire tile will be transitioned to a blank wire tile
and take on the wire state of the next wire tile it encounters. Agents may swap with blank
wire tiles but, due to the lack of direction, may also swap back if a normal wire tile state has
not been selected. The copy director may also copy into blank wire tiles. This blank wire
tile method ensures that wires will not become inappropriately shuffled during traversal.

Additionally, agents or data strings may occasionally swap with the wire tile a door needs
to return to its normal position, blocking it from doing so. In this case the door sends a
repelling signal to the offending tile making it traverse with a wire tile backward once, if
there is not a wire tile behind it and instead another agent or data string tile the repel state
will be passed from tile to tile until one is able to swap. Then, all of the previous tiles still in
the repelling state may return to normal by swapping with this wire tile until it reaches the
door in need of resetting.

Crossover Gadget. When wires crossover within the table, at the edge of the supertile,
and within construction wires, we require a gadget to control the flow of information across
these wires, see Figure 6. The crossover gadget has 3-4 doors arranged with crossover gadget
handles at each corner, all around a center wire tile. In most cases, a locking/unlocking
agent or the agent’s own transition rules ensure it passes through a crossover gadget in the
appropriate direction; however, in a few rare instances, the agent will need to signal through
the crossover gadget to lock other doors within the crossover before traversing, unlocking
them upon exit.

Punchdown Gadget. The punchdown mechanism allows the distance between datacells to
be calculated by decrementing a data string representing the necessary number of columns
to traverse in the table. See Figure 7 for how decrementing works with the punchdown
gadget. When a data string comes along a wire, the punchdown gadget will “delete” one of
the unary digits by transitioning it into a normal wire tile. The rest of the data string is

17

18

Intrinsic Universality in Seeded Active Tile Self-Assembly

Figure 6 Left: Standard crossover gadget. Right: Agent traverses a crossover gadget horizontally.
The red doors are locked, and the green door is open.

El
0]
o[-10]-]

Figure 7 The punchdown gadget first decrements a data string by turning the 1 into a wire tile
(Left). Then, the associated door is unlocked, after the north and south crossover doors are locked
(Middle). Lastly, the punchdown door resets after the end-of-data string tile swaps with the door
(Right).

allowed through the door as normal. The end-of-string tile resets the punchdown gadget.

Transition Selection Gadget. On each of the four edges of the supertile, directly next to
the wires, lies a Transition Selection Gadget, see Figure 8. Upon initiation of a transition
with a neighboring supertile, this gadget and its mirror on the neighboring side together
determine which transition to take. The gadget is filled with the transition rules when a
transition is initiated. Once this is done, each supertile initiates a nondeterministic selection
agent to walk up and down the border between the two selection gadgets. When they meet
at a rule, they may or may not transition with one another to select that transition rule to
be executed on the two supertiles. The newly selected states are then returned to the tables
of the two supertiles to update their respective active columns. The complete workings of
supertile state transitions are explained in Section 8.

6.2 Table & Wiring

Table. The table is the primary gadget of the supertile. It stores the affinities and transitions
of all possible pairs of states in the system and the functional state of the supertile.

The rows are ordered to prevent the crossing of wires at the border of supertiles. Hence,
the rows are ordered in reverse for the North and West subtable, as shown in Figure 2. The
columns are ordered normally.

A datacell is a single cell in a subtable and stores both the affinity and transition
information for a specific neighbor direction, see Figure 9. It is a compound gadget comprised
of an incoming wire, an outgoing wire, wire traversal doors, a punchdown gadget, an affinity
door, and the transition storage area. It can interact with data strings, and agents can use it
to get information about the state of the supertile.

Since we use temperature 1, affinities stored in a datacell are simply a Boolean; a
combination of two states either has an affinity in this orientation or not. Each column in
the table has a vertical wire next to each datacell. On this wire, for each datacell, this door
indicates if this specific datacell has an affinity or not. If there is no affinity, the door is a

T. Gomez et al.

O] -] <|<]|<[® ®|~»[>[->]-]0]
IS EN BN ER KA KA R B B O
K| o el [E|
o tfafafgls]222]1]0
| ¢ E]
~|>|>>|-|OI0]-|€|€]l€]-

Figure 8 The transition selection gadgets of two neighboring supertiles. The border between
supertiles is depicted in red. The agents non-deterministically walk up and down and can eventually
select a transition or abort by transitioning with each other.

normal door. Otherwise, the door is a special affinity door, indicating the affinity.

Transition rules are stored in a transition rule storage compartment at the bottom of
each datacell. They are stored as follows. If the combination of the supertile state and the
neighboring supertile state corresponding to this datacell has a transition rule, the storage
contains only the new state this supertile would become if this transition is taken. If the
system we are simulating allows for multiple transitions for this pair of states, we define a
fixed order for these transitions prior to the simulation. The resulting states are then stored
in the transition storage area according to this order. The rules always match up because we
predefined this order and because the supertile template is copied every time. The storage is
templated to be the size that is necessary to store the maximum number of transition rules
of any state pair in the system, such that all transition storage compartments have the exact
same size. If a compartment contains fewer transitions than the maximum, it is filled with
blank transitions.

Table Locking. The wires enter the table from the left. Each wire has a special table
locking door and corresponding handle, that is situated at the edge of the table. If an agent
tries to act on the table, it first must pass its corresponding door. If that door is open, two
locking agents move up and down along the left edge of the table. These signals lock all
other doors corresponding to incoming wires, allowing for only one operation on the table
at a time. If two of these locking agents meet, only one is allowed to continue on while the
other disappears. Once the locking agent reaches either the top or bottom of the left edge, it
transforms into a successful locking agent and moves back toward its door. A door that sent
out locking agents and that sees another locking agent coming by, knows that its own locking
agent was the one that failed, and the door will lock itself. Even if multiple doors try to
lock the table at the same time, only a single door will receive its corresponding successful
locking agents coming back from both the top as well as the bottom. This door then allows

the waiting agent to enter the table. An agent trying to enter a locked table will simply wait.

This does not lead to deadlocks, since the origin table of this agent was not locked when this
agent left it.

6.3 Outer Shell

The outer frame of both the table and the supertile are comprised of outer frame tiles, with
the appropriate doors along wires to access the supertile or table, see Figure 2. Inside, they
contain an inner wire for traversing the boundary, and then inner frame tiles, again with the

19

20

Intrinsic Universality in Seeded Active Tile Self-Assembly

vl]-10] -
o0
oj-|0f-
* S ENERENIE|
* o EN K|
= T[]0
* Of+|0
o[- (0]~
Of<(0
Self-Intersection . EI .

Door

Figure 9 An overview of a datacell

appropriate doors. Initially, supertiles are built with doors that indicate that no neighbor is
present. Once a neighbor is found, they transition to their regular counterparts.

7 Attachment

The attachment process consists of several phases. First, if the supertile detects it has a spot
next to it without a supertile build, it checks if there is an affinity in that direction. Next,
the supertile is copied piece by piece into the neighboring spot. Lastly, when the construction
is completed, this newly built ghost tile sends a signal to all neighboring tiles to select an
actual state for itself.

7.1 Initiation

Whenever a supertile changes state, either via transition or via attachment, it sends out
state transmission agents to all four directions. When such an agent reaches an edge of its
supertile and finds no neighbor, the process of determining whether to attach a new supertile
starts, see Figure 10. The state transmission agent is not able to reach the true edge of the
supertile if there is no neighbor present. Instead, it reaches the inner row of doors on the
edge of the supertile that controls access to the outline wire. Since there is no neighbor,
the agent changes state to a lookup state, enters the outline wire, and goes to the affinity
selection wire, see Figure 10. Initially, all outline wires on the edges are directed such that if
no neighbor is found the state transmission agent will be directed to the affinity selection
wire.

The affinity selection wire wraps around the outside of the entire subtable for its given
direction (E/N/W/S) allowing for the agent to drop into the active state column wire and
search every possible state in the system for an attachment. For example, if the missing tile
is to the West of the supertile then the wire runs above West and its outgoing wire is below
West 1.

7.2 Checking Attachment

FEach datacell has an affinity door in the vertical active column wire next to it, indicating
that there is an affinity between these two states in this direction. If there is no affinity,
there is a door with a no affinity state. The initially selected possible state may not be the
final state of the supertile so as not to preclude every possible state that the supertile may

T. Gomez et al.

(=] L]

o
a
a

o
a

H

North

11

[l I] |

s n;

"555"555"555'

Figure 10 Left: The tile transmits its state to neighboring tiles and discovers it has no neighbors.
Right: The west agent has moved over to the affinity selection wire (in yellow).

=7 = =
1 1
[5 o ‘: [57 o ‘:
IT]—l.——’ 4 4 1 ‘4 IT 4 4 1 ‘_
o = ‘:I._\: 13 En |l ‘: I._\: 1z m]
| = ——] | =
i @ j o e 111 ‘
| S =i | a8,
wh ﬂ|._4,r 1 m [.,t._—‘,r |
A |l . E ‘ ul] ’.t E ‘
- T - 1
El [=1 > fl [=1 >
e 1 — _ s | | — Js— =
& | I.‘_-;ﬁ n i I.'_';" ol
=l=! ; 3= 1
[I

g |

|

= |
F i

I ’ | -

|

| las

(]
e e ———p—
|

»
18 (=
[TI°X
(RN

|

m]

[l - [l

Figure 11 The lookup agent reaches table and locks the table

end up in. This initial lookup is just to ensure we do not begin construction of a neighboring
supertile if no tile can attach there in the system we are simulating.

Lookup in Table Section.

Once the signal reaches the edge of the table it will initiate the standard table locking process
described in Section 6.2, and visible in Figure 11. The signal will then traverse the table
until reaching the active state column and begins its descent down the active state column
wire with the affinity doors; see figure 12.

The lookup agent may nondeterministically transition with any affinity door to a found
state so that the construction process can begin. It will traverse down to the state lookup
exit wire and to the edge of the supertile. The table stays locked. Upon reaching the edge of
the supertile, the agent transitions into the Copy Checkpoint. The Copy Checkpoint is a
stationary tile on the edge of the supertile, orchestrating the copy process. See Figure 12
for the state lookup process at a high level. If there are no affinities in that direction or the
lookup agent never transitions with an affinity door, the agent will not change to the found

21

22

Intrinsic Universality in Seeded Active Tile Self-Assembly

Figure 12 The lookup agent reaches the intersection with the active state and confirms there is
an attachment possible for that direction

West

C

Figure 13 The lookup agent finds no attachment and unlocks the table, deleting itself when it
reaches the edge of the supertile.

state and simply unlocks the table after exiting from the bottom of the state lookup wire.
No attachment is started in that case; see Figure 13.

We only begin construction if there is a possible attachment in that particular direction.
This does give a slight fuzz advantage over previous builds. A ghost tile (if simulating a
system that requires or includes them) will not begin growing if the state has no affinities in
that direction.

7.3 Preparing for Copying

In order to properly copy the tile, we need to clear the interior wires, lock any further outside
communication from coming in, and activate a number of processes.

T. Gomez et al.

(@)

J B AT
D [i — N
—= IR T T |
—
i Pa— i i
n | Iy = u 7F‘ g
= 1 S— 1l
3) LT
n
il i [—— 3% il
C Il S o Il i
< - e —— el EE T T
= b —t&= -
: :
£ [l i Y [l i
m 1l neml m 11 |
B[I [l T [

Figure 14 Copy Checkpoint (West) begins construction by locking then resetting/wiping the
supertiles interior.

Locking the Supertiles Outer Frame for Construction.

First, the Copy Checkpoint sends a locking agent around the outer supertile wire, which
locks every outer door on the edges of the supertile, preventing any further agents from
entering the supertile.

Clearing Table and Wires.

Once the locking agent returns to the Copy Checkpoint, it will turn into a wiping agent. The
main wiping agent will traverse the edge wire and spawn minor wiping agents to sweep every
wire. They delete any waiting agents outside of the table. Moreover, the interior and edge
of the table are reset to be entirely inactive. This process is shown in figure 14. Should an
agent trigger a locking process before it is wiped, the locking agents spawned will transition
into wire tiles upon contact with an inactive door. The active state of the current supertile
is stored within a containment area at the top of the active column to ensure it is spared
from wiping.

7.4 Copying Supertile Outline

Now, the supertile is ready to start the copy process. We will copy the supertile in several
steps, piece by piece. We start with the outline, then the table, and then the wires. It could
be that multiple adjacent supertiles are trying to build in the same location. In this case, it
is necessary to ensure that only a single supertile gains construction jurisdiction over this
spot.

Claiming Mirror Side.

The mirror edge is the edge of the tile under construction that is immediately adjacent to
the supertile initiating construction. Once the wiping agent reaches the Copy Checkpoint,
the Copy Checkpoint will spawn 2 claiming agents sent along the outer wire to the adjacent
corners. If building to the West, these claiming agents go to the North and South. The
purpose of these agents is to place and claim the mirror edge corners. These are important

23

24

Intrinsic Universality in Seeded Active Tile Self-Assembly

L I_I| | =

:
+
+
a
+
+
+
orth

e BT | - I

Figure 15 The Copy Checkpoint sends 2 claiming agents to claim the mirror edge. The Copy
Checkpoint then sends a mirror edge agent to place the mirror edge.

to prevent construction conflicts. Once the agents reach the corners, the northwest and
southwest corners in our example, as seen in Figure 15, they open the supertile corner doors
and try to build the corner of the neighboring tile.

They build the corner of the neighboring tile as follows. The agent first goes through the
door in the direction it wants to build. Then, it attaches the first empty construction tile
and then a second, transitioning the first into a door as it swaps into the second. Whenever
we say that a certain tile is attached or built, we mean that an empty construction tile is
attached, which is then transitioned into the correct state. After the wire tile is built, the
agent swaps with the wire tile, and tries to build the crossover gadget. It marks the crossover
gadget as claimed by the East side where it came from.

It could also be the case that there already exists a corner crossover gadget. This gadget
can then either be claimed, or unclaimed. If it is unclaimed, it is claimed, otherwise, the agent
goes back to the Copy Checkpoint to report a failure. If the crossover corner is successfully
claimed, the agent also goes back, but this time to report a success. If the Copy Checkpoint
receives at least one failure, it relinquishes its claim to any successful corners (via agent) and
aborts construction.

To abort a construction at this point, the only thing necessary is to unlock the doors on
the outline wire, set the active state column in the table, and finally unlock the table. These
processes are the same as their counterparts at the start of construction.

When the Copy Checkpoint receives two successes, it knows that from the three other
supertiles that could potentially try to build in this spot, only one might still be trying.
In this case, we initiate construction of the full mirror edge. This is done as follows. One
mirror edge agent is sent to one of the corners that has just been claimed. This agent
will then build the outline wire of the mirror edge. At the same time, it will attach (via a
blank construction tile) mirror tiles. These tiles then transition with the tiles in the original
supertile to mirror their state. Should the corner it is attempting to mirror be a crossover
gadget door, the mirror tile will spawn a crossover copy agent, which when the subordinate
copy agent recognizes this will instead back up, transitioning the tiles it traverses back from
into blank construction tiles. When the crossover is activated, it will continue. In this
way, the doors get placed in the correct positions. Moreover, the mirror edge agent ensures
intersections are properly constructed and construction doors are activated, see Figure 15.

T. Gomez et al.

Once it has reached the other corner, it goes back to the Copy Checkpoint, which can then
initiate the next phase.

Copying Placement General Notes.

Before explaining the next phase, we will first detail the standard copy procedure. This
procedure is used to copy the rest of the supertile. It uses a Copy Director, which acts in the
original supertile and sends copies of tiles to the Placement Director, which is located in the
newly constructed tile, and places the copies on the correct locations. The copies are send
over the outline wires and/or construction wires of the tiles. For this to work, the route from
the Copy Director to the Placement Director needs to be clear and doors along this path
need to be set correctly to ensure copies of tiles end up in the correct spot.

The setup is done by a copy agent send out from the Copy Checkpoint. It first places the
Placement Director in the appropriate spot. Then, it goes to place the Copy Director. It
takes the same path as the copied tiles will take. While going over this wire, it ensures all
wire tiles are pointing in the correct direction and doors that lead in the wrong direction are
closed.

Once at the correct spot, it transitions into the Copy Director and starts copying tiles
and send them to the Placement director via the path it just created. As soon as all tiles of
this part are copied, it goes to the Placement Director, deletes it, and finally returns back to
the Copy Checkpoint, which can then start the next phase of copying.

The Copy Process.

For each tile that needs copying, the Copy Director follows the following scheme, visualized
in Figure 16. First, the Copy Director sends a direction to the Placement Director (North/-
South/East/West). Then, it swaps with the tile that needs copying. This tile then spawns a
copy of itself on the wire that also goes to the Placement Director. Lastly, the Copy Director
swaps back with the tile that now has copied itself.

The Placement Director ensures it is always at the end of the part that is built. It
first receives a direction. It then swaps with that direction tile which attaches an empty
construction tile. Then, when the copy arrives, the Placement Director swaps with the copy,
and the copy can transfer its state to the newly attached empty construction tile. Then, the
Placement Director swaps back with the now copied tile and deletes it in the process. This
process is shown in Figure 17.

Not every tile is copied over individually, to reduce the number of states, we copy the
crossover gadget in one go. Instead of sending a copy of every tile in the crossover gadget, we
send a single tile containing a template of full information of the crossover gadget. To stop
the directionality from being an issue our copy director will send a second special direction
tile before a crossover gadget. This way the agent may be in the middle of the gadget
attaching blank tiles and transitioning the surrounding doors into them without knowing
the direction from which the crossover came. Each door remain in waiting state until it has
attached its handle. The placement director will lock any necessary doors when construction
is complete.

Constructing Adjacent Supertile Outline Wires.

This copy process is used to build the other edges of the supertile, see Figure 18. At this
point, only the mirror edge has been constructed. We use the copy process to build one edge
at a time. For horizontal attachments, we first build the top edge, then the bottom edge.

25

26

Intrinsic Universality in Seeded Active Tile Self-Assembly

[-|O [-]O 4m - |0 | #m-]0 | -0
e|elelrlO]e AENEERE «|INle Ol Nle & * Ol m«-eﬁﬂ:’
[-1o [-1o | [-]O [[[-]O | -0

(A) (B) (c) (D) (E)

Figure 16 The general copy process.

| |
-)-)Ngﬁ|—) -)-MO%IN—)D 9, — [2]2[08] —> AL E|e:

Figure 17 The placement process of a border tile up to the arrival of a crossover construction
agent just before the previous border tile is deleted.

v

For vertical attachments, we first build the left edge, then the right edge. This is to ensure
that if there is still another supertile that is trying to build in the same spot, we recognize
this situation and deal with it accordingly.

To build these edges of the supertile, the Copy Checkpoint spawns a new copy agent.
This agent will put a Placement Director at the corner that was already built, then moves
over the outline wire of the original supertile to the other side, where it will transfer into a
Copy Director.

If there is still another supertile building in this spot, the two Placement Directors will
eventually meet. Nondeterministically, one of the two continues, while the other is removed.
The losing Placement Director sends a signal to its respective Copy Checkpoint, which then
starts the abortion process similar as before. The Placement Director that is left over will
ignore and remove any copied tiles intended for the now removed Placement Director.

Along with the outline wire the transmission selection gadgets are added. For a tile to
start internal construction it must verify it has claimed all 4 corners. Only doors on its side
are active all others are blocked.

Building the Far Side of the Outline.

Once we have confirmed claim of all four corners we then can build the opposing edge starting
at the designated corner. This again uses the normal copy process. The Copy Checkpoint
sends out a copy agent, which places a Placement Director. Then, this copy agent traverses
the outline wire to the appropriate place, locking doors on the way if necessary. Lastly, it
will transition into the Copy Director and start copying the last edge of the supertile, see
Figure 19.

7.5 Construction Wires

Once construction of the outline of the new supertile is complete and confirmed by an agent
at the Copy Checkpoint, we start copying the table. Each table has eight construction wires.
These wires extend from the corners of the table, and mark the width and height of the table,
plus its position within the supertile.

To copy the table, we first copy the construction wires. For horizontal copying, we start
by copying the horizontal construction wires, then the vertical ones. For vertical copying, we
do the opposite. These wires are not only used to indicate the placement of the table within
the supertile, but they will also be used to copy the contents of the table.

To copy them, we first open the doors connecting the respective wires to the outline
wire. We then copy the wires using the normal copy process, starting at the far end. The

T. Gomez et al.

g mT g

Figure 18 The copy director copies each adjacent edge. It first does the north, then the south
edge.

&
: S 1 s —

Figure 19 The copy director and placement directors copy the far side edge.

South

horizontal and vertical process can be seen in figure 20 and figure 21.

7.6 Copying Table

The construction wires already contain the outer edges of the table, including the table
control edge on the eastern side of the table. Once these are in, we build the rest of the
table. Importantly, the only variable aspects of a datacell are the width and the height of
the transition storage. These depend on the system we are simulating.

Copying Horizontal Table Wires.

To transfer this information over to the new supertile, we first copy all the horizontal wires
in the table. These already contain the transition, affinity, and state lookup chute crossover
doors. We copy these over using the normal copy procedure, see Figure 22. Both the Copy
and Placement Directors start this procedure on the East side of the table, and the route

27

28

Intrinsic Universality in Seeded Active Tile Self-Assembly

= (=

|
t
Cme e ¥

&l)

=

Figure 20 Copying the horizontal table outline.

] 3]

9l =

7|

L []

Figure 21 Copying the vertical table outline.

that the copies take is via the construction wires.
Every time the Copy Director has finished a horizontal wire, it moves down to the next
horizontal wire. For every step that it takes, it sends a token to the Placement Director.
For every one of these tokens that the Placement Director receives, it goes one step
forward. The height of a datacell is implicitly transmitted by the distance between the
transition storage door on one wire and the end of transitions tile along the wire just below.

Constructing Datacells.

Next, the placement director will send subordinates down each table input row to construct
datacells, reporting back as each is completed until it reaches the end of the table. Within
the row, when the placement subordinate meets the datacell punchdown door it will traverse
through the transition storage door adding doors to the west, wires to the south, and border
tiles to the east, until it reaches the end of transitions tile below it. It will add the transition
exit door to its east before returning to the top of the datacell, traversing through the

T. Gomez et al.

; o JL | & Sip=
- -
%) & © D it
| E@j B
d * 5 =
5] — = -
Bl | Bl

Figure 22 Copying the table row wires.

L 1 om m

=

West

—ia

=

Figure 23 Constructing Datacell outlines.

affinity crossover to begin constructing the next datacell. This can be seen at a high level in
Figure 23.

Copying Transition Rules.

The process of copying datacell transition rules works as follows: Our agent transitions the
transition row door into a copy activation state, which will swap with every unary tile, the
end of data string state, and border tile state behind to transition each into a copy yourself
state. Each will copy themselves onto the wire and then flip backwards until reaching the
door and transitioning back into a normal state. The door will stay at the back of the row
until the border tile returns, signifying it has copied itself. At this point, the door will
traverse to the front of the row and activate the door below it to begin the same process.
The door will also copy buffer tiles and includes rows that have no transitions in them and
are comprised of filler blocks.

When this is complete the fill marker is moved to the next datacell. When the row is

30

Intrinsic Universality in Seeded Active Tile Self-Assembly

] E=
= &
et B
I £
Ery [l e iy

3 000 IR B

I — e

Bl I B | B

Figure 24 Filling datacells with transition rules.

completed the copy agent will confirm its completion to the copy director indicating that the
next row can be started.

On the opposite side the data strings are activated for placement, and due to special
placement states this allows them to attach their own blank construction tiles to the east.

Copying Vertical Table Wires.

As all of the necessary information has already been copied into the table, what is left
is to copy the vertical wires, see Figure 25. The placement director simply sends filling
agents down the top of each column that will traverse south and place south wires and
protective border tiles to their side as they go. When these agents reach the bottom of
the table they reverse walk north until it reaches the top of the table where the placement
director will absorb and check it off. As the placement director was at the final vertical
wire when it finished sending the agents down it will wait there until the agent returns with
confirmation that it has completed filling the southern wires. The placement director will
then wait to proceed at each intersection until it has reached the control edge of the table.
Once this occurs, the placement director will send a signal to the Copy Checkpoint that the
copying of state transmission wires may begin. When a placement subordinate is traversing
northward on the state lookup chute wires it will lock the appropriate doors to shut down
the construction wires connecting chutes of different directions.

Copying State Transmission Wires.

After the table is complete the state transmission wires are copied, see Figure 26. After
the appropriate wires are set and locked, we begin with the wires entering from the east
of the tile. The Copy Directors for any direction will skip copying any vertical /horizontal
construction wire and tile/table edge crossovers.

7.7 Activating Tile and Determining State

Once the supertiles construction has finished the process of activating the supertile for use
begins. First, the construction wires must be deactivated.

T. Gomez et al.

] =
Z)E=—(H 'q‘-'" _mam
=8= =N 8
mEw B bbbt
i S
S {C) =it
I - -
=i S |
TEE R i
EEE B bt bt

3 DED Bd § o e
oET B it b bt
nEE —

- ' 4 B! —

Figure 25 Constructing vertical table wires.

Construction Wire Deactivation.

After construction phase 10, phase 11 is started. To begin, phase 11 locking unlocking agents
are dispersed throughout both tiles with the copy and placement directors, checking off their
respective tiles intersections after each phase 11 locking unlocking agent reports back from
the construction wire it was sent down until it returns to where it started. The copy and
placement directors will not unlock the outer edges of their respective tiles yet.

Reporting Construction Completion to Neighboring Construction Tile.

After the tile is confirmed to be complete, construction wires are deactivated, and table is
activated, a signal is sent to the neighboring tile that was in charge of construction that
it may reactivate most of its non-construction functions and its active state column, see
Figure 27.

Activating Table.

When it is confirmed that the construction wires have been locked, state transmission wires
appropriately unlocked, and neighboring wires reactivated, the placement director will move
into phase 12 where it activates the table edge and punchdown gadgets.

Requesting Tile State From Neighbors.

After the supertiles construction is complete it will send out a Requesting State Agent to
its neighbors along its state lookup output wire for each direction. Upon reaching the edge
of the supertile it will meet doors that indicate the supertile has no neighbor but it may
traverse through them anyway. After the supertiles state has been selected and activated
the has “no neighbor doors" will be transitioned to standard tile edge crossover doors. If a
transition request reaches these has no neighbor doors it will be dissolved on contact. Only
the newly constructed supertile can transition its has no-neighbor doors and that of the tile
next to it.

32

Intrinsic Universality in Seeded Active Tile Self-Assembly

I
1
1
. [wom
J = 7
,

+
+
+
i [Y
t
+
+

K

o

Figure 26 Constructing state transmission wires.

Transmitting Neighboring Supertile States.

Once a New State Requesting Agent has entered the lookup chute in the active column in a
neighboring supertile it will traverse to each row until it reaches a self-intersection with the
active state for that direction. It will report the state of the neighboring tile back to the new
tile table.

Selecting (and Deselecting) Possible States.

After one of the New State Request - Neighbor Reporting Agents have won the table locking
race it will enter the table and traverse each column. At the end of each datacell, in the
southern slot of the vertical wire/datacell crossover gadget, there is an affinity (or no affinity)
door that the agent may transition nondeterministically with to select the state of the new
tile. This agent may traverse the row backward or forward at any time and may even
completely exit the table and restart the locking race so that another directions New State
Request - Neighbor Reporting Agent may enter the table and potentially select the state, see
Figure 28.

Activating Column and Regular Table.

Once a state is selected state column activation agents are sent to the north and south of the
initial selection door, turning each incoming datacell punchdown door/vertical intersection
crossover into an active superstate mode and storing the state in the state storage box at
the top of the column, see Figure 29.

Only after a state is selected and column confirmed to be activated in both directions
does the New State Request - Neighbor Reporting Agent Eraser Door Agent Activator spawn
and traverse to the top of the table and over to the left edge where it changes each of the
table control edges inner doors to its normal active state. This causes New State Request -
Neighbor Reporting Agents to dissolve upon contact (leaving an omni-directional wire tile
behind) and triggers the table outer doors to unlock.

T. Gomez et al.

East

North

I d— I —

Figure 27 Locking construction wires and reactivating neighboring supertile.

Unlocking Neighboring Supertile and Testing for Neighbors.

When the New State Request - Neighbor Reporting Agent Eraser Door Agent Activator has
reached the table’s south marker tile it will send an Unlock Neighbor Outline and Test for
Neighbors Agent. This agent will also unclaim corners of the new supertile. The agent will
traverse around the edges of both supertiles unlocking them or testing for neighbors if the
doors say they have none.

Sending Out New Supertile State.

When the Unlock Neighbor Outline and Test for Neighbors Agent returns through the
southern construction wire door (which it may traverse due to its special state) it will change
to a State Transmission Trigger Agent that will traverse the active state column and send
out State Transmission Agents at each self-intersection. The first State Transmission Agent
to reach the inside edge of the table will unlock it, see Figure 31.

8 Transitioning Tiles
The transition process starts once a state notification agent from a neighboring supertile

reaches another supertiles table. The table is locked by standard procedure, and if the lock
is successful, the agent is admitted into the table.

8.1 Finding Intersection

The wire this agent is entering on implicitly encodes the state of the neighboring supertile.

To determine whether there is a transition, it needs to find the active state column. The
active state column has special door states, so when the agent reaches the active state door,
it is no longer able to traverse further into the table. Reaching this door ensures that the
agent will have the chance to transition with the transition storage door below, which is only
unlocked (if a transition exists) in the active state column. If there are no transitions then
the transition storage area door will be in a no transitions available state, see Figure 32.

33

34

Intrinsic Universality in Seeded Active Tile Self-Assembly

= =
= -
i
£ il W H
.
SE il
| - @ = g
Bl O
| (] = =
i I T 5
s = =
. Bl Z mL_| 1
(=]
[—

BELLEEEEEE T
\ | |
|

C

—

Figure 28 Receiving states from neighboring supertiles.

=

If there are transitions and the state notification agent does not choose to back out of
the transition process and table altogether, then the process to prepare both supertiles for
transitioning begins.

8.2 Transmitting Intention to Transition

First, it must be confirmed that the neighboring supertile that sent the state notification
agent is still in the state it was when it sent the agent. The agent confirming the state locks
the tile into its current state.

This process starts with the State Notification Agent transitioning into a Transition
Preparation Agent—Confirm Neighbor when swapping with the unlocked transition storage
area door in the active column. During the swap, the transition storage area door has
“awaiting confirmation” appended to its state.

The Transition Preparation Agent—Confirm Neighbor traverses down the storage area
wire and out the transition storage exit door. As it cannot swap with the south door of the
datacell’s bottom crossover door, thus we can ensure it exits out of the output wire in the
same state and in the same direction it came from.

The Transition Preparation Agent—Confirm Neighbor will leave the table locked as it
exits. If we find the neighboring table locked, the transition is rejected, and an agent is sent
to reset the transition storage area door and unlock the table afterward.

T. Gomez et al.

= o
l 1 1
" N
=ttt .
11 ki
111 T
111 T 0T ®
et
11 5
| 2
1
o N =l
2
" g u|
] : [
NN PN
11 k]
> &
111 T

Figure 29 Selecting the state of the supertile.

Rejection of Neighbor Tile State

Once the Transition Preparation Agent has locked the neighboring supertiles table and
traversed the columns to the active state, it will enter through the transition storage door as
within the other datacell. As the Transition Preparation Agent - Confirm Neighbor became
Transition Preparation Agent - Confirm Self-Intersection when swap-transitioning with the
current datacells transition storage door, it will then traverse to the bottom of the transition
storage area where the self-intersection marker tile sits. If the self-intersection marker tile is
instead a not self-intersection tile, the Transition Preparation Agent will reject the transition,
traversing back to the transition storage entrance door and deselecting it, then walking out
of the datacell and unlocking the table upon exit. Once it reaches the initial supertile, it will
enter the table (still unlocked at that particular door) and remove the “awaiting confirmation’
designation from the active states transition storage area entrance door, finally locking the

i

table on its way out.

Confirmation Neighbor Tile State

However, if the lookup is confirmed to be at the “self-intersection,” we know the neighbor’s
state has not changed. Thus we instead send a Transition Preparation Agent - Neighbor
Confirmed back to the originating supertile. In addition, we send a wire setting agent to
open the way from our datacell down to the state lookup chute exit wire for the respective
direction and an agent to follow that to trigger the transition selection gadget, see Figure 33.

Copying Transition Rules

Each supertile begins copying its transitions largely using the same method as during
attachment. First, the door is activated, which activates the unary (or filler) tile behind it,
which then transition-swaps with the door into a spawn copy state, which will spawn into

36

Intrinsic Universality in Seeded Active Tile Self-Assembly

=] | | =] | |
I b i il
i ——— I
= wh I
= —) 3]
IS ED ol il
IS W g u
3] S e e =
DS — s
I T [
[=5]
-
e
Tfr"
,,;[‘""é
[il
=T
IS
x.‘[NIl
J g e C
o) W H
|
i |

Figure 30 Testing for neighbors and unlocking supertiles.

the wire outside the door. Once the number has successfully copied onto the wire it will
flip through its row until it hits the end of data row tile where it will return to its normal
inactive state. Once the door has cycled through all of the data string tiles, it will shift to a
finish buffer cycling state and stop opening, simply transitioning with buffer tiles so that
they flip behind the data string as before until the beginning of the data string reaches the
door again. Once this occurs, the current door will trigger the door below it to begin its
copying process. This is continued until all data strings have been copied into the wire and
are heading to the transition selection gadget, as in Figure 34.

Filling the Transition Selection Gadget.

For supertiles transitioning with a neighbor to their east or north, a wire setting/locking
agent must be sent by the Transition Director upon reaching the edge of the tile, as the
transition selection gadget is on the opposite side of their lookup chute exit.

Once the Transition Director reaches the transition selection gadget, the entrance door
and the first row will be activated to begin overwriting the blank filler tiles within the gadget
rows. The fill door will allow one data string to go through before it needs to be unlocked by
the Transition Director again. After each row is filled, the wire tile next to the door below it
is unfrozen. As we are filling top to bottom, this ensures data strings do not fill improperly
to doors below.

Selecting the Transition.

Once all of the data strings are properly in their rows the transition director will activate
the selection agent for its half of the transition selection. The agent will traverse on the

T. Gomez et al.

il | [&5] |
e T
B [l | | D [l
TS T |
| el
il W =Nl §
| DT
= (S e —) (|]
‘ $] g
W I (|]
0 ST CJd DS C
I § =R §
= =
—
—IIIIIE ,_| T
I
L] | Wl
Tgfi i
TQ‘
= | ,
QY| i
'Q_‘ 11—
= IR T
=R I
T
3 o L
=
(W] T_ [1

Figure 31 Sending out new state to neighbors.

transition border wire parallel to (and touching) the other supertiles transition border wire.

The agents randomly walk up and down the transition selection wire.

Once both have been activated, it is possible for them to align next to one another at
one of the transition rules and have the chance to select, see Figure 35. When a transition is
selected, the two agents must double transition, instantly choosing the new state of their
respective supertiles simultaneously. When determining the supertile of a state, the highest
priority is if a row/column has been selected in the transition selection gadget, and then if
there is none, the active state column of the supertile.

The agents may also choose an abort transition row/column double transition option at
any time.

Once a transition is selected, the data string is copied out of the appropriate row/column
it was being held in and led by a transition director to the top state lookup chute wire. The
transition director has special override authority at the table border to open this top wire
and allow the data string to traverse through the table.

8.3 Transitioning States

FEach supertile is in charge of completing its respective half of the transition rule.

37

38

Intrinsic Universality in Seeded Active Tile Self-Assembly

E= ! =]
',g\ 1 o ‘;\)
T.’\ § e o g
== —= N T
] |
o H u = | i
P I
= = DT
= N H = H
g) (|

fR— |
SIS = ST
= —
[[[m] [[[m | I

Figure 32 An agent discovers the existence of a transition with its neighbor.

E= ! W=]
I,“ml l,&ml
INEE G il |
| Z|E=:
= = [
[|l [l
= T m T S H
S 0)| 1l
[
Lo i
0 U(ﬂ 1

i s £ ~ T

=N ST 3 . 4 TS T

| =S [== =

I I I |

Figure 33 The agent checks whether the neighboring supertile is still in the same state and locks
the neighbor’s table.

Punch Down Mechanism and Data String Traversal.

The data string will traverse the input wire however many columns are specified by the data
string. The punchdown tile will transition with a 1 tile turning the 1 tile into an east wire
tile, thus decrementing the data string, and the punchdown tile will tell the door handle to
unlock the door. Once the door swaps and transitions with the end-of-data string tile, it will
reset fully with its door handle, return to its locked state, and tell the punchdown gadget to
reactivate through its handle.

Deselecting the Previous State.

The data string ends in an end-of-data string tile that, when it is punched down, updates
that column as the new state. Before this can occur, the old column must be deactivated.
Thus 2 agents are sent, one to the east and one to the west to search for and deselect the old
active column.

When one reaches the old active column, it will spawn agents to traverse north and south,
deactivating active state doors. When they reach the bottom of the table, they report back
to the Deselection Agent, who reports back to the state update pending door, waiting for
confirmation of deselection (and no column from the other direction).

T. Gomez et al.

[&5] | — | (5] | 1
TT-]::*'l ES S
1 3 |
[& . — &=
J — | == 2= = L
i [i [

Figure 34 The transitions are sent to the transition selection gadget.

$$®-)-)-)~E Ol -|e|el|e«|® ®|>|>|>|-|0
0] slela]]1] |O] Ojcl«e]efefef[[0] |O
01212]2]2]1C]¢ 1 K| E|:_11 E|
JOl2|212|>2|s|e|lelecle|O] E| N EN A R BN RN BN R K
YIAl2]121212]|S1slelelelelO]v | bl IR0% E|
-2 - |OI0]-|€le]€]- =122 1010 -|€|€|€]-

[272]

I

Figure 35 Left: The transition selection gadget is filled row by row. Right: Transition Selection
gadget selects a transition to take.

Activating New State Column.

The activation of the column looks much the same as the deselection of the state column; see
Figure 36. The state update pending agent (waiting next to the affinity door) sends agents
north and south to activate each column door as the active state and fill the state storage
tile at the top with the new active state.

If the column selected is the current active state column, then only the wipe transition
selection gadget agent is sent.

Wiping Transition Selection Gadget.

Once this has been reported to be complete, the door will spawn a wipe transition gadget
agent, which will traverse through the new active state column to the bottom of the state
lookup chute wire for its direction and travel to the transition selection gadget. Upon arrival,
the agent will enter the transition selection gadget and trigger the rows/columuns to cycle
wipe each of the tiles in its slot. This works much like copying for the filler tile cycling;
except instead, it is erasing values. After the wiping agent has checked off all slots to be
complete, a recapture of the agent will be triggered. When recapturing the agent has been
confirmed it can then exit the transition selection gadget, resetting the gadget door and any
wires set/doors locked by the transition process at the edge of the tile.

39

40

Intrinsic Universality in Seeded Active Tile Self-Assembly

(=] t t L] 1 !
mEo | SiolT
) i —= IS 5
BT —= S

i il
[T § m] §

. 4 i i i
I TSI ¢

Q i i N

3| a— (i 151 — [= = =

0 il i . Y ji i

[[[m] [[[[m] I

Figure 36 The supertiles independently transition by first deselecting the old column and then
selecting the new one.

Sending Out New State.

Once the wiping agent has returned to the active state column, the column is triggered to
send out the new active state at each self-intersection. The table is unlocked by the first
state transmission agent that reaches it.

9 Metrics

As the vast majority of states are dedicated to the operation and copying of crossover doors
we cover this aspect first. Next is agents and finally other gadgets states.

The number of states was calculated as follows:

Nearly all crossover gadgets have four doors, each of these four doors may have been set to
one of two directions (standard and reversed) each one of these doors has the following states:
active, waiting, open, reset, pushback, and locked. Thus, there are 7 states for standard
operation over 8 possible doors making 56 per crossover gadget type as standard. All doors
use the same handle set adding only 12 states to the total calculation. In total 42 crossover
gadgets are necessary coming to 2352 states for standard operation.

Additionally, during the copying process the majority of crossover gadgets have a copy
yourself state for each door (though the doors enter a state reset when complete unlike other
copy processes) and a copy agent for 9 additional states per type. For placement we transition
with the first blank tile it swaps with to a wire tile, then we overwrite the leftover second
placement tile, and lastly each of the four doors are put into their respective blank tiles,
adding 5 additional states (other agents will set them to standard or reverse as necessary).
As such the copying process of each crossover door requires 15 states and thus 630 for the
entire construction.

There are 16 non-crossover doors in the system that each have the above standard
operations (and half have independent handles) adding to 120 states. Crossover doors have
special states to indicate that there is no neighboring door, adding 96 states to the incoming
and outgoing state transmission crossovers for each direction. Corner crossover doors can be
claimed by a neighboring supertile, adding 64 states.

9.1 Agents

Agents locking and unlocking the table requires 30 agent states and 5 additional door states.
Initiating transitioning, copying the data strings, and ensuring they reach the appropriate

T. Gomez et al.

locations requires an additional 31 agent states, and 24 door states. Selecting the new state
within the gadget, copying out the data string for the new state, and wiping or aborting the
transition requires 34 states.

9.2 Copying States

General Copy States and Agents. Each direction of placement tiles requires an inactive,
active, complete, and special crossover double state, adding to 16 states.

Copying Crossovers. Each of the crossover doors (regular and reversed) must have a state
indicating they should copy themselves, a state indicating to spawn the same agent, an agent
which must traverse 2 steps to the center of the crossover gadget then check off that the
doors (not reversed) have been attached at each side. As this requires 15 states and there
are 42 crossovers, this adds 630 states.

Locking Agents. Each step that requires a locking agent needs a spawn/waiting state for
the copy director and the locking agent itself needs an active, lock door 1, lock door 2, exit
crossover, and locking complete state. Nearly every locking agent also needs the copy director
and an unlocking agent with the same states for a total of 14 states. There are a total of
10 phases that require locking agents, but the state transmission wire construction needs
these for each side. In addition, there are 30 other miscellaneous states that are used across
various phases. This brings the total of these to 212 states associated with copy locking.

Placement Director. The placement director has an awaiting direction tile, an overwrite
completed direction tile, a waiting state tile, an overwrite state tile, a waiting crossover agent
completion, overwrite crossover agent, lock door 1, lock door 2, exit crossover, and complete
states, making 10 states over 4 construction directions for 40 states. This standard version
applies to 4 phases, but cycling is done 11 times due to subphases for a total of 462 states.

Additionally, the copy director and/or placement director will spawn placement directors
or subordinate placement directors and wait for their completion 22 times. Doing this for 4
directions for 44 states per directions makes for 176 states added.

Aborting Process. The abort construction process (not including reactivation) takes 10
states to overwrite, wipe, and inform the copy checkpoint/director for each direction, adding
a total of 40 states.

Traversing Opposite. In 13 phases and subphases the copy director must traverse to the
opposite side of the tile. Adding 52 states.

Datacell Outlines. The subordinate prime placement director must be spawned, place a
wire to the south, door to the west and a border tile to the east before moving on, when
it runs into a no state tile to its south it will instead place an exit door and mark itself
complete. As this doesn’t depend on the direction, it only adds 6 states.

Filling Datacell. Copying each transition rule requires the copy director to activate each
tile for copying, flipping through them without sending direction tiles at this phase; they will
mark themselves complete in addition to the copy director, the placement director and tiles
do in this in reverse on the opposite side. With the necessary checkpoints included this adds
22 states.

41

42

Intrinsic Universality in Seeded Active Tile Self-Assembly

Vertical Table Wires. In addition to the check off states (counted above) the south traversal
agents need to skip crossovers and the final one needs to lock on the way up adding 6 states.

State Transmission Wires. As each copy and placement director needs to check off first
and last for each direction and crossovers need to be skipped there are 32 states added.

Reactivating Neighboring Supertile. The agent must delete the checkpoint, traverse to the
top of the table to spawn a generic sub-agent that doesn’t depend on construction direction,
unlock the table, check for where the active state column is, spawn an activation agent, and
let the newly finished tile know this process is complete adding 12 new states.

Activating New Table. In the new supertile the table doors must be moved into special
door states added to the east and west of each table edge state transmission wire crossover.
This adds 14 new states.

Requesting, Receiving, and Selecting States. Requesting and receiving states requires
and agent to send them from each direction in the active state column, the state requesting
agents themselves, and special state transmission agents. Selecting the state requires abort
and select, if the state is not a full state then an additional special agent is required, adding
9 states.

Activation, Unlocking, and Transmitting. The activation of the new column, doing a
special unlock of the table the self and neighboring tiles outlines and transmission of the new
state adds 11 new states.

9.3 Final Count

There are an additional 40 miscellaneous states used in the construction bringing the total
number of states to 4600, including 2600 non-copy states for our final ACA state count.

10 Correctness of Construction

Here we give proofs of correctness. We first (re)state our main lemma.

» Theorem 15. There exists a tile set (Xy, Ay, My, Ay) such that, for all systems T' =
(X,A 10, A, 8, 1), there exists a T = (Sy, Av, Uy, Ay, sy, 1) that simulates T at scale O(|X)3).

We prove this via the following lemmas which each satisfy a condition of simulation. We
start with a helper Lemma.

» Lemma 19. For any assemblies A € PROD(T") and Ay € PROD(T'y) such that A =
R*(Ay), any assembly By such that Ay —1 By satisfies either R*(Ay) = R*(By) or

Proof. An attachment can never change a mapping because if a supertile is incomplete it
maps to the empty state. Once the datacell has been built it sends a signal to it’s neighbors.
Its neighbors will respond by sending an agent which walks into the table. If it reaches an
intersection in the table where there is an affinity rule it immediately changes the mapping to
the new state simulating an attachment. The next available transitions mark the remaining
tiles in the active state column.

Until a superstate transition is selected none of the changes that can be made in the
supertile change the mapping since they do not change the active state column. <

T. Gomez et al.

Equivalent Production.

» Lemma 20. For any assembly Ay € PROD(T'y), the assembly R*(Ay) € PROD(T).

Proof. Any producible supertile either (1) maps to a empty state, (2) has only an active
column which signifies the state in 3 it represents, or (3) has an active column and a selected
transition in which case it maps to the state after the transition.

We will use induction along with Lemma 19 to prove that all assemblies are producible.
For our base case we consider the seed in both systems. We replace each tile in the seed
s by supertiles representing that tile to get seed assembly syy;. Then by Lemma 19 every
move we make on assemblies Ay in PROD(T';;) creates an assembly By which represents
an assembly B that is reachable by A in I'. |

» Lemma 21. For all Ay € PROD(Ty), Ay maps cleanly to R*(Ay) with 1-fuzz.

Proof. The seed sy we create maps cleanly to the original seed s as we only place supertiles
in locations where tiles take place.

Each ghost tile is built from a neighbor boundary first. Once the boundaries are built,
the ghost tile copies the contents of the supertile. It is not until the supertile is complete
and has selected a state that it begins to attempt to build neighboring ghost tiles. Therefore
each ghost tile is adjacent to at least one properly mapped tile. |

Equivalent Dynamics.

» Lemma 22. For all A, B € PROD(T") such that A = B, it holds that for all Ay such
that R*(Ay) = A, we have Ay =V By for some By € PROD(Ty) with R*(By) = B.

Proof. Consider any pair of assemblies A, B € PROD(T') such that A —! B. Pick an
arbitrary Ay such that R*(Ay) = A. If this transition was achieved via an attachment the
agent selects the active tile column by traversing the datacells at an intersection. It may also

chose to not stop at the intersection and continue on or go backwards to select another tile.

This allows Ay to achieve any attachment performed by A.

For transitions, all available rules will be loaded up into the transition selection gadget. If
the two agents meet they may select the transition and instantly change the mapping of both
tiles, transitioning from Ay to By based on our mapping. However, the non-deterministic
process may not select a transition at all and will allow the agents to keep walking to select
any transition, or abort. |

» Lemma 23. If Ay =V By for some Ay, By € PROD(T'y), then R*(Ay) —' R*(By)
or R*(AU) = R*(BU)

Proof. If a attachment or transition does not change its mapping then we satisty R*(Ay) =
R*(By). For a ghost tile to transition to a valid mapped tile, it must have an active
state column. This active state column is only build and actually activated if there was a
neighboring supertile that had the appropriate affinity.

For a transition the agents must both match and find the same transition in order to
change the mapping of the tile. Only proper legal transition may be placed in the table so
all of these must be valid transitions from R (A’) to R*(B). <

43

44

Intrinsic Universality in Seeded Active Tile Self-Assembly

Transitivity of Simulation.

Here we show the definition of simulation is transitive, and hence we may chain many
simulations together. It is possible that chaining 1-fuzz simulations results in an increase
in fuzz by a constant factor. However, in our case we preserve 1-fuzz which we prove in
Theorem 25.

» Lemma 24. The definition of simulation is transitive. If each simulation is 1-fuzz and has
scale factor larger than 1 then the resulting simulation has at most 3-fuzz.

Proof. First consider a chain of k simulating systems where I'; simulates I';;1 for 0 <1 < k.

Condition 1 from equivalent productions, and both the follows and models conditions
of equivalent dynamics are all preserved by the fact we may compose the representation
functions.

The second condition of equivalent productions, namely the c-fuzz bound, requires more
care as the fuzz of a simulation is not immediately preserved. However, we can ensure that
the fuzz will be bounded by at most 3. At each simulation step, the size of a supertile is
getting smaller by a fraction a < % Since each simulation has at most one ghost tile next to
its valid parts of the assembly, every simulation can add at most one ghost tile neighboring
the previous one, which is a fraction a smaller than the previous. Since o < %, this geometric
series in the plane can reach a distance of at most 3 from the original supertile. <

Even though chaining 1-fuzz simulations can lead to a simulation using 3-fuzz, chaining
our specific construction would never lead to more than 1-fuzz.

» Theorem 25. Chaining our simulations results in a 1-fuzz simulation.

Proof. The individual tiles of a supertile S would never go outside the boundingbox of
S. Take an individual tile ¢ on the edge of S. If we would chain simulations, ¢t would be
simulated using a supertile S’. Supertile S’ would only build a new ghosttile outside of S if ¢
would want to build outside of S. Since this never happens, chaining our simulation only
results in 1-fuzz. |

Universality Results.

» Theorem 18. There exists a tile set (Xy, Uy, Ay, 1) such that, for all systems T' =
(S, AT, A s, 7), there exists a TV = (Sy, Av, Uy, Ay, §', 1) that simulates T' with 1-fuzz at
scale factor O(min((7|3])3, |2]°).

Proof. Lemma 15 states that temp-1 is IU for itself.

Chaining these two simulations will still result in a 1-fuzz simulation as ghost tiles are
only built where a new tile may attach. Our construction in Theorem 16 has 1-fuzz and
the ghost tiles that attach do not have any other affinities with neighboring tiles. Thus the
supertile simulating them in Lemma 15 will not place any additional ghost tiles. For the
same reason any assembly which has no attachments will not build any ghost tiles and thus
have no fuzz. <

11 IU TA Simulates 2D Asynchronous CA N =2

Previously, a partial proof of 1D asynchronous cellular automata (ACA) being intrinsically
universal was shown in [30]. Here, we apply techniques used throughout this paper to show
two subsets of asynchronous cellular automata are intrinsically universal. We start by defining
pairwise and block-pairwise ACA.

T. Gomez et al.

A B C D : X13r§4 X15 | X16|| X3 IXA
XlZI A | X8| X7 B |X5

X11|X10 [X9 | Xg | X7 | Xg

a; [ay|asg b, |by|bs Ci[C|Cs|di|dy|ds E
B |A|a|bg|B|by| — Cg| C|Ca|dg|D|dy ' |A|x1a|—>|C|X13| |X17|B|—>|X17|D|
a; | ag|as|b, | bg|bs €7 | C|Cs[d;|ds|ds E
________________________________ o _: |C|X18| — |C|Y1e| |X17|D| — |t |D|
| ag | by | — | X1 | by | Xis'__X’M X1 | X2 [X3 IX4 i |Y13| t | — |Y18|Y17|
xd| Ala[bs [B [}xs|
.] ; Rules to Converty;tocjord;:
|X_1|b_1| . IX_1|X_2| X11|X10 [X9 | Xg | X7 [Xg :

| Yi |Xx-1| — | Yi |Yx-1|

alo] — [x]x Prafoa] — feae]os] o] — [o]a]
|||k i | Xir1 14| X1 14 | X15 ; |C|Yi|—>|C|Ck| pD{vi| — [D]d
[xfa] — [P Pelra] — fosle] 0 [e] — [o]] L4] — [a]o]

Figure 37 Simulating a dual-transition rule with only single-sided transitions. We scale the
simulation by 3 and any transition occurs by “locking” the two tiles, transitioning the two tiles, and
then unlocking them. The rules shown are a general idea, but it requires an additional 53 states.

Asynchronous Cellular Automata An Asynchronous Cellular Automata (ACA) system is a
4-tuple I' = {£, N, A, C}, where ¥ is a set of states, N € N is the neighborhood of ', A is a
mapping A : ¥V — ¥ and C is a configuration that is a mapping C : N> — 3. We refer to
each mapping in A as a transition rule.

Pairwise ACA. A pairwise ACA is an ACA with one extra consideration. More formally,
it is defined as a 4-tuple T' = {X, 5, A, C'}, where S consists of all possible subsets of size 2
between a cell ¢ and adjacent cells in each cardinal direction, and A is a mapping A : X% — ¥,
where s € S. If A is a mapping A : 3% — ¥° we consider ' a block-pairwise ACA.

Note that these automaton are a subset of radius-1 ACAs since we can transform each
transition rule in A into larger mappings that ignore the neighbors not included in the rule.
However, this increases the number of rules by a factor of |X|? since we need to account for
all possible configurations of the neighborhood.

» Lemma 26. Block-pairwise ACA is strongly intrinsically universal.

Proof. Let R be a representation function for a given block-pairwise ACA system I' =
(%,S5,A,C). Map each cell ¢ € C to ¢ such that R(¢') = C(c), including a mapping for
empty cells, in the same manner as a seeded TA system. As with the techniques described in
earlier sections, each new cell ¢’ stores state information about each of its 4 neighboring cells
and the transitional information from I'; ensuring cells are only able to change from some
R(d') = o to R(¢) = ¢’ if there exists a valid transition rule from A to allow it. <

» Lemma 27. Dual transitions in Tile Automata can be simulated by single-sided transitions
at constant scale with O(A3) additional states where Ag is the number of dual-transition
rules in the system.

Proof. This was previously addressed in [4] in relation to the signal tile model. Figure 37
gives a general overview of how to do this simulation at scale-3 with an additional 53 states.

45

46

Intrinsic Universality in Seeded Active Tile Self-Assembly

Basically, all tiles around the two 3 x 3 macroblocks change before changing the states. This
locks them into the transitions, and is reversible until state bg changes to x17. The z’s then
change to y’s after the A — C and B — D change. The y’s then turn to ¢’s and d’s. |

» Theorem 28. The Asynchronous Cellular Automata model with a cardinal-direction
neighborhood of size-2 and radius-1 (pairwise ACA) is strongly intrinsically universal.

Proof. Pairwise ACA is a special case of block-pairwise ACA. However, any cell transitions
based on its neighbors. Thus, all transitions are single-sided in terms of Tile Automata. Thus,
we modify the block-pairwise IU result from Theorem 26 to only use single-sided transitions
through scaling as shown in Lemma 37. This means that there is a constant-size set of states
that is intrinsically universal. <

12 Conclusion

We showed that no passive or freezing tile assembly model can be non-committal intrinsically
universal. However, we showed that the seeded Tile Automata model, with its unbounded
state changes, is non-committal intrinsically universal. This is done by showing TA is
intrinsically universal even under temperature 1 using 1-fuzz. Moreover, a Tile Automata
system using temperature 7 > 1 can be simulated using a system that uses temperature at
most 1. Chaining these two simulations shows that there exists a tile set that can simulate
any Tile Automata system. This intrinsic universality result has direct implications for
certain Cellular Automata. Moreover, the result directly implies that the original aTAM
model can be simulated using Tile Automata.

There is significant room to optimize and minimize the tile set. For example, the number
of tile states necessary to copy a supertile is large, whereas big sections of the supertile
will always be the same, independent of what system we are simulating. Furthermore, the
temperature simulation, and consequently the universal simulation, uses a lot of states. It
might be possible to combine both simulations into one, by storing the affinity strength in
the datacell. A ghost tile would then need to check all neighboring supertiles for their affinity
strengths and add them up, before deciding which state it will become.

Another obvious open problem is that of dimensions other than two. It is still unknown
whether the Tile Automata model is intrinsically universal if you extend the model to one,
or to three or higher dimensions. Even though our simulation could technically simulate a
one dimensional tile set, the supertiles would still use two dimensions themselves.

Finally, as in the aTAM model, our construction heavily relies on the fact that (locally)
only a single tile can attach at a time. Because of this, our current construction only shows
the seeded Tile Automata model to be intrinsically universal. Hence, the question arises
whether or not the non-seeded Tile Automata model is intrinsically universal.

—— References

1 Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew
Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie. Building squares with optimal
state complexity in restricted active self-assembly. Journal of Computer and System Sciences,
138:103462, 2023. doi:10.1016/j.jcss.2023.103462.

2 Edwin Roger Banks. Universality in cellular automata. In 11th Annual Symposium on
Switching and Automata Theory (swat), pages 194-215, 1970. doi:10.1109/SWAT.1970.27.

T. Gomez et al.

10

11

12

13

14

15

16

17

18

19

Raimundo Briceno and Ivan Rapaport. Communication complexity meets cellular automata:
Necessary conditions for intrinsic universality. Natural Computing, 20(2):307-320, 2021.
d0i:10.1007/s11047-021-09857~-z.

Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Signal Passing Self-
Assembly Simulates Tile Automata. In 31st International Symposium on Algorithms and

Computation (ISAAC 2020), volume 181, pages 53:1-53:17, 2020. doi:https://doi.org/10.

4230/LIPIcs.ISAAC.2020.53.

Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing Simulates Non-freezing Tile Automata. In DNA Computing and Molecular
Programming, pages 155-172, 2018. doi:https://doi.org/10.1007/978-3-030-00030-1.
Erik D. Demaine, Martin L. Demaine, Sdndor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One Tile to Rule Them All: Simulating Any
Turing Machine, Tile Assembly System, or Tiling System with a Single Puzzle Piece. ArXiv
e-Prints, 2012. doi:10.48550/arXiv.1212.4756.

Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers,
and Damien Woods. The Two-Handed Tile Assembly Model is not Intrinsically Universal.
Algorithmica, 74(2):812-850, 2016. doi:10.1007/s00453-015-9976-y.

David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The Tile Assembly Model is Intrinsically Universal. In 53rd Annual Symposium
on Foundations of Computer Science, pages 302-310, 2012. doi:10.1109/F0CS.2012.76.
David Doty, Jack H Lutz, Matthew J Patitz, Scott M Summers, and Damien Woods. Intrinsic
Universality in Self-Assembly. In 27th International Symposium on Theoretical Aspects of
Computer Science (2010), 2010. doi:10.4230/LIPIcs.STACS.2010.2461.

Bruno Durand and Zsuzsanna Roka. The game of life: universality revisited. In Cellular
Automata: a Parallel Model, pages 51-74, 1999. doi:10.1007/978-94-015-9153-9_2.
Jérome Olivier Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular
automaton. In 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 439-450, 1997. doi:https://doi.org/10.1007/BFb0023479.

Eric Goles, Pierre Etienne Meunier, Ivan Rapaport, and Guillaume Theyssier. Communication
complexity and intrinsic universality in cellular automata. Theoretical Computer Science,
412(1-2):2-21, 2011. doi:10.1016/j.tcs.2010.10.005.

Daniel Hader, Aaron Koch, Matthew J. Patitz, and Michael Sharp. The Impacts of Di-
mensionality, Diffusion, and Directedness on Intrinsic Universality in the abstract Tile As-
sembly Model. In Symposium on Discrete Algorithms (SODA), pages 2607-2624, 2019.
d0i:10.1137/1.9781611975994.159.

Jacob Hendricks and Matthew J. Patitz. On the Equivalence of Cellular Automata and the
Tile Assembly Model. Electronic Proceedings in Theoretical Computer Science, 128:167—189,
2013. doi:10.4204/EPTCS.128.21.

J Tirgen Albert and Karel Culik II. A simple universal cellular automaton and its one-way
and totalistic version. Complex Systems, 1:1-16, 1987.

Grégory Lafitte and Michael Weiss. Universal tilings. In 24th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), volume 4393, pages 367-380, 2007. doi:https:
//doi.org/10.1007/978-3-540-70918-3.

Grégory Lafitte and Michael Weiss. An Almost Totally Universal Tile Set. In Theory and
Applications of Models of Computation, volume 5532, pages 271-280, 2009. doi:10.1007/
978-3-642-02017-9_30.

Grégory Lafitte and Michael Weiss. Tilings: simulation and universality. Mathematical
Structures in Computer Science, 20(5):813-850, 2010. doi:10.1017/S0960129510000228.
Maurice Margenstern. An algorithm for building intrinsically universal cellular automata in
hyperbolic spaces. In International Conference on Foundations of Computer Science (FCS),
pages 3-9, 2006.

47

48

Intrinsic Universality in Seeded Active Tile Self-Assembly

20

21

22

23

24

25

26

27

28
29

30

Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 752-771, 2014. doi:
10.1137/1.9781611973402.56.

J. von Neumann. Theory of self-reproducing automata. Urbana, University of Illinois Press,
1966.

N. Ollinger and G. Richard. Four states are enough! Theoretical Computer Science, 412(1-2):22—
32, January 2011. doi:10.1016/j.tcs.2010.08.018.

Nicolas Ollinger. The Quest for Small Universal Cellular Automata. In Automata, Languages
and Programming, volume 2380, pages 318-329, 2002. doi:10.1007/3-540-45465-9_28.
Nicolas Ollinger. The Intrinsic Universality Problem of One-Dimensional Cellular Automata.
In Helmut Alt and Michel Habib, editors, STACS 2003, Lecture Notes in Computer Science,
pages 632—641, Berlin, Heidelberg, 2003. Springer. doi:10.1007/3-540-36494-3_55.
Nicolas Ollinger. Universalities in cellular automata; a (short) survey. Journees Automates
Cellulaires, 2008.

Philip Petersen, Grigory Tikhomirov, and Lulu Qian. Information-based autonomous reconfig-
uration in systems of interacting DNA nanostructures. Nature communications, 9(1):5362,
2018. doi:10.1038/s41467-018-07805-7.

Namita Sarraf, Kellen R Rodriguez, and Lulu Qian. Modular reconfiguration of DNA origami
assemblies using tile displacement. Science Robotics, 8(77):eadf1511, 2023. doi:10.1126/
scirobotics.adf1511.

Erik Winfree. Algorithmic self-assembly of DNA. California Institute of Technology, 1998.
Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567(7748):366-372, 2019. doi:10.1038/s41586-019-1014-9.

Thomas Worsch. Towards intrinsically universal asynchronous CA. Natural Computing,
12:539-550, 2013. doi:10.1007/s11047-013-9388-3.

	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 The Seeded Tile Automata Model
	2.2 Simulation

	3 Impossibility for Passive or Bounded State Change Systems
	4 Overview of Intrinsic Universality in TA
	4.1 Temperature-1 Seeded TA is Intrinsically Universal
	4.2 Temperature Simulation at Scale-1
	4.3 Seeded TA is Intrinsically Universal

	5 Temperature Simulation
	5.1 Alternate Upper Bound

	6 Supertiles
	6.1 Agents & Gadgets
	6.2 Table & Wiring
	6.3 Outer Shell

	7 Attachment
	7.1 Initiation
	7.2 Checking Attachment
	7.3 Preparing for Copying
	7.4 Copying Supertile Outline
	7.5 Construction Wires
	7.6 Copying Table
	7.7 Activating Tile and Determining State

	8 Transitioning Tiles
	8.1 Finding Intersection
	8.2 Transmitting Intention to Transition
	8.3 Transitioning States

	9 Metrics
	9.1 Agents
	9.2 Copying States
	9.3 Final Count

	10 Correctness of Construction
	11 IU TA Simulates 2D Asynchronous CA |N| = 2
	12 Conclusion

