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ABSTRACT

In humid, continental Michigan, we identified pedogenic carbonate in a soil profile developed on
glacial drift sediments, as rinds, rhizoliths and filaments (at depths > 50 cm). Given that the
climate setting is unusual for pedogenic carbonate, we investigated its formation with
environmental monitoring and isotope analyses of carbonate (8'3C, "0, A4z and ™C) and
waters (580 and &?H). We found covariation in 3'3C and A4z amongst the carbonate types
(rhizoliths, rinds, filaments, bulk soil, and detrital clasts), and "*C ages of rinds that pre-date
plausible formation ages. The 5'3C and A47 values of the bulk carbonate and some of the
pedogenic morphologies are not fully compatible with pedogenic formation in the modern
environment. The 8'®0 data from precipitation and river waters and from carbonates are not
uniquely identifying; they are compatible with the soil carbonate being pedogenic, detrital, or a
mix. We conclude that the soil carbonate is likely a physical mix of pedogenic and detrital
carbonate. Pedogenic carbonate is forming in this humid setting, likely because seasonal cycles
in soil respiration and temperature cause cycles of dissolution and re-precipitation of detrital and
pedogenic carbonate. The pedogenic carbonate may be transient feature as carbonate-rich till

undergoes post-glacial chemical weathering.

Key words: inorganic soil carbon, pedogenic carbonate, clumped isotopes, chemical

weathering, temperate forests
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INTRODUCTION

Soil carbonate is a significant component of the global carbon cycle, comprising 40-50%
of total global soil carbon (Eswaran et al., 2000; Plaza et al., 2018). The term ‘soil inorganic
carbon' or 'soil carbonate' is used to describe carbonate in soil that is pedogenic, detrital, or
biogenic in origin (Monger et al., 2015; Zamanian et al., 2016). 'Pedogenic' carbonate refers to
carbonate that precipitates in situ in soil pore water. 'Detrital' carbonate refers to carbonate
inherited from parent carbonate material, such as finely ground limestone or dust. Biogenic
carbonate forms as animal or plant skeletons (e.g., shells or seeds). Amongst these three forms
of soil carbonate, pedogenic carbonate is of particular interest because it represents active
fluctuations in the pools of soil inorganic carbon. Furthermore, pedogenic carbonate is
commonly used as a paleoclimate archive because its stable isotope composition is related to
environmental conditions at the time of its formation (e.g., Cerling and Quade, 1993; Kelson et
al., 2020).

Pedogenic carbonate is most commonly found and studied in drylands, where the
balance between limited rainfall and high evaporation is thought to promote the accumulation of
calcites (e.g., Arkley, 1963; Royer, 1999; Retallack, 2005; Breecker et al., 2009; Slessarev et
al., 2016).Though less explored, humid environments host as much as 20% of the global stock
of soil carbonate (Plaza et al., 2018; United States Department of Agriculture, Natural
Resources Conservation Service, 2022), some of which is interpreted to have a pedogenic
origin (Cerling, 1984; Strong et al., 1992; Wang et al., 1993; Railsback, 2021; Licht et al., 2022).
An understanding of the origin and the processes driving the formation of pedogenic carbonate
in humid environments would therefore help understand the factors that contribute to spatial
variation in soil carbonate (Slessarev et al., 2016; Stanbery et al., 2017; Pfeiffer et al., 2023).
Understanding the distribution of pedogenic carbonate is important to help inform predictions of

how its global distribution might evolve under climate change and anthropogenic management
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(Nyachoti et al., 2019; Ferdush and Paul, 2021; Naorem et al., 2022; Wani et al., 2023;
Stanbery et al., 2023). Furthermore, pedogenic carbonate can be either a net sink or source of
carbon to the atmosphere (e.g., Monger et al., 2015; Sharififar et al., 2023). If pedogenic
carbonate is precipitating as an intermediate step during lithogenic carbonate weathering, it may
slow the export of dissolved bicarbonate and alter carbon cycling rates (Szramek and Walter,
2004; Williams et al., 2007).

Here we document an occurrence of pedogenic carbonate in glacial drift in the humid
continental climate of southern Michigan. Building on prior local work on carbonate weathering
in the shallow vadose zone (Jin et al., 2008b, a, 2009), we use environmental monitoring and
isotope geochemistry to explore the origin and formation conditions of the soil carbonate at a
site in southern Michigan. We infer the processes driving pedogenic carbonate formation at our
site, and discuss its implications for paleoclimate reconstructions, regional chemical weathering,

and carbon cycling.

METHODS

We investigated soil carbonate formation in southern Michigan (USA) using soil stratigraphy,
soil monitoring, water isotope analyses, and carbonate isotope analyses. We first describe the
site and modern climate. Then we describe sampling, monitoring, and isotope analysis

methods.

Site description
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The study site is in the Edwin S. George Reserve (hereafter, “the Reserve”), which is a
forest preserve maintained by the University of Michigan (UM), located in southern Michigan,
USA (Figure 1) (42°27.44'N 83°59.87'W WGS84). Southern Michigan has a humid continental
climate. Regional precipitation averages 860 mm/year, well above the ~500 mm/year threshold
commonly used to delineate where soils contain abundant calcium carbonate (i.e., the
Pedocal/Pedalfer boundary) (D’Avello et al., 2019). Each month has >50 mm precipitation, with
May through August being the wettest four months and precipitation primarily falling as snow
from November through April. The mean annual air temperature is 8.8 °C (winter mean = -3.4
°C, summer mean = 20.8 °C) (Arguez et al., 2012).

The geomorphology and topography of the region was strongly influenced by the growth
and retreat of the Laurentide Ice Sheet (Dalton et al., 2020), as reflected in sand- and gravel-
rich soils, numerous kettle lakes and swamps, and eskers (Rieck, 1976; Farrand and Bell, 1982;
Schaetzl, 2001). Glacial sediments are derived from Canadian shield bedrock and from the
sedimentary sequence of Paleozoic and Mesozoic rocks in the Michigan Basin, which include
limestones and dolomites (Milstein, 1987; Williams et al., 2007). The glacially reworked
sediments in Michigan contain finely-ground dolomites and limestones (Schaetzl, 1992; Williams
et al., 2007; Jin et al., 2008b), resulting in soil series with mappable amounts of soil carbonate
that are a global outlier for their high pH despite the humid climates (Slessarev et al., 2016;
United States Department of Agriculture, Natural Resources Conservation Service, 2022). The
study site is a knoll about 10 m high that was partially excavated during a gravel quarry
operation initiated between 1950 and 1966 (Figure 2, Figure 3). Most of the Reserve is forested,
including the top of the knoll. The near-vertical, excavated slope itself is unvegetated. The
native vegetation of the study site is a mixed oak forest with oak, tamarack, and willow (Roller,
1974; Comer et al., 1995). The forest is dominated by C; vegetation: 5'*C values of soil organic
matter from the Reserve range from -29.4 to -24.7%., with an average of -26.8 %o (Jin et al.,

2009).
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Soil stratigraphy and sample collection

We characterized the Reserve site with soil stratigraphic techniques and monitoring of
modern below-ground conditions. We described the stratigraphy in a hand-dug soil pit and in the
existing cut slope after we cleared it vegetation and then further machine-excavated. Field
descriptions included depth and thickness of soil and sedimentary horizons, the morphology of
clay films and soil carbonate, grain size, and structure (Birkeland, 1984) (Figure 3).

We collected soil, sediment, and water samples. The soil and sediment samples
included several morphologies of soil carbonate, including rhizoliths, rinds on the bottoms of
clasts (< 1 mm thick), thin filaments ("stringers"), diffuse carbonate in the soil matrix, bulk
sediment (matrix), and limestone/dolostone clasts. We collected water samples from within and
outside of the Reserve. Within the Reserve, the soil water and surface water from East Marsh
were opportunistically collected (fall 2020 to fall 2022) (n = 12 marsh samples, n = 29 soil water
samples collected on 12 unique events). We collected bulk soil for soil water sampling when soil
pits were dug for monitoring installation and then subsequently with a hand auger (typical
depths of 10, 25, and 50 cm). We extracted the soil water from the bulk soil samples via a
custom-buiilt, cryogenic vacuum extraction line at UM (largely following that of West et al.,
2006). Outside of the Reserve, we implemented a longer-term precipitation and river monitoring
program in nearby Ann Arbor, Michigan (30 km distant, Figure 1) (started fall 2018, ongoing).
Weekly precipitation samples were collected with a no-oil collector (after Groning et al., 2012).
Weekly Huron River samples were initially collected from a dock upstream of the Argo Dam
(May-October 2018) and subsequently downstream from the Fuller Street bridge (October 2018
to present, with a hiatus in summer 2020). We collected water and bulk soil samples into vials
with polycone seal caps; caps were then wrapped with Parafilm as a secondary barrier to

evaporation. We stored the vials upside down at room temperature at UM until analysis.
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To further characterize the modern soil system, we monitored soil temperature and soil
moisture at depths of 10, 30, and 60 cm and soil CO; concentration (pCO-) at 60 cm (Figure 4).
We monitored soil temperature with a HOBO Pendant, soil moisture with a HOBO RX3000
Remote Monitoring Station equipped with HOBOnet Soil Moisture EC-5 Sensors, and soil CO>
concentration with a CO2meter.com K33 ELG sensors capable of analyzing 0—10,000 ppm CO..

The monitoring regime covered winter 2021 to winter 2022, with gaps due to equipment failure.

Isotope analytical methods

We analyzed water and carbonate isotope compositions to investigate the conditions of soill

carbonate formation.

Water stable isotope analyses

We measured the oxygen and hydrogen ('O and 8?H) compositions of meteoric and
water samples (Figure 5). All water samples were introduced to instrumentation as liquid water.
The 3'80 and &°H were measured via Cavity Ring Down Spectrometry primarily at UM and
secondarily at Washington University in St Louis (WU). The UM system consists of a Picarro
A0325 Autosampler, A0211 Vaporizer, and A0214 Micro-Combustion Module connected to a
Picarro L2130-i Analyzer. We normalized the isotope values to the VSMOW scale using four in-
house liquid water standards that are referenced to USGS water standards (USGS45, 46, 49,
and 50). Precision is typically better than 0.1 %o in 580 and 0.5 %o in 8°H based on repeat

measurements of deionized water (Aron et al., 2020). The WU system consists of a Picarro



154  A0325 Autosampler, AO2 Vaporizer, and A0214 Micro-Combustion Module connected to a

155  Picarro L2140-i Analyzer that was run with two lasers activated (i.e., the ""O-mode). We

156  normalized the samples to VSMOW2 and SLAP2 using in-house liquid waters and international
157  reference waters (Hutchings and Konecky, 2023). Typical RMSE of known waters is 0.1 %o in
158  ©'®0 and 0.5 %o in d°H. For water samples with replicate measurements, typical standard

159  deviations are 0.1 %o in 8'0 and 0.2 %o in 3°H. We report d-excess as secondary isotope

160  parameter for all water samples (d-excess = 8°H — 8x3'8Q).

161

162

163  Carbonate carbon, oxygen, and clumped stable isotope analytical methods

164 We processed several distinct carbonate morphologies for isotope analysis. We hand-
165  picked gravels from the bulk sediment. For rinds and rhizoliths, we brushed the soil off the outer
166  surface. We then carefully removed the rind material from the parent clast with a hand drill. We
167 homogenized and crushed the cleaned rhizoliths. We hand-picked thin filaments of carbonate
168  ("stringers") out of the soil matrix and then homogenized the material. We cut open

169 limestone/dolostone clasts and then subsampled the cut surface with a hand drill.

170 We measured carbonate 5'3C and §'®0 (hereafter 5'*C. and 580, using a Kiel IV

171 automated preparation device connected online to an isotope ratio mass spectrometer (a Delta
172V or a ThermoFisher MAT 253) at UM, standardized with NBS-19 to the VPDB scale. Typical
173  standard deviations of known values are < 0.1 %o for 8'*C and 5'®0.

174 Clumped isotope (A47) geochemistry refers to the temperature-dependent clumping

175  between *C and "0 in a carbonate mineral (Eiler, 2007; Huntington and Petersen, 2023). For
176  A47 analyses, we prepared samples on a custom, automated vacuum extraction line connected
177  to a Nu Perspective at the Isotopologue Paleosciences Laboratory at UM. First, 6-9 mg of

178  carbonate equivalent of sample material was acidified in a common bath of phosphoric acid held

179  at 90 °C. The resulting CO was passed with helium through cryogenic water traps and a
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Poropak Q column. We calculated the A4z values using the '’O parameters of Brand et al.
(2010) (Schauer et al., 2016; Daéron et al., 2016) and projected them into the ICDES90
reference frame (Bernasconi et al., 2021; Daéron, 2021) using online equilibrated and heated
gases (30 °C and 1000 °C) and carbonate standards ETH1-3. Typically, the standard deviation
of A47 values of each standard is < 0.02 %o within a session, and the long-term standard
deviation of an in-house standard (102GCAZ01) is 0.014 %.. We calculated temperatures
(hereafter TA47) using the empirical calibration of Anderson et al. (2021) (As7 = 0.0391 * 10%/T2 +

0.154).

Strontium isotope analyses

We selected two carbonate rind samples for strontium isotope analysis (87Sr/%Sr), which
was carried out at the University of Utah’s ICP-MS Metals and Strontium Isotope Facility. About
50 mg of ground carbonate was digested in 0.5 mL of concentrated HNO3 at room temperature
and then diluted with Type | grade water. Strontium concentration in acid digest was determined
using an external calibration curve prepared from a single element Sr standard (Inorganic
Ventures, Christiansburg, VA, US) in a triple quadrupole inductively coupled plasma mass
spectrometer (ICPMS, Agilent 8900, Santa Clara, CA, US). Aliquots from the digests containing
200 ng of Sr were then mixed with concentrated HNO3s and water to 2 M HNOs and purified
using an automated system (PrepFAST MC, Elemental Scientific, Omaha, NE, US). 8Sr/%Sr
ratios were corrected for mass bias using an exponential law and normalizing to 8¢Sr/®8Sr =
0.1194 (Steiger and Jager, 1977). To correct for isobaric interferences (e.g., from 8Rb and
8Kr), 8Rb and 8Kr were simultaneously monitored using the corresponding invariant ratios of
8’Rb/®Rb = 0.385706 and %Kr/%3Kr = 1.502522 (Steiger and Jager, 1977). Measurement
accuracy was assessed via multiple analyses of standard reference material SRM 987 in each

run, with an analyzed value of 0.710297 + 0.000006 (n = 8; mean % standard deviation)
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compared to the certified value of 0.71034 + 0.00026. Analytical precision (standard error) of

87Sr/88Sr for all samples was <0.00001.

Radiocarbon dating

We selected two carbonate rinds from the soil pit (60 and 70—75 cm depth) for
radiocarbon analysis. 10 mg of chipped samples were sent to the University of Arizona’s AMS
Laboratory where CO» was extracted and purified, graphitized, and analyzed. We calculated the
calibrated radiocarbon ages (cal yr BP) using the CALIB 8.0 software with the IntCal09
calibration curve (Stuiver and Reimer, 1993; Reimer et al., 2009) (Table 1) (Supplementary

Table S1).

Conceptual models for soil carbonate genesis and predictions for its stable isotope
composition

We used previously established relationships between the stable isotopic composition of
pedogenic carbonate (5'3C, 880, and A47) and its formation environment to predict the stable
isotope composition of soil carbonate under three scenarios that involve formation in equilibrium
with climate conditions at the Reserve (open and closed system) and its mixing with detrital
carbonate (Figure 6). We employed a simple mixing model to explore the possibility is that the
soil carbonate is pedogenic carbonate mixed with detrital carbonate particles (Amundson et al.,
1988; West et al., 1988b; Kraimer and Monger, 2009; Zhou and Chafetz, 2010; Michel et al.,
2013) (Figure 6a). We modeled linear mixing in §'80-8'3C and 5'C-A47 between various
potential endmembers and with varying fraction of pedogenic carbonates (F) in a Monte Carlo
framework (Figure 7). An example mixing line is shown in Figure 6 (schematically in a and b,

calculated in g and h). In the Monte Carlo mixing framework (Figure 7), we allow for a range of

10
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endmember compositions (Supplementary Code). We allowed a range in detrital endmember
compositions that was informed by the measured isotopic composition of limestone clasts at the
site and the secular isotopic trends through the Phanerozoic (Veizer et al., 1999): -8 < 380 < -5,
-2 < 8"C < +3 %o, and 0.448 < A47< 0.495 %o (65 < TA47< 91 °C). For the pedogenic carbonate
endmember, we allowed for a wide potential range of compositions that could be reasonably
found for the vast majority of pedogenic carbonates found globally: -15 < 380 < -5 %o, -14 <
8"3C < 0 %o, 0.594 < A47<0.678 %o (0 < TA47<25°C) (e.g., Cerling, 1984; Kelson et al., 2020).
A47 does not mix linearly, but the effect of nonlinearity in our range of values is ~0.0002 %o in A4z
(White and Defliese, 2023), which is much smaller than our external precision in A47 (the long-
term S.D. of our in-house standard, 102GCAZ01, is 0.014 %o). Note, however, that there is
nonlinearity between temperature and A47; we perform the mixing calculations in A47 and then
calculate temperature. We only used samples with 8'3C, "0, and A4z data, and the feasible
endmembers for each sample were those capable of reproducing the observed isotope
composition within analytical error for all three isotopes (i.e., 0.1 %o for 8'*C / 880, + 5 °C for
TA47). For visual clarity we calculated F values in increments of 0.1 and emphasize differences
between increments by plotting their average values.

In a canonical calcic soil system, the soil pore water and CO- are open to isotopic
exchange with incoming meteoric waters and the soil gas reservoir, resulting in a relatively small
range in pedogenic carbonate isotope values that reflect formation in equilibrium with soil
climate conditions (Figure 6b) (Cerling, 1984; Cerling and Quade, 1993; Quade et al., 2013). To
model the pedogenic carbonate system, we first calculated the 'O values of the carbonate-
parent water (i.e., reconstructed soil water, 8'®Oysy) using the temperature-dependent isotope
fractionation factor informed by TA47 data (Kim and O’Neil, 1997) (Figure 5c). For samples
without TA47 data, we use the average TA47 value to calculate 5'®0sy. Choice of calibration for

the fractionation factor does not materially change our interpretations (i.e., Coplen, 2007 vs. Kim

11



254  and O'Neil 1997). We compared the 3'80ysy to measured §'®0 values of meteoric and soil

255  waters.

256 Then, we modeled the set of environmental conditions potentially capable of producing
257  the measured soil carbonate 3'*C values using established equations that relate pedogenic
258 carbonate to soil respiration, the overlying vegetation, and the atmosphere. For each sample,
259  we first calculated the 8'C of soil gas (8'°Cs) from the measured &'*C of soil carbonate (3'3C,)
260 and its formation temperature (Romanek et al., 1992):

261 €ccoz = 11.98 - 0.12*T (1)
262  where epsilon £q.coz2is the mineral-gas fractionation factor for calcite (i.e., 8'°Cs =

263  (8'3Cc+1000)/(gq-coz /1000+1)-1000).Then we modeled the 5'3C of soil respiration (3'3C;)

264  (Cerling, 1984; Cerling and Quade, 1993; Davidson, 1995):

265 5'3C, = (5"3Cs 4.4 - CalCs* 8%3C, + 4.4*C./Cs)/(1.0044-C,/Cs*1.0044) 2)

266  where C, is atmospheric pCO; and C;s is soil pCO-.This equation is solved independently for
267  each measured 8"°C. value, each representing a specific depth. The calculations were

268 performed 10,000 times, assuming varying conditions within a plausible range for the late

269  Quaternary (atmospheric CO; concentration: 180 to 280 ppm, soil CO; concentration:

270  atmospheric concentration to 10,000 ppm; soil temperature: 0 to 25 °C; 8'3C of atmospheric

271 COg2: -6 to -7 %0) (Cerling, 1984; Davidson, 1995; Bereiter et al., 2015; Eggleston et al., 2016;
272  Huth et al., 2020) (Supplementary Code). The modeled conditions that were required to produce
273  the measured 8"C; values were then compared to modern conditions (Figure 8).

274

275 RESULTS

276
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Soil profile developed in carbonate-rich glacial drift

We documented a soil profile developed in stratified glacial drift. The soil profile is about
2.4 m thick and consists of two A horizons, a Bt horizon, and a Bk horizon (Figure 2; Figure 3).
The parent material is fine-medium, poorly sorted sand with 10 - 15 % gravel; evidence of
primary sedimentary bedding was not identified. Soil horizons (A1, A2, Bt, Bk, and Ck) were
differentiated based on organic content, color, pedogenic structure, and secondary mineral
composition (Figure 3). Notably, the Bk horizon was identified based on the presence of
carbonate (i.e., the first depth at which the matrix reacted vigorously with hydrochloric acid
application) and the sharp color change relative to the overlying layer. Within the Bk horizon,
carbonate was found as Stage I-Il rinds on the bottom of clasts, rhizoliths (some surrounding
still-intact roots), stringers, and as diffuse fine-grained material within the matrix (Figure 2). The
depth to the Bk horizon varied by up to 50 cm at several sampled locations (instrumented soil
pit, auger collections, and the excavated slope) and at other test pits in glacial drift in the region;
this variation could be partially due to alteration of the ground surface elevation during historical
quarry operations and/or natural variation in leaching depths.

Below the soil profile, we found stratified sands and gravels consistent with a fluvio-
glacial drift deposit, such as a kame or an esker (Figure 3). A layer of cross-bedded sand
appears at 2.4 m below the surface. The sand unit is very fine to very coarse and well-rounded,
with some grain size separation in the beds. There were abundant carbonate rhizoliths
throughout the sand unit, and the matrix reacted vigorously with hydrochloric acid. The gravel
unit 3.2 m below the ground surface consisted of lenses of sorted sediments, ranging from
rounded -subrounded gravels to medium sand. The gravel unit reacted with HCI vigorously
throughout, and many of the clasts displayed incipient (stage |) carbonate rinds (Figure 2;

Figure 3).
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Calcite mineralogy was confirmed with X-ray diffraction (XRD) analysis of rind material
drilled from clasts collected at depths of 50 and 70 cm in a soil pit adjacent to the slope. The
87Sr/%€Sr values of =0.709 for the rinds collected at 50 cm and 70-75 cm are consistent with
marine limestone as the parent material (Table 1). The radiocarbon ages are 23,691 cal yr BP

and 17,366 cal yr BP for the same rinds collected at 50 cm and 70-75 cm (Table 1).

Results of below-ground soil monitoring

Over the year of monitoring we conducted, we observed seasonal cycles in soil
temperature, water content, and pCO.. At carbonate-relevant depths of 60 cm, winter
temperatures are near-freezing in January and February (0.6 °C). The soil begins to thaw mid-
March, and temperatures reach a maximum temperature of 21.4 °C in late August (Figure 4).
Soil water content remains at 0.2-0.3 m®/m? for winter and spring (December through June),
with minor fluctuations due to infiltration of snowmelt and precipitation. Initial snowmelt occurred
in late February, causing an increase in water content at all depths that was followed by several
cycles of increasing and decreasing soil moisture heading into the summer (Figure 4). The soil
pCO;, values were between 4300-4500 ppm midwinter (January to February). In late March,
pCO- concentrations started to rise above winter lows, and then remained > 5000 ppm with
spikes > 8000 ppm through early summer. Mid-late summer pCO; values (July to August)
exceeded 10,000 ppm (the limit of our sensor). The pCO- record ended on August 11, 2021.
Even considering the relatively short period of monitoring, these data capture the major

seasonal trends (Figure 4).
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Results of stable isotope analyses of carbonates and water and of predictions for

pedogenic carbonate

The 3"C; values of all carbonates are -7.9 to 2.5 %o (VPDB), spanning a 10.4 %o range
(Table 2; Figure 3; Figure 8). The 8'3C. values of the rhizolith, stringer, and rind samples are
generally lower than those of the bulk matrix and parent limestone clasts (Figure 3; Figure 6).
The 880, values of all carbonates are -8.3 to -5.4 %0 (VPDB), spanning a 2.9 %o range (Table 2;
Figure 3; Figure 6; Figure 8). There is not marked differences in 50, values amongst
carbonate morphologies (Figure 6). A subset of the samples was measured for A4z, and those
values range from 0.4562 to 0.6219 %o (ICDES-90), corresponding to temperatures (TA47) of 87
to 16 °C (Table 3). The TA47 values of the measured rinds and rhizoliths are lower than the TA47
values of the limestone clasts (range of 15.9-32.9 °C vs. 70.2-86.6°C) (Table 3). There is
significant covariation between 8°C. and TA47 (? = 0.89, p = 0.004) amongst all the carbonate
morphologies, but there is not covariation between 8'0. and 8'°C. or TA47 (Figure 6d).

We observed seasonal variation in the isotopic values (5'0, &°H, and d-excess) of
meteoric waters (Figure 5), typical of continental locations with seasonal fluctuations in air
temperature (Clark and Fritz, 1991; Rozanski 1993). There is covariation between §'®0 and d-
excess for samples with 880 > ~-10 %, indicative of evaporation. The local meteoric water line
(i.e., 8'80-02H linear regression) defined by precipitation has a slope of 7.8 that is close to the
canonical value of 8 (Table 4) (Putman et al., 2019). The isotopic composition of the
precipitation is quite variable (5'80 ranges from -23.6 to -0.14 % VSMOW, d-excess ranges
from -8.5 to 25.8 %o), though the isotopically light precipitation events tend to occur only in the
winter and the isotopically heaviest rain occurs in the summer. The Huron River water has less
variability in 3'80 and &°H than precipitation, but does have a sinusoidal pattern of seasonal
variation (Figure 5), with low 3'80 values (high d-excess values) in the winter (typical minimum

5"80 of -9 %o and maximum d-excess of +15) and high 8'®0 values (low d-excess values) in the
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summer (typical maximum 3'80 of -5 and minimum d-excess of +5) (Pelletier, 2020). East
Marsh in the Reserve has 880 values that are consistently higher than the contemporaneous
river water and the 5'®0-32H relationship has a slope of 5.4, indicating evaporative influences
(Table 4). The soil water isotope values generally reflect the seasonal patterns delineated by the
river and precipitation water isotopes. The slope of soil water line (i.e., 8°H-8"80 trend) is 7.4,
indicating only minor evaporative influences.

We predicted stable isotope values and patterns that we would have observed if the soil
carbonate formed only via pedogenesis and if pedogenic carbonate was mixed with detrital
carbonate (Figure 6; Figure 7; Figure 8). The mixing model between the stable isotope
compositions of detrital and pedogenic carbonate can satisfactorily explain the observed &'°C,
5'80, and A4 data for all sample types if samples have pedogenic fractions of approximately 0.6
< F <1 (Figure 7). The calculated 8'®0s values overlap with the highest observed 580 values
of precipitation, river, marsh, and soil water isotope values (Figure 5). The environmental
conditions required to match the measured &'*C. have no or minimal overlap with modern
conditions (Figure 8). Only one rhizolith, with the lowest 8'3C value, could potentially be

consistent with modern soil conditions.

DISCUSSION

Physical evidence of pedogenic carbonate

The carbonate morphology and underlying sedimentology supports post-glacial,
pedogenic carbonate formation (Figure 2). Our initial observations of carbonate morphology are
strongly suggestive of in situ pedogenic carbonate precipitation (Gile et al., 1966; West et al.,

1988b; Gocke and Kuzyakov, 2011; Zamanian et al., 2016) (Figure 2). Calcite rinds indicate in
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situ recrystallization of calcite, though they are typically described in deserts (Gile et al., 1966).
Rhizoliths cross-cut sedimentary bedding structures and often surround roots of living plants.
Filaments of calcite-rich material, called stringers, are also indicative of pedogenic processes.
The diffuse carbonate in the matrix throughout the sedimentary sequence is equally likely to be
finely-ground detrital limestone or secondary carbonate (Kraimer and Monger, 2009; Li et al.,

2013; Zamanian et al., 2021).

Isotopic evidence for pedogenic carbonate and its formation processes

We examined the stable isotope data in the context of three scenarios to explain the
origin of the soil carbonate: (1) a mixture of pedogenic and detrital carbonate, (2) pedogenic
carbonate formed under equilibrium, open-system conditions and (3) pedogenic carbonate
formed in closed-system conditions (Figure 6). Each of these scenarios would yield distinct
isotope patterns (in TA47, 8'80, and &'3C) in the resulting soil carbonate (Figure 6). The isotope
and monitoring data are most consistent the scenario that the soil carbonate is a mix between

pedogenic and detrital carbonate.

A physical mixture of pedogenic and detrital carbonate

A mix between pedogenic and detrital endmembers can parsimoniously explain the
observed isotopic values (880, 8'3C, TA47, and *C) of the carbonate (Figure 6; Figure 7).
Because the 5'80 value of the detrital limestone overlaps with the 3'80 value of pedogenic
carbonate formed in equilibrium with modern waters, 3'80 is almost invariant in this scenario
(Figure 6), matching the measured 5'0./ 5'®Orswvalues (Figure 5). TA47 and 83'C covary

because both are dependent on the mixing fraction (Figure 6). The detrital endmembers
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(limestone clasts) have high TA47 values of 70-86 °C and high &'*C values. The sampled
rhizolith has a low TA47 of 16 °C and a low &"3C value, while the rinds have intermediate TA47
values of 21-33°C and intermediate 3'3C values (Figure 6). Because of this variation, the TA47
values provide a strong constraint on the fraction of pedogenic carbonate within the samples
(0.5 < F<1) (Figure 7). A mix between detrital and pedogenic carbonates is also consistent with
the radiocarbon ages that predate glacial retreat; the radiocarbon-dead-detrital component
would make C ages appear older than their true formation age.

The distinctions in stable isotope values with carbonate morphology mostly fit with our
expectation given a physical mix. The bulk samples have &'*C and 580 values that overlap with
that of the detrital limestone (Fig. 6g-h; Table 2), which is expected given the higher potential for
detrital contamination in bulk carbonate. For carbonate morphologies that are more likely to be a
higher proportion of pedogenic (rinds, rhizoliths, and stringer), the isotopic composition is
explained via a mix of pedogenic and geogenic carbonate (Figure 6; Figure 7). This framework
groups rhizoliths, rinds and stringers as having a higher proportion of pedogenic carbonate than
bulk samples (Figure 6), as also observed by Zamanian et al., (2021) and Gocke et al. (2011).
Using this framework, the isotopic data suggest that the rhizoliths tend to have the higher
proportion of pedogenic carbonate than rinds or stringers. This pattern could be a sampling
artifact: the rinds were thin (~1 mm) and separating them from carbonate-cemented matrix was
subjective. In comparison, the rhizoliths were more straightforward to isolate from matrix
because they were thicker (~1 cm), firm, had a predictable, cylindrical geometry, and were
whiter than the surrounding matrix. This apparent difference in pedogenic component could be a
true result that relates to their formation mechanisms. We might expect rinds to have matrix
contamination if they form as hypocoatings in pore space that grows towards the clasts, rather
forming gravitationally like a pedothem in arid soils (Ducloux et al., 1984; Durand et al., 2018).
In comparison, rhizoliths have been previously shown to be purely secondary (pedogenic)

carbonate (Gocke et al., 2011). In one model of rhizolith formation, the first step is that acidic
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root exudate dissolves the surrounding matrix (including detrital carbonate and non-carbonate
minerals). Subsequently, the root selectively uptakes Ca?* in solution, then rhizolith carbonate
precipitates from the remnant Ca?* in solution and CO; from microorganism respiration (Barta,
2011; Brazier et al., 2020; Huguet et al., 2021). Therefore, the mixing model can explain the
composition and origin of the soil carbonate at the Reserve.

The Monte Carlo mixing model gives predictions for the isotopic composition of the
pedogenic carbonate endmembers (Figure 7). The model predicts a range of 8'*C values for the
pedogenic carbonate endmember, consistent with formation under mixed C3-C4 vegetation
regimes or at substantially lower soil CO; concentrations than observed today. Our results are
therefore consistent with, but do not uniquely identify, a substantial component of C4 vegetation
in southern Michigan in the late deglacial/early Holocene (Nelson et al., 2006; Chapman and

Brewer, 2008).

Alternative scenarios: pedogenic carbonate formed in the modern under open- or closed-
system conditions

Given that the soil carbonate appears morphologically to be pedogenic, the simplest
hypothesis is that the soil carbonate formed via pedogenic processes under post-glacial
environmental conditions. However, the isotope data (80, §'°C, TA47, and '#C) and monitoring
data are not fully compatible with this scenario (Figure 5, Figure 6, Figure 8).

The only evidence that aligns with the pedogenic carbonate scenario is that the 5'8Orsw
values overlap with the highest observed §'®0 values of precipitation, river, marsh, and soil
water isotope values. This data could be consistent with pedogenic carbonate formation from
parent soil waters during the warm half of the year (Figure 5), but the other considered
scenarios could also explain the measured 580 values (Figure 6), so the information from &80

is nonunique at this site.
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All other isotope data do not match our predictions for open system, modern pedogenic
carbonate. First, the radiocarbon ages of 17,366 and 23,691 cal yr BP pre-date glacial retreat
from the region (Table 1) (Dalton et al., 2020), which would require pedogenic carbonate
formation while the region was covered with an ice sheet. Second, the TA47 values of 16 to 33
°C overlap or exceed the maximum measured soil temperatures (25 °C) at 10 to 60 cm (Figure
4). A simple interpretation of this data would suggest pedogenic carbonate formation during the
warmest months (but even so, temperatures of 33 °C are not reasonable). This interpretation is
inconsistent with the 8'*C modeling that, in a C3-dominated environment, requires formation at
pCO, ~< 2500 ppm, and the fact that summer pCO. exceeds 8000 ppm. Finally, the '3C values
of the soil carbonate samples are generally inconsistent with predictions of values of pedogenic
carbonate formed under modern conditions (colored dots in Figure 8). The &'*C values of most
of the soil carbonate samples are higher than would be expected if they were pedogenic. The
environmental conditions capable of recreating the measured soil carbonate &'*C values are
either low soil pCO; (~<2500 ppm) or &'*C values of respired CO, of ~-20 to -15 %o (colored dots
in Figure 8). Neither of these conditions are consistent with modern conditions (black box in
Figure 7), where the minimum measured soil pCO; is 4000 ppm and the overlying vegetation is
dominantly Cs (forested) (measured 3'*Cogranges from -29.4 %o to -24.7 %o, Jin et al., (2009)).
The only samples for which there is some overlap in modeled- and observed- conditions are
rhizoliths, which is consistent with stratigraphic evidence supporting that these are primarily
modern (Figure 6; Figure 8).

Another possibility is that the rind and bulk samples formed pedogenically immediately
after glacial retreat, when the sparse vegetation coverage could lead to high 5'*C-CO, values in
the soil. This possibility could explain their relatively high 8'*C values (Figure 8). However, it is
difficult to explain why the post-glacial rinds would have higher formation temperatures than the
modern rhizoliths (Table 2; Table 3; Figure 6) given that post-glacial climates are cooler than

present-day (c.f., varying seasonality of soil carbonate formation, Kelson et al., 2020).
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474  Furthermore, we might expect that 5’80 of meteoric water and pedogenic carbonate would be
475 different in post-glacial vs. present-day southern Michigan, but we measured uniform 580
476  values amongst the sample types. The mixing model (scenario 1) is a simpler explanation that
477  unifies all the data.

478 Theoretically, another possibility is that the soil carbonate is forming in situ, but rather
479  than following the typical pedogenic model described above, the carbonate is re-precipitated
480 from detrital carbonate in a closed system. Ultimately, this scenario is not consistent with the
481  isotope and monitoring data (Figure 6) and our understanding of shallow vadose zones. In a
482  closed system, meteoric water equilibrates with the gas reservoir and dissolves pre-existing
483 carbonate (i.e., detrital limestone) without further replenishment of CO. or water. Jin et al. (2009)
484  report that the vadose zone in the Reserve might be partially closed based on elevated values
485  of 8'3C of DIC at depths > 1.7 m, but those data could also represent equilibrium values at a
486  high pH. A closed system would yield variable 8'*C values and invariant 5'80 values: the §'*C
487  of carbonate increases with cycles of dissolution and re-precipitation but 8'80 of carbonate
488 retains the 5'80 value derived from meteoric water (Salomons and Mook, 1986; Lohmann,
489  1988) (Figure 6). This predicted 5'80 vs. 8'3C pattern is displayed by the soil carbonates in the
490 Reserve but could be explained by other scenarios (Figure 6). Closed system precipitation could
491  also explain the "too-old" '*C ages, whereby '“C in the soil pore waters would be partially

492  derived from dissolved limestone and/or pre-glacial, inherited organic matter (Wang et al.,

493  1996). However, under closed system precipitation we would expect uniform clumped isotope
494  temperatures resembling mean annual air temperature at the depths of carbonate formation (>
495 50 cm) (Quade et al., 2013; c.f., seasonal biases Kelson et al., 2020) (Figure 6). Instead, we
496  document variation in TA47 that correlates with 8'*C (Figure 6). Furthermore, under a closed or
497  partially closed system, we might expect an increase in 8'*C with depth, where shallow

498  carbonates form under a more open system. We do not find a depth- &'*C pattern (Figure 3),

499  though this pattern may be difficult to detect given that we observe distinct carbonate
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morphologies with depths (i.e., the deepest carbonates are rhizoliths, which are unlikely to be
closed system given their adjacency to roots). Previous workers have shown open system
behavior at depths ~< 1 m in soils: even in limestone terrane, pedogenic '*C values match
predictions of the pedogenic model of mixed atmospheric and respired CO-» with negligible
contribution of CO; dissolved from parent limestone (Amundson et al., 1989; Cerling and
Quade, 1993). Given these inconsistencies, pedogenic formation in a partially closed vadose

zone is unlikely to be the dominant mode of carbonate formation at the Reserve.

Processes driving pedogenic carbonate formation in Southern Michigan and implications

for carbon cycling

We can confidently determine that pedogenic carbonate has formed in our field site in
southern Michigan, even if it is physically mixed with detrital carbonate, and our data allows us
to consider the process(es) driving its formation.

In arid settings, it is thought that pedogenic calcite precipitation is driven by wetting and
drying cycles. Infiltrating precipitation dissolves Ca-bearing minerals and brings Ca?* ions (e.g.,
from dust, Reheis, (2006)) from the surface to depths in the soil profile. When the soil pore
water dries via evapotranspiration, it reaches supersaturation with respect to calcite, and calcite
precipitates (e.g., Breecker et al., 2009; Tabor et al., 2013; Gallagher and Sheldon, 2016; Huth
et al., 2019; Kelson et al., 2023). However, soil drying is probably not the major mechanism
driving pedogenic carbonate formation in the Reserve because 1) we observed little variation in
soil water content, outside of minor increases that after summer rain (Figure 4) and 2) there is
little isotopic evidence of evaporation in the soil waters (Figure 5, Table 4). The 5'80-5%H
composition of the soil waters falls near the local meteoric water line and has a slope of 7.5

(Table 4); typical soil water evaporation slopes in arid places are 2-3 (Benettin et al., 2018;
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Bowen et al., 2018). The isotopic composition of the soil waters reflects seasonal patterns of
precipitation. For example, we observed wholesale isotope reset to the measured depths of 50
cm after precipitation events between 09/03/2021 and 10/28/2021, indicating significant
infiltration of unevaporated soil water. In this setting, the formation of pedogenic carbonate is not
controlled by a balance between incoming precipitation and soil drying. And, unlike desert
settings where carbonate accumulates with time into progressively mature Bk horizons (Gile,
1961; Gile et al., 1966), soil carbonate may not be accumulating in the Reserve.

Instead, we propose that in the Reserve the pedogenic carbonate is forming ultimately
because of an abundant supply of aqueous Ca?* derived from glacially-ground limestone and
dolostone in the parent till and seasonal cycles in soil respired CO- (Jin et al., 2008a). Fine-
grained carbonates, like those ground up by glaciers, are particularly susceptible to dissolution
and recrystallization (Anderson et al., 1997; Gallagher and Breecker, 2020). We hypothesize
that the detrital limestone is dissolving and re-reprecipitating on a seasonal basis, resulting in
pedogenic carbonate formation as an intermediate product (also described by West et al.,
1988a). The 8"Sr/%¢Sr values of =0.709 suggest that the source of Ca?* is marine limestone (or
dust derived from marine limestone). In the nearby Huron and Kalamazoo watersheds, Jin et al.
(2008a) found that the saturation index of calcite in pore water is constant throughout the year,
while the Ca?* concentrations increased during the summer via calcite dissolution at higher
pCO:. In the surface water, lakes, and wetlands, however, secondary calcite precipitates due to
degassing (Szramek and Walter, 2004). Our data also show that pCO- increases in the
summer, probably due to soil respiration. Put together, this evidence suggests that the in-situ
precipitation of pedogenic carbonate in the soil is driven by cycles of soil respired pCO,. Higher
soil temperatures enable increased respiration, which increases soil pCO- and dissolves
existing fine-grained calcite while maintaining a constant saturation index. Subsequently,
cooling in the fall results in decreased respiration, decreased pCO,, and decreased Ca?* ions in

the pore water as the calcite re-precipitates. This timing and mechanism are consistent with the
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stable isotope composition of the rhizolith sample that we hypothesize best represents the
pedogenic endmember (i.e., the sample with the lowest 3'3C and TA47 values). The TA47 of the
rhizolith is 16 + 3°C, matching soil temperatures in September to October when pCO: is likely
decreasing. Our observations support that soil respiration rates, which influence the acid-
carrying capacity of soil pore waters, are an important lever in controlling the dissolution and re-
precipitation of carbonate in the soil profile, and ultimately the export of bicarbonate to streams
(Calmels et al., 2014; Romero-Mujalli et al., 2019).

Another factor contributing to pedogenic carbonate formation may be the mixed
carbonate mineralogy in the watershed. Dolomite is less soluble and dissolves more slowly than
calcite in the temperate climate of Southern Michigan. Groundwaters and surface waters in the
Huron River watershed are undersaturated with respected to dolomite (MgCa(COs)2) but
supersaturated with respect to calcite (CaCO3) (Williams et al., 2007; Jin et al., 2008b).
Continued dissolution of dolomite (which releases Ca?* and Mg?*) after soil water is saturated
with respect to calcite may contribute to calcite supersaturation in the watershed, setting the
stage for calcite re-precipitation.

The pedogenic carbonate at the Reserve may represent a geologically transient feature.
The carbonate has been leached from the top ~0.5 to 1.5 m at the Reserve after glacial retreat
and at similar profiles described in the region (Figure 2; Figure 3) (Jin et al., 2008a, 2009).
There is net dissolution of carbonate minerals in the Huron River watershed (Williams et al.,
2007; Jin et al., 2008b). It is likely that the observed pedogenic carbonate will ultimately be
dissolved and carried away by groundwater on geologic timescales. Thus, the morphology,
depth, and amount of pedogenic carbonate in this profile are transient, adjusting to post-glacial
conditions. It is unlikely that such soil profiles with chemistry adjusting to changing climate
conditions would be preserved in the geologic record as paleosols. If they were preserved,
paleosols analogous to those currently found in the Reserve would be poor records of

paleoclimate because the stable isotopic composition does not perfectly reflect environmental
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conditions in all samples. Even as a transient feature, the pedogenic carbonate represents an

important intermediate step in watershed-scale carbonate weathering. The back-precipitation of
carbonates in soils could help explain the missing Ca?* in solute chemistry of rivers (Cavazza et
al., 1993; Erlanger et al., 2021; Bufe et al., 2022) and could delay the export of bicarbonate from

parent material to the ocean.

CONCLUSION

We presented physical and isotopic evidence for pedogenic carbonate formation in the
humid, temperate climate of southern Michigan. The isotope values of the soil carbonate are
most simply interpreted as a mixture of pedogenic and detrital carbonate. Because of the detrital
component in this carbonate-rich glacial drift, paleoclimate reconstructions based on primary
pedogenic carbonate material would require finer-scale techniques like laser ablation or
secondary ion mass spectrometry (Passey and Cerling, 2006; Oerter et al., 2016; Huth et al.,
2020). For hand-drilled samples, it is preferable to avoid limestone terranes when developing
soil-based paleoclimate records (Kraimer and Monger, 2009; Sheldon and Tabor, 2009; Cotton
and Sheldon, 2012; Michel et al., 2013).

The apparent in situ precipitation of rinds and rhizoliths has implications for terrestrial
pools of inorganic carbon and carbon cycling. First, this study demonstrates the existence of
pedogenic carbonate, at least transiently, in a wider range of ecosystems than is typically
recognized (Railsback, 2021; Licht et al., 2022). Though there is net dissolution of carbonates in
the glacial till in southern Michigan (Szramek and Walter, 2004), the timescale of dissolution is
mediated by open system re-precipitation of calcite in the shallow weathering zone, driven by
seasonal fluctuations in soil respired CO.. Because the formation of pedogenic calcite is likely
driven by soil respired CO2, changes in land use and vegetation cover could affect rates and

amount of net calcite precipitation in this setting. Given that much of the Midwest is deeply
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mantled in glacial till that may also be rich in finely-ground detrital carbonates, it is possible that
re-reprecipitation of pedogenic carbonate may be occurring across much of the landscape. Our
results raise the question of how the rates and magnitudes of this calcite re-precipitation
mediate the net dissolution of parent limestone and dolomite and thus slow the export of
dissolved bicarbonate. If back-precipitation as pedogenic carbonate is occurring on a sufficiently
large scale, it could be relevant to considerations of post-glacial chemical weathering rates
(Szramek and Walter, 2004), orogen-scale carbonate weathering rates (Erlanger et al., 2021;
Bufe et al., 2022), and the efficacy of enhanced weathering in carbonate-rich till (Knapp and
Tipper, 2022). Back-precipitation of detrital carbonate as pedogenic carbonate may alter the
timing of regional carbon cycling, potentially acting to slow the glacial-enhancement of chemical
weathering and attendant CO; sequestration that is a negative feedback on climate on medium
(~thousand-year) timescales (Sharp et al., 1995; Anderson et al., 2000; Williams et al., 2007),
even if it does not alter the geologically long-term (~million year) sequestration (Berner et al.,

1983).
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Figure 1: Regional map showing the position of the Edwin S George Reserve (ESGR) (red star)
relative to the cities of Ann Arbor and Lansing, Michigan, with the US state border in black

(WGS84 datum used). The inset shows the position of the site in North America.

Figure 2: Overview of the study site and soil carbonate morphologies. A) Photo of the
excavated cut slope of the knoll with overlaid interpretational sketch. B) Photograph of the soil
horizons developed on the uppermost gravel unit 9 (see description in Figure 3. Orange flags
are spaced 20 cm apart. C) Stringer (flaments) and a rhizolith at 90 cm depth. D) Rhizolith
encasing a root at 270 cm depth. E) Carbonate rind coating a clast. This clast was found in the
float at the base of the excavated knoll. Rinds on the undersides of clasts were found in situ at
40 cm and below. F) Rinds coating clasts and diffuse carbonate in the matrix of the lower gravel

unit (depths of 325-400 cm). Pencil for scale.

Figure 3: Site stratigraphy and soil carbonate stable isotope values. A) Sedimentary
composition and pedogenic features described on the excavated, cut slope of the knoll. B)
Stable isotope values (5'3C and §'80) of soil and detrital carbonate samples that were collected
from the excavated slope of the knoll and in soil pits dug from the top of the knoll (depth to
carbonate differed by 20-40 cm between those locations). Lines connect data points of the

same carbonate type.

Figure 4 Below-ground soil monitoring data and precipitation data. A) Soil temperature
measured at depths of 10, 30 and 60 cm (lines). Colored horizontal stripes indicate TA47 values
(£ 1 SE) for soil carbonate samples with A47 data (20ESGR-50, 20ESGR-slope-120,
20ESGR70-75,22ESGR-rhizo180). B) Soil water content at the site. C) Daily total precipitation

from nearby NOAA weather station US1MIWS0055 42.43423, -83.68679), accessed via Climate
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Data Online (https://www.ncei.noaa.gov/cdo-web/). D) Soil CO2 concentrations measured at 60
cm only. The sensor used maxes out at 10,000 ppm; summertime pCO- values exceed the

maximum.

Figure 5. Stable isotope values (580, &°H) of surface and soil waters from southern Michigan
and reconstructed soil waters (3'80sy) from soil carbonates a) 5'80 - &%H relationships for
meteoric waters and soil waters. The local meteoric water line (LMWL) is calculated from
precipitation data. b) 5'80-d-excess values for of all water types. c) Box plots of 8’0 values of
water, soil water, and reconstructed soil water. d) 880 throughout the collection period.
Horizontal colored stripes (orange, red, gold, yellow) indicate the 5'8Osw values for soil
carbonate samples with TA47 data (note that 20ESGR-slope-70-75 (gold) and 22ESGR-rhizolith-
180cm (yellow) have overlapping values) and their relationship with warm season meteoric

water samples.

Figure 6. Expected and measured isotope patterns for three scenarios explaining the origin of
the soil carbonate. Scenario 1 (a and b): A physical mixture between pedogenic and detrital
carbonate. In this scenario, 8'*C and TA47 vary with the fraction included detrital material. 50
is uniform because 880 of carbonate formed in equilibrium with meteoric waters is similar to
(within 1-2 %o of) the 5'0 values of detrital carbonates. Scenario 2 (c and d): Pedogenic
carbonate in an open system. In this scenario, soil carbonate has a relatively small range of
5'80, 8"C, and TA47 values that reflects isotopic equilibrium with the environment during a
single season. Scenario 3 (e and f): Pedogenic carbonate in a closed system with respect to soil
COs.. In this scenario, 8'3C varies while 5'0 and TA47 are constant. Measured stable isotope
values of the distinct carbonate types from the Reserve (g and h). One example of a mixing line
calculated between a set of potential pedogenic and detrital endmembers is shown with black

lines and arrows (i.e., one iteration of scenario a). Possible ranges of pedogenic and detrital
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endmember compositions at the Reserve are shown as rectangles outlined in black, filled in
green and purple, respectively. These ranges are only illustrative and differ from the ranges
used to constrain the mixing model shown (Figure 8). The illustrated possible ranges of the
pedogenic endmember &'3C values are calculated based on 3*C-CO; values measured in the
Huron River watershed (Jin et al., 2009). The illustrated range of the pedogenic endmember
5'80 values is based on Huron River waters and carbonate growth temperature of 15°C. The
possible range in 880 and &'3C values of the limestone endmember is based on secular trends
from Vezier et al. (1999) and measured limestone clast values. Where error bars are not visible,
they are smaller than symbol size. The slight curvature in the 3'3C-TA47 mixing line is due to

nonlinearity in the relationship between temperature and Asz.

Figure 7. Solutions for the model of two-component mixing between detrital and pedogenic
carbonate. Plots show solutions for carbonate in sample groups separated as rinds (a and c)
and rhizoliths or stringers (b and d) in 8'*C-8'80 and &'3C-TA47 space. We only modeled
samples with 8"3C, §'0, and A47 data to provide maximum constraint on solutions for F. The
dark gray box outlines the possible detrital endmember values, the light gray box outlines the
full range of possible pedogenic carbonate endmember values on a global basis, and the red
triangles are observed sample values. The small colored dots are the feasible pedogenic
carbonate endmembers that can mix with the detrital endmember to create the observed soll
carbonate isotope composition at the assigned fraction of pedogenic carbonate (F). Different
colors denote mixing model solutions for different samples. For visual clarity, we show
simulations in 10% increments of the fraction of pedogenic carbonate; the large circles are
averages for each increment and lines connect the average values. The set of endmember
solutions for the assumed fraction of pedogenic carbonate are only labeled for the bottom right

sample in each panel (e.g., “solutions for F=0.6"), but all samples have the same pattern. Note
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that when the assumed fraction of pedogenic carbonate is 100% (F=1), the endmember

solutions necessarily match the observed sample isotope composition.

Figure 8. Environmental conditions capable of creating observed soil carbonate 3'3C values
assuming samples are pedogenic carbonate formed in an open system. Theoretically feasible
conditions for the 3'3C of soil respiration and soil CO, concentration are shown for three sample
groups: (a) rinds, (b) rhizoliths and stringers, and (c) bulk soil samples. Colored dots denote
solution spaces (10,000 iterations each) for different samples. Solutions that are consistent with
modern conditions must fall within the black box, which outlines modern conditions for 8'3C of
soil respiration in a C; dominated landscape (Tipple and Pagani, 2007; Jin et al., 2009) and the

observed soil CO2 concentrations during our monitoring period.

42



Table 1

Table 1: Radiocarbon and strontium isotope data for soil carbonates from the Reserve

Median "“C ages “C age error

Carbonate calibrated using Calib.  (1-sigma, yr
Sample ID morphology Rev. 8 BP) 87Sr/%¢Sr
20ESGR-50cm rind 23,691 cal yr BP 100 0.709693
20ESGR-70-75cm rind 17,366 cal yr BP 79 0.709461




Table 2

Table 2: Stable carbon and oxygen isotope values of carbonates from the Reserve

5"3C.
Depth Carbonate %o 580, %o

Sample ID (cm)  Morphology VPDB?® VPDB?
20EGSR-50 -50  rind -3.2 -7.3
20EGSR-55-60 -55  rind -3.2 -6.2
20EGSR-slope-60-1 -60  rind -5.6 -8.0
20EGSR-slope-60-2 -60  rind -4.9 -7.9
20EGSR-slope-70-75 -70  rind -3.0 -7.4
20EGSR-slope-100-105 -100  rind -5.7 -8.3
20EGSR-slope-120 -120 rind -5.1 -8.0

white matrix in bulk
22ESGR-whitestripe-200to220cm -210  soll -2.5 -6.6
22ESGR-rhizolith-180cm -180 rhizolith -7.2 -7.4

white matrix in bulk
22ESGR-whitestripe-160to180cm -170  soll -6.6 -1.7
22ESGR-bulk-160to180cm -170  homogenized bulk soil -2.7 -8.2
22ESGR-bulk-120to140cm -130  homogenized bulk soil 0.2 -6.2

white matrix in bulk
22ESGR-whitestripe-80to100cm -90  sall -6.0 -1.7
22ESGR-bulk-80to100cm -90  homogenized bulk soil -2.3 -7.0

white matrix in bulk
22ESGR-whitestripe-70to80cm -75  saoll -3.6 -6.8
22ESGR-sand-rhizo-290cm -290  rhizolith -6.1 -6.4
22ESGR-sand-rhizo-270cm -270  rhizolith -7.9 -7.4
22ESGR-sand-bulk-300cm -300  bulk sediment -1.2 -6.2
22ESGR-lowergravel-325t0375cm -350 bulk sediment -0.2 -5.4
20EGSR-100-105-Ist-clast -100 limestone clast -0.4 -6.9
20ESGR-70-75-Ist-clast -70  limestone clast 2.5 -7.7

a3'3C and 5'®0 data are generated via CO; on a Kiel Device. Typical precision

is+0.1.




Table 3

Table 3: Clumped isotope (A47) and calculated 8'®QOys values for select carbonates from the

Reserve
Ayr
num A47 ICDES'QO 6180rsw %0 6180rsw

Sample ID analyses %o Ay7ERR?  TA4°C TA7ERR SMOW ERR
20EGSR-50 5 0.593 0.007 25 2 -4.8 0.5
20EGSR-
slope-70-75 4 0.572 0.007 33 3 -3.5 0.5
20EGSR-
slope-120 4 0.604 0.007 22 3 -6.3 0.5
22ESGR-
rhizolith-

180cm 3 0.622 0.008 16 3 -6.9 0.5
20EGSR-

100-105-Ist-
clast 2 0.486 0.010 70 5 3.4 0.8
20ESGR-70-
75-Ist-clast 3 0.456 0.008 87 5 5.1 0.7

2 Ay7 ERR is calculated as the larger of 1 SD of sample measurements or 0.014 (the long term SD
of in-house standard 102GCAZ01) divided by the square root of the number of measurements



Table 4

Table 4: Summary of Meteoric and Soil Water Isotope (5'0, 8°H) Data

Water Type | Precipitation River Marsh Soil
Slope 7.8 5.5 5.4 7.5
Intercept 11.8 -9.6 -8.2 3.5
r 0.98 0.91 0.95 0.90
observations 160 167 12 29
mean 580 -9.5 -7.3 -4.6 -6.6
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