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Abstract

This paper investigates the potential of using
natural language descriptions as an alternative
to direct image-based observations for learn-
ing policies in reinforcement learning. Due
to the inherent challenges in managing image-
based observations, which include abundant
information and irrelevant features, we pro-
pose a method that compresses images into a
natural language form for state representation.
This approach allows better interpretability and
leverages the processing capabilities of large-
language models. We conducted several ex-
periments involving tasks that required image-
based observation. The results demonstrated
that policies trained using natural language de-
scriptions of images yield better generalization
than those trained directly from images, empha-
sizing the potential of this approach in practical
settings.

1 Introduction

Directly learning policies from images holds great
promise for practical reinforcement learning appli-
cations. However, managing image-based obser-
vations is challenging due to their potential abun-
dance of information and irrelevant features. Fur-
thermore, the learned policy can often be a black
box, as the action corresponding to an image ob-
servation is difficult to comprehend. This scenario
makes interpretability challenging, and the policies
often fail to generalize to the slightest changes to
the environments. These can hinder the ability to
leverage these policies in real-world tasks.

On the other hand, language has been humans’
primary mode of communication. A situation can
be precisely described through language, and con-
versely, a situation can be constructed from a lan-
guage description. For instance, movies are often
produced based on narratives found in books (e.g.,
Game of Thrones, Lord of the Rings). Ultimately,
language is a primary source through which hu-
mans reason and understand others’ reasoning.
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In reinforcement learning, the ability to learn a
policy that generalizes well is essential for real-
world system deployment. Specifically, agents
should be adept at operating in scenarios distinct
from their training environments. Several strategies
have been proposed to address these challenges.
These encompass data augmentation methods like
random cropping and the addition of jitter to image-
based observations (Cobbe et al., 2019; Laskin
et al., 2020b; Raileanu et al., 2020; Kostrikov et al.,
2020; Laskin et al., 2020a), the injection of ran-
dom noise (Igl et al., 2019), network randomiza-
tion (Osband et al., 2018; Burda et al., 2018; Lee
et al., 2020), and regularization techniques (Cobbe
et al., 2019; Kostrikov et al., 2020; Igl et al., 2019;
Wang et al., 2020). These methods have consis-
tently demonstrated their potential in boosting gen-
eralization.

The core principle underlying these techniques
is the amplification of training data diversity, which
aids in crafting a more universally applicable policy.
However, such perturbations are often introduced
without due regard for task semantics. This over-
sight can modify critical observation elements, po-
tentially diminishing the efficacy of policy learning.

Furthermore, random perturbations through vari-
ous observation manipulations—such as cropping,
blocking, or combining two random images from
different environment levels—may yield unrealistic
observations that the agent is unlikely to encounter
during testing. Therefore, these techniques might
underperform in settings where agents rely on real-
istic observations for policy learning. Nevertheless,
these methods modify the image space, and the pol-
icy learning happens from pixel images. Thus, the
learned policy can still be non-interpretable, and it
is unclear how the policy behaves when a particular
assumption, such as color information, is not held
for a particular task.

The autoencoder-based approach takes the image
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Figure 1: Example of Reinforcement Learning from Natural Language. Our method is to compress image pixels
into natural language descriptions, serving as the state information of reinforcement learning. This language-based
approach is advantageous as it is easy for humans to understand and provides a clearer insight into how the computer
perceives visuals. Our findings demonstrate that policies trained using natural language descriptions of images
showcase enhanced generalization capabilities towards unobserved scenarios, surpassing the performance of policies

directly trained from raw images.

and represents it in a lower-dimensional space (e.g.,
AE, VAE) (Ha and Schmidhuber, 2018; Hafner
et al., 2019; Zhang et al., 2022), which is then
used as state information for reinforcement learn-
ing. However, such an approach can still suffer
from the black-box policy issue, and the intermedi-
ate representation might lose information about the
original image observation. These methods modify
the image space or the lower-dimensional projec-
tion where policy learning occurs. Consequently,
the learned policy can remain non-interpretable,
and it is unclear how the policy will behave when
certain assumptions, such as color information, do
not apply to a specific task.

With the existing approaches, the resulting
learned policy can be challenging to interpret and
may fail when minor environmental changes occur.
Recent natural language processing and computer
vision advancements have enabled a more detailed,
accurate understanding of image content. These
advances are typically driven by large-scale mod-
els, often referred to as foundational models, which
contain billions of parameters and are trained on
internet-scale datasets with substantial computa-
tional resources.

In this paper, we primarily focus on decision-
making derived from language descriptions of vi-
suals (e.g., images). We first compress the visual
information (i.e., pixels) into natural language and
use this language as state information to learn pol-
icy with reinforcement learning (Figure 1). This
approach has several advantages. For instance, the
language representation is inherently interpretable,
providing a more accurate indication of what the
agent understands from the visual scene. In this
setup, the agent can learn from a natural language
description of the image. This approach provides
multiple benefits. Primarily, the representation is
easily interpretable by humans, unlike raw pixel
data from the image. Moreover, it paves the way
for harnessing the immense processing power of
large language models (LLMs) to handle natural
language state information. For instance, unnec-
essary features, such as color information, can be
filtered out by directing the LLM to ignore them
(e.g., prompt: rewrite the description excluding
color information)

In particular, we utilize the Vision-Language
Model (VLM) (i.e., LLAVA (Liu et al., 2023)) to
generate a natural language description of the im-

1311



age observation. The resulting language is then
passed to a Large Language Model (LLM) (i.e.,
LLAMA (Touvron et al., 2023)) for further pre-
processing. Finally, it is converted into a text
embedding vector using pre-trained embedding
models (i.e., Sentence Transformer (Reimers and
Gurevych, 2019)).

We conducted experiments to evaluate the effec-
tiveness of a Vision and Language Model (VLM)
in learning from text in reinforcement learning
contexts. These experiments encompassed tasks
that required image-based observation. Specifi-
cally, we conducted experiments on OpenAl Gym
(Brockman et al., 2016) (Gymnasium (Towers et al.,
2023)) environment, FrozenLake. The rendered im-
age was used as the observation, with the task being
to learn a policy from this image observation. We
compared our text-based learning approach with
learning directly from the raw pixel information.

Our results indicated that policies trained us-
ing natural language descriptions of images ex-
hibited superior generalization compared to those
trained directly from images. Moreover, our
language-based state representation is inherently
interpretable compared to directly learning from
pixels, indicating a strong use case for language-
based state representation.

In particular, in the Frozen Lake environment,
training results show that all baselines learn the task
efficiently, achieving optimal performance. When
tested in a new ice environment variation, the PPO-
Lang method maintains its performance, highlight-
ing the strength of language-based learning. In con-
trast, policies based on image observations tend to
overfit and fail to generalize in new environments,
proving ineffective for the intended task.

2 Preliminaries and Problem Settings

Markov Decision Process (MDP). An MDP can
be described by the tuple M = (S, A4, P, R).
Within this framework, an agent at a discrete
timestep ¢ interacts with its environment from a
current state s; € S, selecting an action a; € A.
Subsequently, the environment transitions to a new
state s;11 € S, governed by the transition proba-
bilities P(s¢+1|s¢, ar). The agent then receives a
reward r;, determined by the reward function R.

Reinforcement Learning. Within the context of
reinforcement learning, the agent operates within
an MDP and aims to discover a policy 7 € II that
leads to the maximization of the cumulative reward.

Here, I represents the space of all feasible policies.
Based on the current state, the agent selects an
action in line with policy 7, and the optimal policy
7* € 1I is the one that yields the greatest total
rewards over time.

Deep Reinforcement Learning incorporates
deep learning to handle more complex, high-
dimensional input spaces. By utilizing deep neural
networks, it can represent policy or value functions
with greater flexibility and sophistication. DRL is
suitable for applications that require processing raw
pixel data or controlling intricate systems and has
become instrumental in advancing various fields,
from gaming to autonomous robotics. The integra-
tion of deep learning enables more precise function
approximation, allowing agents to learn optimal
policies in more challenging environments.
Generalization in Reinforcement Learning In
the context of Reinforcement Learning, general-
ization refers to an agent’s ability to apply learned
knowledge from a specific set of environments to
new, unseen environments. It assumes the presence
of a fixed optimal policy, denoted as 7*, capable of
achieving maximum return across all variations of
the environments. These environments may vary
in observational characteristics, such as having dif-
ferent background colors or other visual features.
During training, the agent is exposed to a fixed set
of environment variations to learn a policy. Sub-
sequently, the agent’s generalization performance
is evaluated by testing it on previously unseen lev-
els, measuring how well it can apply its learned
policy to these new environments. This particular
scenario is often referred to as a Contextual MDP
(Kirk et al., 2021).

Reinforcement Learning from Images In this
setup, agents are trained to make decisions directly
from raw visual data, like images. It enables agents
to learn patterns and relationships from the visuals,
making it suitable for real-world applications with
complex visual information. This approach has
succeeded in various domains, such as robotics,
autonomous vehicles, and video games. It has
promise for building intelligent agents capable of
learning directly from raw visual input. However,
dealing with high-dimensional visual data and ex-
tracting relevant features demand computationally
efficient algorithms, enabling agents to learn and
act in complex environments. Additionally, han-
dling irrelevant features in images is vital as it can
confound with the reward, which leads to a sub-
optimal policy.
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3 Methodology

This section provides a breakdown of our approach
to producing natural language descriptions from
visual data, specifically images. A pivotal com-
ponent in this appraoch is the Vision-Language
Model (VLM). Notably, we employ the VLM vari-
ant known as LLAVA (Liu et al., 2023). The
LLAVA VLM initially processes the input image
when employed in our method. During this phase,
the model identifies and understands various fea-
tures and objects contained within the visual data.
Upon extracting and understanding these elements,
the VLM subsequently crafts a well-structured,
coherent, and descriptive narration in natural lan-
guage form. The assumption is that the resultant
description pinpoints the image’s most prominent
and defining characteristics, ensuring that agent re-
ceives an accurate and detailed understanding of
the visual content.

After extracting the natural language description
from the VLM, our method allows pre-processing
text with a Large Language Model (LLM) (e.g.,
LLAMA (Touvron et al., 2023), ChatGPT). When
the language description, as generated by the VLM,
is inputted into the LLM model, the latter performs
complicated processing tasks. These tasks aim to
enhance the language output by refining its struc-
ture and improving its coherence and information
content.

Furthermore, in scenarios where generalization
is the goal, this pre-processing step undertaken by
the LLM is valuable. The model inspects the de-
scription to identify and eliminate superfluous or
irrelevant details. Such action is required, espe-
cially when we consider the need for an agent to
develop a consistent and invariant representation of
an image observation within a given environment.
By removing unnecessary details, we ensure that
the agent focuses only on the most vital aspects of
the environment, thereby optimizing its learning
process.

After processing the natural language descrip-
tion, the subsequent step in our pipeline focuses
on text representation through embedding. For this
purpose, we utilize pre-trained models, specifically
the Sentence Transformer architecture, as outlined
by (Reimers and Gurevych, 2019). The Sentence
Transformer is designed to convert textual data into
dense vectors of fixed dimensions, known as text
embeddings. The primary objective of these em-
beddings is to encapsulate the semantic information

and context inherent in the original text. By con-
verting the refined natural language description into
this vector format, we aim for an efficient represen-
tation for computational processing and to maintain
the semantic properties of the input data.

By integrating a sequence of models— the
Vision-Language Model (VLM) for initial image
description generation, the Large Language Model
(LLM) for subsequent description refinement, and
the Sentence Transformer for text embedding trans-
formation, we have developed a methodology that
efficiently extracts and represents pertinent infor-
mation from images in a structured, semantic for-
mat. This systematic approach facilitates a cohe-
sive fusion of visual and textual data.

Detailed Process Description

Figure 2 presents an overview of our methodol-
ogy’s pipeline. We delve into the details here.

1. Image Description Generation Using Vision-
Language Model (VLM)

a. Preprocessing: Input images undergo a prepro-
cessing phase wherein standard image transforma-
tions, including resizing, normalization, and data
augmentation, are executed to render them compat-
ible with the VLM.

b. Vision-Language Model (LLAVA): Our choice
of VLM for this procedure is LLAVA (Liu et al.,
2023). LLAVA is a comprehensive end-to-end mul-
timodal model. By integrating a vision encoder
with a Language Model (LLM), LLAVA provides
holistic understanding of both visual and linguistic
modalities. The model is harnessed to produce tex-
tual descriptions from image-based observations
from a prompt (e.g., describe the observation).

2. Language Description Refinement Using
Large Language Model (LLM)

a. Pre-processing with LLM: The process begins
with descriptions generated by LLAVA. These ini-
tial descriptions are then subjected to a refinement
process using the capabilities of the Large Lan-
guage Model. This refinement stage aims to im-
prove the descriptions’ quality, accuracy, and coher-
ence. Various text manipulations can be executed
using the Large Language Model by employing
carefully crafted prompts. These manipulations in-
clude tasks like paraphrasing, summarizing, trans-
lating, and generating alternative versions of the
descriptions. The flexibility and versatility of the
model enable it to handle various text-related tasks,
providing an efficient and effective means of refin-
ing and enhancing the descriptions derived from
LLAVA.
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Describe the image

Text
VLM

The image contains a tree with green leaves
and a red sun. There is a three-way
intersection: to the left lies a blue diamond,
and to the right, a fire. The straight road leads
to a dead end, marked with a red traffic light.

Remove color information
for natural objects

State

Text Embedding

The image contains a tree with leaves and
a sun. There is a three-way intersection: to
the left lies a blue diamond, and to the
right, a fire. The straight road leads to a
dead end, marked with a red traffic light.

LM (e.g., Processed
LLAMA) Text Content

Figure 2: Pipeline for generating state from an image: Initially, a vision language model (VLM) is employed to
create an image description. Subsequently, a language language model (LLM) refines this text, removing any
spurious information related to the task. The resulting textual content is utilized for state embedding, which
ultimately serves as the observation for the agent within a reinforcement learning framework.

b. Generalization: In specific scenarios, such as
when training agents to operate within dynamic en-
vironments, the need arises to strategically abstract
or exclude unnecessary details from the descrip-
tions. This generalization process is crucial as it
guarantees that the agents understand the environ-
ment uniformly. Doing so minimizes the risk of the
agents becoming overly tailored to specific observa-
tions, helping them avoid overfitting and ensuring a
more adaptable and versatile performance in vary-
ing situations.

3. Conversion to Text Embeddings

a. Sentence Transformer: After the refinement
process, the descriptions transform into fixed-
dimensional vectors through the use of the Sen-
tence Transformer (Reimers and Gurevych, 2019).
This model excels at converting sentences into
fixed-sized dense vector representations, effectively
encapsulating the semantic significance and contex-
tual nuances inherent within the text. The resulting
fixed-size vectors are essential, particularly in their
seamless integration into contemporary Reinforce-
ment Learning (RL) algorithms adhering to the
standard Markov Decision Process (MDP) frame-
work. This transformation presents a structured
and compact format for the descriptions, facilitat-
ing downstream tasks.

b. Text Embeddings: The vector embeddings gener-
ated by the Sentence Transformer intricately encap-
sulate the semantic intricacies that interlace words
and constructs within the language descriptions.
These succinct yet information-rich representations
hold immense value for subsequent tasks, whether
it involves gauging similarities between descrip-
tions or seamlessly integrating them into reinforce-
ment learning frameworks.

4 Experiments

4.1 Setup

Environments: We experiment with the Frozen-
Lake environment, which is available in OpenAl
Gym (Brockman et al., 2016) and further detailed
in Gymnasium (Towers et al., 2023).

FrozenLake Description: In the FrozenLake sce-
nario (Figure 3), an agent is situated on a grid rep-
resenting a frozen lake. The task for the agent is
to traverse from its initial position, typically at the
top-left corner, to its goal, generally at the bottom-
right corner, all the while evading pitfalls in the ice.
This grid contains distinct cells: frozen tiles (F),
holes (H), the starting point (S), and the ultimate
goal (G). Available actions to the agent encompass
moves in the four cardinal directions: up, down,
left, and right.

Modifications for our Experiments: Diverging
from the default library setup, which provides true
state information, our implementation offers the
agent an RGB image of the grid world as its obser-
vation. To infuse variability, we experiment with
assorted ice colors in the environment, such as the
default sky blue, a more profound dark blue, and a
textured variation (see Testing setup in Figure 3).
Evaluation Metric: The core of our experiment
centers around determining the agent’s capacity
to derive a strategy in one version of the environ-
ment and effectively apply this acquired knowl-
edge in a different and unfamiliar variation. Thus,
our training phase engages the agent with the de-
fault environment setup, and later, it undergoes
evaluation in an unseen environment variant. The
computed reward over an episode is defined as
the episodic return. We distinguish between the
training phase’s reward performance, termed train
episodic return, and the performance in the evalu-
ated variant, termed fest episodic return. Note that
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the agents are evaluated in the test environment in
a zero-shot manner where no training is performed
on the test environment.

4.2 Implementation Details

Base Algorithm: Our Proximal Policy Optimiza-
tion (PPO) implementation draws inspiration from
the CleanRL Library (Huang et al., 2022a,b). It
integrates numerous pivotal modifications for im-
proved performance from contemporary research in
policy gradient techniques. These modifications in-
clude the Normalization of Advantage, Orthogonal
Initialization, and Generalized Advantage Estima-
tion (GAE). For a comprehensive understanding
of these aspects, readers can refer to (Huang et al.,
2022a).

Hyperparameters: To maintain consistency
across our experiments, the hyperparameters of the
base PPO algorithm remain unaltered. We adopt
these hyperparameters grounded on the established
standards delineated in the PPO’s continuous action
space implementations (Huang et al., 2022a,b).
Handling RGB Images: For the challenge of
learning from RGB images, we employ a three-
layer convolutional neural network with ReLLU ac-
tivations, a configuration inspired by the PPO im-
plementation for Atari in the CleanRL library.
Handling Text Embeddings: Text embeddings
are crucial for representing textual data’s structured
and semantic meaning in our experiments. We use
a Sentence Transformer (Reimers and Gurevych,
2019) model to convert natural language descrip-
tions into dense vector representations. These em-
beddings serve as additional inputs to our agent,
complementing the RGB images and providing the
agent with a richer understanding of the environ-
ment.

Reproducibility: Ensuring our work contributes
to the larger academic community, we will open-
source the complete implementation, including hy-
perparameters and tracking of our experiments, to
aid future research and reproducibility. Unless oth-
erwise mentioned, the results are shown with three
random seed runs.

PPO-Image: This baseline uses the standard Prox-
imal Policy Optimization algorithm with RGB im-
ages of the environment as observations. The
agent’s policy is trained directly on the visual input,
capturing features like the grid configuration and
the agent’s current position. It operates in a more
conventional approach by directly processing the
pixel values of the images.

PPO-Lang: In this version, the environment pro-
vides a natural language description of the state
instead of an image. As discussed in the method
sections, pre-trained models convert this textual
information into embeddings. The agent’s policy is
trained on these embeddings, offering a high-level,
abstract view of the environment. This method
aims to capture the semantic information in the de-
scriptions, making it potentially more generalizable
across different variations of the environment.

The hyperparameters remain consistent for both
implementations, except for the input layer accom-
modating images or text embeddings, ensuring a
fair comparison. Through our experiments, we aim
to demonstrate that PPO-Lang can achieve compa-
rable or better performance than the PPO-Image,
especially in environments where language can pro-
vide a richer and more generalizable representation
of the state.

4.3 Results

In our experiments with the Frozen Lake environ-
ment, as depicted in Figure 3, all the agents quickly
converge to optimal training performance, consis-
tently achieving a score of 1.0. Nevertheless, this
training efficacy can be misleading; high training
scores might obscure a model’s potential to overfit
its training data, leading to suboptimal performance
in novel environments or unseen scenarios.

To better understand the generalization capabil-
ity of our models, we transition to testing our poli-
cies in a variant of the ice environment not exposed
to the model during training. PPO-Lang, our pro-
posed method, exhibits commendable performance
consistency, as seen in Figure 3. This consistency
underscores the advantages of grounding reinforce-
ment learning in language-based representations.
One attributing factor to this stability is the incorpo-
ration of invariant linguistic states during the policy
learning process. Ensuring this invariance, espe-
cially against non-essential environmental nuances,
is paramount. In practical terms, this translates to
crafting queries for the language model that hone in
on consistent, task-centric details. In cases where
the linguistic input might carry extraneous informa-
tion, leveraging a Large Language Model (LLM)
can be beneficial for removing these distractions,
leaving behind a purified, invariant state represen-
tation for training.

Contrastingly, a policy that leans on image ob-
servations as their primary source of information
(PPO-Image) fails to manifest any significant per-
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Figure 3: [Left] Train Results: While both agents converge rapidly to an optimal training performance with

scores of 1.0, such results can be deceptive. Our

method, grounded in language-based representations,

showcases the potential for consistent performance in training time, highlighting its effectiveness in learning

compared to image-centric agent, PPO-Image. [Right] Test Results (Generalization):

, our language-

based method, demonstrates consistent performance. In contrast, the image-centric model, PPO-Image, struggles to
adapt, highlighting their susceptibility to overfitting to specific visual features of their training environments.

formance in our test environment. Such a stark
discrepancy in outcomes reinforces the inherent
challenge with image-centric models: their ten-
dency to overfit to visual features of their training
environments. This tendency compromises their
ability to generalize, rendering them ineffective in
adapting to and learning within new or modified
environments.

Implications From our empirical evaluation within
the Frozen Lake environment, several insights
emerge that hold significance for the domain of
reinforcement learning: In Figure 3, we see that
training performance does not always indicate a
model’s generalization capacity. An algorithm
might exhibit optimal behavior during training, but
this does not guarantee its efficacy in previously
unseen conditions or variations of the environment.

Our observations from Figure 3 suggest that
leveraging linguistic information during training
can potentially bolster a model’s robustness to
novel scenarios, which can be attributed to the ab-
straction capabilities inherent in language-based
representations. Such representations capture the
essence of a situation without getting entangled in
the specifics, analogous to employing high-level

heuristics instead of detailed mappings.

Conversely, visual-centric models, although rich
in representational content, may run the risk of
overfitting the training data. Overfitting occurs
when a model becomes excessively tailored to the
training dataset, compromising its ability to gener-
alize to new data, which is analogous to a system
that excels in memorizing a dataset but fails in ex-
tracting and applying the underlying patterns to
fresh, unseen data.

In summary, while visual data offers a granular
view of the environment, linguistic information pro-
vides a more abstract, generalized perspective. The
trade-off between specificity and generalization is
pivotal in reinforcement learning model design and
training for real-world applications.

5 Related Work

The integration of language with reinforcement
learning has been a subject of growing interest in
the research community. Language, being one of
the most remarkable human achievements, plays
a pivotal role in our ability to learn, teach, rea-
son, and interact with others. However, the current
state-of-the-art reinforcement learning agents have
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shown limitations in understanding or utilizing hu-
man language. The potential benefits of integrating
language with reinforcement learning are manifold.
Agents that can harness language in conjunction
with rewards and demonstrations have the potential
to enhance their generalization capabilities, scope,
and sample efficiency. The linking Language to
Actions and Observations has been explored with
methods aiming to effectively associate language
with actions and observations in various environ-
ments (Branavan et al., 2009; Tellex et al., 2011;
Chen and Mooney, 2011).

From a generalization perspective, various strate-
gies have been proposed; these include data aug-
mentation techniques such as random cropping
and noise addition, as well as network random-
ization to augment training diversity (Cobbe et al.,
2019; Laskin et al., 2020b; Raileanu et al., 2020;
Kostrikov et al., 2020; Laskin et al., 2020a; Osband
et al., 2018; Burda et al., 2018; Lee et al., 2020;
Cobbe et al., 2019; Kostrikov et al., 2020; Igl et al.,
2019; Wang et al., 2020). However, the effective-
ness of these methods can diminish if the semantics
of the task are overlooked.

Moreover, these methods often lack interpretabil-
ity and can fail when certain assumptions do not
hold. The autoencoder-based method, which re-
duces images into a lower-dimensional space (Ha
and Schmidhuber, 2018; Hafner et al., 2019; Zhang
et al., 2022), can also face challenges like unclear
policy behavior due to its black-box nature. These
methods modify the image space or the lower-
dimensional projection where policy learning oc-
curs, which can result in non-interpretable policies.

In contrast, our work emphasizes decision-
making through language descriptions of visual
content. This language-centered approach ad-
dresses the challenges present in image-based pol-
icy learning. We aim to improve transparency and
generalization in reinforcement learning tasks by
focusing on language.

While the integration of language with reinforce-
ment learning has been a topic of interest, the ma-
jority of existing research has primarily focused on
direct associations between language and actions
or observations. These methods often rely on data
augmentation techniques, network randomization,
or image manipulations to enhance generalization.
However, these strategies can sometimes lead to
unrealistic outcomes during testing or lack inter-
pretability, especially when certain assumptions
do not hold true. For instance, autoencoder-based

methods, which condense images into a lower-
dimensional space, might grapple with ambiguous
policy behavior due to their opaque nature. Such
methods can also risk losing essential image infor-
mation, leading to policies that are hard to interpret.
The method in paper (Schwartz et al., 2019) re-
quires a semantic representation and a semantic
parser, whereas our method utilizes textual descrip-
tions generated by a vision-language model. The
proposed method in the paper (Peng et al., 2024) be-
gins by describing a target task in natural language.
Then, a pre-trained language model (LM) trans-
lates this task description into a state abstraction
that filters out irrelevant features, necessitating user
demonstration. In contrast, our method depends on
a vision-language model to generate descriptions
and a large language model (LLM) to filter out ir-
relevant features, identified through prompts (e.g.,
remove color information’). These prompts can
originate from either the environment or the user.
Overall, our work takes a fundamentally dif-
ferent approach. We emphasize decision-making
through language descriptions of visual content. In-
stead of relying heavily on visual cues, which can
be susceptible to overfitting or misinterpretation,
our method harnesses the power of language to
provide a more robust and transparent representa-
tion. This language-centered approach addresses
the challenges inherent in image-based policy learn-
ing and offers a more interpretable and general-
izable solution. We aim to create models better
equipped to handle diverse scenarios by grounding
reinforcement learning in linguistic descriptions.

6 Conclusion

In reinforcement learning, while directly learn-
ing policies from images offers potential, it also
presents challenges due to the abundance of in-
formation and irrelevant features in image-based
observations. Such policies often lack interpretabil-
ity and struggle to generalize across varying envi-
ronments. Language, a primary mode of human
communication, offers a precise way to describe
and construct situations, serving as a foundation
for human reasoning. We introduce an approach
that leverages language descriptions of visuals for
decision-making. The resulting policy is more in-
terpretable by converting visual information into
natural language and using this language as state
information. It offers a clearer insight into the
agent’s understanding of the visual scene. Utiliz-
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ing Vision-Language Models and Large Language
Models, we present a method to generate natural
language descriptions of image observations, pre-
process them, and convert them into text embed-
ding vectors. Experiments conducted on the Ope-
nAl Gym Frozen Lake environment demonstrate
the superiority of policies trained using natural lan-
guage descriptions over those trained directly from
images. Such language-based state representations
offer enhanced interpretability and generalization,
underscoring the potential of language as a power-
ful tool in reinforcement learning.
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