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Abstract

In this paper, we introduce Clid, a Transport Layer Secu-
rity (TLS) client identification tool based on unsupervised
learning on domain names from the server name indication
(SNI) field. Clid aims to provide some information on a wide
range of clients, even though it may not be able to identify
a definitive characteristic about each one of the clients. This
is a different approach from that of many existing rule-based
client identification tools that rely on hardcoded databases to
identify granular characteristics of a few clients. Often times,
these tools can identify only a small number of clients in a
real-world network as their databases grow outdated, which
motivates an alternative approach like Clid.

For this research, we utilize some 345 million anonymized
TLS handshakes collected from a large university campus
network. From each handshake, we create a TCP fingerprint
— comprising IP flags, time-to-live (TTL), TCP window size,
initial sequence number, window size, flags, header length,
options, max segment size, and window scaling — that identi-
fies each unique client that corresponds to a physical device on
the network. Clid uses Bayesian optimization to find the op-
timal (in a precise sense that we define later) Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
clustering of clients and domain names for a set of TLS con-
nections. Clid maps each client cluster to one or more domain
clusters that are most strongly associated with it based on the
frequency and exclusivity of their TLS connections. While
learning highly associated domain names of a client may not
immediately tell us specific characteristics of the client like its
the operating system, manufacturer, or TLS configuration, it
may serve as a strong first step to doing so. There exists prior
work [22,31] that uses the SNI field for client identification.

We evaluate Clid’s performance on various subsets of our
captured TLS handshakes and on different parameter settings
that affect the granularity of identification results. Our ex-
periments show that Clid is able to identify the single most
associated domain cluster (a group of similar domain names
in a precise sense that we define in §5.3) for at most 90%
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of clients in 10,000 TLS connections for a real-world traf-
fic. When one or more domain clusters were allowed to be
mapped to a single client cluster, Clid identified such domain
names for at least 60% of all clients in all our experiments.

1 Introduction

Identifying clients in network communications is widely used
for various research purposes, such as studying anomalous
behaviors on the network. However, many current client
identification are instead of identifying a wide range of clients
accurately.

We introduce Clid, a passive TLS client identification
tool. There is often a trade-off between identifying some-
thing definitive about a client and getting some information
about many clients, even though it is not very granular. Many
state-of-the-art client identification tools look for a defini-
tive identification of clients by establishing temporary ground
truth in the form of databases that act as guidelines or simple
dictionaries to identify clients [19,28,34]. However, solutions
that rely on databases can become unreliable as its database
grows outdated. Clid takes a different approach and instead
tries to identify as many clients as possible, even though it
may not be able to say something definitive about each one of
them. Clid does so by finding a mapping between a client and
its associated domain names without relying on a database.
Based on the selected domain names, a user may learn some
information about the client’s operating system, manufacturer,
IoT device type, and more.

In our experiments using 10,000 anonymized TLS connec-
tions from real-life traffic, Clid was able to identify the single
most strongly associated domain name for at most 90% of
clients, based on our criteria for client-domain association.
For at least 60% of clients in all our experiments on varying
numbers of TLS connections, ranging from 2,000 to 10,000,
Clid identified the most associated domain names with vary-
ing degrees of association with the clients.



2 Background

Client identification is the practice of identifying traits of
a client involved in an online communication, such as its
operating system (OS), TLS configurations, or hardware spec-
ifications. Client identification is a widely used methodology
for researchers and operators because it enables them to learn
about a particular group of clients and specify their behaviors.
For example, client identification can help researchers iden-
tify devices that may be causing abnormal behaviors. In this
work, we focus on passive client identification, which aims to
identify clients through passive observation of network traffic,
as opposed to directly engaging in communications. A client
identification tool typically receives recorded or live traffic as
input and extracts some target properties that are observable
in the traffic. Three of the most common properties used in
client identification are: the client’s Transmission Control Pro-
tocol and Internet Protocol (TCP/IP) parameters, user-agent,
and the server name indication (SNI) field [20]. A typical
client identification tool then processes these information to
return a classification result, which can be the OS name and
version, manufacturer, device type, or something else about
the client.

3 Motivation

Many previous client identification methods rely on creating
databases that act as a simple dictionary of network param-
eters and client types [19,28,34]. However, databases risk
growing outdated. In fact, the inefficiency of such rule-based
fingerprinting tools in classifying clients has long been known
to the academic community [19]. We see through a simple
experiment on some of the most well-known OS fingerprint-
ing databases, namely Joy [7], pOf [34], and Zardaxt [28],
that databases have many missing values. We used Retina to
collect anonymized copies of all TLS handshake transcripts
sent over a large university campus network over a three week
period in 2022. We observed about 550M handshakes per
day and collected, among other things, the TCP fingerprint
of SYN packet of each handshake, which comprises IP flags,
time-to-live (TTL), TCP window size, initial sequence num-
ber, window size, flags, header length, options, max segment
size, and window scaling. Among 2000 of the anonymized
TCP fingerprints, a maximum of 50.1% of them appeared in
any one of the databases and an average of 13.6% of them
appear in any two of the three databases, while only 5.85%
of them appear in all three databases. We see that the three
databases together can (1) identify very few clients and (2)
even when they all identify a client, they rarely agree. As
we see in table | only 3.05% of our TCP fingerprints are
identified as the same OS by all three databases, and at most
10.95% by any two databases. In other words, around 97% of
the time, at least one of Joy, pOf, and Zardaxt mis-identifies a
client.

It also takes considerable administrative effort to maintain
the created databases up-to-date and Joy, pOf, and Zardaxt
are seemingly not updated automatically. This is why many
existing OS fingerprint databases are abandoned; for exam-
ple, pOf was last updated in 2016 [33]. The landscape of the
modern network changes rapidly today as the market shares
of relatively new OSes like Mac OS and iOS grow [26] and
new IoTs emerge rapidly [29]. This makes databases grow
outdated quickly and under-representative of many clients
in real networks, especially those that carry traffic from rel-
atively new operating systems like iOS and Mac OS. For
example, Joy’s database, which was made public in 2019,
only contains fingerprints for Windows, Mac OS, and Linux.
Similarly, pOf’s database contains 1 i0OS, 4 Mac OS, 6 Win-
dows, and 17 Linux fingerprints. It may also be the case that
these databases focused on collecting certain types of devices
and thus not a wide range of devices was included. We see
that a novel tool that does not rely on databases is needed to
provide more accurate and reliable information about clients’
OS and further, more characteristics of TLS clients.

More recent client fingerprinting tools use supervised learn-
ing like machine learning to train tools that can identify cer-
tain clients. However, a major drawback of these tools is
that they are trained on precisely the set of clients they aim
to identify, and therefore their capability often ends at dis-
cerning the target clients from all others [20]. With Clid, we
get a step closer to learning meaningful information about
any unspecified client, which is useful when analyzing an
unknown network.

What makes it challenging to evaluate the accuracy of pas-
sive client identification tools is the absence of ground truth
on the identities of the client. Given that attempting to es-
tablish ground truth with databases is highly inefficient, an
alternative solution is to find associations between available
parameters in TLS connections and their clients intelligently.
SNI is an unencrypted field in the client hello of a TLS hand-
shake that provides a good window into the client’s identity.
SNI has been used as part of several previous client identifi-
cation tools [19,22]. Furthermore, previous research efforts
have shown that SNI offers good insight into the type of ser-
vice offered by the website [31], which enables us to envision
what kind of clients would access such sites. Nonetheless,
most previous efforts that use SNI establish a dictionary of a
small subset of domain names known to be accessed by cer-
tain types of clients and rely on a simple mapping to identify
clients [19].

Without relying on a database, a strawman approach way
to use SNI for client identification is for a human to manually
inspect all SNIs that a client connected to and infer an identity
for the client. For example, it may be reasonable to con-
clude that a device that repeatedly and frequently connects to
login.apple.com, icloud.com, and apple.update.com
is likely an Apple product. But to do so, a person would
have to go through the hundreds of domain names that the



Database names | % of clients that appear in all databases | % of clients identified as the same OS
Joy, Zardaxt, pOf 5.85 3.05
Joy, Zardaxt 16.55 0
Joy, pOf 5.85 2.50
Zardaxt, pOf 18.50 10.95

Table 1: Identification results from different databases

device connected to and be able to understand which domain
names are informative. This is not only inefficient but also
scientifically uninteresting. Clid attempts to automate this
process of extracting client identity from SNIs and imitate a
human’s learning process using machine learning.

4 Design Goals

We aim to build a tool that can be used by researchers and
other real-life users to learn more about their TLS clients. In
this section, we introduce a set of design goals that we aim
to achieve with Clid. We believe these goals will help us
overcome the shortcomings of previous client identification
tools. Clid does not aim to definitively claim a client to
be a particular something. Instead, Clid identifies a strong
association between clients and some domain names they
connect to, which serves as a first step in identifying the
clients.

Breadth over granularity of identification. Many tradi-
tional client identification tools can provide very detailed (or
’granular’) identification of clients. For example, there exist
tools that can identify the major and minor OS versions of
clients [2, 13, 19] and tools that can tell the exact model and
manufacturer of particular [oTs [14]. Some tools achieve
such granularity by training a machine learning model on the
test data itself through supervised learning. This might limit
the accuracy of these tools to only a small subset of clients
that they are trained on. Other tools create a dictionary after
establishing ground truth and identify clients through simple
mapping. However, such databases risk growing outdated
quickly as the types of devices in networks evolve. Clid takes
an alternative approach; name must prioritize breadth over
granularity of client identification so it can provide some in-
formation, even though not granular, on more clients than the
state-of-the-art solutions. For example, Clid need not be able
to tell a user that a client is an iPhone 13 with iOS version
17.0.1; it is sufficient to tell that it is likely an iPhone. De-
spite this trade-off, we believe Clid wil make a useful tool
for researchers and operators because a rough identification
of devices still suffices many research and operational pur-
poses [5, 18].

Give more information about each client. Most previous
client identification techniques are designed to identify one
aspect of the clients, such as their OS [7, 21, 28, 34], user-
agent [16], version and model of IoT devices [8,24,27], or

the manufacturer of wireless devices [10,32]. Such targeted
identification can be helpful when the user has a specific
learning objective in mind or knows what types of clients
to expect in the network traffic to be analyzed. However, a
more general identification tool is needed when the user does
not have such information or the traffic to analyze contains
various types of clients; for example, some may be running
on an OS while some may not be, or some might be an IoT
while some are not. To help with these cases, Clid must be
able to provide a large variety of information about clients,
including but not limited to OS, type of device, or IoT type
that certain domain names may suggest. A user might not
learn all those things about one client.

Performance does not degrade. Most previous ap-
proaches at client identification [16, 19,23,30] establish some
ground truth, usually in the form of a database, that maps
observable properties to clients. They then search for either
exact or partial matches in the database to classify clients.
However, in order not to degrade over time, Clid must not
rely on hardcoded databases or supervised learning.

5 Design Overview

In this section, we provide an overview of Clid’s design and
explain its main modules in detail. Furthermore, we report
results for micro-benchmarks to show how the design choices
made satisfy the goals identified in §4. Clid first uses Bayesian
optimization and DBSCAN clustering to group clients and
domain names, separately, based on similarity metrics we
define in §5.3. Clid then uses unsupervised learning and
concepts from bipartite graphs to map each client cluster to
one or more domain clusters that are deemed most strongly
associated (in the precise sense that we define as weight in
§5.2) with the identify of the client. The Python source code
for Clid and experiment results are available on our Github
page.’

Clid takes as input a set of TLS connections; they must
have the SNI field populated to be used by Clid. For each
TLS connection, Clid generates a TCP fingerprint by concate-
nating the values of its TCP header length, IP time-to-live,
TCP window size, TCP flags, TCP maximum segment size,
TCP options, and TCP window scaling parameters. Any un-
populated field is replaced with an empty string. While these
parameters are known to be influenced by the software and

Uhttps://github.com/ihyunnam/clid



hardware of the client device [9, 17], none of them on its own
can be strongly indicative of the physical device. However,
considering all seven parameters at the same time creates a
strong association to a physical device on a network [1,4,6].
Therefore, we use TCP fingerprints as unique identifiers for
clients. The input set of TLS connections may contain multi-
ple connections requested by the same client, in which case
Clid generates multiple copies of the same TCP fingerprint
and retains all of them in a list. It becomes important that Clid
does this instead of recording only distinct TCP fingerprints
when computing weights between client and domain clusters,
as we will see in §5.2.

For each TLS connection in the input database, Clid also
extracts the SNI field value ("domain") and stores all of them
in one list where duplicates are allowed. Clid performs
DBSCAN clustering on these lists of clients and domains,
separately, using the optimal epsilon values chosen through
Bayesian optimization in §5.1.

For each client cluster ¢, Clid loops through all domain
clusters and computes the weight W, 4 between ¢ and each
domain cluster d using our weight formula. This construction
is analogous to building a connected bipartite graph with
weighted edges where the client clusters and domain clusters
form two sets of nodes. The higher the weight, the more
indicative Clid thinks d is of ¢’s identity. After computing all
weights, Clid returns the highest weighed domain cluster(s)
for each client cluster. A client cluster is said to be mapped
to the domain cluster(s) that was given the highest weight.

A user can then manually inspect the domains included
in the chosen domain cluster and infer what they tell about
the clients. For example, if a client cluster is mapped to a
domain cluster containing various paths to icloud.com, it
is reasonable for the user to infer that the client is likely an
Apple product.

This way, Clid extracts only the meaningful domain names
that each client connected to, while discarding irrelevant do-
main names that are not strongly associated with the client.
This partly automates the process of a human going through
all domain names a client connected to, which may contain ir-
relevant or misleading information, and deducing the client’s
identity from them.

5.1 Maximizing the Number of Good Client
Clusters

In this subsection, we introduce the concept of a good client
cluster and explain how Clid uses it as a metric of success for
Bayesian optimization for client clustering.

A good client cluster is defined with regards to two param-
eters: Z and H. In order to be good, a client cluster needs to
be mapped to a domain cluster whose weight has a minimum
z-score of Z. Z-score is a common measurement of distance
between data points in statistics, which indicates how many
standard deviations a particular point is away from the mean

of all data points. In this work, Z is computed as
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for W, the highest weight a client cluster has with any one
domain cluster; u, the mean of all weights a client cluster
gets; and o, the standard deviation of all those weights. For
example, if Z =5, a client cluster needs to be mapped to a
domain cluster with weight at least five standard deviations
higher than the mean of all weights in order to be good. On
the other hand, if Z = 1, a good client cluster only needs to
have the highest weight domain cluster be weighed at least
one standard deviation higher than the mean. In this sense,
good-ness is a measure of confidence in the result.

H is the maximum number of highest-weight domain clus-
ters a good client cluster may be mapped to. For example,
if H =2, Clid need not pinpoint a single domain cluster to
be highly associated with a client cluster, in order to make
it good. The client cluster can be mapped to up fo 2 domain
clusters whose weights are both Z standard deviations higher
than the mean.

We now explain how Bayesian optimization uses the num-
ber of good client clusters as a metric of success to choose the
optimal epsilon values for DBSCAN clustering. The epsilon
value in DBSCAN clustering is the maximum distance al-
lowed between the core point of a cluster (selected randomly
at the beginning) and any other point belonging to the clus-
ter. The other input to DBSCAN clustering, min_samples,
which specifies the minimum number of data points in a clus-
ter, is fixed at 1 to allow for singleton clusters. We choose
Bayesian optimization over other optimization algorithms due
to its ability to compute expensive evaluation functions and
to intelligently pick the inputs for the next iteration based on
previous iterations.

Border point

Epsilon

Core point

Figure 1: Structure of a DBSCAN cluster

Bayesian optimization receives as inputs an epsilon value
for client clusters and an epsilon value for domain clusters,
both in range (0,1). Because we normalize the distance be-
tween data points (clients and domain names, separately) to
the [0,1] (inclusive) range, setting the allowed epsilon values
to (0,1) (exclusive) ensures that the two farthest data points,
with distance equals to 1, in any database are not clustered



together. The evaluation function of Bayesian optimization
aims to maximize both the number of good client clusters
and the number of domain clusters formed as a result of DB-
SCAN clustering. While only the number of good clusters is
an official metric of success for Clid’s mapping, the number
of domain clusters is added to the return value to discourage
DBSCAN clustering from resorting to a trivial solution in
which it clusters all domain clusters together and maps every
single client cluster to it. In this trivial solution, all client
clusters are marked as good, as they are all mapped to a sin-
gle, non-zero weight domain cluster. However, this behavior
must be discouraged, because it fails to identify meaningful
domain names for each client.

After 10 iterations of Bayesian optimization, the optimal
epsilon values for clients and domains are determined. DB-
SCAN clustering is done separately on clients and domains
with the respective epsilon values to yield the final clusters
Clid uses for mapping.

5.2 Calculating Weights

Here, we explain how Clid computes the weight between a
client cluster and a domain cluster. Furthermore, we report
results for micro-benchmarks to justify our weight formula.
Consider a client cluster C and a domain cluster D. We denote
the weight between C and D as W¢ p and compute it as

Here, fc p denotes the frequency, and ec p denotes the non-
exclusivity between C and D. Frequency and non-exclusivity
are defined more precisely below.

_ Y..ec number of d € D that ¢ connected to
- Cl

fep

_ Yyepnumber of connections d made with ¢ ¢ C
- D|

ec.p

We see that W¢ p is proportional to the average number
of times the clients in C (denoted ¢ € C) connects to the
domains in D (denoted d € D), and inversely proportional to
the average number of times some d € D appears in all other
client clusters that are not C (denoted C’). That is, for We p
to be high, (1) d € D has to be frequently accessed by c € C
as opposed to a one-time connection, and (2) d € D has to be
connected exclusively by ¢ € C and as few times as possible
by clients in other client clusters (¢’ € C').

The frequency factor fc p ensures condition (1) by giving
lower weights to non-repetitive domain connections. Do-
main names should appear multiple times a client’s TLS
connections in order for it to be considered representative
of the client’s identity. For example, a client connecting to

weather.apple.com might appear to be an Apple device,
but if the connection happens once among a hundred connec-
tions, the client could also be an Android device checking the
weather on a browser. When connections are not frequent, we
cannot reasonably infer the client’s identity. Condition (2) is
represented by the non-exclusivity factor ec p in the weight
formula. It is needed because there are common domains like
those of email providers and streaming services that can be
accessed by all devices regardless of their specifications. The
non-exclusivity factor works against the frequency factor to
discourage domains from being weighed high simply due to
the sheer number of connections made, when in reality, for
example, all other client clusters connected to the domain
equally many times. Because Clid creates a list of all occur-
rences of domains in the input TLS database, as opposed to
keeping a single copy of each distinct domain, it is able to
check exactly how many times a domain was accessed by
clients in each cluster.

5.2.1 The Importance of Frequency

This micro-benchmark serves as a justification for considering
frequency in the weight formula. We remove frequency from
the weight formula so that the new formula becomes

1
WC,D = —.
ec.np

We tested Clid to cluster 2,000 TLS connections using the
new weight formula. Both 7z and H values were setto 1. As a
result, Clid managed to make 100% of client clusters good,
mapping every client cluster to one domain cluster. However,
this result is misleading, because the chosen domain clusters
were often made of generic domains like 1inkedin.com and
cloudfront.com that tell us little about the client. This could
happen because non-exclusivity is computed with respect to
connections that other client clusters made in the database.

As a demonstrating example, Table 2 shows the mapping
outcome from this experiment for a particular client cluster
(call this C) that connected to seven different domains. The
seven domains were clustered into five distinct domain clus-
ters as shown in the table. A human may reasonable tell from
inspecting the domains of domain cluster 5 that the clients
in C are most likely Apple devices, while discarding other
domain clusters as they are not indicative of a particular OS,
device, or IoT.

when using the weight formula without the frequency
factor, C was mapped to domain cluster 2 that contains
choices-or.trustarc.com, because it has zero connec-
tions to other devices. Clid is unable to take into account
the fact that this domain was accessed by C only once. On
the other hand, using the correct weight formula with the fre-
quency factor, C was mapped to domain cluster 5 containing
various paths to apple.com. Although these domains have



Domain . Weight with Weight with Number of connections | Number of connections
Domain name . .
cluster no frequency | correct formula | to other client clusters to client C
1 linkedin.com 1.33 0.19 1 1
2 trustarc.com’ 2.00 0.29 0 1
3 gstatic.com’ 0.14 0.15 7 1
4 cloudfront.net * 0.14 0.16 3 1
5 (3 different paths to) apple.com 1.01 0.43 315 3

Table 2: Mapping results for the same client cluster using a weight formula with and without the frequency factor. We are only

displaying the second- and top-level domains.

315 connections to clients that are not in C, clients in C con-
nected 3 times more to these domains than they did to other
domains. Therefore, domain cluster 5 is given a high fre-
quency score to complement for its low non-exclusive score
and is mapped to C, which aligns with what a human may
conclude.

5.2.2 The Importance of Non-Exclusivity

This micro-benchmark serves as a justification for considering
non-exclusivity in the weight formula. We removed non-
exclusivity from the weight formula and tested Clid on 2,000
TLS connections with both the Z H values set to 1. The new
weight formula is

We.p = fep-

Using the new weight formula, 79.57% of all client clusters
were good, which is 10.75% lower than the percentage of
good clusters formed with the original weight formula. This
result combined with that from §5.2.1 justifies our design of
the weight formula.

5.3 Distance Function for Domain Clustering

In this subsection, we explain our distance function for
DBSCAN-clustering domain names, which we use instead
of the default Euclidean distance. Clid uses Euclidean dis-
tance for client clustering, because clients are represented
as concatenated strings, and it suffices to detect unweighted
difference between them. However, for domain clustering,
we design a more intelligent distance function that takes into
account the relative significance of different components of a
domain name.

Our distance function partitions a domain name into com-
ponents separated by a dot (.) and compares the corresponding
strings at the same indices. Any subdomain prefixes such as
www are disregarded if present, and the second-level domain is
considered to be at index 0. Every time strings mismatch, the
distance increases; and the larger the distance, the less likely
it becomes that the two domains will be clustered together.
We present the formula below.

Third-level Top-level
domain domain

t t

www.example.com

|

Second-level
domain

Figure 2: Domain name components

distance=1 (if the top-level domains mismatch)
+5 (if the second-level domains mismatch)
+(1 —0.01s)} (if ith-level domains have
similarity score s)

Same domain names will have distance equal to zero. Ex-
cept for the top-level domain that is given an arbitrarily low
weight, more weight is assigned towards the end of the do-
main. This is because lower-level domains are larger classifi-
cations of domain names and therefore carry more informa-
tion about the website. For example, in update.icloud.com,
the distance function perceives icloud more importantly
than update, while .com is less important than icloud.
Furthermore, components lower than the third-level do-
main are compared using the fuzzy string matching com-
puted using the Levenshtein distance [25] instead of exact
matching. This allows the distance function to accommo-
date for paths that carry similar values but have slightly
different names, such as profiles-01.example.com and
profiles-02.example.com.

5.4 Choice of the Clustering Algorithm

In this subsection, we report results for micro-benchmarks
on using Clid with different clustering algorithms, and justify
our choice of using DBSCAN. We test the following three
clustering algorithms.

* KMeans: KMeans clustering with default (Euclidean)
distance metric for both clients and domains

¢ Default DBSCAN: DBSCAN clustering with default
(Euclidean) distance metric for both clients and domains



e Custom DBSCAN: DBSCAN clustering with a cus-
tom distance metric for domains and default (Euclidean)
distance metric for clients

KMeans and DBSCAN were considered among many avail-
able clustering algorithms because they can perform unsu-
pervised learning on unlabeled data and are compatible with
Bayesian optimization. KMeans is used with Bayesian opti-
mization to find the number of client clusters and number of
domain clusters that result in the maximum number of good
client clusters. DBSCAN is used with Bayesian optimization
to find the ideal epsilon values to maximize the number of
good client clusters.

We used Clid with each clustering algorithm and ran it on
2,000 TLS connections sampled randomly from our database,
with z values 1, 1.5, and 2. We observed that custom DB-
SCAN that uses our distance function for domain names from
§5.3 yielded the highest number of good client clusters. For
all Z values, KMeans resorted to a trivial solution and grouped
all clients into two gigantic clusters. Both clusters, however,
were not good, by our definition of good. Default DBSCAN
and Custom DBSCAN were able to make more than 90%
of all clients clusters good for Z = 1. However, as shown in
figure 3, as Z increased, Custom DBSCAN performed consis-
tently better than Default DBSCAN. Therefore, we chose to
use Custom DBSCAN with our domain distance function in
Clid.

Percentage of good client clusters for different Z-values
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Figure 3: Percentage of good client clusters formed by differ-
ent clustering algorithms

6 Performance Evaluation

In this section, we report the results of testing Clid on various
test sets of TLS connections. The metric of success in all
tests is the percentage of good client clusters among all client
clusters formed. To mimic real-world traffic, all TLS con-
nections were sampled from a database of some 345 million

anonymized TLS connections that we observed on a large uni-
versity campus network in a 24-hour period. All evaluations
were done on a c3-highmem-8 machine with 8§ vCPUs and
64GB of memory, running on Intel Sapphire Rapids, unless
otherwise specified. Most notably, our experiments show that
Clid can map at least 25% of all client clusters formed to H
number of domain clusters with weight z-score higher than z,
across for H and z values we tested. The percentage was 50%
when H = 1.

6.1 Performance on Different H and Z Values

We tested Clid on different combinations of H and z values and
measured what percentage of client clusters were good. The
tested H values are 1, 2, 3, and 4, and the Z values range from
0 to 5, incremented by 0.5 each time. For these experiments,
we randomly sampled 1,723 TLS connections that had the
SNI field populated from our dataset.

Evaluation results show that for all H values, as Z increases,
the percentage of good clusters decreases. This is because
with Z value increasing, higher weights are required of domain
clusters to make the associated client cluster good. From a
usability point of view, a user can have more confidence in the
meaningfulness of domain clusters that were mapped with a
higher z value, because that suggests more distinguishability
of the chosen domain names from others.

In the trivial case when z = 0, all client clusters are marked
good as expected. Even for Z as high as 5, 64.52% of all client
clusters were good. Note that, however, this does not mean
that seeing the client-domain mapping, a human user would
be able to tell definitively the OS, device, or manufacturer of
all these clients. Instead, the user is given a set of domain
names that have strong enough associations with these clients,
which they can then use to infer information about the clients.

Among the good client clusters for when Z =5, the majority
of clients (86.66%) only have one connection included in the
test set of 2,000 connections to begin with. Therefore, they
are each mapped to only one domain cluster with a non-zero
weight, which automatically makes them good. This calls
for an additional evaluation of Clid in §6.2 on clients with
different numbers of connections included in the input data
set. Furthermore, across all z values, the higher the H value,
the higher the percentage of good clusters.

6.2 Identifying Clients With Varying Numbers
of Connections

In this subsection, we aim to test how many connections from
a single client Clid’s unsupervised learning algorithm needs
to see in order to map it to a correct domain cluster. From our
dataset, we randomly chose a client IP and collected (all) 854
TLS connections issued from it. All 854 connections have the
same TCP fingerprint (concatenation of seven TCP/IP param-
eters as described in §5), which convinced us that the client
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Figure 4: Percentage of good client clusters for different H
and Z values

IP represents a single physical device as intended. Call this
client C. Among the 854 TLS connections, 214 (or 25.06%)
connections are made to domain names that are identified as
belonging to i0S/Mac OS devices in a public database [19]
that maps a chosen few domain names to the most likely OS
of the client based on empirical result. There are also a few
domain names, most notably updates.apple-cdn.com, that
are not identified by [19]’s database but still strongly indica-
tive of an Apple product. Through the frequent appearance of
these domains in connections by C, we establish ground truth
that Client Cis an Apple device and its OS is either iOS or
Mac OS.

We created seven arbitrary data sets containing 2,000 TLS
connections each. Each data set included exactly 1, 50, 100,
150, 200, 250, and 300 randomly selected connections made
by C, respectively. Both Z and H values were set to 1.

Total number of connections by Client C | Good

1 Yes
50 Yes
100 Yes
150 Yes
200 Yes
250 Yes
300 Yes

Table 3: Clustering result for Client C with varying numbers
of connections

We see that Clid can always identify domain names with
the strongest association with C, regardless of how many do-
main names are available for learning. However, the mapped

2Website to a company that provides data privacy management solutions.

3A website owned by Google that helps the contents for Google services
load faster from Google servers.

4A website to Amazon’s Cloudfront, a content delivery network for Ama-
zon.

domain names do not always tell us correctly that Client Cis
an Apple device. This calls for the notion of meaningfulness
of domain names introduced in §7.

7 Meaningful Domain Names

Ideally, a successful client identification tool should map each
client cluster to domain names that are actually informative
about the client’s identity, in a way that a human manually
inspecting all domain names would draw out domain names
they think are meaningful. A good client as we define in §6
does not necessarily mean that a human user is guaranteed
to be able to identify it using the mapped domain names.
For example, simply based on our weight formula, a client
could be mapped with high confidence to domain names
like netflix.com, facebook.com and spotify.com, but
these are not informative or meaningful. On the other hand,
domain names like 1ogin-apple.com, update.apple.com,
and icloud.com are meaningful because a human user can
reasonably infer from these that the client is likely an Apple
device.

However, to determine whether a domain name is meaning-
ful, a human user would have to inspect it and decide whether
it is informative. This is hard to test. Nonetheless, in §7, we
attempted to test how effective Clid is in mapping clients to
meaningful domain names, among a test set of mixed domain
names.

We tested what percentage of TLS connections used in
Clid’s unsupervised learning needs to be meaningful, as de-
cided by the authors of this paper, in order for Clid to map
the client to one of such domain names and not some other
domain in the training set. We used the same client C as in
§6 that we know is an Apple device. We made seven test sets
with 2,000 total TLS connections, 300 of which come from
Client C. The 300 connections included varying numbers
of meaningful domain names: 0%, 10%, 20%, 25%, 30%,
40%, and 50% °. Table 4 shows that Clid needs 20% to 25%
of all connections from a client to be meaningful, in order for
it to map the client to those domain names. A desirable next
step is to identify how many TLS clients in real life actually
meet this criterion and therefore are identifiable with Clid.

7.1 Test on 10k TLS Connections

We ran Clid on 10,000 TLS connections from our data set
to test the tool’s robustness. This evaluation was done on a
c3-highmem-8 machine with 8 vCPUs and 32GB of memory,
on Intel Sapphire Rapids. For this experiment, both Z and
H values were set to 1, as this is the most basic setting for
Clid. We observed that Clid maps more than 90% of the

5The SNI-OS database of [19] we use to identify meaningful domains is
by no means comprehensive, and therefore the actual percentage of meaning-
ful connections for each data set is likely higher than what is intended in the
test.



Percentage of meaningful connections (%) | Mapped domain name | Good | Meaningful
0 dropbox.com Yes No
10 dropbox.com Yes No
20 dropbox.com Yes No
25 apple.com Yes Yes
30 apple.com Yes Yes
40 apple.com Yes Yes
50 apple.com Yes Yes

Table 4: Clustering result for Client C with varying percentages of indicative connections among 300 connections

client clusters to exactly one domain cluster whose weight
has z-score larger than 1.

7.2 Computational Cost

Clid does not scale efficiently for large numbers of TLS con-
nections. As shown in figure 5 its memory footprint increases
faster than linearly as the number of TLS connections in-
creases. All tests were done using a c3-standard-88 machine
with 88 vCPU and 352GB of memory. It is projected to take
at least 350GB of memory to process 50,000 TLS connec-
tions. Therefore, if a user wishes to process a large set of
TLS connections, we recommend dividing them into batches
of approximate size and running Clid on them separately.
Connections made by the same TCP fingerprints have to be
included in the same batch to ensure a proper mapping.

Number of TLS connections VS Memory footprint
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Figure 5: Memory footprint by number of TLS connections

8 Related Work

There are multiple client identification tools that build on
previously established databases. P40f [3] is a tool that uses
pOf to fingerprints the OS of hosts running in their network
and additionally react to it (e.g drop host). However, pOf is
able to classify only 23% of their collected traffic.

Using SNI as a window into network clients’ identity is
not new [22,31]. Some solutions have created a dictionary of
chosen domain names that they have tested to be associated
with certain OSes [19]. However, a known SNI-OS database
can classify only 5.16% of all unique TCP fingerprints in
our TLS database, which consists of real traffic observed in
the Stanford University campus network. While we share
the insight of such database-based approaches that the fre-
quency, type, or hosts of particular SNIs can be indicative of
clients’ identities, Clid differs from them in that it can gener-
ate new matchings between clients and SNI unique to each
input set of TLS connections. Given that no client identifica-
tion databases is updated automatically, we believe that Clid
is able to process clients on the most up-to-date information.

Furthermore, there are some client identification tools that
directly infer the OS from user-agent available in HTTP head-
ers [12,35]. However, because more than 95% of all network
over Google as of May 2023 [11] use some network encryp-
tion like HTTPS, payload-based identification like using user-
agent is mostly unavailable. There also exist approaches that
use user-agent as ground truth [15] to verify models that use
other features, but it has been known that user-agent can be
easily fabricated. Unlike these approaches, the SNI included
in the client hello of TLS connections are difficult to be tem-
pered with and therefore provide more reliable information
about the clients.

9 Discussion

A limitation of Clid is that it does not entirely automate the
mentioned strawman client identification method, in which
a human inspects all domain names accessed by a client and
tries to infer its identity from them. After Clid outputs a do-
main cluster, a person still needs to manually go through the
domain names, which sometimes requires connecting to the
sites, and understand what they may indicate about the client.
While Clid reduces the number of domain names that a person
would need to inspect this way by selecting the most "useful’
domain names for them, it does not completely replace the
manual effort. Therefore, two desirable improvements from
Clid would be (1) establishing a more reliable way to know
what a domain names represent and (2) automating the do-



main name lookup process. We envision there to be modern
solutions to achieve these goals, such as feeding the domain
names into Large Language Models like ChatGPT and retriev-
ing a summary of what the sites most likely indicate about a
frequent client.

10 Conclusion

In this paper, we examined the status quo of passive client
identification by testing the performance of some of the most
well-known client identification databases in a real-world
network. We showed that the current rule-based approaches
fail to identify many TLS clients and proposed Clid, which
uses unsupervised learning on the SNI of TLS connections to
match clusters of clients to clusters of domain names. Using a
weight formula based on the frequency and exclusivity of con-
nections, Clid is able to identify the most associated domain
names for at least 60% of client clusters in any given set of
TLS connections. While there are still unresolved challenges
arising from the lack of ground truth in clients’ identities in
real-world networks, Clid offers a promising alternative to
current rule-based fingerprinting tools.

However, more work is required to verify the usefulness of
Clid’s identification results. Doing so is non-trivial because
Clid is a general purpose identification tool that attempts to
pinpoint domain names that will likely tell us something about
the clients. While we believe that SNI is a strong indicator of
certain aspects of clients, Clid is not guaranteed to identify
definitive features, like the operating system, manufacturer,
or the type of device of clients. Therefore, the usefulness of
the extracted information depends on how telling the domain
names that the client accessed are and what a human user of
Clid get out of them. Interpreting the domain names selected
by Clid could be made easier by using large language models
like ChatGPT to automatically connect to the domain and
tell the user what the site suggests about, for example, the
operatin system about the client device.
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