
Symbolic Regression via Control Variable
Genetic Programming

Nan Jiang(B) and Yexiang Xue

Department of Computer Science, Purdue University,
West Lafayette, IN, USA

{jiang631,yexiang}@purdue.edu

Abstract. Learning symbolic expressions directly from experiment data
is a vital step in AI-driven scientific discovery. Nevertheless, state-of-
the-art approaches are limited to learning simple expressions. Regress-
ing expressions involving many independent variables still remain out of
reach. Motivated by the control variable experiments widely utilized in
science, we propose Control Variable Genetic Programming (CVGP)
for symbolic regression over many independent variables. CVGP expe-
dites symbolic expression discovery via customized experiment design,
rather than learning from a fixed dataset collected a priori. CVGP starts
by fitting simple expressions involving a small set of independent vari-
ables using genetic programming, under controlled experiments where
other variables are held as constants. It then extends expressions learned
in previous generations by adding new independent variables, using new
control variable experiments in which these variables are allowed to vary.
Theoretically, we show CVGP as an incremental building approach can
yield an exponential reduction in the search space when learning a class
of expressions. Experimentally, CVGP outperforms several baselines in
learning symbolic expressions involving multiple independent variables.
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1 Introduction

Discovering scientific laws automatically from experiment data has been a grand
goal of Artificial Intelligence (AI). Its success will greatly accelerate the pace
of scientific discovery. Symbolic regression, i.e., learning symbolic expressions
from data, consists of a vital step in realizing this grand goal. Recently, exciting
progress [20,22,43,45,45,48,51,52,57] has been made in this domain, especially
with the aid of deep neural networks. Despite great achievements, state-of-the-art
approaches are limited to learning relatively simple expressions, often involving
a few independent variables. Regressing symbolic expressions involving multiple
independent variables still remains out of reach of current approaches. The diffi-
culty mainly lies in the exponentially large search space of symbolic expressions.

Our work attacks this major gap of symbolic regression, leveraging control
variable experimentation – a classic procedure widely implemented in the science
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community [38,50]. In the analysis of complex scientific phenomena involving
many contributing factors, control variable experiments are conducted where
a set of factors are held constant (i.e., controlled variables), and the depen-
dence between the output variable and the remaining input variables is studied
[27,34]. The result is a reduced-form expression that models the relationship
only between the output and the non-controlled variables. Once the reduced-
form equation is validated, scientists introduce more variables into play by free-
ing a few controlled variables in previous experiments. The new goal is to extend
the previous equation to a general one including the newly introduced variables.
This process continues until all independent variables are introduced.

Our proposed Control Variable Genetic Programming (CVGP) approach
implements the aforementioned scientific discovery process using Genetic Pro-
gramming (GP) for symbolic regression over many independent variables. The
key insight of CVGP is to learn from a customized set of control variable exper-
iments; in other words, the experiment data collection adapts to the learning
process. This is in contrast to the current learning paradigm of most symbolic
regression approaches, where they learn from a fixed dataset collected a priori.
In CVGP, first, we hold all independent variables except for one as constants
and learn an expression that maps the single variable to the dependent vari-
able using GP. GP maintains a pool of candidate expressions and improves the
fitness of these equations via mating, mutating, and selection over several gener-
ations. Mapping the dependence of one independent variable is easy. Hence GP
can usually recover the ground-truth reduced-form equation. Then, CVGP frees
one independent variable at a time. In each iteration, GP is used to modify the
equations learned in previous generations to incorporate the new independent
variable, via mating, mutating, and selection. Such a procedure repeats until all
the independent variables have been incorporated into the symbolic expression.

After discovering CVGP independently, the authors learned in private com-
munications a line of research work [9,28,29,31,32,36] that also implemented the
human scientific discovery process using AI, pioneered by the BACON systems
developed by Langley, P. in 1978–1981 [31,32,36]. While BACON’s discovery
was driven by rule-based engines and our CVGP uses modern machine-learning
approaches such as genetic programming. Indeed, both approaches share a com-
mon vision - the integration of experiment design and model learning can further
expedite scientific discovery.

Theoretically, we show CVGP as an incremental builder can reduce the
exponential-sized search space for candidate expressions into a polynomial one
when fitting a class of symbolic expressions. Experimentally, we show CVGP
outperforms a number of state-of-the-art approaches on symbolic regression over
multiple independent variables. Our contributions can be summarized as:

1. We propose CVGP, an incremental builder for symbolic regression over many
independent variables. CVGP fits increasingly more complex equations via con-
ducting control variable experiments with fewer and fewer controlled variables.

2. Theoretically, we show such an incremental builder as CVGP can reduce
exponential-sized search spaces for symbolic regression to polynomial ones
when searching for a class of symbolic expressions.
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3. Empirically, we demonstrate CVGP outperforms state-of-the-art symbolic
regression approaches in discovering multi-variable equations from data1.

2 Preliminaries

Symbolic Expression. A symbolic expression φ is expressed as variables and
constants connected by a set of operators. Variables are allowed to vary while
constants remain the same. Each operand of an operator is either a variable,
a constant, or a self-contained symbolic expression. A symbolic expression can
also be drawn as a tree, where variables and constants reside in leaves, and
operators reside in inner nodes. See Fig. 1(a) for an example. In this paper,
we deal with expressions involving real numbers. The semantic meaning of a
symbolic expression follows its standard definition in arithmetics.

Symbolic Regression. Given a dataset {(xi, yi)}n
i=1 and a loss function �(·, ·),

where xi ∈ R
m and yi ∈ R, the objective of symbolic regression (SR) is to

search for the optimal symbolic expression φ∗ within the space of all candidate
expressions Π that minimizes the average loss:

φ∗ = arg min
φ∈Π

1
n

n∑

i=1

�(φ(xi), yi), (1)

in addition to regularizers. Symbolic regression is challenging and is in NP-
hard [58], due to the exponentially large space of candidate symbolic expressions.

Genetic Programming for Symbolic Regression. Genetic Programming
(GP) has been a popular method to solve symbolic regression. Recently, a few
other approaches based on neural networks surpassed the performance of GP in
symbolic regression. We leave the discussions of these methods to the related
work section. The high-level idea of GP is to maintain a pool of candidate sym-
bolic expressions. In each generation, candidate expressions are mutated with
probability Pmu and mated with probability Pma. Then in the selection step,
those with the highest fitness scores, measured by how each expression predicts
the output from the input, are selected as the candidates for the next generation,
together with a few randomly chosen ones to maintain diversity. After several
generations, expressions with high fitness scores, i.e., those fit data well survive
in the pool of candidate solutions. The best expressions found in all generations
are recorded as hall-of-fame solutions.

3 Control Variable Genetic Programming

In this section, we present our control variable genetic programming algorithm.
Before we dive into the algorithm description, we first need to study what are
the outcomes of a control variable experiment and what conclusions we can draw
on the symbolic regression expression by observing such outcomes.
1 The code is at: https://github.com/jiangnanhugo/cvgp/. Please refer to the

extended version (https://arxiv.org/abs/2306.08057) for the Appendix.

https://github.com/jiangnanhugo/cvgp/
https://arxiv.org/abs/2306.08057
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Fig. 1. An example of two trials of a control variable experiment. (a) The data of
the experiment is generated by the ground-truth expression φ = x1x3 − x2x4. (b) If
we control vc = {x2, x3, x4} and only allow vf = {x1} to vary, it looks like the data
are generated from the reduced-form equation φ′ = C1x1 − C2. (c, d) The generated
data in two trials of the control variable experiments. The controlled variables are fixed
within each trial but vary across trials.

3.1 Control Variable Experiment

A control variable experiment CVExp(φ,vc,vf , {Tk}K
k=1) consists of the trial

symbolic expression φ, a set of controlled variables vc, a set of free variables
vf , and K trial experiments T1, . . . , TK . The expression φ may have zero or
multiple open constants. The values of open constants are determined by fitting
the equation to the training data.

One Trial in a Control Variable Experiment. A single trial of a control
variable experiment Tk fits the symbolic expression φ with a batch of data. To
avoid abusing notations, we also use Tk to denote the batch of data. In the
generated data Tk, every controlled variable is fixed to the same value while the
free variables are set randomly. We assume the values of the dependent variables
in a batch are (noisy observations) of the ground-truth expressions with the
values of independent variables set in the batch. In science, this step is achieved
by conducting real-world experiments, i.e., controlling independent variables and
performing measurements on the dependent variable.

For example, Fig. 1(c,d) demonstrates two trials (K = 2) of a control variable
experiment in which variable x2, x3, x4 are controlled, i.e., vc = {x2, x3, x4}.
They are fixed to one value in trial T1 (in Fig. 1(c)) and another value in trial
T2 (in Fig. 1(d)). x1 is the only free variable, i.e., vf = {x1}.

Reduced-Form Expression in a Control Variable Setting. We assume
there is a ground-truth symbolic expression that produces the experiment data.
In other words, the observed output is the execution of the ground-truth expres-
sion from the input, possibly in addition to some noise. In control variable exper-
iments, because the values of controlled variables are fixed in each trial, what we
observe is the ground-truth expression in its reduced form, where sub-expressions
involving only controlled variables are replaced with constants.

Figure 1(b) provides an example of the reduced form expression. Assume the
data is generated from the ground-truth expression in Fig. (a): φ = x1x3 −x2x4.
When we control the values of variable in vc = {x2, x3, x4}, the data looks like
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they are generated from the reduced expression: φ′ = C1x1 − C2. We can see
both C1 and C2 hold constant values in each trial. However, their values vary
across trials because the values of controlled variables change. In trial T1, when
x2, x3, and x4 are fixed to 0.5, 0.1, 0.7, C1 takes the value of x3, i.e., 0.1. C2

takes the value of x2x4, i.e., 0.35. In trial T2, C1 = 0.8 and C2 = 0.06.
We call constants which represent sub-expressions involving controlled vari-

ables in the ground-truth expression summary constants, and refer to constants
in the ground-truth expression stand-alone constants. For example, C1 and C2 in
Fig. 1(b) are both summary constants, because C1 replaces the controlled vari-
able x3 and C2 replaces a sub-expression x2x4 in the ground-truth expression.
Notice the types of constants are unknown in the process of fitting an expression
to control variable experiment data. However, the best-fitted values of these con-
stants across several trials reveal important information: a constant is probably
a summary constant if its fitted values vary greatly across trials, while a constant
that remains the almost same value across trials is probably stand-alone.

Outcome of One Trial. The outcomes of one trial are two-fold: (1) the values
of the constants which best fit the given batch of data. We denote these values
as vector c. (2) the fitness score measuring the goodness-of-fit, denoted as o. One
typical fitness score is the mean squared error (MSE). See Appendix B.2 for the
exact definition of MSE. For the example in Fig. 1, if we fit the reduced expression
in (b) to data in trial T1, the best-fitted values are c1 = (C1 = 0.1, C2 = 0.35).
For trial T2, the best-fitted values are c2 = (C1 = 0.8, C2 = 0.06). In both trials,
the fitness scores (i.e., the MSE value) are 0, indicating no errors.

Outcome of Multiple Trials. We let the values of control variables vary
across different trials. This corresponds to changing experimental conditions in
real science experiments. The outcomes of an experiment with K trials are:
(1) φ.o = (o1, . . . , oK), where each ok is the fitness score of trial k and (2)
φ.c = (c1, . . . , cK), the best-fitted values to open constants across trials.

Key information is obtained by examining the outcomes of multi-trials control
variable experiments: (1) consistent close-to-zero fitness scores φ.o suggest the
fitted expression is close to the ground-truth equation in the reduced form. (2)
given the equation is close to the ground truth, an open constant having similar
best-fitted values across K trials φ.c suggests the open constants are stand-alone.

3.2 Control Variable Genetic Programming

The high-level idea of the CVGP algorithm is to build more complex symbolic
expressions involving more and more variables based on control variable experi-
ments with fewer and fewer controlled variables.

To fit an expression of m variables, initially, we control the values of all
m − 1 variables and allow only one variable to vary. Using Genetic Program-
ming (GP), we find a pool of expressions {φ1,1, . . . , φ1,M} which best fit the
data from this controlled experiment. Notice {φ1,1, . . . , φ1,M} are restricted to
contain the only one free variable. This fact renders fitting them a lot easier
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Algorithm 1. Control Variable Genetic Programming (CVGP)
Input: GP pool size M ; #generations #Gen; #trials K; #expressions in hall-of-fame

set #Hof; mutate probability Pmu; mate probability Pma; operator set Op.
1: vc ← {x1, . . . , xm}; vf ← ∅.
2: Pgp ← CreateInitGPPool(M).
3: for xi ∈ {x1, . . . , xm} do
4: vc ← vc \ {xi}; vf ← vf ∪ {xi}. � Set xi to be free variable
5: Do ← DataOracle(vc,vf ).
6: for φ ∈ Pgp do
7: {Tk}K

k=1 ← GenData(Do). � Query Oracle for the trial data
8: φ.o, φ.c ← CVExp(φ,vc,vf , {Tk}K

k=1). � Control variable experiments

9: Pgp, H ← GP(Pgp, Do
i , K, M, #Gen, #Hof, Pmu, Pma, Op ∪ {const, xi}).

10: for φ ∈ Pgp do
11: FreezeEquation(φ, φ.o, φ.c).

return The set of hall-of-fame equations H.

than fitting the expressions involving all m variables. Next, for each φ1,l, we
examine (1) if the errors of the fitting are consistently small across all trials. A
small error implies φ1,l is close to the ground-truth formula reduced to the one
free variable. We hence freeze all operators of φ1,l in this case. Freezing means
GP in later steps cannot change these operators. (2) In the case of a small fit-
ting error, we also inspect the best-fitted values of each open constant in φ1,l

across different trials. The constant is probably a summary constant if its val-
ues vary across trials. In other words, these constants represent sub-expressions
involving the controlled variables. We thus mark these constants as expandable
for later steps. The remaining constants are probably stand-alone. Therefore we
also freeze them.

After the first step, CVGP adds a second free variable and starts fitting
{φ2,1, . . . , φ2,M} using the data from control variable experiments involving the
two free variables. Similar to the previous step, all φ2,l are restricted to only
contain the two free variables. Moreover, they can only be mated or mutated by
GP from the first generation {φ1,1, . . . , φ1,M}. The mutation can only happen on
non-frozen nodes. After GP, a similar inspection is conducted for every equation
in the GP pool, and corresponding variables and/or operators are frozen. This
process continues to involve more and more variables. Eventually, the expressions
in the GP pool consider all m variables.

The whole procedure of CVGP is shown in Algorithm 1. Here, x1, . . . , xm

are moved from the controlled to free variables in numerical order. We agree
other orders may boost its performance even further. However, we leave the
exploration of this direction as future work. When a new variable becomes free,
the control variable experiment CVExp needs to be repeated for every equation
φ in the GP pool Pgp (Line 5–9 in Algorithm 1). This is because the fitness
scores and the fitted open constant values will both change when the set of
controlled variables is updated. Then function GP is called. GP is a minimally
modified genetic programming algorithm for symbolic regression whose pseudo-
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Fig. 2. Running example of Algorithm 1. (a) Initially, a reduced-form equation φ′ =
C1x1 − C2 is found via fitting control variable data in which x2, x3, x4 are held as
constants and only x1 is allowed to vary. Two leaves nodes C1, C2 are as summary
constants (colored blue). (b) This equation is expanded to C3x1 − C4x2 in the second
stage via fitting the data in which only x3, x4 are held as constants. (c,d) This process
continues until the ground-truth equation φ = x1x3−x2x4 is found. The data generated
for control variable experiment trials in each stage are shown at the bottom.

code is in Algorithm 2. The only differences are that it uses data from control
variable experiments and the mutation operation at step i only allows to use all
the operators, the constant node, and variable xi at non-frozen nodes. Finally,
in Lines 12–14 of Algorithm 1, FreezeEquation is called for every equation in
the GP pool. The high-level idea of freezing is discussed above. H is returned as
the set of “hall of fame” expressions.

Figure 2 shows the high-level idea of fitting an equation using CVGP. Here
the process has four stages, each stage with a decreased number of controlled
variables. The trial data in each stage is shown at the bottom and the best
expression found is shown at the top. The expandable constants are bold and
blue. The readers can see how the fitted equations grow into the final ground-
truth equation, with one free variable added at a time.

The Availability of a Data Oracle. A crucial assumption behind the success
of CVGP is the availability of a data oracle Do that returns a (noisy) observation
of the dependent output variable with input variables in vc controlled and vf

free. This differs from the classical setting of symbolic regression, where a dataset
is obtained before learning [41,49]. Such a data oracle represents conducting
control variable experiments in the real world, which can be expensive.

However, we argue that the integration of experiment design in the discovery
of scientific knowledge is indeed the main driver of the successes of CVGP. This
idea has received tremendous success in early works [31,32,36] but unfortunately
has been largely forgotten in today’s symbolic regression community. Our work
does not intend to show the superiority of one approach. Instead, we would like
to point out that carefully designed experiments can improve any method, and
GP is used as an example. We acknowledge that fully controlled experiments
may be difficult in some scenarios. In cases where it is difficult to obtain such a
data oracle, one possible solution is to use deep neural networks to learn a data
generator for the given set of controlled variables. We leave it as future work.
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Algorithm 2. GP(Pgp, Do, K, M, #Gen, #Hof, Pmu, Pma, Op)

Input: Initial GP Pool Pgp; data Oracle Do; #trials K; GP pool size M ; #genera-
tions #Gen; #expressions in hall-of-fame set #Hof; mutate probability Pmu; mate
probability Pma; mutation node library Op.

1: for j ← 1 to #Gen do
2: Pnew ← ∅;
3: for φ ∈ Pgp do
4: if with probability Pmu then � Mutation
5: φ ← Mutate(φ, Op);
6: {Tk}K

k=1 ← GenData(Do);
7: φ.o, φ.c ← CVExp(φ,vc,vf , {Tk}K

k=1);

8: Pnew ← Pnew ∪ {φ};

9: Pgp ← Pnew; Pnew ← ∅;
10: for φl, φl+1 ∈ Pgp do
11: if with probability Pma then � Mating
12: φl, φl+1 ← Mate(φl, φl+1);
13: {Tk}K

k=1 ← genData(Do);
14: φl.o, φl.c ← CVExp(φl,vc,vf , {Tk}K

k=1).
15: φl+1.o, φl+1.c ← CVExp(φl+1,vc,vf , {Tk}K

k=1).

16: Pnew ← Pnew ∪ {φl, φl+1};

17: H ← TopK(Pnew ∪ H, K = #Hof); � Update the hall of fame set
18: Pgp ← selection(Pnew, M);

return GP pool and hall-of-fame Pgp, H.

3.3 Theoretical Analysis

We show in this section that the idea of control variable experiments may bring
an exponential reduction in the search space for particular classes of symbolic
expressions. To see this, we assume the learning algorithm follows a search order
from simple to complex symbolic expressions and the data is noiseless.

Definition 1. The search space of symbolic expression trees of l nodes S(l) is
the set of all symbolic expression trees involving at most l nodes.

Lemma 1. For simplicity, assume all operators are binary, and let o be the
number of operators and m be the number of input variables. The size of the
search space of symbolic expression trees of l nodes scales exponentially; more
precisely at O((4(m + 1)o)

l−1
2 ) and Ω((4(m + 1)o)

l−1
4 ).

The proof of Lemma 1 mainly involves counting binary trees. We leave its detailed
proof in Appendix A. For our purposes, it is sufficient to know the size is expo-
nential in the size of expression tree l.

Definition 2 (Simple to complex search order). A symbolic regression
algorithm follows a simple to complex search order if it expands its search space
from short to long symbolic expressions; i.e., first search for the best symbolic
expressions in S(1), then in S(2) \ S(1), etc.



186 N. Jiang and Y. Xue

In general, it is difficult to quantify the search order of any symbolic regres-
sion algorithms. However, we believe the simple to complex order reflects the
search procedures of a large class of symbolic regression algorithms, including
our CVGP. In fact, [12] explicitly use regularizers to promote the search of sim-
ple and short expressions. Our CVGP follows the simple to complex search order
approximately. Indeed, it is possible that genetic programming encounters more
complex equations before their simpler counterparts. However, in general, the
expressions are built from simple to complex equations by mating and mutating
operations in genetic programming algorithms.

Proposition 1 (Exponential Reduction in the Search Space). There
exists a symbolic expression φ of (4m − 1) nodes, a normal symbolic regres-
sion algorithm following the simple to complex search order has to explore a
search space whose size is exponential in m to find the expression, while CVGP
following the simple to complex order only expands O(m) constant-sized search
spaces.

Proof. Consider a dataset generated by the ground-truth symbolic expression
made up of 2 operators (+,×), 2m input variables, and (4m − 1) nodes:

(x1 + x2)(x3 + x4) . . . (x2m−1 + x2m). (2)

To search for this symbolic regression, a normal algorithm following the simple
to complex order needs to consider all expression trees up to (4m − 1) nodes.
According to Lemma 1, the normal algorithm has a search space of at least
Ω((16m + 8)m−1/2), which is exponential in m.

On the other hand, in the first step of CVGP, x2, . . . , x2m are controlled and
only x1 is free. In this case, the ground-truth equation in the reduced form is

(x1 + C1)D1, (3)

in which both C1 and D1 are summary constants. Here C1 represents x2 and
D1 represents (x3 + x4) . . . (x2m−1 + x2m) in the control variable experiments.
The reduced equation is quite simple under the controlled environment. CVGP
should be able to find the ground-truth expression exploring search space S(5).

Proving using induction. In step 2i (1 ≤ i ≤ m), variables
x2i+1, x2i+2, . . . , x2m are held as constants, x1, . . . , x2i are allowed to vary. The
ground-truth expression in the reduced form found in the previous (2i − 1)-th
step is:

(x1 + x2) . . . (x2i−1 + C2i−1)D2i−1. (4)

CVGP needs to extend this equation to be the ground-truth expression in the
reduced form for the 2i-th step, which is:

(x1 + x2) . . . (x2i−1 + x2i)D2i. (5)

We can see the change is to replace the summary constant C2i−1 to x2i. Assume
the data is noiseless and CVGP can confirm expression (4) is the ground-truth
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reduced-form expression for the previous step. This means all the operators and
variables will be frozen by CVGP, and only C2i−1 and D2i−1 are allowed to be
replaced by new expressions. Assume CVGP follows the simple to complex search
order, it should find the ground-truth expression (5) by searching replacement
expressions of lengths up to 1.

Similarly, in step 2i+1, assume CVGP confirms the ground-truth expression
in the reduced form in step 2i, CVGP also only needs to search in constant-
sized spaces to find the new ground-truth expression. Overall, we can see only
O(m) searches in constant-sized spaces are required for CVGP to find the final
ground-truth expression.

4 Related Work

Symbolic Regression. Symbolic Regression is proven to be NP-hard [58], due
to the search space of all possible symbolic expressions being exponential in
the number of input variables. Early works in this domain are based on heuris-
tic search [33,39]. Genetic programming turns out to be effective in searching
for good candidates of symbolic expressions [22,51,54,57]. RL-based methods
propose a risk-seeking policy gradient to find the expressions [43,45,51]. Other
works use RL to adjust the probabilities of genetic operations [11]. Also, there are
works that reduced the search space by considering the composition of base func-
tions, e.g. Fast function extraction [42] and elite bases regression [10]. In terms
of the families of expressions, research efforts have been devoted to searching
for polynomials with single or two variables [55], time series equations [3], and
also equations in physics [54]. Existing works for multi-variable regression are
mainly based on pre-trained encoder-decoder methods with a massive training
dataset (e.g., millions of datasets [4]), and even larger generative models (e.g.,
about 100 million parameters [26]). Our CVGP is a tailored algorithm to solve
multi-variable symbolic regression problems.

AI-Driven Scientific Discovery. Recently AI has been highlighted to enable
scientific discoveries in diverse domains [37,59]. Early work in this domain
focuses on learning logic (symbolic) representations [6,7]. Recently, learning
Partial Differential Equations (PDEs) from data has also been studied exten-
sively [8,13,14,16,23,40,46,47,61–63]. In this domain, a line of works develops
robots that automatically refine the hypothesis space, some with human inter-
actions [28,29,56]. These works are relevant to ours because they actively probe
the hypothesis spaces, albeit they are in biology and chemistry.

Active Learning and Reasoning. Active learning considers querying data
points actively to maximize the learning performance [19,21]. Our approach is
related to active learning because control variable experiments can be viewed
as a way to actively collect data. However, besides active data collection, our
CVGP builds simple to complex models, which is not in active learning.

Meta-reasoning – Thinking Fast and Slow. The co-existence of fast and
slow cognition systems marks an interesting side of human intelligence [2,5,25].
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Our CVGP is motivated by this dual cognition process. In essence, we argue
instead of entirely relying on the brute-force way of learning using big data and
heavy computation (fast thinking), incrementally expanding from reduced-form
equations to the full equation may result in better outcomes (slow thinking).

Causality. Control variable experiments are closely related to the idea of inter-
vention, which is commonly used to discover causal relationships [18,24,35,44,
53]. However, we mainly use control variable experiments to accelerate symbolic
regression, which still identifies correlations.

5 Experiments

In this section, we demonstrate CVGP finds the symbolic expressions with
the smallest Normalized Mean-Square Errors (NMSE) among all 7 competing
approaches on 21 noiseless benchmark datasets (in Table 1) and 20 noisy bench-
mark datasets (in Table 2). In the ablation studies, we show our CVGP is consis-
tently better than the baselines when evaluated in different evaluation metrics,
evaluating different quantiles of the NMSE metric, with different amounts of
Gaussian noise added to the data (Fig. 3, more complete results in Fig. 4 and 5
in the appendix). In Table 3, we show our CVGP has a higher rate of recovering
the ground-truth expressions than baselines.

5.1 Experimental Settings

Datasets. To highlight the performance of CVGP in regressing multi-variable
expressions, we consider synthesized datasets, involving randomly generated
expressions with multiple variables. A dataset is labeled by the ground-truth
equation that generates it. The ground-truth equations we consider are multi-
variable polynomials characterized by their operators and a tuple (a, b, c). Here
a is the number of independent variables. b is the number of singular terms. A
singular term can be an independent variable (like x1), or a unary operator with
a variable (like sin(x1)). c is the number of cross terms. They look like C1x3x4

or C2 sin(x1)inv(x5), etc. Here C1, C2 are randomly generated constants. The
tuples and operators listed in different tables and charts indicate how the ground-
truth expressions are generated. For each dataset configuration, we repeat our
experiments 10 times, each time with a randomly generated symbolic expression
of the given configuration. For noiseless datasets, the output is exactly the eval-
uation of the ground-truth expression. For noisy datasets, the output is further
perturbed by Gaussian noise of zero means and a given standard deviation.

Remarks on Public Available Datasets. Most public datasets are black-
box [30], containing randomly generated input and output pairs of an unknown
symbolic equation. The point of our paper is to show customized collected control
variable experiment data improves symbolic regression, and hence we cannot use
these randomly generated data. In addition, most datasets are on equations of a
small number of independent variables. We intentionally test on benchmark sets
involving many variables to highlight our approach.



Symbolic Regression via Control Variable Genetic Programming 189

Table 1. Median (50%) and 75%-quantile NMSE values of the symbolic expressions
found by all the algorithms on several noiseless benchmark datasets. Our CVGP finds
symbolic expressions with the smallest NMSEs.

Dataset CVGP (ours) GP DSR PQT VPG GPMeld Eureqa

configs 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

(3,2,2) 0.001 0.004 0.015 0.135 1.53 43.09 0.58 1.13 0.83 1.32 1.06 2.18 < 1e-6 < 1e-6

(4,4,6) 0.008 0.059 0.012 0.054 1.006 1.249 1.006 2.459 1.221 2.322 1.127 2.286 1.191 6.001

(5,5,5) 0.011 0.019 0.025 0.177 1.038 8.805 1.048 4.736 1.401 38.26 1.008 1.969 0.996 6.340

(5,5,8) 0.007 0.013 0.010 0.017 1.403 5.161 1.530 41.27 4.133 27.42 1.386 8.092 1.002 1.495

(6,6,8) 0.044 0.074 0.058 0.200 1.963 90.53 4.212 8.194 4.425 22.91 15.58 269.6 1.005 1.150

(6,6,10) 0.012 0.027 0.381 0.820 1.021 1.036 1.006 1.048 1.003 1.020 1.022 1.689 1.764 49.041

(a) Datasets containing operators {inv, +, −, ×}
(3,2,2) 0.005 0.123 0.023 0.374 0.087 0.392 0.161 0.469 0.277 0.493 0.112 0.183 < 1e-6 < 1e-6

(4,4,6) 0.028 0.132 0.044 0.106 2.815 9.958 2.381 13.844 2.990 11.316 1.670 2.697 0.024 0.122

(5,5,5) 0.086 0.402 0.063 0.232 2.558 3.313 2.168 2.679 1.903 2.780 1.501 2.295 0.158 0.377

(5,5,8) 0.014 0.066 0.102 0.683 2.535 2.933 2.482 2.773 2.440 3.062 2.422 3.853 0.284 0.514

(6,6,8) 0.066 0.166 0.127 0.591 0.936 1.079 0.983 1.053 0.900 1.018 0.964 1.428 0.433 1.564

(6,6,10) 0.104 0.177 0.159 0.230 6.121 16.32 5.750 16.29 3.857 19.82 7.393 21.709 0.910 1.927

(b) Datasets containing operators {sin, cos, +, −, ×}.

(3,2,2) 0.039 0.083 0.043 0.551 0.227 7.856 0.855 2.885 0.233 0.400 0.944 1.263 < 1e-6 < 1e-6

(4,4,6) 0.015 0.121 0.042 0.347 1.040 1.155 1.039 1.055 1.049 1.068 1.886 4.104 0.984 1.196

(5,5,5) 0.038 0.097 0.197 0.514 3.892 69.98 4.311 23.66 5.542 8.839 9.553 16.92 0.901 1.007

(5,5,8) 0.050 0.102 0.111 0.177 2.379 2.526 1.205 2.336 1.824 2.481 1.142 1.874 1.002 2.445

(6,6,8) 0.029 0.038 0.091 0.151 1.605 8.005 1.718 7.783 4.691 39.03 1.398 16.60 1.001 1.008

(6,6,10) 0.018 0.113 0.087 0.194 2.083 23.57 1.797 4.521 1.888 35.45 2.590 8.784 1.001 1.008

(c) Datasets containing operators {sin, cos, inv, +, −, ×}.

Evaluation. In terms of the evaluation metric, the median (50%) and 75%-
percentile of the NMSE across these 10 experiments are reported. We choose to
report median values instead of mean due to outliers (see box plots in Fig. 3(a–
d)). This is a common practice for combinatorial optimization problems. The
mathematical definition of NMSE and other metrics are in Appendix B.2.

Baselines. We consider the following baselines based on evolutionary algo-
rithms: 1) Genetic Programming (GP) [17]. 2) Eureqa [15]. We also consider
a series of baselines using reinforcement learning: 3) Priority queue training
(PQT) [1]. 4) Vanilla Policy Gradient (VPG) that uses the REINFORCE algo-
rithm [60] to train the model. 5) Deep Symbolic Regression (DSR) [45]. 6)
Neural-Guided Genetic Programming Population Seeding (GPMeld) [43].

We leave detailed descriptions of the configurations of our CVGP and baseline
algorithms in Appendix B and only mention a few implementation notes here.
We implemented GP and CVGP. They use a data oracle, which returns (noisy)
observations of the ground-truth equation when queried with inputs. We cannot
implement the same Oracle for other baselines because of code complexity and/or
no available code. To ensure fairness, the sizes of the training datasets we use
for those baselines are larger than the total number of data points accessed in
the full execution of those algorithms. In other words, their access to data would
have no difference if the same oracle has been implemented for them because
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Table 2. Median (50%) and 75%-quantile NMSE values of the symbolic expressions
found by all the algorithms on several noisy benchmark datasets (Gaussian noise with
zero mean and standard deviation 0.1 is added). Our CVGP finds symbolic expressions
with the smallest NMSEs.

Dataset CVGP (ours) GP DSR PQT VPG GPMeld

configs 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

(4,4,6) 0.036 0.088 0.038 0.108 1.163 3.714 1.016 1.122 1.087 1.275 1.058 1.374

(5,5,5) 0.076 0.126 0.075 0.102 1.028 2.270 1.983 4.637 1.075 2.811 1.479 2.855

(5,5,8) 0.061 0.118 0.121 0.186 1.004 1.013 1.005 1.006 1.002 1.009 1.108 2.399

(6,6,8) 0.098 0.144 0.104 0.167 1.006 1.027 1.006 1.020 1.009 1.066 1.035 2.671

(6,6,10) 0.055 0.097 0.074 0.132 1.003 1.009 1.005 1.008 1.004 1.015 1.021 1.126

(a) Datasets containing operators {sin, cos, inv, +, −, ×}.

(3,2,2) 0.098 0.165 0.108 0.425 0.350 0.713 0.351 1.831 0.439 0.581 0.102 0.597

(4,4,6) 0.078 0.121 0.120 0.305 7.056 16.321 5.093 19.429 2.458 13.762 2.225 3.754

(5,5,5) 0.067 0.230 0.091 0.313 32.45 234.31 36.797 229.529 14.435 46.191 28.440 421.63

(5,5,8) 0.113 0.207 0.119 0.388 195.22 573.33 449.83 565.69 206.06 629.41 363.79 666.57

(6,6,8) 0.170 0.481 0.186 0.727 1.752 3.824 4.887 15.248 2.396 7.051 1.478 6.271

(6,6,10) 0.161 0.251 0.312 0.342 11.678 26.941 5.667 24.042 7.398 25.156 11.513 28.439

(b) Datasets containing operators {sin, cos, +, −, ×}.

(3,2,2) 0.049 0.113 0.023 0.166 0.663 2.773 1.002 1.992 0.969 1.310 0.413 2.510

(4,4,6) 0.141 0.220 0.238 0.662 1.031 1.051 1.297 1.463 1.051 1.774 1.093 1.769

(5,5,5) 0.157 0.438 0.195 0.337 1.098 3.617 1.018 5.296 1.012 1.27 1.036 3.617

(5,5,8) 0.122 0.153 0.166 0.186 1.009 1.103 1.017 1.429 1.007 1.132 1.07 2.904

(6,6,8) 0.209 0.590 0.209 0.646 1.003 1.153 1.047 1.134 1.059 1.302 1.029 3.365

(6,6,10) 0.139 0.232 0.073 0.159 1.654 3.408 1.027 1.069 1.009 1.654 1.445 2.106

(c) Datasets containing operators {sin, cos, inv, +, −, ×}.

it does not affect the executions whether the data is generated ahead of the
execution or on the fly. The reported NMSE scores in all charts and tables are
based on separately generated data that have never been used in training. The
threshold to freeze operators in CVGP is if the MSE to fit a data batch is below
0.01. The threshold to freeze the value of a constant in CVGP is if the variance
of best-fitted values of the constant across trials drops below 0.001.

5.2 Experimental Analysis

Learning Result. Our CVGP attains the smallest median (50%) and 75%-
quantile NMSE values among all the baselines mentioned in Sect. 5.1, when eval-
uated on noiseless datasets (Table 1) and noisy datasets (Table 2). This shows
our method can better handle multiple variables symbolic regression problems
than the current best algorithms in this area.

Ablation Studies. We use box plots in Fig. 3(a–d) to show that the superiority
of our CVGP generalizes to other quantiles beyond the 50% and 75%-quantile.
We also show the performance is consistent under the variations of evaluation
metrics in Fig. 3(a–d), and noise levels in Fig. 3(e–f).
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Recovering Ground-Truth Equations. For relatively less challenging noise-
less datasets (i.e., (2, 1, 1) with various operators sets), our CVGP sometimes
recovers ground-truth expressions. We evaluate the percentage that each algo-
rithm successfully detects the ground-truth expressions on 50 randomly gener-
ated benchmark datasets. Table 3 shows that our CVGP algorithm has a higher
chance to recover ground-truth expressions than the GP method.

Fig. 3. (a–d) Box plots of evaluation metrics for the expressions found by different
algorithms on the noiseless dataset. (e–f) Box plots in NMSE values for the expressions
found by CVGP and GP over benchmark datasets with different noise levels. Our
CVGP is consistently the best regardless of the evaluation metrics and noise levels.

Table 3. Ground-truth recovery rate comparison. Our CVGP has a higher rate to
recover the ground-truth expressions compared to GP on 3 simple datasets.

Operator set Dataset configs CVGP (ours) GP

{inv, +, −, ×} (2,1,1) 64% 44%

{sin, cos, +, −, ×} 46% 22%

{sin, cos, inv, +, −, ×} 44% 32%

6 Conclusion

In this research, we propose Control Variable Genetic Programming (CVGP)
for symbolic regression with many independent variables. This is beyond cur-
rent state-of-the-art approaches mostly tested on equations with one or two
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variables. CVGP builds equations involving more and more independent vari-
ables via control variable experimentation. Theoretically, we show CVGP as an
incremental building approach can bring an exponential reduction in the search
spaces when learning a class of expressions. In experiments, CVGP finds the
best-fitted expressions among 7 competing approaches and on dozens of bench-
marks.

Acknowledgments. We thank all the reviewers for their constructive comments. This
research was supported by NSF grant CCF-1918327.
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