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Abstract

Satisfiability Modulo Counting (SMC) encompasses prob-
lems that require both symbolic decision-making and statis-
tical reasoning. Its general formulation captures many real-
world problems at the intersection of symbolic and statis-
tical Artificial Intelligence. SMC searches for policy inter-
ventions to control probabilistic outcomes. Solving SMC is
challenging because of its highly intractable nature (NPPP-
complete), incorporating statistical inference and symbolic
reasoning. Previous research on SMC solving lacks prov-
able guarantees and/or suffers from sub-optimal empirical
performance, especially when combinatorial constraints are
present. We propose XOR-SMC, a polynomial algorithm with
access to NP-oracles, to solve highly intractable SMC prob-
lems with constant approximation guarantees. XOR-SMC trans-
forms the highly intractable SMC into satisfiability prob-
lems, by replacing the model counting in SMC with SAT for-
mulae subject to randomized XOR constraints. Experiments
on solving important SMC problems in AI for social good
demonstrate that XOR-SMC outperforms several baselines both
in solution quality and running time.

Introduction
Symbolic and statistical approaches are two fundamental
driving forces of Artificial Intelligence (AI). Symbolic AI,
exemplified by SATisfiability (SAT) and constraint program-
ming, finds solutions satisfying constraints but requires rigid
formulations and is difficult to include probabilities. Statis-
tical AI captures uncertainty but often lacks constraint sat-
isfaction. Integrating symbolic and statistical AI remains an
open field and has gained research attention recently (cpm
2023; nes 2023; Munawar et al. 2023).

Satisfiability Modulo Counting (SMC) is an umbrella
problem at the intersection of symbolic and statistical
AI. It encompasses problems that carry out symbolic
decision-making (satisfiability) mixed with statistical rea-
soning (model counting). SMC searches for policy interven-
tions to control probabilistic outcomes. Formally, SMC is an
SAT problem involving predicates on model counts. Model
counting computes the number of models (i.e., solutions) to
an SAT formula. Its weighted form subsumes probabilistic
inference on Machine Learning (ML) models.

Copyright © 2024, Association for the Advancement of Artificial
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As a motivating SMC application, stochastic connectiv-
ity optimization searches for the optimal plan to reinforce
the network structure so its connectivity is preserved under
stochastic events – a central problem for a city planner who
works on securing her residents multiple paths to emergency
shelters in case of natural disasters. This problem is use-
ful for disaster preparation (Wu, Sheldon, and Zilberstein
2015), bio-diversity protection (Dilkina and Gomes 2010),
internet resilience (Israeli and Wood 2002), social influence
maximization (Kempe, Kleinberg, and Tardos 2005), energy
security (Almeida et al. 2019), etc. It requires symbolic rea-
soning (satisfiability) to decide which roads to reinforce and
where to place emergency shelters, and statistical inference
(model counting) to reason about the number of paths to
shelters and the probabilities of natural disasters. Despite
successes in many use cases, previous approaches (Williams
and Snyder 2005; Conrad et al. 2012; Sheldon et al. 2010;
Wu, Sheldon, and Zilberstein 2014) found solutions lack of
certifiable guarantees, which are unfortunately in need for
policy adoption in this safety-related application. Besides,
their surrogate approximations of connectivity may overlook
important probabilistic scenarios. This results in suboptimal
quality of the generated plans. As application domains for
SMC solvers, this paper considers emergency shelter place-
ment and supply chain network management – two impor-
tant stochastic connectivity optimization problems.

It is challenging to solve SMC because of their highly in-
tractable nature (NPPP-complete) (Park and Darwiche 2004)
– still intractable even with good satisfiability solvers (Biere
et al. 2009; Rossi, van Beek, and Walsh 2006; Braunstein,
Mézard, and Zecchina 2005) and model counters (Gomes,
Sabharwal, and Selman 2006a; Ermon et al. 2013b; Achliop-
tas and Theodoropoulos 2017; Chakraborty, Meel, and Vardi
2013; Kisa et al. 2014; Cheng et al. 2012; Gogate and
Dechter 2012). Previous research on SMC solves either a
special case or domain-specific applications (Belanger and
McCallum 2016; Welling and Teh 2003; Yedidia, Free-
man, and Weiss 2000; Wainwright and Jordan 2008; Fang,
Stone, and Tambe 2015; Conitzer and Sandholm 2006; Shel-
don et al. 2010). The special case is called the Marginal
Maximum-A-Posterior (MMAP) problem, whose decision
version can be formulated as a special case of SMC (Mari-
nescu, Dechter, and Ihler 2014; Liu and Ihler 2013; Mauá
and de Campos 2012; Jiang, Rai, and III 2011; Lee et al.
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2016; Ping, Liu, and Ihler 2015). Both cases are solved by
optimizing the surrogate representations of the intractable
model counting in variational forms (Liu and Ihler 2012;
Kiselev and Poupart 2014), or via knowledge compilation
(Choi, Friedman, and den Broeck 2022; Ping, Liu, and Ih-
ler 2015; Mei, Jiang, and Tu 2018) or via sample average
approximation (Kleywegt, Shapiro, and Homem-de-Mello
2002; Shapiro 2003; Swamy and Shmoys 2006; Sheldon
et al. 2010; Dyer and Stougie 2006; Wu et al. 2017; Xue,
Fern, and Sheldon 2015; Verweij et al. 2003).

Nevertheless, previous approaches either cannot quantify
the quality of their solutions, or offer one-sided guaran-
tees, or offer guarantees which can be arbitrarily loose. The
lack of tight guarantees results in delayed policy adoption
in safety-related applications such as the stochastic connec-
tivity optimization considered in this paper. Second, opti-
mizing surrogate objectives without quantifying the quality
of approximation leads to sub-optimal behavior empirically.
For example, previous stochastic connectivity optimization
solvers occasionally produce suboptimal plans because their
surrogate approximations overlook cases of significant prob-
ability. This problem is amplified when combinatorial con-
straints are present.

We propose XOR-SMC, a polynomial algorithm access-
ing NP-oracles, to solve highly intractable SMC problems
with constant approximation guarantees. These guarantees
hold with high (e.g. > 99%) probability. The strong guar-
antees enable policy adoption in safety-related domains and
improve the empirical performance of SMC solving (e.g.,
eliminating sub-optimal behavior and providing constraint
satisfaction guarantees). The constant approximation means
that the solver can correctly decide the truth of an SMC for-
mula if tightening or relaxing the bounds on the model count
by a multiplicative constant do not change its truth value.
The embedding algorithms allow us to find approximate so-
lutions to beyond-NP SMC problems via querying NP ora-
cles. It expands the applicability of the state-of-the-art SAT
solvers to highly intractable problems.

The high-level idea behind XOR-SMC is as follows. Imag-
ine a magic that randomly filters out half of the models (so-
lutions) to an SAT formula. Model counting can be approxi-
mated using this magic and an SAT solver – we confirm the
SAT formula has more than 2k models if it is satisfiable after
applying this magic k times. This magic can be implemented
by introducing randomized constraints. The idea is devel-
oped by researchers (Valiant and Vazirani 1986; Jerrum,
Valiant, and Vazirani 1986; Gomes, Sabharwal, and Selman
2006b,a; Ermon et al. 2013b,a; Kuck et al. 2019; Achliop-
tas and Theodoropoulos 2017; Chakraborty, Meel, and Vardi
2013; Chakraborty et al. 2014). In these works, model count-
ing is approximated with guarantees using polynomial algo-
rithms accessing NP oracles. XOR-SMC notices such polyno-
mial algorithms can be encoded as SAT formulae. Hence,
SAT-Modulo-Counting can be written as SAT-Modulo-SAT
(or equivalently SAT), when we embed the SAT formula
compiled from algorithms to solve model counting into
SMC. The constant approximation guarantee also carries.

We evaluate the performance of XOR-SMC on real-world
stochastic connectivity optimization problems. In particular,

we consider applied problems of emergency shelter place-
ment and supply chain management. For the shelter place-
ment problem, our XOR-SMC finds high-quality shelter as-
signments with less computation time and better quality than
competing baselines. For wheat supply chain management,
the solutions found by our XOR-SMC are better than those
found by baselines. XOR-SMC also runs faster than baselines1.

Preliminaries
Satisfiability Modulo Theories
Satisfiability Modulo Theory (SMT) determines the SAT-
isfiability (SAT) of a Boolean formula, which contains
predicates whose truth values are determined by the back-
ground theory. SMT represents a line of successful efforts to
build general-purpose logic reasoning engines, encompass-
ing complex expressions containing bit vectors, real num-
bers, integers, and strings, etc (Barrett et al. 2021). Over
the years, many good SMT solvers are built, such as the
Z3 (de Moura and Bjørner 2008; Bjørner et al. 2018) and
cvc5 (Barbosa et al. 2022). They play a crucial role in au-
tomated theorem proving, program analysis (Feser et al.
2020), program verification (K., Shoham, and Gurfinkel
2022), and software testing (de Moura and Bjørner 2007).

Model Counting and Probabilistic Inference
Model counting computes the number of models (i.e., sat-
isfying variable assignments) to an SAT formula. Consider
a Boolean formula f(x), where the input x is a vector of
Boolean variables, and the output f is also Boolean. When
we use 0 to represent false and 1 to represent true,

∑
x f(x)

computes the model count. Model counting is closely related
to probabilistic inference and machine learning because the
marginal inference on a wide range of probabilistic mod-
els can be formulated as a weighted model counting prob-
lem (Chavira and Darwiche 2008; Xue et al. 2016).

Exact approaches for probabilistic inference and model
counting are often based on knowledge compilation (Dar-
wiche and Marquis 2002; Kisa et al. 2014; Choi, Kisa, and
Darwiche 2013; Xue, Choi, and Darwiche 2012). Approxi-
mate approaches include Variational methods and sampling.
Variational methods (Wainwright and Jordan 2008; Wain-
wright, Jaakkola, and Willsky 2003; Sontag et al. 2008;
Hazan and Shashua 2010; Flerova et al. 2011) use tractable
forms to approximate a complex probability distribution.
Due to a tight relationship between counting and sam-
pling (Jerrum, Valiant, and Vazirani 1986), sampling-based
approaches are important for model counting. Importance
sampling-based techniques such as SampleSearch (Gogate
and Dechter 2007) is able to provide lower bounds. Markov
Chain Monte Carlo is asymptotically accurate. However,
they cannot provide guarantees except for a limited number
of cases (Jerrum and Sinclair 1997; Madras 2002). The au-
thors of (Papandreou and Yuille 2010; Hazan and Jaakkola
2012; Balog et al. 2017) transform weighted integration into
optimization queries using extreme value distribution, which

1The code is available at: https://github.com/jil016/xor-smc.
Please refer to https://arxiv.org/abs/2309.08883 for the Appendix.
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Algorithm 1: XOR-Binary (f , x0, q)
1 Randomly sample XOR1(y), . . . , XORq(y);
2 if f(x0,y) ∧ XOR1(y) ∧ . . . ∧ XORq(y) is satisfiable then
3 return True;
4 else
5 return False;
6 end

today is often called the “Gumbel trick” (Papandreou and
Yuille 2011; Jang, Gu, and Poole 2017).

XOR Counting
There is an interesting connection between model counting
and solving satisfiability problems subject to randomized
XOR constraints. To illustrate this, hold x at x0, suppose we
would like to know if

∑
y∈Y f(x0,y) exceeds 2q . Consider

the SAT formula:

f(x0,y) ∧ XOR1(y) ∧ . . . ∧ XORq(y). (1)

Here, XOR1, . . . , XORq are randomly sampled XOR con-
straints. XORi(y) is the logical XOR or the parity of a ran-
domly sampled subset of variables from y. In other words,
XORi(y) is true if and only if an odd number of these ran-
domly sampled variables in the subset are true.

Formula (1) is likely to be satisfiable if more than 2q dif-
ferent y vectors render f(x0,y) true. Conversely, Formula
(1) is likely to be unsatisfiable if f(x0,y) has less than 2q

satisfying assignments. The significance of this fact is that
it essentially transforms model counting (beyond NP) into
satisfiability problems (within NP). An intuitive explanation
of why this fact holds is that each satisfying assignment y
has 50% chance to satisfy a randomly sampled XOR con-
straint. In other words, each XOR constraint “filters out” half
satisfying assignments. For example, the number of models
satisfying f(x0,y) ∧ XOR1(y) is approximately half of that
satisfying f(x0,y). Continuing this chain of reasoning, if
f(x0,y) has more than 2q solutions, there are still satisfy-
ing assignments left after adding q XOR constraints; hence
formula (1) is likely satisfiable. The reverse direction can be
reasoned similarly. The precise mathematical argument of
the constant approximation is in Lemma 1.

Lemma 1. (Jerrum, Valiant, and Vazirani 1986; Gomes,
Sabharwal, and Selman 2006a; Ermon et al. 2013b) Given
Boolean function f(x0, y) as defined above,

• If
∑

y f(x0,y) ≥ 2q0 , then for any q ≤ q0, with probabil-
ity 1− 2c

(2c−1)2 , XOR-Binary (f,x0, q − c) returns True.
• If

∑
y f(x0,y) ≤ 2q0 , then for any q ≥ q0, with probabil-

ity 1− 2c

(2c−1)2 , XOR-Binary (w, θ0, q + c) returns False.

This idea of transforming model counting problems into
SAT problems subject to randomized constraints is rooted in
Leslie Valiant’s seminal work on unique SAT (Valiant and
Vazirani 1986; Jerrum, Valiant, and Vazirani 1986) and has
been developed by a rich line of work (Gomes, Sabharwal,
and Selman 2006b,a; Ermon et al. 2013b,a; Kuck et al. 2019;

Achlioptas and Theodoropoulos 2017; Chakraborty, Meel,
and Vardi 2013; Chakraborty et al. 2014). This idea has
recently gathered momentum thanks to the rapid progress
in SAT solving (Maneva, Mossel, and Wainwright 2007;
Braunstein, Mézard, and Zecchina 2005). The contribution
of this work extends the success of SAT solvers to problems
with even higher complexity, namely, NPPP-complete SMC
problems.

Problem Formulation
Satisfiability Modulo Counting (SMC) is Satisfiability Mod-
ulo Theory (SMT) (Barrett et al. 2009) with model counting
as the background theory. A canonical definition of the SMC
problem is to determine if there exists x = (x1, . . . , xn) ∈
{0, 1}n and b = (b1, . . . , bk) ∈ {0, 1}k that satisfies the
formula:

ϕ(x,b), bi ⇔

 ∑
yi∈Yi

fi(x,yi) ≥ 2qi

 , ∀i ∈ {1.., k}. (2)

Here each bi is a Boolean predicate that is true if and only if
the corresponding model count exceeds a threshold. Bold
symbols (i.e., x, yi and b) are vectors of Boolean vari-
ables. ϕ, f1, . . . , fk are Boolean functions (i.e., their input
is Boolean vectors, and their outputs are also Boolean).
We use 0 to represent false and 1 to represent true. Hence∑
fi computes the number of satisfying assignments (model

counts) of fi. The directions of the inequalities do not mat-
ter much because one can always negate each fi. For in-
stance, let f(x,y) be a Boolean function (output is 0 or 1).∑

y∈Y f(x,y) ≤ 2q can be converted by negating f and
modifying the threshold to |Y| − 2q , resulting in an equiva-
lent predicate

∑
y∈Y(¬f(x,y)) ≥ |Y| − 2q .

Our XOR-SMC algorithm obtains the constant approxima-
tion guarantee to the following slightly relaxed SMC prob-
lems. The problem SMC(ϕ, f1, . . . , fk, q1, . . . , qk) finds a
satisfying assignment (x,b) for:

ϕ(x,b) ∧

b1 ⇒
 ∑

y1∈Y1

f1(x,y1) ≥ 2q1


· · · ∧

bk ⇒
 ∑

yk∈Yk

fk(x,yk) ≥ 2qk

 . (3)

The only difference compared to the full-scale problem in
Eq. (2)) is the replacement of ⇔ with ⇒. This change al-
lows us to derive a concise constant approximation bound.
We also mention that all the applied SMC problems consid-
ered in this paper can be formulated in this relaxed form. We
thank the reviewers for pointing out the work of (Fredrikson
and Jha 2014), who came up with a slightly different SMC
formulation with focused applications in privacy and an ex-
act solver. Their formulation was a little more general than
ours, since theirs allows for predicates like

∑
f ≥

∑
g,

while ours only allows for
∑
f ≥ constant. However, our

formulation can handle
∑
f ≥

∑
g by formulating it with

(
∑
f ≥ α) ∧ (

∑
g ≤ α) and binary searching on α.
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Figure 1: Our XOR-SMC (shown in Algorithm 2) solves the
intractable model counting with satisfiability problems sub-
ject to randomized XOR constraints and obtains constant ap-
proximation guarantees for SMC.

The XOR-SMC Algorithm
The key motivation behind our proposed XOR-SMC algo-
rithm is to notice that Algorithm 1 itself can be written as a
Boolean formula due to the Cook-Levin reduction. When we
embed this Boolean formula into Eq. (3), the Satisfiability-
Modulo-Counting problem translates into a Satisfiability-
Modulo-SAT problem, or equivalently, an SAT problem.
This embedding also ensures a constant approximation guar-
antee (see Theorem 2).

To illustrate the high-level idea, let us consider replacing
each

∑
yi∈Yi

fi(x,yi) ≥ 2qi in Eq. (3) with formula

fi(x,yi) ∧ XOR1(yi) ∧ . . . ∧ XORqi(yi). (4)

We denote the previous equation (4) as γ(fi,x, qi,yi). This
replacement results in the Boolean formula:

ϕ(x,b)∧ [b1 ⇒ γ(f1,x, q1,y1)] ∧ · · · ∧
[bk ⇒ γ(fk,x, qk,yk)] . (5)

We argue that the satisfiability of formula (5) should be
closely related to that of formula (3) due to the connec-
tion between model counting and satisfiability testing sub-
ject to randomized constraints (discussed in Section ). To
see this, Eq. (5) is satisfiable if and only if there exists
(x,b,y1, . . . ,yk) that render Eq. (5) true (notice y1, . . . ,yk

are also its variables). Suppose SMC(ϕ, f1, . . . , fk, q1 +
c, . . . , qk + c) is satisfiable (a.k.a., Eq. (3) is satisfiable
when qi is replaced with qi + c). Let (x,b) be a satisfy-
ing assignment. For any bi = 1 (true) in b, we must have∑

yi∈Yi
fi(x,yi) ≥ 2qi+c. This implies with a good chance,

there exists a yi that renders γ(fi,x, qi,yi) true. This is
due to the discussed connection between model counting
and SAT solving subject to randomized constraints. Hence
bi ⇒ γ(fi,x, qi,yi) is true. For any bi = 0 (false), the pre-
vious equation is true by default. Combining these two facts
and ϕ(x,b) is true, we see Eq. (5) is true.

Conversely, suppose SMC(ϕ, f1, . . . , fk, q1 − c, . . . , qk −
c) is not satisfiable. This implies for every (x,b), either
ϕ(x,b) is false, or there exists at least one j such that bj is
true, but

∑
yj∈Yj

fj(x,yj) < 2qj−c. The first case implies
Eq. (5) is false under the assignment. For the second case,∑

yj∈Yj
fj(x,yj) < 2qj−c implies with a good chance

Algorithm 2: XOR-SMC (ϕ, {fi}ki=1, {qi}ki=1, η, c)

1 T ← ⌈ (n+k) ln 2−ln η
α(c,k) ⌉;

2 for t = 1 to T do
3 for i = 1 to k do
4 ψ

(t)
i ← fi(x,y

(t)
i );

5 for j = 1, . . . , qi do
6 ψ

(t)
i ← ψ

(t)
i ∧ XORj(y

(t)
i );

7 end
8 ψ

(t)
i ← ψ

(t)
i ∨ ¬bi;

9 end
10 ψt ← ψ

(t)
1 ∧ · · · ∧ ψ

(t)
k ;

11 end
12 ϕ∗ ← ϕ ∧ Majority(ψ1, . . . , ψT ) ;
13 if there exists (x,b, {y(1)

i }ki=1, . . . , {y
(T )
i }ki=1) that

satisfies ϕ∗ then
14 return True;
15 else
16 return False;
17 end

there is no yj to make γ(fj ,x, qj ,yj) true. Combining these
two facts, with a good chance Eq. (5) is not satisfiable.

In practice, to reduce the error probability the determina-
tion of the model count needs to rely on the majority satisfi-
ability status of a series of equations (4) (instead of a single
one). Hence we develop Algorithm 2, which is a little bit
more complex than the high-level idea discussed above. The
idea is still to transform the highly intractable SMC prob-
lem into solving an SAT problem of its polynomial size,
while ensuring a constant approximation guarantee. Fig. 1
displays the encoding of Algorithm 2. We can see the core
is still to replace the intractable model counting with sat-
isfiability problems subject to randomized constraints. We
prove XOR-SMC has a constant approximation guarantee in
Theorem 2. We leave the implementation of XOR-SMC in the
Appendix B.
Theorem 2. Let 0 < η < 1 and c ≥ log(k + 1) + 1. Select
T = ⌈((n+ k) ln 2− ln η)/α(c, k)⌉, we have
• Suppose there exists x0 ∈ {0, 1}n and b0 ∈ {0, 1}k, such
that SMC(ϕ, f1, . . . , fk, q1 + c, . . . , qk + c) is true. In other
words,

ϕ(x0,b0) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x0,yi) ≥ 2qi+c

))
,

Then algorithm XOR-SMC (ϕ, {fi}ki=1, {qi}ki=1, T ) returns
true with probability greater than 1− η.
• Contrarily, suppose SMC(ϕ, f1, . . . , fk, q1− c, . . . , qk− c)
is not satisfiable. In other words, for all x ∈ {0, 1}n and
b ∈ {0, 1}k,

¬

(
ϕ(x,b) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x,yi) ≥ 2qi−c

)))
,
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then XOR-SMC (ϕ, {fi}ki=1, {qi}ki=1, T ) returns false with
probability greater than 1− η.

Proof. Claim 1: Suppose there exists x0 = [x1, . . . , xn] ∈
{0, 1}n and b0 = [b1, . . . , bk] ∈ {0, 1}k, such that

ϕ(x0,b0) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x0,yi) ≥ 2qi+c

))
(6)

holds true. Denote k0 as the number of non-zero bits in b0.
Without losing generality, suppose those non-zero bits are
the first k0 bits, i.e., b1 = b2 = · · · = bk0

= 1 and bi =
0, ∀i > k0. Then Eq. (6) can be simplified to:

ϕ(x0,b0) ∧

(
k0∧
i=1

(∑
yi

fi(x0,yi) ≥ 2qi+c

))
(7)

Consider the Boolean formula ψt defined in the XOR-SMC
algorithm (choosing any t ∈ {1, . . . , T}). ψt can be simpli-
fied by substituting the values of x0 and b0. After simplifi-
cation, we obtain:

ψt =
(
f1(x0,y

(t)
1 ) ∧ XOR1(y(t)

1 ) · · · ∧ XORq1(y
(t)
1 )
)
∧ . . .

∧
(
fk0(x0,y

(t)
k0
) ∧ XOR1(y(t)

k0
) · · · ∧ XORqk0

(y
(t)
k0
)
)
.

Let γi =
(
fi(x0,y

(t)
i ) ∧ XOR1(y(t)

i ) · · · ∧ XORqi(y
(t)
i )
)

.

Observing that
∑

yi
fi(x0,yi) ≥ 2qi+c, ∀i = 1, . . . , k0.

According to Lemma 1, with probability at least 1− 2c

(2c−1)2 ,

there exists y
(t)
i , such that (x0,y

(t)
i ) renders γi true. The

probability that ψt is true under (x0,b0,y
(t)
1 , . . . ,y

(t)
k ) is:

P((x0,b0,y
(t)
1 , . . . ,y

(t)
k ) renders ψt true)

= P

(
k0∧
i=1

((x0,y
(t)
i ) renders γi false)

)

= 1− P

(
k0∨
i=1

((x0,y
(t)
i ) renders γi false)

)

≥ 1−
k0∑
i=1

P
(
(x0,y

(t)
i ) renders γi false

)
≥ 1− k02

c

(2c − 1)2
≥ 1− k2c

(2c − 1)2
.

Define Γt as a binary indicator variable where

Γt =

{
1 if (x0,b0,y

(t)
1 , . . . ,y

(t)
k ) renders ψt true,

0 otherwise.

Therefore P(Γt = 0) ≤ k2c

(2c−1)2 . P(Γt = 0) < 1
2 when

c ≥ log2(k+1)+ 1. XOR-SMC returns true if the majority of
ψt, t = 1, . . . , T are true; that is,

∑
t Γt ≥ T

2 . Let’s define

α(c, k) = D

(
1

2
∥ k2c

(2c − 1)2

)
=

1

2
ln

(2c − 1)2

k2c+1
+

(
1− 1

2

)
ln

2(2c − 1)2

(2c − 1)2 − k2c+1
.

Node in map

Node indicates resident

Node indicates shelter

Edge indicates road

Figure 2: Example assignment of shelters that guarantee suf-
ficient alternative paths from the resident areas, at Hawaii Is-
land. Every orange dot corresponds to shelters and the green
dot indicates a resident area.

When c ≥ log2(k + 1) + 1, observing that α(c, k) > 0 ,
we can apply the Chernoff-Hoeffding theorem to obtain:

P

(
T∑

t=1

Γt ≥
T

2

)
= 1− P

(
T∑

t=1

Γt <
T

2

)
≥ 1− e−α(c,k)T

For T ≥ ⌈ ((n+k) ln 2−ln η)
α(c,k) ⌉ ≥ − ln η

α(c,k) , it follows that

e−α(c,k)T ≤ η. Therefore, with a probability at least 1 −
η, we have

∑
t Γt ≥ T

2 . In this scenario, XOR-SMC (ϕ,
{fi}ki=1, {qi}ki=1, T ) returns true as it discovers x0, b0,
(y

(t)
1 , . . . ,y

(t)
k ), for which the majority of Boolean formu-

lae in {ψt}Tt=1 are true.
Claim 2: Suppose for all x ∈ {0, 1}n and b ∈ {0, 1}k,

¬

(
ϕ(x,b) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x,yi) ≥ 2qi−c

)))
Consider a fixed x1 and b1, the previous condition with high
probability renders most ψt false in Algorithm 2. We prove
that the probability is sufficiently low such that XOR-SMC will
return false with a high probability after examining all x and
b. The detailed proof is left in Appendix A.

Experiment 1: Locate Emergency Shelters
Problem Formulation. Disasters such as hurricanes and
floods continue to endanger millions of lives. Shelters are
safe zones that protect residents from possible damage, and
evacuation routes are the paths from resident zones toward
shelter areas. To enable the timely evacuation of resident
zones, picking a set of shelter locations with sufficient rout-
ing from resident areas should be considered. Given the un-
predictability of chaos during natural disasters, it is crucial
to guarantee multiple paths rather than one path from resi-
dential areas to shelters. This ensures that even if one route
is obstructed, residents have alternative paths to safety areas.

Given a map G = (V,E) where nodes in V =
{v1, . . . , vN} represent N areas and an edge e = (vi, vj) ∈
E indicates a road from vi to vj , N and M denote the num-
ber of nodes and edges, respectively. Given a subset of nodes
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Graph Size
N = 121 N = 183 N = 388

XOR-SMC (ours) 0.04hr 0.11hr 0.16hr
GibbsSampler-LS 0.56hr 0.66hr 6.97hr
QuickSampler-LS 0.31hr 0.29hr 0.62hr

Unigen-LS 0.08hr 0.17hr 0.42hr

Table 1: XOR-SMC takes less empirical running time than
baselines to find shelter location assignments over different
graphs. Graph size is the number of nodes in the graph.

R = {vr1 , . . . , vrk} ⊆ V indicates the residential areas, the
task is to choose at most m nodes as shelters from the rest
of the nodes, such that the number of routes that can reach a
shelter from each residential area is maximized. Fig. 2 gives
an example with m = 4 shelters and there are sufficiently
many roads connecting the resident area to those shelters.

Current methods (Bayram and Yaman 2018; Amideo,
Scaparra, and Kotiadis 2019) considered finding shelter lo-
cations that have at least one single path from a residential
area. However, those proposed methods cannot be general-
ized to solve the problem that requires sufficient alternative
routes from residential area to shelters, primarily because
counting the number of paths is intractable. This complexity
makes it difficult to solve large-scale problems of this type.
SMC Formulation. XOR-SMC transforms this optimization
problem into a decision problem by gradually increasing the
path count threshold qr. The decision problem decides if
there are at least 2qr paths connecting any residential area
with a shelter. The assigned shelters is represented by a vec-
tor = (b1, . . . , bn) ∈ {0, 1}n, where bi = 1 implies node vi
is chosen as shelter. Let ϕ(b) = (

∑n
i=1 bi) ≤ m represent

there are at most m shelters. Let f(vr, vs, E′) be an indica-
tor function that returns one if and only if the selected edges
E′ form a path from vr to vs. The whole formula is:

ϕ(b), bi ⇒

 ∑
vs∈S,E′⊆E

f(vr, vs, E
′) ≥ 2qr

 for 1 ≤ i ≤ n.

We leave the details implementation of f(vr, vs, E′) in the
Appendix C.

Empirical Experiment Analysis
Experiment Setting. We crawl the real-world dataset from
the Hawaii Statewide GIS Program website. We extract the
real Hawaii map with those major roads and manually label
those resident areas on the map. We create problems of dif-
ferent scales by subtracting different sub-regions from the
map. 3 major resident areas are picked as R, and set m = 5.

In terms of baselines, we consider the local search algo-
rithm with shelter locations as the state and the number of
paths between shelters and resident areas as the heuristic.
Due to the intractability of path counting in our formulation,
the heuristic is approximated by querying sampling oracles.
In particular, we consider 1) Gibbs sampling-based (Geman
and Geman 1984) Local Search (Gibbs-LS). 2) Uniform
SAT sampler-based (Soos, Gocht, and Meel 2020) Local
Search (Unigen-LS). 3) Quick Sampler-based (Dutra et al.

N = 121 N = 183 N = 388
Graph Size (N)
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Figure 3: XOR-SMC finds better shelter locations with orders
of magnitudes more paths from the resident area to the cho-
sen shelters than competing baselines across different graphs
(y-axis in log scale).

2018) Local Search (Quick-LS). Each baseline runs 5 times,
and the best result is included. Each run is until the approach
finds a local minimum. For our XOR-SMC, we give a time
limit of 12 hours. The algorithm repeatedly runs with in-
creasing qr until it times out. The time shown in Table 1 and
the number of paths in Figure 2 correspond to the cumulative
time and the best solutions found before the algorithm times
out. For the evaluation metrics, we consider 1) the number
of paths identified in the predicted plan by each algorithm,
and 2) the total running time of the process.
Result Analysis. In terms of running time (in Table 1), XOR-
SMC takes less empirical running time than baselines for
finding shelter location assignments over different graphs.
In Fig. 3, we evaluate the quality of the predicted shel-
ters by counting the number of connecting paths from res-
idents to the shelters. The path is counted by directly solv-
ing the counting predicate by SharpSAT-TD (Korhonen and
Järvisalo 2021) with given shelter locations. The shelter lo-
cations selected by our XOR-SMC lead to a higher number of
paths than those found by the baselines.

Experiment 2: Robust Supply Chain Design
Problem Formulation. Supply chain management found
its importance in operations research and economics. The
essence of supply chain management is to integrate the flow
of products and finances to maximize value to the consumer.
Its importance is underscored by the increasing complex-
ity of business environments, where minor inefficiencies by
random disasters result in significant extra costs.

Given a supply chain of N suppliers, they form a supply-
demand network (V,E) where each node v ∈ V repre-
sents a supplier and edges e ∈ E represent supply-to-
demand trades. Each supplier v acts as a vendor to down-
stream suppliers and also as a buyer from upstream sup-
pliers. We assume a conservation of production conditions
for each node, i.e., the input-output ratio is 1. To guaran-
tee substantial production, supplier v should order necessary
raw materials from upstream suppliers in advance. Denote
the cost of trade between vendor u, and buyer v as c(u, v).
Let the amount of goods of the trade between u and v be
f(u, v) and B(v) be the total budget of to get all his materi-
als ready. Due to unpredictable natural disasters and equip-
ment failure, the trade between u and v may fail. Denote
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Small Supply Network Real-world Supply Network
Disaster Scale (% of affected edges) Disaster Scale (% of affected edges)

10% 20% 30% 10% 20% 30%
XOR-SMC (ours) 95.0(0.67s) 96.0(1.19s) 119.3(17.63s) 232.2(57.8s) 210.2(75.5s) 147.8(96.9s)

BP-SAA 86.5(1.17s) 82.7(3.76s) 118.8(11.48s) 187.2(2hr) 143.7(2hr) 130.5(2hr)
Gibbs-SAA 88.0(1.24s) 95.4(4.48s) 113.3(15.61s) 155.0(2hr) 147.1(2hr) 111.0(2hr)

IS-SAA 80.5(0.98s) 76.7(3.29s) 109.6(21.74s) 157.4(2hr) 123.5(2hr) 132.9(2hr)
LoopyIS-SAA 88.0(0.84s) 95.4(2.96s) 112.3(17.95s) 200.2(2hr) 149.5(2hr) 130.5(2hr)

Weighted-SAA 86.5(1.11s) 95.4(3.57s) 117.0(11.80s) 170.5(2hr) 169.0(2hr) 130.3(2hr)
Best possible values 100.0 104.0 128.0 237.0 226.0 235.0

Table 2: Empirical average of the total production (tons) and running time on two supply networks. Our XOR-SMC finds better
solutions (higher production) with less time usage compared to baselines.

θ = (θ1, . . . , θL) ∈ {0, 1}L as the state of L different
stochastic events, where θl = 1 indicates event l occurs. The
objective is to design a global trading plan maximizing the
expected total production output, accounting for stochastic
influences. This is measured by the output of final-tier sup-
pliers, who produce end goods without supplying others.

Existing works in supply chain optimization often gravi-
tate towards mathematical programming approaches. How-
ever, when delving into more complex scenarios involv-
ing stochastic events—such as uncertain demand or supply
disruptions—the task becomes considerably more intricate.
Specifically, formulating counting constraints, like guaran-
teeing a certain amount of supplies across multiple vendors
under stochastic events, is intractable. These complexities
necessitate innovative approaches that can capture the ran-
domness and dynamism inherent in real-world supply chain
systems without sacrificing optimality.
SMC Formulation. Similarly, we transform the maximiza-
tion into a decision problem by gradually increasing the
threshold of the production. Denote the trading plan as x =
(xu,v, . . . ) ∈ {0, 1}|E|, where xu,v = 1 indicates that v
purchases raw material from u. The decision problem can
be formulated into an SMC problem as follows:

ϕ(x),
∑
v∈D

Eθ

 ∑
(u,v)∈Ex,θ

f(u, v)

 ≥ 2q (8)

where D represents final-tier supplier nodes, 2q is a mini-
mum production level to be guaranteed, Ex,θ is the remain-
ing sets of edges after applying trading plan x and under the
stochastic events of disasters θ. ϕ(x) encodes all essential
constraints, e.g., adherence to budget limits, output not ex-
ceeding input at each node, etc. We leave the formulation
details in Appendix C.

Empirical Experiment Analysis
Experiment Setting. The dataset is the wheat supply chain
network from (Zokaee et al. 2017). The dataset only pro-
vides the cost of trade, the capacity of transportation, and
raw material demand. We further generate stochastic events
of disasters (see Appendix C) over different portions of
supply-demand edges. The random disasters make the ex-
pectation computation intractable. For a better comparison
of running time, a small-scale synthetic network is included,

in which the cost, budget, and capacities are randomly gen-
erated. For the small supply network, the number of nodes in
each layer is [4, 4, 5, 5]. For the real-world supply network,
the number of nodes in each layer is [9, 7, 9, 19].

For the baseline, we utilize Sample Average Approx-
imation (SAA)-based methods (Kleywegt, Shapiro, and
Homem-de-Mello 2002). These baselines employ Mixed In-
teger Programming (MIP) to identify a trading plan that di-
rectly maximizes the average production across networks
impacted by 100 sampled disasters. The average over sam-
ples serves as a proxy for the actual expected produc-
tion. For the sampler, we consider Gibbs sampling (Gibbs-
SAA), belief propagation (BP-SAA), importance sampling
(IS-SAA), loopy-importance sampling, and weighted sam-
pling (Weighted-SAA). For a fair comparison, we imposed
a time limit of 30 seconds for the small-sized network and
2 hours for the real-world network. The time shown in Ta-
ble 2 for SAA approaches is their actual execution time. Our
SMC solver again executes repeatedly with increasing q un-
til it times outs. The time shown is the cumulative time it
finds the best solution (last one) before the time limit.

To evaluate the efficacy of a trading plan, we calculate its
empirical average production under 10, 000 i.i.d. disasters,
sampled from the ground-truth distribution. The production
numbers are reported in Table 2. This method is adopted due
to the computational infeasibility to calculate expectations
directly. For SAA approaches that exceed the time limit,
the production numbers in Table 2 are for the best solutions
found within the time limit.

Result Analysis. Table 2 shows the production and running
times of plans derived from various methods. For small net-
works, while SAA-based methods can complete MIP within
the time limit, they remain sub-optimal as they optimize a
surrogate expectation derived from sampling, which devi-
ates from the true expectation. In the case of larger networks,
these methods further struggle due to the poor scalability of
the large MIP formulation. They fail to find good solutions
within the 2-hour time limit. In contrast, XOR-SMC, by formu-
lating as an SMC problem, directly optimizes the intractable
expectation using XOR counting, and yields superior solu-
tion quality and less running time.
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Conclusion
We presented XOR-SMC, an algorithm with polynomial ap-
proximation guarantees to solve the highly intractable Satis-
fiability Modulo Counting (SMC) problems. Solving SMC
problems presents unique challenges due to their intricate
nature, integrating statistical inference and symbolic reason-
ing. Prior work on SMC solving offers no or loose guaran-
tees and may find suboptimal solutions. XOR-SMC transforms
the intractable SMC problem into satisfiability problems
by replacing intricate model counting with SAT formulae
subject to randomized XOR constraints. XOR-SMC also ob-
tains constant approximation guarantees on the solutions ob-
tained. SMC solvers offer useful tools for many real-world
problems at the nexus of symbolic and statistical AI. Ex-
tensive experiments on two real-world applications in AI for
social good demonstrate that XOR-SMC outperforms other ap-
proaches in solution quality and running time.
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