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Abstract

In this paper, we seek to provide a simpler proof that the relocation problem in Ricochet Robots (Lunar
Lockout with fixed geometry) is PSPACE-complete via a reduction from Finite Function Generation (FFG).
Although this result was originally proven in 2003, we give a simpler reduction by utilizing the FFG problem, and
put the result in context with recent publications showing that relocation is also PSPACE-complete in related
models.

1 Introduction

In this paper we study the complexity of relocation within the puzzle-game Ricochet Robots [10], which is equivalent
to the game Lunar Lockout with fixed geometry [12] (see Figure 1 for pictures). The Ricochet Robots puzzle consists
of a 2D grid board containing polyomino obstacles and a collection of unit-size robots placed on the board. The
player may select any robot and move it maximally in any of the four cardinal directions. With this basic operation,
the goal (relocation problem) is to move a target robot to a target goal location on the board.

While deceptively simple, even the single-player puzzle version of this game has proven to be quite complex, with
online solvers being written to help develop solving strategies [4, 9, 11]. The relocation problem with Lunar Lockout
was originally shown to be NP-hard in 2001 in [7]. With fixed geometry, it was shown to be PSPACE-complete in
2003 in [5]. Recent work has also focused on some parameterized results for Ricochet Robots [6].

The proof of PSPACE-hardness was proven by showing any polynomial-space Turing machine can be transformed
into an instance of Lunar Lockout with fixed geometry [5]. In this paper, we show a simpler proof by reducing from
Finite Function Generation [8], which was proven to be PSPACE-complete in 1977.

This work fits into a larger landscape of “Tilt” problems that have received recent interest. Given a 2D board
with both open locations and blocked locations, as well as a set of unit-size robots placed at open locations on the
board, the question of relocating a particular robot to a particular location has been studied under two fundamental
variants: global signals versus local signals, and unit steps versus maximal full steps. In the case of global signals,
each move (in one of the four cardinal directions) moves ALL robots on the board in the specified direction. In terms
of step distance, in the unit step variant, a moved robot takes just a single step in the specified direction, while in the
full step variant each robot moves maximally in the specified direction until a wall or another robot is encountered.
Together, these variants create four natural versions of the relocation problem for consideration.

In the case of global signals and full steps, the relocation problem was recently shown to be PSPACE-complete
in SODA 2020 [1]. In the case of global signals with single-steps, the problem has also recently been shown to be
PSPACE-complete [3]. For local signals and single-steps, the problem is easily solved in polynomial time. However,
recent work by Brunner, Chung, Demaine, Hendrickson, Hesterberg, Suhl, and Zeff [2] have considered an interesting
variant in which each piece has a provided path that it must travel along, making the problem PSPACE-complete.
Within this landscape, the remaining of the four natural tilt models is Ricochet Robets with local signals and full
steps. A summary of these results is provided in Table 1.

2 Model Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D square lattice in which specific locations are marked
as blocked. Formally, an m× n board is a partition B = (O,W ) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where
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(a) Lunar Lockout (b) Ricochet Robots

Figure 1: The board games Lunar Lockout and Ricochet Robots.

Tilt Model Signal Polyominoes Complexity Reference

Unit

Single 1× 1 P

Single (paths) 1× 1 PSPACE-complete [2]

Global 1× 1 PSPACE-complete [3]

Full
Single 1× 1 PSPACE-complete [5], Thm. 3.5

Global 1× 1 PSPACE-complete [1]

Table 1: An overview of related models and the complexity of the relocation problem. All have concrete or fixed
polyominos that can not move in a connected board. The Single (paths) model requires that every tile moves along
a specific path given for each tile. This paper gives Theorem 3.5, which proves relocation in full tilt with single
signaling.

O denotes a set of open locations, and W denotes a set of blocked locations- referred to as “concrete” or “walls.”
Based on a geometric hierarchy [1], here we create a connected board1. A board is said to have connected geometry
if the set of open spaces O for a board is a connected shape.

Tiles. A tile is a labeled unit square centered on a non-blocked point on a given board. Formally, a tile is an ordered
pair (c, a) where c is a coordinate on the board, and a is a tile label. In this work we have no attachments between
tiles and simply use it as an identifying label.

Configurations. A configuration is an arrangement of tiles on a board such that there are no overlaps among tiles,
or with blocked board spaces. Formally, a configuration C = (B,P = {P1, . . . , Pk}) consists of a board B, along
with a set of non-overlapping tiles P that each do not overlap with the blocked locations of board B.

Particle Step. A particle step is a way to turn one configuration into another by way of a signal that moves a tile t
in a configuration one unit in a direction d ∈ {N,E, S,W} when possible without causing an overlap with a blocked
location or another tile. If a configuration does not change under a step transition for tile t in direction d, we say
the configuration is d(t)-terminal.

Particle Tilt. A particle tilt in direction d ∈ {N,E, S,W} for a configuration is executed by repeatedly applying
a particle step in direction d ∈ {N,E, S,W} on the same tile t until a d(t)-terminal configuration is reached. We
denote this as d(t). We say that a configuration C can be reconfigured in one move into configuration C ′ (denoted
C →1 C ′) if applying one particle tilt on a tile t in some direction d to C results in C ′. We define the relation →∗ to
be the transitive closure of →1. Therefore, C →∗ C ′ means that C can be reconfigured into C ′ through a sequence
of particle tilts.

Particle Tilt Sequence. A particle tilt sequence is a sequence of particle tilts. For a given tile, the sequence
can be inferred from a series of directions D = ⟨d1, d2, . . . , dk⟩; each di ∈ D implies a particle tilt in that di-
rection on a tile. For simplicity, when discussing a particle tilt sequence on a specific tile, we just refer to the

1Note that within this model, every board geometry could be considered as rectangular and the blocked spaces are simply robots that

are never given a move signal. However, for the reduction, these must be non-movable robots and thus we adhere to the definition of a

blocked space instead.
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Function Selector and Function Enforcers Sequences

Name Tilt Sequence Description

SF ⟨S⟩+ ⟨E,S⟩
i
+ ⟨W,S,W ⟩ Selects the function all the elements the domain will be

input to. i specifies the function to be selected.

EF ⟨S,E⟩ Enforces all elements are input through the same function
as the first element.

Lock Selector Sequences

T0 ⟨W,N⟩ Selects 0 for that bit position.

T1 ⟨W,S⟩ Selects 1 for that bit position.

RF ⟨N,E⟩ Inputs tile to function selector or function enforcer gadget
after returning from lock gadget.

G ⟨S,E⟩ Inputs tile to goal gadget after returning from lock gadget.

Lock Sequences

P ⟨W,S⟩ Positions unlocking tile for unlock.

U ⟨W,N⟩ Unlocks locked tile.

R ⟨N,E⟩ Returns tile to lock selector.

Figure 9: Particle Tilt Sequences.
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