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Abstract

Symbolic regression, as one of the most crucial tasks in
Al for science, discovers governing equations from experi-
mental data. Popular approaches based on genetic program-
ming, Monte Carlo tree search, or deep reinforcement learn-
ing learn symbolic regression from a fixed dataset. These
methods require massive datasets and long training time es-
pecially when learning complex equations involving many
variables. Recently, Control Variable Genetic Programming
(CVGP) has been introduced which accelerates the regres-
sion process by discovering equations from designed con-
trol variable experiments. However, the set of experiments is
fixed a-priori in CVGP and we observe that sub-optimal se-
lection of experiment schedules delay the discovery process
significantly. To overcome this limitation, we propose Rac-
ing Control Variable Genetic Programming (Racing-CVGP),
which carries out multiple experiment schedules simultane-
ously. A selection scheme similar to that used in selecting
good symbolic equations in the genetic programming process
is implemented to ensure that promising experiment sched-
ules eventually win over the average ones. The unfavorable
schedules are terminated early to save time for the promis-
ing ones. We evaluate Racing-CVGP on several synthetic and
real-world datasets corresponding to true physics laws. We
demonstrate that Racing-CVGP outperforms CVGP and a se-
ries of symbolic regressors which discover equations from
fixed datasets.

1 Introduction

Automatically discovering scientific laws from experimental
data has been a long-standing aspiration of Artificial Intel-
ligence. Its success holds the promise of significantly accel-
erating scientific discovery. A crucial step towards achiev-
ing this ambitious goal is symbolic regression, which in-
volves learning explicit expressions from the experimental
data. Recent advancements in this field have shown exciting
progress, including works on genetic programming, Monte
Carlo tree search, deep reinforcement learning and their
combinations (Schmidt and Lipson 2009; Virgolin, Alderli-
esten, and Bosman 2019; Guimera et al. 2020; Petersen et al.
2021; Mundhenk et al. 2021; Petersen et al. 2021; Razavi
and Gamazon 2022; He et al. 2022; Sun et al. 2023; Tohme,
Liu, and Youcef-Toumi 2023).
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Figure 1: Impact of experiment schedules (noted as 7) on
learning performance of control variable genetic program-
ming. For the discovery of expression with 4 variables,
there exists a better experiment schedule (i.e., m4) among
all schedules than the default one (i.e., 71 ), in terms of nor-
malized mean square error (more examples in Appendix D).

Despite remarkable achievements, the current state-of-
the-art approaches are still limited to learning relatively sim-
ple expressions, typically involving only a few independent
variables. The real challenge lies in symbolic regression in-
volving multiple independent variables. The aforementioned
approaches learn symbolic equations from a fixed dataset.
As a result, these methods require massive datasets and ex-
tensive training time to discover complex equations.

Recently, a novel approach called Control Variable Ge-
netic Programming (CVGP) (Jiang and Xue 2023) is intro-
duced to accelerate symbolic regression. Instead of learn-
ing from fixed datasets collected a-priori, CVGP carries out
symbolic regression using customized control variable ex-
periments. As a motivating example, to learn the ideal gas
law pV = nRT, one can hold n (gas amount) and 7" (tem-
perature) as constants. It is relatively easy to learn p (pres-
sure) is inversely proportional to V' (volume). Indeed, CVGP
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Figure 2: The favorable experiment schedule 7 is survived while the unfavorable schedule 7, is early stopped under our racing
experiment schedule scheme. (a) Multiple steps of edits are needed to transform from a randomly initialized expression “x1” to
a complex expression “cy + ¢ cos(x1)”. The newly inserted parts (by genetic programming algorithm) are highlighted in blue.
(b) The red experiment schedule 7, is unfavorable because it requires many edits to reach the expression tree in the red box
(shown in (a)). The red schedule is thus stopped early. (¢) The green experiment schedule 7, is promising since it is relatively
easy to discover, and every change in the expression tree is reasonable. Section 3 provides a detailed explanation.

discovers a chain of simple-to-complex symbolic expres-
sions; e.g., first an expression involving only p and V/, then
involving p, V', T', etc. In each step, learning is carried out on
specially collected datasets where a set of variables are held
constant. The major difference between CVGP and previ-
ous approaches is that CVGP actively explores the space of
all expressions via control variable experiments, instead of
learning passively from a pre-collected dataset.

However, the set of experiments is fixed a-priori in CVGP.
It first learns an equation involving only the first variable,
then involving the first two variables, etc. In particular,
CVGP works with a fixed experiment schedule (noted as
), that is the sequences of controlled variables. We observe
that the sub-optimal selection of experiment schedules de-
lays the discovery process significantly. In Fig. 1, we run
CVGP with all 24 possible experiment schedules and report
the quartiles of normalized mean squared errors (NMSE) of
the discovered top 20 expressions. We see that certain ex-
periment schedules (such as m4) are significantly better than
others including the default schedule 7.

To overcome this limitation, we propose Racing-CVGP,
which automatically discovers good experiment schedules
that lead to accurate symbolic regression. A selection
scheme over the experiment schedules is implemented, sim-
ilar to that used in selecting good symbolic equations in the
genetic programming process, to ensure that promising ex-
periment schedules eventually win over the average sched-
ules. The unfavorable schedules are terminated early to save
time for promising schedules. Racing-CVGP allows flexi-
ble control variables experiments to be performed during the
discovery process. If a specific set of controlled variable ex-

periments fails to discover a good expression, it is ranked
at the bottom and is eventually removed by the selection
scheme. Our idea allows the algorithm to avoid spending ex-
cessive time on unfavorable experiment schedules and to fo-
cus on exploring promising controlled variable experiment
schedules.

In experiments, we compare Racing-CVGP against sev-
eral popular symbolic regression baselines using challeng-
ing datasets with multiple variables. On several datasets, we
observe that Racing-CVGP discovers higher quality expres-
sions in terms of the NMSE metric against several baselines.
Our Racing-CVGP also takes less computational time than
all the baselines. Our Racing-CVGP stops those unfavorable
schedules early, which commonly leads to a longer training
time. Notably, our method scales well to expressions with 8
variables while the GP, CVGP, and GPMeld methods take
more than 2 days and thus are time-consuming. Our contri-
butions can be summarized as follows:

* We identify a sub-optimal selection of experiment sched-
ule that greatly delays the discovery process of symbolic re-
gression. We propose Racing-CVGP to accelerate scientific
discovery by maintaining good experiment schedules during
learning challenging symbolic regression tasks.

* Under our racing experiment schedule, a favorable sched-
ule is survived while unfavorable schedules are stopped
early. We show that the time complexity of our Racing-
CVGP is approximately close to that of the CVGP, under
mild assumptions.

* In experiments, we showcase that our Racing-CVGP leads
to faster discovery of symbolic expressions with smaller
NMSE metrics, compared to current popular baselines over



several challenging datasets'.

2 Preliminaries
Symbolic Regression for Scientific Discovery

A symbolic expression ¢ is expressed as variables x =
{x1,...,2,} and constants ¢ = {e¢1,...,¢n}, connected
by a set of binary operators (like {+,—, x,=}) and/or
unary operators (like {sin, cos, log, exp}). The operator set
is noted as O,,. Each operand of an operator is either a vari-
able, a constant, or a self-contained sub-expression. For ex-
ample, “x1+x2” is a expression with 2 variables (z; and z3)
and one binary operator (+). A symbolic expression can be
equivalently represented as a binary expression tree, where
the leaf nodes correspond to variables and constants and
the inner nodes correspond to those operators. Fig. 3(a,b)
presents two example expression trees.

Given a dataset D = {(x;,v;)}~; and a loss function
(-, ), the task of symbolic regression is to find the optimal
symbolic expression ¢* with minimum loss over dataset D,
among the set of all candidate expressions (noted as 1I):

. 1<
¢ ¢ argmin N;f@(xi&),yi), (1)

where the values of the open constants c in ¢ are determined
by fitting the expression to the dataset D. The loss func-
tion £(-,-) measures the distance between the output from
the candidate expression ¢(x;,c) € R and the ground truth
y; € R. A common choice of the loss function is Normal-
ized Mean Squared Error (NMSE). Symbolic regression is
shown to be NP-hard (Virgolin and Pissis 2022), due to the
exponentially large size of all the candidate expressions II.
Genetic Programming for Symbolic Regression. Genetic
Programming (GP) has been a popular method for solving
symbolic regression. The core idea of GP involves manag-
ing a pool of candidate expressions, noted as P. In each
generation, these candidates undergo mutation and mating
steps with certain probabilities. The mutation operations
randomly replace, insert a node in the expression tree, or
delete a sub-tree. The mating operations pick a pair of par-
ent expression trees and exchange their two random sub-
trees. In the selection step, expressions with the highest fit-
ness scores, are chosen as candidates for the next generation.
Here the fitness scores (noted as o € R”) indicate the close-
ness of the predicted outputs to the ground-truth outputs, like
the negative NMSE. Over several generations, the expres-
sions that fit the data well, exhibiting high fitness scores,
survive in the pool of candidate solutions. The best expres-
sions discovered throughout all generations are recorded as
hall-of-fame solutions, noted as H.

Control Variable Trials

In a regression problem, control variable trials study the re-
lationship between a few input variables and the output with
the remaining input variables fixed to be the same (Lehman,

!The code is: https://bitbucket.org/xInxyx/racing_cvgp. Please
refer to https://arxiv.org/abs/2309.07934 for the Appendix.
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Figure 3: (a) When controlling variables zo and x3, the
ground-truth expression ¢ = s cos(z1) + x5 reduces to
¢1 cos(x1) + co. (b) Controlling variables 1 and x5 reduces
the ground-truth to c; 3.

Santner, and Notz 2004; ?). This idea was historically pro-
posed to discover natural physical law, known as the BA-
CON system (Langley 1977, 1979; Langley, Bradshaw, and
Simon 1981). Recently, this idea has been explored for solv-
ing multivariable symbolic regression problems (Jiang and
Xue 2023), i.e., CVGP.

Let x. C x denote those control variables, and the rest are
free variables. The values of controlled variables are fixed in
each trial, which behaves exactly the same as constants for
the learning method. In the controlled setting, the ground-
truth expression behaves the same after setting those con-
trolled variables as constants, which is noted as the reduced
form expression. See Fig. 3(a,b) for two reduced form ex-
pressions with different control variable settings.

For a single control variable trial in symbolic regression,
the corresponding dataset D = {(x;,y;)}1", is first gener-
ated, where the controlled variables are fixed to one value
and the remaining variables are randomly assigned. That
is X; ) = X, for the control variable x (z € x.) and
1 <14,5 < N.See Fig. 3(a,b) for example datasets generated
from the control variable trials. Given a reduced form ex-
pression and corresponding dataset, the values of open con-
stants in the expression are determined by gradient-based
optimizers, like the BFGS algorithm. In Fig. 3(a), the op-
timal values of open constants are ¢c; = 0.5,co = 0.16.
Similarly in Fig. 3(b), we have c; = 1.8. The loss values
(defined in Eq. (1)) of these two controlled variable trails
over the dataset D, and dataset D5 are equal to 0, indicating
the optimal fitness scores.

The CVGP is built on top of the above control variable
trials and GP algorithms (Jiang and Xue 2023). To fit an
expression of n variables, CVGP initially only allows vari-
able x; to vary and controls the values of all n — 1 vari-
ables (i.e., x, = x\{z1}). Using GP as a subroutine, CVGP
finds a pool of expressions {¢1, ..., ¢n, } which best fit the
data from this controlled experiment. Notice {¢1,...,¢n, }



are restricted to contain only one free variable x; and N, is
the pool size. This fact renders fitting them a lot easier than
directly fitting the expressions involving all n variables. A
small error implies that ¢; is close to the ground truth re-
duced to the one free variable. In the 2nd round, CVGP adds
a second free variable x> and starts fitting {¢, ..., ¢y }

using the data from control variable experiments involving
the two free variables x1,x2. After n rounds, the expres-
sions in the CVGP pool consider all n variables. Note that
CVGP assumes the existence of a DataOracle that allows
for query a batch data with specified control variables.

3 Methodology

We first brief the issue with a fixed experiment schedule for
the existing CVGP method in discovering symbolic regres-
sion. Then we present our racing experiment schedule for
control variable genetic programming (Racing-CVGP).

Motivation

We define an experiment schedule, noted as m, as a se-
quence of variables controlled over all the rounds in CVGP.
We use Fig. 2 to demonstrate different experiment sched-
ules for the discovery of the ground-truth expression ¢ =
cos(z1)T2 + x3. In Fig. 2(c), CVGP runs an experiment
schedule with control variables {z1, 22} in the first round
and runs with control variables {x;} in the second round
and with no variable control () in the last round. The corre-
sponding experiment schedule is 7 = ({x1, 22}, {z1},0).
Similarly, Fig. 2(b) shows the default experiment schedule
of CVGP that control variables {x2,x3} initially and then
control variable {x3}, finally control no variable (), which is
denoted as ™ = ({x2, 3}, {z3},0).

Our key observations are as follows: (1) The ex-
periment schedule plays a vital impact on the perfor-
mance of CVGP than other components in the algo-
rithm. (2) Some expressions are much easier to detect
for specific experiment schedules. The existing CVGP
method only considers a fixed experiment schedule 7 =
({zay .. sznt {23, ..., 20}, ..., {zn}, 0) for discovering
expression involving n variables. This fixed experiment
schedule leads to sub-optimal performance of CVGP over
some expressions, requiring more training data and com-
putational time than other alternative schedules. See Fig. 1
for an empirical evaluation of different experiment sched-
ules over the final identified expressions by the same CVGP
method. See more examples in Appendix D.

In Fig. 2, we use the discovery of an expression ¢ =
cos(z1)x2 + x3 from the Feynman dataset as an example.
The alternative (green) experiment schedule 7, in Fig. 2(c)
is favorable while the default (red) schedule 7, in Fig. 2(b) is
not. In Fig. 2(a), we visualize 3 necessary steps to reach from
randomly initialized expression tree “z;” to the final tree
“c1 + co cos(z1)” in Fig. 2(b). Every step of editing is con-
ducted by the GP and requires drawing batches of training
data to fit every intermediate expression. The edited subtrees
are highlighted in blue. In comparison, it takes 1 step of edits
in the tree to reach the first expression “cy +x3” in the green
experiment schedule, which leads to faster discovery using

less training data. Following the green experiment schedule
g, it takes 1 step of edits to reach the expression at the sec-
ond round “c;xo + x3” and the last round “cos(x1 )z + x3”.
Therefore, CVGP needs much more data and time in the 1st
round following the default (red) experiment schedule ..
The alternative (green) experiment schedule 7 is easier for
the GP algorithm to discover the ground-truth expression us-
ing less data and time.

Directly evoking CVGP as a subroutine with multiple ex-
periment schedules will not solve the problem. The expres-
sion in Fig. 1 has 24 different experiment schedules. The
total running time is summarized in Fig. 6. In general, for an
expression involving n variables, there are n! many experi-
ment schedules. It is time-intractable to run CVGP with all
the experiment schedules for real-world scale problems.

To tackle the above issue, we propose a racing scheme
over the experiment schedules. Our main principles are (1)
maintaining multiple experiment schedules rather than one,
and (2) allowing promising experiment schedules to survive
while letting unfavorable schedules early stop. Our Racing-
CVGP has a much higher chance of detecting high-quality
expression using less training data and computational time
than the existing CVGP.

Specifically, we implement a schedule selection proce-
dure. Every expression in the population pool ¢ € P is
attached with its own experiment schedule. In each round,
we execute GP over all the expressions in the population
pool for several generations. At the end of every round, the
racing selection scheme removes (resp. preserves) those ex-
pressions with bad (resp. good) experiment schedules, based
on their fitness scores. So those schedules that lead to higher
fitness scores have a higher probability of survival.

We use Fig. 2 to visualize the process of our Racing-
CVGP. We first initialize the population pool P in GP with
several expressions for each control variable setting. We
randomly generate simple expressions involving only z
with the control variables being {2, 23}, where every ex-
pression is attached with a (partial) experiment schedule
m = ({x2,x3}). We repeat this random expression gen-
eration for all the rest n — 1 control variable settings. For
the 1st round, the GP algorithm is evoked over the popula-
tion pool for several generations. Then we rank the expres-
sions in the pool by the fitness score of the expression, where
those expressions with higher fitness scores rank at the top
of the pool. We only preserve top N, expressions in pop-
ulation pool P. Since it is much easier to detect ¢c; + x3
under control variable {x1,x2} setting, the preserved ma-
jority expressions are attached with the experiment schedule
m1 = {x1, 22 }. This ensures that we early stop the unfavor-
able experiment schedule 7 = {x2,x3} in Fig. 2(b). Prior
to the 2nd round, we randomly set free one variable from
m1. Fig. 2(c) set the free variable x5 and only variable z; is
controlled in the 2nd round. In the 3rd round, the majority
of the expressions in the population is attached to the experi-
ment schedule 7y = ({1, 22}, {x1},0), since every change
over the expression tree is reasonable. The total computa-
tional resources are saved from spending time searching for
the expression tree in Fig. 2(b) to explore expressions with
experiment schedule 7 = ({x1, 22}, {x1}) in Fig. 2(c).



Racing Control Variable Genetic Programming

The high-level idea of Racing-CVGP is building simple to
complex symbolic expressions involving increasingly more
variables following those promising experiment schedules.
Notations. Denote K multiple control variable trials as a
tuple (¢,0,¢,X., 7, {Dx}_ ). Here ¢ stands for the sym-
bolic expression; the fitness scores o € R for expres-
sion ¢ indicates the closeness of predicted outputs to the
ground-truth outputs; ¢ € RX*L are the best-fitted val-
ues (by gradient-based optimizers) to open constants. Here
L is the number of open constants in the expression ¢;
x. C x is the set of control variables; 7 is the (partial)
experiment schedule that leads to the current expression ¢.
Dy = {(x,y:)}7; 1 < k < K) is a randomly sampled
batch of data from Dat aOracle with control variables x..
m denotes the batch size of the data.
Initialization. For single variable x; € x, we create a set
of candidate expressions that only contain variable z; and
save them into the population pool P. Then we apply a GP-
based algorithm to find the best-fitted expressions, which is
referred to as the Bui1dGPPool function. The initializa-
tion step corresponds to Lines 2-6 in Algorithm 1.
Execution Pipeline. Given the current control variables x..,
we first evoke the DataOracle to generate data batches
{Dy}_,. This corresponds to changing experimental con-
ditions in real science experiments. We then fit open con-
stants in the candidate expression ¢,,.,, with the data batches
by gradient-based optimizers like BFGS (Fletcher 2000).
This step is noted as the Opt imize function. Then we ob-
tain the fitness score vector o and solutions to open constants
c. We save the tuple (¢, o, ¢, 7, X..) into new population pool
Prew- This step corresponds to Lines 8-11 in Algorithm 1.
Then GP algorithm is applied for #Gen generations to
search for optimal structures of the expression trees in the
population pool P,,.,,. The function GP is a minimally mod-
ified genetic programming algorithm for symbolic regres-
sion, which is detailed in Appendix B. The key differences
between classic GP and our Racing-CVGP are

1. During mutation, our Racing-CVGP only alters the muta-
ble nodes of the candidate expression trees. In classic GP,
all the tree nodes are mutable, while in Racing-CVGP,
the mutable nodes of the expression trees and set of op-
erators Op are preset by the FreezeEquation.

2. Mating is only applied over a pair of expressions with
the same set of controlled variables in our Racing-CVGP.
Classic GP, a random pair of expressions is selected for
the mating operation.

3. Optimize operation in Racing-CVGP dynamically
samples data with oracle D, under control variable setup,
whereas classic GP uses data with no variable controlled.

We preserve N,, best equations in the population P. Ev-
ery expression is evaluated with the different data from its
own control variables. An unfavorable (partial) experiment
schedule will be removed at this step when the correspond-
ing expression ¢ has a low fitness score. The schedules in the
pruned population pool P indicate that they are favorable.
Key information is obtained by examining the outcomes
of K-trials control variable experiments: (1) Consistent

Algorithm 1: Racing Control Variable Genetic Programming

Input: #input variables n; operator set O,; DataOracle.
Parameters: #genetic operations per rounds #Gen; Size of
population pool V,,; #experiment trials K.
P={}sH={}

2: fori < 1tondo > initialize

3: xe ={z1,..., o} \ {zi}.

4: P + P UBuildGPPool(x.,Op U {const, z;})).
5: fori < 1tondo

6: for (¢new, T, X.) € P do > control variable trials
7: {Dy}E | + DataOracle(x., K).

8: 0, ¢ + Optimize(dnew, { Dk}t ;).

9: P+ PU{{(¢p,0,c,m,X)}.

10: P,H <+ GP(P,H,DataOracle, O, U {const,z;}).
11: for (¢, 7, x.) € P do > racing schedule
12: ¢ +FreezeEquation(e).

13: randomly drop a variable in X.

14 save X. into 7

" return the set of hall-of-fame equations H.

close-to-zero fitness value, implies that the fitted expression
is close to the ground-truth equation in the reduced form.
That is Zle I(or < €) should equal to K, where I(-) is
an indicator function and ¢ is the threshold for the fitness
scores. (2) Given that the equation is close to the ground
truth, an open constant having similar best-fitted values
across K trials suggests that the open constants are stand-
alone. Otherwise, that open constant is a summary constant,
that corresponds to a sub-expression involving those control
variables x.. The j-th open constant is a standalone con-
stant when the empirical variance of its fitted values across
K trials is less than a threshold €’. The above steps are noted
as FreezeEquat ion function. This freezing operation re-
duces the search space and accelerates the discovery.
Finally, we randomly drop a control variable in x. and
update the schedule 7 for each equation ¢ in the population
pool P. After n rounds, we return the equations in hall-of-
fame ‘H with best fitness values over all the schedules. Equa-
tions in H are evaluated on data with no variable controlled.
Running Time Analysis. The major hyper-parameters that
impact the running time of Racing-CVGP are 1) the num-
ber of genetic operations per round M; 2) total rounds n; 3)
the maximum size of population pool NV,,. A rough estima-
tion of the time complexity of the proposed Racing-CVGP
is O(nMN,), which is the same as the CVGP algorithm.
Another implicit factor of running time is the number of
open constants |c| for every expression ¢(x, c). An expres-
sion with more open constants needs more time for optimiz-
ers (like BFGS and CG) or more advanced optimizers (like
Basin Hopping (Wales and Doye 1997)) to find the solutions.
We leave it to the empirical time evaluation in Figure 6.
Connection to Existing Methods. Our work is relevant to a
line of work (Langley 1977, 1979; Langley, Bradshaw, and
Simon 1981; King et al. 2004, 2009; Cerrato et al. 2023)
that implemented human scientific discovery using Al, pio-
neered by the BACON systems (Langley 1977, 1979; Lang-
ley, Bradshaw, and Simon 1981). While BACON’s discovery



Table 1: On Trigonometric datasets, median (50%) and 75%-quantile NMSE values of the expressions found by all the algo-
rithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. “7I".0.” implies the algorithm is timed out for
48 hours. The 3-tuples at the top (-, -, -) indicate the number of input variables, singular terms, and cross terms in the expression.

(3,2,2) 4,4,6) 5,5,5) (6, 6, 10) (8, 8,12)
50% 75% 50% 5% 50% 75% 50% 75% 50% 5%
Racing-CVGP (ours) | < 1E-6 < 1E-6 | 0.016 0.021 | 0.043 0.098 | 0.069 0.104 | 0.095 0.286
CVGP | 0.039 0.083 0.028 0.132 | 0.086 0.402 | 0.104 0.177 | T.O. T.0.
GP | 0.043 0.551 0.044 0.106 | 0.063 0.232 | 0.159 0.230 | T.0. T.0.
Eureqa | <1E-6 < 1E-6 | 0.024 0.122 | 0.158 0.377 | 0.910 1.927 | 0.162  2.223
DSR | 0.227 7.856 2.815 9.958 | 2.558 3.313 | 6.121 16.32 | 0.335 0.410
PQT | 0.855 2.885 2381 13.84 | 2.168 2.679 | 5.750 16.29 | 0.232  0.313
VPG | 0.233 0.400 2990 11.32 | 1.903 2.780 | 3.857 19.82 | 0.451  0.529
GPMeld | 0.944 1.263 1.670 2.697 | 1.501 2.295 | 7.393 21.71 | T.O. T.0.
SPL | 0.010 0.011 0.144 0.231 | 0.147 0.280 | 0.472 0.627 | 0.599 0.746

was driven by rule-based engines, our Racing-CVGP uses
modern learning approaches such as genetic programming.

4 Related Work

Early works in symbolic regression (Langley 1981; Lenat
1977) use heuristic search. Genetic programming is effec-
tive in searching for good candidates (Udrescu and Tegmark
2020; Virgolin, Alderliesten, and Bosman 2019; He et al.
2022). Reinforcement learning-based methods use a risk-
seeking policy gradient to find the expressions (Petersen
et al. 2021; Mundhenk et al. 2021). Other works use RL to
adjust the probabilities of genetic operations (Chen, Wang,
and Gao 2020). Some works reduce the search space by
considering the composition of base functions (McConaghy
2011; Chen, Luo, and Jiang 2017).

Current research efforts are devoted to searching for
polynomials with a few variables (Uy et al. 2011), time
series equations (Balcan et al. 2018), and equations in
physics (Udrescu and Tegmark 2020). Multivariable sym-
bolic regression is challenging since the search space in-
creases exponentially w.r.t. the number of input variables.
Existing works for multi-variable regression are based on
pre-trained encoder-decoder methods with a massive train-
ing dataset (e.g., millions of data points (Biggio et al. 2021)),
and even larger generative models (e.g., million of parame-
ters (Kamienny et al. 2022)). Our Racing-CVGP is a tailored
algorithm to solve multi-variable symbolic regression.

The choice of variables is an important topic in Al,
including variable ordering in decision diagrams (Cap-
part et al. 2022), variable selection in tree search (Song
et al. 2022a), variable elimination in probabilistic infer-
ence (Dechter 2019; Derkinderen et al. 2020) and backtrack-
ing search in constraint satisfaction problems (Ortiz-Bayliss
et al. 2018; Li, Feng, and Yin 2020; Song et al. 2022b). Our
method is one variant of variable ordering in symbolic re-
gression.

Our work is also relevant to experiment design, which
considers drawing a minimum amount of data for determin-
ing coefficients in linear regression models (Dette and Roder
1997; Yang and Stufken 2012; Attia and Ahmed 2023). Our
work considers reducing the amount of total data needed to
uncover the ground truth expression.

S Experiments

This section demonstrates that Racing-CVGP finds the
symbolic expressions with the smallest Normalized Mean-
Square Errors (NMSE) (in Table 1 and Table 2) and takes
less computational time (in Fig. 4), among all competing ap-
proaches on several noiseless datasets. In the ablation stud-
ies, we show our Racing-CVGP is consistently better than
the baselines when evaluated in different metrics (in Fig. 5).
Also, our Racing-CVGP methods save a great portion of
time than evoke CVGP with all the possible schedules.

Experimental Settings

Datasets. We consider several publicly available and multi-
variable datasets, including 1) Trigonometric datasets (Jiang
and Xue 2023), 2) Livermore2 datasets (Petersen et al.
2021), and 3) Feynamn datasets (Matsubara et al. 2022).
Evaluation Metrics. We consider two evaluation criteria
for the learning algorithms: 1) The goodness-of-fit mea-
sure (NMSE), indicates how well the learning algorithms
perform in discovering symbolic expressions. The medians
(50%) and 75%-percentiles of the NMSE are reported. We
report median values instead of means due to outliers (see
Ablation Studies). This is a common practice for combina-
torial optimization problems. 2) The total running time of
each learning algorithm.

Baselines. We consider the following baselines based
on evolutionary algorithms: 1) Genetic Programming
(GP) (Fortin et al. 2012). 2) Eureqa (Dubcdkova 2011). We
also consider a series of baselines using reinforcement learn-
ing: 3) Priority queue training (PQT) (Abolafia, Norouzi,
and Le 2018). 4) Vanilla Policy Gradient (VPG) (Williams
1992). 5) Deep Symbolic Regression (DSR) (Petersen et al.
2021). 6) Neural-Guided Genetic Programming Population
Seeding (GPMeld) (Mundhenk et al. 2021). 7) Symbolic
Physics Learner (SPL) (Sun et al. 2023). The remaining de-
tails are provided in Appendix C.

Experimental Result Analysis

Goodness-of-fit Benchmark. Our Racing-CVGP attains the
smallest median (50%) and 75%-quantile NMSE values
among all the baselines when evaluated on selected Trigono-
metric, Livermore2, and Feynman datasets (Table 1). This



Table 2: On Livermore2 and Feynman datasets, median (50%) and 75%-quantile NMSE values of the symbolic expressions
found by all the algorithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. n is the number of
independent variables in the expression.

Livermore2 (n = 4)  Livermore2 (n = 5) Livermore2 (n = 6) | Feynman (n = 4) Feynman (n = 5)

50% 5% 50% 5% 50% 5% 50% 5% 50% 5%

Racing-CVGP (ours) | < 1E-6 2.03E-3 | 0.004 0.047 0.001 0.073 0.015 0.195 | 0.577 0.790

CVGP 0.052 0.810 0.275 1.007 0.328 1.012 1.002 1.010 1.001 1.002

GP 0.059 0.962 0.331 1.003 1.001 1.026 1.003 1.010 1.002 1.011

Eureqa 0.508 0.980 0.083 0.249 0.026 0.302 0.026 0.397 | 0.434 0.943

DSR 0.030 0.048 0.050 0.284 0.230 0.486 0.216 0.920 | 0.976 1.001

PQT 0.042 0.063 0.074 0.227 0.170 0.410 0.172 0.765 1.003 1.027

VPG 0.037 0.074 0.093 0.322 0.206 0.535 0.188 0.971 1.006 1.025

GPMeld 0.029 0.061 0.049 0.259 0.144 0.504 0.177  0.708 | 0.940 1.002

SPL 0.035 0.463 0.181 0.201 0.229 1.005 0.143 0.542 | 0.632 1.002
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Figure 4: On selected Trigonometric datasets, quartiles of
the total running time of all the methods. Our Racing-CVGP
method takes less time than CVGP by early stopping those
unfavorable experiment schedules.

shows that our method can better handle multivariable sym-
bolic regression problems than the current best algorithms
in this area. For the Trigonometric dataset with n = 8 vari-
ables, both the GP and CVGP take more than 2 days to find
the optimal expression. The reason is that there are too many
open constants in the expressions in the population pool,
making the optimization problem itself time-consuming to
find the solution. This behavior is another indication that
CVGP is stuck at some unfavorable experiment schedule.
Empirical Running Time Analysis. We summarize the
running time analysis in Fig. 4. Our Racing-CVGP method
takes less time than CVGP as well as the rest baselines.
The main reason is early stop those unfavorable experiment
schedules. See Appendix D for more figures.

Ablation Studies We collect the benchmark of different
evaluation metrics in Fig. 5, i.e, MSE and NMSE, dur-
ing testing over the selected Trigonometric datasets. The
RMSE and NRMSE evaluation metrics are available in Ap-
pendix D.

We further collect the time comparison between our
Racing-CVGP and the CVGP with all the experiment sched-
ules in Fig. 6. The quartiles of time distribution over 10 ran-
dom expressions with 4 variables show that Our Racing-
CVGP saves a great portion of the time compared with
CVGP with all the schedules.

Figure 5: On selected Trigonometric datasets, MSE and
NMSE evaluation metrics of the expressions found by dif-
ferent algorithms.

sin cos (4, 4, 6)

Racing-CVGP (ours) 1 0—-—0

CVGP (all schedules) A

—E
——

10° 10* 10°
Time Usage (Mins)

CVGP 1

Figure 6: On a selected Trigonometric dataset, quartiles of
the total running time of Racing-CVGP, CVGP, and CVGP
with all the experiment schedules. Our Racing-CVGP saves
a great portion of time compared with CVGP with all the
schedules for expressions with n = 4 variables.

6 Conclusion

In this research, we propose Control Variable Genetic Pro-
gramming (Racing-CVGP) for symbolic regression with
many independent variables. Our Racing-CVGP can accel-
erate the regression process by discovering equations from
promising experiment schedules and early stop those unfa-
vorable experiment schedules. We evaluate Racing-CVGP
on several synthetic and real-world datasets corresponding
to true physics laws. We demonstrate that Racing-CVGP
outperforms CVGP and a series of symbolic regressors
which discover equations from fixed datasets.
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A Implementation

Please find our code repository. It contains 1) the implementation of our Racing-CVGP method, 2) the list of datasets, and 3)
the implementation of several baseline algorithms.

B Genetic Programming Algorithm in Racing-CVGP

For the FreezeEquation function used in Algorithm 1, we use Figure 7 to demonstrate the output. The FreezeEquation
function will reduce the size of candidate nodes to be edited in the GP algorithms and increase the probability of finding
expression trees with close-to-zero fitness scores.

Reduced form expression tree Output of FreezeEquation Reduced form expression tree Output of FreezeEquation

9%, Tof, %o

(a) controlled variable X, = {x,, x;}. (b) controlled variable X, = {x,x,}.

Figure 7: Visualization of the FreezeEquation function. 0 implies the node is non-editable and 1 implies the node is
editable, by the GP algorithm. The FreezeEquat ion function will increase the probability of finding expression trees with
close-to-zero fitness scores.

The pipeline of Genetic Programming in our Racing-CVGP framework is presented in Algorithm 2. It is a minimally modified
genetic programming algorithm for symbolic regression.
For the Mutate step, the algorithm will apply one of the operations for the chosen expression tree:
1. Find a leaf node that is not frozen and then replace the node with a generate a full expression tree of maximum depth
involving variables only in x \ x..
2. Find a node and replace it with a node of the same arity. Here arity is the number of operands taken by an operator. For
example, the arity of binary operators {+, —, X, =} is 2 and the arity of unary operators {sin, cos, log, exp} is 1.
3. Inserts a node at a random position, and the original subtree at the location becomes one of its subtrees.
4. Delete a node that is not frozen, use one of its children to replace its position.
For the Mate step, we will pick two expressions ¢;, ¢; from the population pool P that has the same control variables
X¢, = Xc,j. Then we exchange two randomly chosen subtrees in the expressions. Because applying mating over two expressions
with different control variables does not necessarily result in two better expressions.



Algorithm 2: GP(P,DataOracle, K, M, #Gen, #Hof, Ppy, Ppa, Op)

Input: Initial GP Pool P; DataOracle; # control variable trials K; GP pool size N,,; # of generations #Gen; #expressions in
hall-of-fame set #Ho £; mutation node library O,,.
Parameters: The GP pool and the updated hall of fame set.
Parameters: mutate probability P,,,; mate probability P,,;
1: fori < 1 to #Gen do
2: Prew «— 0;

3: for (pnew, ™, %x:) € P do

4: if with probability P,,,, then > mutation
5 Pnew < Mut ate(ﬁbneun Op7 X \ Xc);

6: {Dk}le <+ DataOracle(¢pew,Xe, K);

7: 0, ¢ + Optimize(dpew, {Dk}le);

8: Pnew — Pnew U {<¢newa o,c, T, Xc>};
10: for <¢l,7Tl,Xc7l>, <¢)j,7Tj,Xcvj> € Pdo > mating
11: if with probability P, and x.; = X, ; then > pick two expressions with the same x,
12: b1, 95 < Mate(dr, ¢));

13: {Dy}E | + DataOracle(d;,Xc 1, K);

14: 0;,¢; < Optimize(qy, {Dk}szl);

15: {Dk}le < DataOracle(¢;, X¢ ;, K);

16: 0;,c; < Optimize(¢;, {Dk}le);

17: Pnew — Pnew U {<¢l> oy, Cy, 7y, Xc,l>7 <¢]7 o, Cja 7Tj7 Xc,j>};

18: H + TopK(Ppew UH, K = #Hof); > Update the hall of fame set

return GP pool and hall-of-fame P,,¢.,, H.

C Experiment Settings

Dataset Configuration
Livermore2 Dataset The list of Livermore2 datasets is summarized at®. In Tables 3, 4, 5, we details the exact equation of
Livermore?2 (Petersen et al. 2021). The operator set for each expression is available in the codebase.

The list of Feynamn datasets is collected from?. In Tables 6, 7. We only use a subset of the expressions in the original Feynman
dataset. The challenging part for this dataset is the ranges of input variables vary greatly. For example, in one equation with ID
“ICh34Eq8” the ranges of all the variables are:

x1 € (1071,107%), 25 € (10°,107), 23 € (10,10%), 24 € (10%,10"") ()

In comparison, the input ranges of the Livermore2 dataset are ; € (0.01, 10). The operator set for each expression is available
in the codebase.

Evaluation Metrics

‘We mainly consider two evaluation criteria for the learning algorithms tested in our work: 1) the goodness-of-fit measure and
2) the total running time of the learning algorithms. The goodness-of-fit indicates how well the learning algorithms perform
in discovering unknown symbolic expressions. Given a testing dataset Diesy = {(x;,y;)}7—; generated from the ground-truth
expression ¢, we measure the goodness-of-fit of a predicted expression ¢, by evaluating the mean-squared-error (MSE) and
normalized-mean-squared-error (NMSE):

1 & _ LS (g — d(x5))?
MSE = - ;(y — (x5))?, NMSE = L =
1 & 1 |1& @
RMSE =, |~ Z(yi — p(x4))?, NRMSE = —, | ~ Z(yz- — p(x;))?
i=1 Y i=1

n
i

where the empirical variance o, = \/ DN (T S yi)2. Note that the coefficient of determination (R?) met-
ric (Nagelkerke et al. 1991; Cava et al. 2021) is equal to (1 — NMSE) and therefore omitted in the experiments.

Zhttps://github.com/brendenpetersen/deep-symbolic-optimization/blob/master/dso/dso/task/regression/benchmarks.csv
*https://github.com/omron- sinicx/srsd-benchmark/blob/main/datasets/feynman. py



Table 3: Detailed equation in Livermore2 datasets (part-1).

Livermore2 (n = 4)

Eq.ID | n Expression

Vars4-1 | 4 x1 — X923 — X2 — X4

Vars4-2 4 I \/.51'4/5(}3

Varsd-3 | 4 2x1 + x4 — 0.01 + 23/29

Vars4-4 | 4 1 — x4 — (=21 +sin(zy))?/(252323)

Varsd-5 | 4 xq +sin(zo/(x120203(—3.220023 + 13.912024 + 23) /2 + 12))?
Varsd-6 | 4 (—x1 — 0.54exp(z1sqrt(zy + cos(xz)) exp(—221)))/x3
Vars4-7 | 4 w1 + cos(xa/log(z3xs + 74))

Varsd-8 | 4 zy(z1 + x4 + sin((—zy1 exp(exp(x3)) + z2)/(—4.4Tz3x3 + 8.3123 + 5.2723))) — 21
Vars4-9 | 4 @1 — x4 + cos(xy (21 + 22) (2310 + 23) + 3)
Varsd-10 | 4 z1 + (v1(24 + (/72 — sin(x3)) /z3)) /4
Varsd-11 | 4 2x1 4+ 2o(21 + sin(zaxs)) + sin(2/x4)
Vars4-12 | 4 x120+ 16.9723 — 24
Vars4-13 | 4 x4(—w3 — sin(a? — 21 + 22))
Vars4-14 | 4 x1 + cos(z3(—xa + 23 + 3.23) + x4)
Vars4-15 | 4 x1(xa + log(ws + x4 + exp(x3) — 0.28/21)) — 3 — e
Varsd-16 | 4 x3(—4 + 1.81/x3) + /22 (=27 exp(x2) — x2) — 2.3434 /71
Vars4-17 | 4 z7 —x2 — 25 — 24
Varsd-18 | 4z + sin(2z + 23 — 24 exp(w1) + 2.964/—0.3623 + 2223 + 0.94 + log((—z1 + z2) log(z2)))
Vars4-19 | 4 (2329 — 2.8621 + 24) /73
Varsd-20 | 4  x1 + 22+ 6.21 + 1/(z324 + 23 + 2.08)
Vars4-21 | 4 zq(ze — w3+ 24) + 24
Varsd-22 | 4 x1 — xox3 + xoexp(wy) — x4
Varsd-23 | 4 —x/x9 — 2.23x203 + 29 — 2.23x3/\/T4 — 2.23 /T4 + log(z1)
Vars4-24 | 4 —4.81 log(\/xl Viog(z1(z122 + 21 + 74 + log(x3))))
Varsd-25 | 4 0.38 + (—x1 /x4 + cos(2x123/(xa(x1 + 2223))) /24) /22

Baseline Implementation

Racing-CVGP Our method is implemented on top of the GP following Algorithm 2. See the codebase for more details.
GP The implementation is based on the version in “baselines” of DSO package*. However, we re-implemented the code
following the concept of their package.
CVGP The implementation is available at>.
Eureqa This algorithm is currently maintained by the DataRobot webiste®. We use the python API provided 7 to send the
training dataset to the DataRobot website and collect the predicted expression after 30 minutes. This website only allows us
to execute their program under a limited budget. Due to budgetary constraints, we were only able to test the datasets for the
noiseless settings. For the Eureqa method, the fitness measure function is negative RMSE. We generated large datasets of size
10° in training each benchmark.
DSR, PQT, GPMeld These algorithms are evaluated based on an implementation in®. For every ground-truth expression, we
generate a dataset of sizes 10° training samples. Then we execute all these baselines on the dataset with the configurations listed
in Table 8.

The official implementation of Symbolic Physics Learner (SPL) (Sun et al. 2023)° does not support open constants. Thus
SPL is not considered in this research.

For the four baselines (i.e., PQT, VPG, DSR, GPMeld), the reward function is INV-NRMSE, which is defined as M#SE'
Optimizers
We consider several optimizers CG (Fletcher and Reeves 1964) Nelder-Mead (Gao and Han 2012), BFGS (Fletcher 2000),
Basin Hopping (Wales and Doye 1997), SHGO (Endres, Sandrock, and Focke 2018), Dual Annealing (Tsallis and Stariolo

*https://github.com/DEAP/deap

Shttps://github.com/jiangnanhugo/cvgp
Shttps://docs.datarobot.com/en/docs/modeling/analyze- models/describe/eureqa.html
https://pypi.org/project/datarobot/
8https://github.com/brendenpetersen/deep-symbolic-optimization
*https://github.com/isds-neu/SymbolicPhysicsLearner



Table 4: Detailed equation in Livermore2 datasets (part-2).

Livermore2 (n = 5)
Eq.ID | n Expression
Vars5-1 5 —xi4+x0—x3+134 — 25 —4.75
Vars5-2 | 5 x5 <x1 + x5+ %)
(I3+(m1:202+:452))
Vars5-3 | 5 2xix9ws + x5 — sin(zg log(ze) — x1 + x4)
Vars5-4 | 5 o+ w324 + 22 + sin(zq)
Vars5-5 | 5 a5+ 0.361/(log(z122 + 23 + log(z2 + 24)))
Vars5-6 | 5 xix4+x1+30+ 75+ \/(0.08x1/(x3x5) + x3)
Vars5-7 | 5 x125 + \/(xlxg cos(x1) — x1/(x2 + 23 + x4 + 8.05))
Vars5-8 5 (332)333 — Ty — 007($1 + (.1‘1 — 332) (Ig — 099)) COS(JJ{,)
Vars5-9 | 5 z1(zs + (1 + 22) /(224 + 25))
Vars5-10 | 5 x1/(24(—0.25z 2324 + 22 — 8.43x475) sin(zs + log(x2))) + z4xs
VarsS-11 | 5 —af 4/ Zlestislmetis 4o 47, /p Boviates
Varss-12 | 5wy (w2 - ooty )
Vars5-13 | 5 /(21(z5(v2 — 1.52) — cos(4.03z3 + 24)))
Vars5-14 | 5 —xz1/(zox5) + cos(z1x324 exp(—x2))
Vars5-15 | 5 —xz4 + log(x1/log(11.06z222) + 23) — cos(z2 + x5 + /(z225))
Vars5-16 | 5 a9 + 0.33z5(x1 /(23 + 22) + x3x23/2))
Vars5-17 | 5 a1 —sin(xzg) + sin(x3) — cos(—x2 + v/ (24) + z5) + 0.78
Vars5-18 | 5 zyzo — x4 — (\/(23 /(w1 (23 + 74))) — 1.13/23) /25
Vars5-19 5 4.53%‘1332 +x1— 2 COS(\/(xg))/.IQ — T3 — T4 — Tj
Vars5-20 | 5 —exp(z1 + @5) + sin(x; — 4.81)/(0.21(z5 — log(zs + x4) — exp(xs))/x2)
Vars5-21 | 5 /(z4) (221 + cos(z1(x324 exp(z122) + x5 — log(zs) — 3.49))/x5)
Vars5-22 | 5 —x1 — 22 + 23 + /(21 — 22(sin(z3) — log(v125/ (2% + x4)) /24)) — 0.73
Vars5-23 | 5 xq(z2/(x3 + /(z2(xa + 25))(—23 + 24)) — 5)
Vars5-24 | 5 —xzoxs + \/(xl + 29(—21 + x4 cos(\/T3 + x3) — %) + 2
Vars5-25 | 5 21 + log(x1(—3.5723 29 + o1 + 22 + 73 log(—z124 8in(73) /25 + 23)))

1996). The list of local and global optimizers shown in Figure 12 are from Scipy library!°.

Hyper-parameter Configuration

We list the major hyper-parameter setting for all the algorithms in Table 8. Note that if we use the default parameter settings,
the GPMeld algorithm takes more than 1 day to train on one dataset. Because of such slow performance, we cut the number of
genetic programming generations in GPMeld by half to ensure fair comparisons with other approaches.

"https://docs.scipy.org/doc/scipy/reference/optimize. html#global-optimization



Table 5: Detailed equation in other small-scale datasets (part-3). n stands for the number of maximum variables.

Livermore2 (n = 6)

Eq.ID | n Expression
Vars6-1 | 6  x1 — 26+ (1 + 74 + 75)/ (27 + 22 — 3)
Vars6-2 6 1'1(21’2 + 1’2/1‘3 + x4 + 10g(l’1£€51176))
Vars6-3 | 6 \/(z2 + x5 — 26 + 2525/ (2123))
Vars6-4 | 6 x1(xo(2? +21) — 20 + 2% — 23 — 25 — 16 — sin(wy) — cos(w4))?
Vars6-5 | 6  x9 \/(xla:Q)(arlasg — 3 —x4) + x5 + X6
Vars6-6 | 6 (z1/(z273 + log(cos(x1))?) — zoxy + sin((waz4 + 5)/26) + cos(z3)) log(z1)
Vars6-7 | 6 a1/ (z1 — 22 + sin((z1 exp(—x2) — x4(z9 + 22)) /(22 + 75)))
Vars6-8 | 6 1 + 22 + 0.34w375 — 4 + T6
Vars6-9 | 6  m4(z1 + exp(13.2823z6 — 22 log(23)) /(2173 — 23 + 22 — 6 — log(x3)))
Vars6-10 | 6 z1 + 61.3625 + o /(z123(24 — cos(x4(2x17226 /5 + 5))))
Vars6-11 | 6 (w1 + o1/ (w2 + 14(8.132% 26 + 212973 + 229 + 5 + 26)))?
Vars6-12 | 6 (V2+/(21) — 22 — 23/\/(24(8.2921 2% + 2125) + 24 + 6)) /76
Vars6-13 | 6 a1 + a5 +0.21y/ (w1 /(@33 /T@e) (/(@a) + s+ 226 + (22 + w4 + 25)/5)))
Vars6-14 | 6 —2.07z¢ + log(za — 26 — /(z3(x5 + log(—z1 + x5 + 1)) /24))
Vars6-15 | 6 x1(z1 + cos(z3xzma(ws — 0.4323))) /x4
Vars6-16 | 6  —+/(z1) — 21 + 29 — x4 — x5 — \/(26/23) — 3.26
Vars6-17 | 6 x1/(xowa(—x5 + log(a? cos(2xe + 2% — 24)?))(129.282223 + 23))
Vars6-18 | 6 /25(2x1 + cos(z1(x3x4 exp(z122) + 23 — log(x3) — 3.49)) /6)
Vars6-19 | 6 21 + 29 + 23 + 0.84\/(—303966 + x4 — x5 + \/((xg + log(zs + exp(x2)))/(x2 — x4)))
Vars6-20 | 6 (x1 —0.97x1 /(x5 — 336(a:§3/2)x4 +x6)) — T2 + x3 + sin(x?) /x1)?
Vars6-21 | 6 1 + 3 + (71 + sin(—3.47x3 log(z6) /x5 + 24 + 25.56 exp(z2)/x2)?) sin(z2)
Vars6-22 | 6 a1 + (x4 +sin(—0.22(x3 — 24 + 1.0)) cos(xg)) cos(xe + 2.27x5)
Vars6-23 | 6 x1 + x4 + log(z? + 21(—w6 + 1.884/(0.71z1 + 2 + 0.28(x3 — 24/75))))
Vars6-24 | 6 —0.59(1.42(0.2472 + /73/(x6/(—74 + 5)))(1/4) + sin(z1)) /z6
Vars6-25 | 6 11 — 23 — 23 + x5 cos(w3) + 5 + 6 — 2.191/(—13 — 0.44/24)

D Extra Experimental Analysis

Impact of Experiment Schedulese: See Figure 8,9
Empirical Running Time: See Figure 10
Impact of Evaluation Metrics: See Figure 11



Table 6: Detailed equations in Feynman datasets (n = 4). n stands for the number of maximum variables.

Feynman (n = 4)
Eq.ID n  Expression
1.8.14 4 \/(x(] — 5171)2 + (!L‘Q — {E3)2
L13.4 4 0.5z0(23 + 23 + 23)
L13.12 4 6.6743¢ — 1lzoa:(—1/z5 + 1/z9)
1.18.4 4 (zow1 + x223) /(20 + 22)
1.18.16 4 xorwosin(xz
1.24.6 4 0.25z023 (2% + 23)
1.29.16 4 /2% + 2woxy cos(zg — x3) + 27
1.32.17 4 0.00357xirzs /(23 — 23)?
1.34.8 4 I0$1I2/$3
1.40.1 4 xpexp(—7.10292768111229¢ + 23z x5/ x3)
1.43.16 4 l‘oxll‘g/l‘g
1444 4 1.38¢ — 23x0x1 log(za/x3)
1.50.26 4 zo(w3cos(r122)? + cos(r122))
1.11.20 4 24le+ 22z023w2 /73
11.34.11 4 zorix2/(223)
I1.35.18 4 xo/(exp(7.24e + 2219 /x3) + exp(—7.24e + 22z 125/ 23))
11.35.21 4 zorytanh(7.24e + 22z 29 /23)
11.38.3 4 xzomix2/T3
NL10.19 | 4 zoy/22 + 23 + 22
I.14.14 4 xzo(exp(7.24e 4+ 222129 /25) — 1)
II1.21.20 4 7I0I11’2/I3
BONUS.1 | 4 3.32e — 572323 /(23 sin(z3/2)%)
BONUS.3 | 4 z0(1—2%)/(z1cos(zg — x3) + 1)
BONUS.11 | 4  4xgsin(zy/2)? sin(zo23/2)% /(23 sin(z3/2)?)
BONUS.19 | 4 —1872855580.36049(8.07¢ + 330 /22 + 8.98¢ + 1623(1 — 223)) /7

Table 7: Detailed equations in Feynman datasets (n = 5). n stands for the number of maximum variables.

Feynman (n = 5)
Eq. ID n  Expression
1.12.11 5 xo(x1 + zawssin(zy))
11.2.42 5 330333(2131 - $2)/1‘4
IL6.15a | 5 84707476846.623x0x1/ (23 + x3)/(7z3)
1.11.3 5 mory/(z2(z3 — 23))
L1117 | 5 20(7.24e + 22z 25 cos(x3)/xq4 + 1)
11.36.38 5 T7.24e + 22x0x1 /22 + 9.10e + 16202324 /22
1M.9.52 | 5 1.21e+ 34wxow sin(we(x3 — 24)/2)%/(22(x3 — 24)?)
bonus.4 | 5 V2/(x1 — a9 — 22/(220273)) /70
bonus.12 | 5 wo(—wozizs/(23 — 22)? + dpizix31,) /(47T 123)
bonus.13 | 5 x1/(4mwo\/73 — 27973 cos(z4) + 22)
bonus.14 | 5 xo(—z2 + 23 (x4 — 1) /(23 (24 + 2))) cos(z1)
bonus.16 | 5 xix4 + 8.98¢ + 16\/:5% + 1.11e — 17(xg — z122)?

Impact of Optimizers

Here we study the impact of using global and local optimizers over those non-convex expressions. With the introduction of
control variable experiments, fitting the open constants in the expressions is solving more and more non-convex optimization
problems.

For those expressions in the populations, an optimizer might find a set of open constants for a structurally correct expression
with large NMSE errors, resulting in a low ranking in the whole population. Such structurally correct expressions will not be
included after several rounds of genetic operations.

We summarize the experimental result in Figure 12. In general, the list of global optimizers (SHGO, Direct, Basin-Hopping,
and Dual-Annealing) fits better for the open constants than the list of local optimizers but they take significantly more CPU



Table 8: Major hyper-parameters settings for all the algorithms considered in the experiment.

Racing-CVGP GP DSR PQT GPMeld Eureqa
Reward function NegMSE NegMSE InvNRMSE InvNRMSE InvNRMSE NegRMSE
Training set size 25,600 25,600 50, 000 50,000 50, 000 50,000
Testing set size 256 25,600 256 256 256 256
Batch size 256 256 1024 1024 1024 N/A
#CPUs for training 1 1 4 4 4 1
e-risk-seeking policy N/A 0.02 0.02 0.02 N/A N/A
#genetic generations 100 100 N/A N/A 60 10,000
#Hall of fame 10 10 25 25 25 N/A
Mutation Probability 0.5 0.5 0.5 N/A N/A N/A
Mating Probability 0.5 0.5 0.5 N/A N/A N/A
training time (hours) ~0.5 ~0.5 ~0.5 ~0.5 ~6 ~0.5
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Figure 8: Impact of experiment schedules (noted as 7) on learning performance of control variable genetic programming, on
the Trigonometric (4,4, 6) with operator set {4+, —, X, +, sin, cos} dataset. For the discovery of 10 different expressions with
4 variables, there always exists a better experiment schedule than the default one (i.e., 71), in terms of normalized mean square
error.

resources and time for computations.
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Figure 9: (Continued) Impact of experiment schedules (noted as 7) on learning performance of control variable genetic pro-
gramming. For the discovery of expression with 4 variables, there always exists a better experiment schedule than the default

one (i.e., 1), in terms of normalized mean square error.
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Figure 10: On Trigonometric datasets, quartiles of the total running time of all the methods. Our Racing-CVGP method takes
less time than CVGP by early stopping those unfavorable experiment schedules.
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Figure 11: On selected Trigonometric datasets, MSE, NMSE, RMSE, and NRMSE evaluation metrics of the expressions found
by different algorithms.
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Figure 12: Impact of optimizers on finding the values of open constants for non-convex expressions. Over 10 randomly gen-
erated expressions involving 4 variables, SHGO can find better solutions (in terms of NMSE metric) than local optimizers
(including Nelder-Mead, BFGS, CG), while the time taken by SHGO is higher than local optimizers.



