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ABSTRACT

Fine-tuning Large Language Models (LLMs) and storing them for each downstream
task or domain is impractical because of the massive model size (e.g., 350GB in
GPT-3). Current literature, such as LoRA, showcases the potential of low-rank
modifications to the original weights of an LLM, enabling efficient adaptation
and storage for task-specific models. These methods can reduce the number of
parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these
methods face two primary limitations: (1) the parameter count is lower-bounded
by the rank one decomposition, and (2) the extent of reduction is heavily influ-
enced by both the model architecture and the chosen rank. We introduce NOLA,
which overcomes the rank one lower bound present in LoRA. It achieves this by
re-parameterizing the low-rank matrices in LoRA using linear combinations of
randomly generated matrices (basis) and optimizing the linear mixture coefficients
only. This approach allows us to decouple the number of trainable parameters from
both the choice of rank and the network architecture. We present adaptation results
using GPT-2, LLaMA-2, and ViT in natural language and computer vision tasks.
NOLA performs as well as LoRA models with much fewer number of parameters
compared to LoRA with rank one, the best compression LoRA can archive. Partic-
ularly, on LLaMA-2 70B, our method is almost 20 times more compact than the
most compressed LoRA without degradation in accuracy. Our code is available
here: https://github.com/UCDvision/NOLA

1 INTRODUCTION

Large pre-trained neural networks have exhibited remarkable generalization abilities across a diverse
range of downstream tasks in both natural language processing and computer vision, achieving
unprecedented data efficiency. For instance, large language models have demonstrated the capability
for few-shot generalization (Brown et al., 2020) across a variety of tasks, including translation,
question-answering, cloze tasks, and reasoning. Similarly, in DINOv2, (Oquab et al., 2023) showcase
how a large pre-trained ViT model (Dosovitskiy et al., 2020) with more than 1B parameters yields
superior all-purpose visual features for a variety of downstream benchmark tasks at both image
and pixel levels. Typically, these pre-trained large models are adapted to downstream tasks through
fine-tuning of their parameters. However, fine-tuning and storing the entire set of model parameters
for each task incurs a significant storage cost (e.g., 350GB for GPT-3). This challenge has spurred a
considerable body of recent works focusing on parameter-efficient fine-tuning of large models (Hu
et al., 2021; Xu et al., 2023; Dettmers et al., 2023; Chen et al., 2022; Sung et al., 2022b).

Inspired by the low intrinsic dimensionality of over-parameterized networks’ optimal parameters
(Li et al., 2018; Aghajanyan et al., 2021), (Hu et al., 2021) proposed a seminal hypothesis that the
change in weights during model adaptation/finetuning has a low “intrinsic rank”, leading to the
development of Low-Rank Adaptation (LoRA). In essence, LoRA enables the indirect training of a
linear layer in a neural network by optimizing the rank-decomposition matrices for the weight change
in these layers, resulting in a significant reduction in the number of parameters required for adaptation
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Figure 1: Our Method (NOLA): After constraining the rank of ∆W by decomposing it to A×B,
we reparametrize A and B to be a linear combination of several random basis matrices. We freeze
the basis and W and learn the combination coefficients. To reconstruct the model, we store the
coefficients and the seed of the random generator which is a single scalar. NOLA results in more
compression compared to LoRA and more importantly decouples the compression ratio from the
rank and dimensions of W . One can reduce the number of parameters to 4 times smaller than rank=1
of LoRA which is not possible with LoRA due to rank being an integer number.

(e.g., 10,000× parameter reduction for GPT-3). Notably, LoRA has gained popularity, and various
extensions of this method have been proposed since its inception (Xu et al., 2023; Dettmers et al.,
2023). However, LoRA and its derivatives have three inherent limitations: (1) the parameter count is
lower-bounded by the rank one decomposition of linear layers, and (2) the number of parameters is
quantized since rank is an integer number, and (3) the number of parameters inherently depends on
the model’s architecture, i.e., the dimensions of the linear matrix, and the choice of rank. In this paper,
we introduce a method, denoted as NOLA, that offers the same benefits as LoRA while addressing its
limitations. NOLA allows one to decouple the number of trainable parameters from both the choice
of rank and the network architecture, and it breaks the rank-one decomposition limit of LoRA.

NOLA is inspired by the recent work by Nooralinejad et al. (2022), titled PRANC. In this work, we
reparameterize a neural network using a linear combination of pseudo-randomly generated weights.
Then, we indirectly train the network parameters by optimizing the linear mixture coefficients. This
approach results in a significant reduction in the total number of parameters needed to represent
the network. Unlike PRANC, our focus in NOLA is on reparameterizing the change of neural
weights for fine-tuning large models. More critically, unlike PRANC, NOLA incorporates the
invaluable insight from (Hu et al., 2021), which posits that the weight change during fine-tuning is
intrinsically low-rank. In essence, we utilize the rank-decomposition presented in LoRA but assemble
the rank-decomposition matrices as a linear combination of pseudo-random matrices (i.e., the ‘basis’).
Optimizing the rank-decomposition matrices in NOLA is akin to determining the linear mixture
coefficients for the random matrices. This design allows us to decouple the number of parameters
from the shape of the linear layer and also from the rank choice. Furthermore, the low-rank constraints
offer substantial advantages in compute and memory footprint over the methodology proposed in
PRANC. Figure 1 illustrates the fundamental concept of NOLA.

Why Fewer Parameters Matter?

We envision a future where we must efficiently manage and transition between multiple Large
Language Models (LLMs), each tailored for specific tasks. This vision arises from the necessity for
LLMs customized with private data and/or the concept of crafting a universal LLM that can summon
customized LLMs as a versatile toolbox to tackle diverse tasks (Schick et al., 2023). However,
currently, customized LLMs demand substantial storage, and the process of switching between them
lacks efficiency due to large I/O operations. NOLA offers a more compact reparameterization solution
that can be stored effectively in GPU memory, allowing for on-demand reconstruction directly on the
GPU itself when a new task arises.

Note that while storing parameters in CPU memory is a cost-effective option, the process of trans-
ferring them from CPU to GPU incurs substantial time and power consumption. Moreover, this
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data transfer relies on a shared resource (e.g., PCIe bus), which may experience congestion in busy
server environments. Therefore, optimizing model compactness to fit several of them within the
limited GPU memory proves advantageous in these scenarios. As an example, 1,000 customized
GPT-3 models using LoRA need almost 35GB of memory (assuming LoRA compresses it by a
factor of 10, 000×), which may not fit in the GPU memory along with the LLM model itself. Hence,
compacting it by an additional factor of 5 reduces it to 7GB, which can fit in the GPU memory,
leading to very efficient switching between the tasks.

Contributions. Our specific contributions in this paper are: 1) A novel reparameterization for
compressing task-specific large language models, denoted as NOLA. 2) NOLA decouples the
compression ratio from the rank and dimension of the weight matrix, unlocking higher compression
ratios while keeping most benefits of LoRA, including reduced memory and computation at training
time. 3) NOLA can be further improved by quantizing the coefficients and can be applied to other
architectures like CNNs. 4) Applied to PRANC, NOLA speeds it up and reduces its memory footprint.

2 PROPOSED METHOD: NOLA
LoRA, short for Low-Rank Adaptation, is a widely embraced method for customizing a pre-trained
model, such as GPT, for a specific task. Instead of changing all parameters denoted as W within a
given layer, LoRA maintains the original pre-trained parameters W as a constant and learns a residual
adjustment ∆W to fine-tune the model for the new task. The resulting updated layer parameters
are then computed as W + ∆W . The core concept behind LoRA is to minimize the size of ∆W
by constraining its rank. In a more formal context, considering W ∈ Rm×n and ∆W ∈ Rm×n,
LoRA accomplishes this by reparameterizing ∆W as the product of two matrices, ∆W = A×B,
where A ∈ Rm×r and B ∈ Rr×n, with r representing the rank—a hyperparameter. By selecting a
relatively small rank (r << min(m,n)), LoRA efficiently reduces memory usage. This optimization
is achieved by storing A and B, which exhibit a significantly more compact representation than the
full ∆W . The resulting compression ratio is quantified as mn

r(m+n) . Unfortunately, this compression
ratio is: (1) tied to the shape of the parameters m and n, and hence the model architecture and (2) is
upper-bounded by mn

m+n , i.e., for r = 1.

In this paper, we introduce a novel reparameterization technique for ∆W that effectively decouples
the rank from the compression ratio, allowing for a compression ratio higher than mn

m+n , which
corresponds to r = 1 in the LoRA framework. To achieve this, we draw inspiration from PRANC
(Nooralinejad et al., 2022) and reparameterize matrices A and B to exist within a lower-dimensional
space defined by a set of randomly generated basis matrices. Formally, we express this as:

A =
k∑

i=1

αiAi , B =
l∑

j=1

βjBj (1)

where, Ai ∈ Rm×r and Bj ∈ Rr×n are random matrices generated by a Pseudo Random Number
Generator with a fixed seed. We subsequently learn A and B as linear combinations of these
predefined and frozen random matrices. Importantly, the random matrices themselves remain
constant, and we optimize only the coefficient vectors α and β. Then:

∆W =
( k∑
i=1

αiAi

)
×
( l∑
j=1

βjBj

)
(2)

In practical terms, to store ∆W for a specific task, we only need to retain the seed (a single scalar)
and the coefficient vectors α and β. Remarkably, this approach allows for a small number of basis
matrices (k + l) to be chosen, irrespective of the rank of the A× B factorization and the shape of
∆W , thereby enhancing the compression ratio to go beyond mn

m+n .

Quantization of coefficients α and β: We are mainly interested in reducing the storage for a
new task, assuming the pre-trained LLM is already available. Hence, to further reduce the storage,
we quantize the α and β coefficients to lower precision (e.g., 4 bits) while the random basis and
the pre-trained LLM weights have standard FP16 floating point precision. Note that one can also
quantize A and B matrices in LoRA; however, our method does not force A and B themselves to
be of low precision. One can quantize α and β after the optimization (post-training quantization)
or while optimizing them (quantization-aware training). We expect the latter to perform better. For
quantization-aware learning, we use the method in (Rastegari et al., 2016b; Jacob et al., 2018) where
we use the quantized α and β in the forward pass and update the FP16 versions of α and β in the
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backward pass. Moreover, we use the Straight-Through Estimator (STE) trick (Bengio et al., 2013)
to estimate the gradient.

A few recent works have shown that it is possible to quantize the weights of LLMs for each task,
which reduces both computation and storage. However, these methods are not suitable for a large
number of tasks since the quantized LLM is still task-specific and large.

Memory Efficiency: Note that depending on the number of basis matrices, the random basis may
be large, requiring a large memory. Interestingly, generating random matrices in the GPU itself is
very fast, so similar to PRANC, at each iteration, we generate chunks of the basis matrices at a time,
multiply them by the corresponding coeficents, and discard them. Generating a basis on the fly at the
inference time can drastically reduce the communication cost between CPU and GPU since α and β
vectors for several tasks can be stored in the GPU memory.

Efficiency of NOLA compared to PRANC: PRANC (Nooralinejad et al., 2022) reshapes the
whole model parameters or each layer of it into a long vector and reparameterizes that by a linear
combination of random vectors. However, as mentioned in (Nooralinejad et al., 2022), this method
involves multiplication of the coefficients with the big random matrix twice at each iteration (once
in forward and once in backward passes), which is very expensive. For instance, the size of the
random matrix for ResNet18 with 1000 coefficients will be almost 11M × 1K. NOLA reduces this
computation while keeping the same number of parameters by reshaping the long vector to be a 2D
matrix and constraining its rank. Assuming d2 weights and k random basis, the basis matrix size for
PRANC will be kd2 while NOLA with rank r reduces that to kdr assuming that each component
in A×B has k

2 basis matrices to keep the number of parameters equal to PRANC. Then, the total
compute for PRANC will be kd2 + d2 ≈ kd2 while for NOLA, it will be kdr + 2dr ≈ kdr. Hence,
assuming a small rank r, NOLA can reduce the training time of PRANC by a large factor d

r due to
the reduction of the computation at forward and backward passes. Moreover, in the appendix, we
empirically show that NOLA offers a better coverage of the weight space compared to PRANC.

Structure of the parameters: Note that one can apply NOLA to model architectures other than
transformer by simply reshaping the weight tensor to be a 2D matrix (preferably close to square)
and then compressing it. We do this in our ResNet experiments in the Appendix, where the weight
matrices are 4D tensors of convolutional filters.

3 EXPERIMENTS

Here, we evaluate NOLA in transfer learning tasks in both NLP and vision. Moreover, in the appendix,
we evaluate NOLA in training from scratch.

3.1 NOLA ON GPT-2:

We adapt the parameters of pre-trained GPT-2 to three different Natural Language Generation (NLG)
datasets by finetuning the parameters using NOLA. We use GPT-2-Large and GPT-2-Medium in our
experiments. We follow the (Li & Liang, 2021; Hu et al., 2021) for our adaptation setup.

Datasets: We utilize the following datasets for our Natural Language Generation (NLG) task: E2E
NLG Challenge (Novikova et al., 2017) serves as a commonly used benchmark for evaluating NLG
models. It encompasses of 51,200 samples, distributed as follows: 42,200 for training, 4,600 for
validation, and an additional 4,600 for testing. DART (Nan et al., 2020) is yet another significant
dataset employed for evaluating text-to-data generation. This dataset is rich with 82,191 examples
drawn from various domains. WebNLG (Gardent et al., 2017) is a text-to-data dataset, boasting
22,000 examples spanning 14 distinct categories. Notably, the WebNLG test set introduces five new
categories, prompting us to present results across all categories within this dataset. These datasets
collectively provide a comprehensive foundation for our NLG evaluation and experimentation.

LoRA: In our experiments, we apply LoRA on both query and value projection layer in each attention
block. Since number of parameters is tied to the rank, we adjust the rank to reduce number of
parameters. We compare to LoRA with both rank four and rank one.

Other Baselines: Moreover, we compared NOLA to a few other baselines, including finetuning
all parameters, Adapters (Houlsby et al., 2019; Lin et al., 2020b; Pfeiffer et al., 2021; Rücklé et al.,
2020), and Prefix-layer tuning (PreLayer) (Li & Liang, 2021).
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Table 1: E2E NLG Challenge: We compare NOLA to LoRA with two different architectures: GPT-2
medium (M) and large (L). QV refers to Query and Value projection, while MLP denotes the MLP
layer within transformers. AdapterL and AdapterH are two Adapter baselines reported in (Hu et al.,
2021). The best and second best performing methods are in bold. To reduce number of parameters in
LoRA, we use lower rank (LoRA rank=1). We don’t see drop in performance by reducing number of
trainable parameters to 1

20 of LoRA with rank 4 in GPT-L. Note that in LoRA, one cannot reduce the
number of parameters below rank one.

GPT-2 M
Method Adapted Adapter # Trainable E2E NLG Challenge

Layers Rank Parameters BLEU NIST MET ROUGE-L CIDEr

Finetune All Layers - 354.920M 68.2 8.62 46.2 71.0 2.47
AdapterL Extra Layers - 0.370M 66.3 8.41 45.0 69.8 2.40
AdapterL Extra Layers - 11.090M 68.9 8.71 46.1 71.3 2.47
AdapterH Extra Layers - 11.090M 67.3 8.50 46.0 70.7 2.44
FinetuneTop2 Last 2 Layers - 25.190M 68.1 8.59 46.0 70.8 2.41
PreLayer Extra Tokens - 0.350M 69.7 8.81 46.1 71.4 2.49
LoRA QV 4 0.350M 70.4 8.85 46.8 71.8 2.53
LoRA QV 1 0.098M 68.7 8.72 45.6 70.5 2.43
NOLA (Ours) QV 8 0.350M 70.1 8.80 46.8 71.7 2.53
NOLA (Ours) QV 8 0.096M 70.0 8.82 46.7 71.6 2.51
NOLA (Ours) MLP 8 0.096M 70.2 8.79 46.7 71.8 2.51
NOLA (Ours) QV 8 0.048M 70.1 8.82 46.4 71.4 2.52
NOLA (Ours) MLP 8 0.048M 69.4 8.71 46.5 71.5 2.47

GPT-2 L
Finetune All Layers - 774.030M 68.5 8.78 46.0 69.9 2.45
AdapterL Extra Layers - 0.880M 69.1 8.68 46.3 71.4 2.49
AdapterL Extra Layers - 23.000M 68.9 8.70 46.1 71.3 2.45
PreLayer Extra Tokens - 0.770M 70.3 8.85 46.2 71.7 2.47
LoRA QV 4 0.770M 70.4 8.89 46.8 72.0 2.47
LoRA QV 1 0.184M 69.9 8.81 46.7 71.6 2.53
NOLA (Ours) QV 8 0.144M 70.5 8.85 46.8 71.7 2.54
NOLA (Ours) MLP 8 0.144M 70.1 8.80 46.5 71.2 2.52
NOLA (Ours) QV 8 0.072M 69.8 8.80 46.4 71.3 2.51
NOLA (Ours) MLP 8 0.072M 69.4 8.71 46.6 71.5 2.48
NOLA (Ours) QV 8 0.036M 70.1 8.80 46.7 71.7 2.53
NOLA (Ours) MLP 8 0.036M 70.0 8.81 46.4 71.5 2.53

NOLA: We evaluate NOLA with two different variations: 1. Adapting MLP layers. 2. Adapting
query and value projection matrices. Note that, unlike LoRA, we can use any number of parameters
while applying NOLA to any weight structure since the number of parameters is not tied to the shape
of the weight tensor. We allocate an equal number of parameters to A and B in each NOLA layer
(i.e., k = l). Using k = l = 1000 results in 0.096M parameters in GPT-M and 0.144M parameters
in GPT-L. Also, we use half (k = l = 500) and quarter (k = l = 250) number of parameters per
layer to get smaller checkpoints.

Implementation Details: We trained our models using a single NVIDIA RTX 6000 Ada Generation
GPU. For all hyperparameters except learning rate, we use the same values as LoRA for training and
evaluation of GPT-2. We train our models for 5 epochs with a learning rate of 0.1 and no weight
decay. We use a batch size of 8. We use a rank of 8 for NOLA in our experiments. Like LoRA, we
scale A×B with c

r , where c is a hyperparameter and r is the rank. We use the default value of c = 1.

Results: We compare to LoRA and other baselines in Table 1 and Table 11 in the Appendix. NOLA
is on par or better compared to other methods with the same number of parameters. In the E2E task,
NOLA with 0.036M parameters archives a BLEU score of 70.12, which is 20 times more compact
compared to LoRA with rank 4 that has 0.77M parameters and archives a BLEU score of 70.4. This
NOLA model uses a rank of 8, which does not affect the number of parameters and increases the run
time slightly (negligible compared to that of the actual LLM model). Note that our goal is to reduce
the number of parameters without reducing the accuracy, which is shown in Tables 1 and 11. We are
not claiming that NOLA improves the accuracy compared to baselines. We show various variants of
NOLA (MLP, QV, etc) to emphasize that NOLA is not very sensitive to the choice of the variation.

Training Time and Memory of NOLA: Similar to LoRA, in the inference time, we can calculate
A×B offline and merge it with W . Therefore, NOLA does not have any overhead compared to the
original model. In training time, NOLA has a small overhead due to the multiplication of coefficients
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Table 2: Training time and memory: We compare the training memory and running time of NOLA
to LoRA. Since generating a random basis on each layer has a small overhead, we can generate
random basis once and share the basis across layers to save time. This version of NOLA has a similar
runtime to LoRA and on-par accuracy to NOLA with a non-shared basis.

Model & Method Random Basis Training Training Time # Trainable E2E NLG Challenge
Memory (ms/batch) Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 L (LoRA r=1) - 33.35GB 776 184K 69.89 8.81 46.70 71.64 2.53
GPT-2 L (NOLA QV) Non-shared 33.37GB 834 144K 70.46 8.85 46.77 71.68 2.54
GPT-2 L (NOLA QV) Shared 33.40GB 779 144K 70.32 8.85 46.74 71.71 2.54

Table 3: Effect of rank in NOLA: We vary the
rank from 1 to 8. Note that we can use the same
number of parameters in all ranks since the number
of parameters is not tied to the rank in NOLA.

# Train Rank E2E NLG Challenge
Params BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (NOLA QV)

96K 8 70.03 8.82 46.74 71.64 2.51
96K 4 69.69 8.76 46.56 71.44 2.51
96K 2 70.47 8.86 46.71 71.79 2.53
96K 1 69.09 8.78 45.87 70.15 2.45

96K 8 70.03 8.82 46.74 71.64 2.51
48K 8 70.09 8.82 46.44 71.36 2.52
24K 8 68.30 8.67 45.13 68.91 2.40
12K 8 67.18 8.60 43.99 68.38 2.26

GPT-2 L (NOLA QV)

144K 8 70.46 8.85 46.77 71.68 2.54
144K 4 70.25 8.85 46.84 71.81 2.54
144K 2 69.69 8.78 46.55 71.25 2.51
144K 1 69.71 8.82 46.47 70.96 2.51

Table 4: Quantization of coefficients: Post-
training quantization of parameters does not de-
grade the performance up to the 4 bit quantization.
In quantization-aware training, NOLA is more ro-
bust to quantization compared to LoRA.

Model # Quant E2E NLG Challenge
& Method Bits BLEU NIST MET ROUGE-L CIDEr

Post Training Quantization

GPT-2 L
(LoRA r=1)

16-bit 69.89 8.81 46.70 71.64 2.53
8-bit 69.91 8.81 46.69 71.75 2.53
4-bit 69.63 8.75 46.32 71.24 2.48
3-bit 62.01 8.02 42.01 67.23 2.07

16-bit 70.46 8.85 46.77 71.68 2.54
8-bit 70.43 8.84 46.78 71.72 2.54
4-bit 70.29 8.82 46.74 71.82 2.52

GPT-2 L
(NOLA QV)

3-bit 65.14 8.58 44.38 67.56 2.23

Quantization Aware Training

GPT-2 L
(LoRA r=1)

3-bit 67.08 8.86 44.67 68.76 2.36
2-bit 56.13 4.70 35.38 63.68 1.40

3-bit 70.14 8.82 46.58 71.61 2.53GPT-2 L
(NOLA QV) 2-bit 68.69 8.72 46.06 70.61 2.48

to basis weights. We measure the running time and memory footprint of NOLA during training and
compare it to LoRA in Table 2. Since generating a random basis for each layer adds a small overhead,
we can share the random basis across all layers and generate and store them only once to improve the
running time. We measure time and memory with a batch size of 8. NOLA, with a unique random
basis for each layer, is slightly slower than LoRA. However, NOLA with a shared random basis has
on-par accuracy with the unique random basis and has a similar running time to LoRA.

Ablation Study on the rank of NOLA: Since the number of parameters is decoupled from the rank
of the matrix, we can solely evaluate the effect of rank without changing the number of parameters.
We report the effect of rank in Table 3. We vary the rank from 1 to 8 and use c = 1.0 for ranks 4 and
8, and c = 0.5 for lower ranks. As also noted by (Hu et al., 2021), understanding the effect of rank
needs more rigorous study as future work.

3.2 NOLA WITH QUANTIZED COEFFICIENTS, α AND β:
We evaluate the performance of NOLA with rank 4 with quantized α and β parameters on the E2E
dataset in Table 4 in two different setups. First, we do Post Training Quantization (PTQ) by quantizing
the parameters to q bits after the training. We observe no significant drop in both LoRA and NOLA
in 4 bits PTQ experiments. Second, we evaluate models with Quantization Aware Training (QAT)
where we quantize the coefficients in the forward pass and update them in the non-quantized form.
In QAT with 3 bits, NOLA has a slight drop of 0.3 points while LoRA has a drop of 2.8 points in
the BLEU metric. Note that in NOLA, although α and β are quantized, A and B in Eq 1 are not
quantized since the basis matrices, Ai and Bj , are non-quantized. This is in contrast to LoRA where
A and B are quantized.

3.3 NOLA ON LLAMA-2:
Finetuning with LoRA for larger LLMs is challenging due to compute demand, so we need to resort
to QLoRA where the base model is quantized. Our NOLA framework is agnostic to the quantization
of base model, so for LLaMA-2 (Touvron et al., 2023) experiments, we use NOLA with base model
quantized to 8-bits while the NOLA coefficients still use 16-bit. We fine-tune the pretrained LLaMA-2

6



Published as a conference paper at ICLR 2024

Table 5: Instruction finetuning for quantized LLaMA-2: NOLA fine-tunes LLaMA-2 70B (8-bit)
with 0.57M parameters, a 95% reduction compared to rank-one LoRA. We use quantized version of
LLaMA-2 for both LoRA and NOLA, so our LoRA baseline is equivalent to QLoRA.

LLaMA-2 - 7B (8-bit) LLaMA-2 - 13B (8-bit) LLaMA-2 - 70B (8-bit)
w/o Finetuning LoRA NOLA w/o Finetuning LoRA NOLA w/o Finetuning LoRA NOLA

Adapter Rank - 1 16 - 1 16 - 1 16
Trainable Parameters - 2.50M 0.06M (↓97%) - 3.91M 0.14M (↓96%) - 12.94M 0.57M (↓95%)

Train Loss 1.53 0.97 1.05 1.43 0.94 0.95 1.42 0.87 0.90
Val Loss 1.74 1.04 1.01 1.59 0.96 0.97 1.53 0.92 0.90
MMLU Acc 45.3 46.5 46.5 54.8 55.3 55.3 68.9 69.5 69.4

model using 8-bit QLoRA on the Alpaca dataset (Taori et al., 2023), reporting both training and
validation loss metrics specific to the Alpaca dataset. Additionally, we employ the MMLU (Massively
Multitask Language Understanding) benchmark (Hendrycks et al., 2021) to assess performance across
a diverse set of language understanding tasks. This benchmark comprises 57 tasks spanning areas
such as mathematics, history, computer science, and law. On MMLU, we focus on 5-shot evaluation
(providing 5 examples in the context), following the standard practice.

Implementation Details: We apply LoRA and NOLA across all layers (Query, Key, Value and
Output projections and MLP layers) of the transformer on three different model sizes of LLaMA-2:
7B, 13B, and 70B. For our LoRA experiments, we set the rank r = 1 since LoRA paper (its Table
15) shows that rank one model performs as well as higher ranks for larger LLMs (e.g., GPT-3). For
NOLA, we use r = 16 and adjust the number of optimized parameters for each LLaMA-2 model
size using the following settings: k = l = 128 for LLaMA-2 7B, k = l = 256 for LLaMA-2
13B, and k = l = 512 for LLaMA-2 70B. During fine-tuning LoRA or NOLA, we adhere to the
hyperparameters reported in QLoRA, (Dettmers et al., 2023). We optimize for one epoch on the
Alpaca dataset with a batch size of 256 using four RTX 3090 GPUs. The learning rate is 0.0002 for
LoRA and 0.001 for NOLA. Similar to LoRA, we scale A×B with c

r , where c is a hyperparameter
and r is the rank. We use c = 16 for LoRA and c = 4 for NOLA.

Results: Results are presented in Table 5. Remarkably, NOLA is capable of fine-tuning LLaMA-2
70B with fewer than 0.6M parameters, representing an average reduction of parameters by 95%
compared to LoRA with rank one.

3.4 NOLA ON VISION TRANSFORMERS

We perform experiments on the image classification task on ViT-B and ViT-L architectures with both
supervised and self-supervised (MAE) initializations.

Implementation details: All pre-trained networks are obtained from Timm library (Whitman). All
approaches are trained for 50 epochs, and the top-1 accuracy at the final epoch is reported. We use a
batch-size of 64 and tune the initial learning rate for each dataset and architecture for all approaches.
Since our focus is on finetuning on small datasets, we use 5 and 10 labeled examples per class for
finetuning. Since there is a high variance in performance due to the small training sets, we sample
four different sets of training samples per k-shot and three different initializations for LoRA/NOLA
and report the mean accuracy and standard deviation. All approaches are trained with cross-entropy
loss. Additional details are in the appendix.

Datasets: ImageNet-21k and ImageNet-1k are used to pretrain the backbone models. We use
CIFAR10 (Krizhevsky et al., 2014), CIFAR100 (Krizhevsky et al., 2009), CUB-200-2011 (Welinder
et al., 2010), Caltech-101 (Fei-Fei et al., 2004), Aircraft (Maji et al., 2013), Food101 (Bossard et al.,
2014), Pets (Parkhi et al., 2012) and SUN397 (Xiao et al., 2010) datasets for finetuning.

Baselines: We compare NOLA with three baseline approaches: Linear, Full-FT (full fine-tuning)
and LoRA (Hu et al., 2021). In Linear, only the final classifier head is optimized, while in Full-FT,
the entire backbone network is optimized too. No additional parameters are used during finetuning
for either of these approaches. We apply LoRA on Query, Key, and Value projection matrices with
rank set 4 for ViT-B to 1 or 4 for ViT-L. In our preliminary experiments, LoRA with rank one sees a
big drop in accuracy. This is aligned with our GPT-2 M experiments where smaller models require
higher rank. We apply NOLA on the MLP layers and use rank of 4 for ViT-B and 1 for ViT-L. We
report the number of trainable parameters for each approach excluding the classifier head parameter
count which is common to all approaches. We also report nearest-neighbor (1-NN) evaluation for
zero-shot classification on downstream tasks using ImageNet pretrained features.

7



Published as a conference paper at ICLR 2024

Table 6: Results on vision transformers. We finetune ImageNet pre-trained ViT models on multiple
small datasets with 5 and 10 training samples. The mean accuracy and standard deviation across 12
runs are reported. The number of train parameters for Linear classifier depends on the number of
classes in the dataset (0.01, 0.1, 0.2, 0.1M parameters for CIFAR-10, CIFAR-100, CUB and Caltech
respectively). We do not count the linear layer in trainable parameters. The best performing method
is in bold while all methods within one point of the best are underlined. NOLA outperforms LoRA
with comparable parameters across datasets and architectures, particularly in the low training data
regime. The performance of NOLA with half or one-third of the training parameters is comparable to
that of LoRA. Note that LoRA with rank one is the most compact LoRA.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-B

Nearest Neighbor 79.6 80.8 52.4 59.2 71.9 78.0 84.1 87.5
Linear 0 80.8 (1.1) 85.1 (1.0) 58.9 (0.9) 64.5 (0.7) 72.7 (0.4) 79.2 (0.2) 85.8 (0.8) 88.5 (0.4)

Full-FT 5.3M 73.9 (6.5) 87.6 (2.7) 61.4 (2.4) 78.2 (1.1) 59.7 (1.9) 76.6 (0.2) 87.9 (0.8) 91.1 (0.5)
LoRA (r=4) 141K 87.3 (2.3) 93.1 (0.5) 76.3 (0.5) 81.6 (0.9) 75.7 (0.5) 82.4 (0.3) 88.4 (1.1) 90.8 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)

ViT-B-MAE

Nearest Neighbor 18.2 19.8 5.8 9.8 13.2 25.3 28.2 40.7
Linear 0 27.4 (1.9) 34.5 (1.4) 15.7 (0.7) 22.2 (0.2) 12.7 (0.3) 18.4 (0.3) 66.9 (1.1) 76.9 (0.6)

Full-FT 5.3M 41.1 (4.4) 58.4 (3.6) 19.7 (4.8) 24.2 (11.1) 23.0 (3.8) 51.9 (2.8) 76.4 (2.3) 86.5 (0.5)
LoRA (r=4) 141K 54.7 (1.6) 70.1 (2.2) 39.3 (3.1) 52.4 (1.3) 35.7 (1.5) 54.0 (0.6) 82.4 (0.6) 87.7 (0.5)
NOLA-MLP 47K 55.1 (2.6) 72.1 (2.7) 42.1 (1.4) 53.5 (1.0) 35.8 (1.5) 53.9 (0.6) 88.0 (1.2) 90.6 (0.5)

ViT-L

Nearest Neighbor 88.7 89.9 68.9 74.0 77.4 82.3 88.4 90.1
Linear 0 84.1 (1.8) 88.4 (1.1) 63.7 (1.3) 70.6 (0.9) 73.7 (0.6) 79.2 (0.3) 87.6 (0.9) 89.9 (0.4)

Full-FT 289M 77.2 (2.7) 90.2 (2.8) 74.0 (2.3) 86.2 (0.6) 73.3 (0.9) 83.9 (0.2) 88.7 (1.0) 91.3 (0.7)
LoRA (r=4) 375K 86.5 (2.0) 93.8 (1.0) 82.9 (0.9) 87.6 (0.6) 81.2 (0.4) 85.3 (0.3) 89.3 (0.7) 91.3 (0.3)
LoRA (r=1) 94K 86.3 (1.3) 92.8 (0.8) 82.2 (0.8) 85.6 (0.9) 80.6 (0.3) 85.2 (0.3) 89.9 (1.0) 91.6 (0.4)
NOLA-MLP 94K 89.0 (3.6) 96.0 (0.5) 83.6 (0.9) 87.8 (0.6) 80.8 (0.6) 85.2 (0.2) 90.0 (0.7) 91.7 (0.3)
NOLA-MLP 47K 83.9 (1.8) 93.0 (1.7) 81.2 (1.0) 87.1 (0.6) 80.7 (0.5) 85.0 (0.3) 89.8 (0.8) 91.5 (0.4)

ViT-L-MAE

Nearest Neighbor 33.5 39.2 15.2 21.9 16.9 29.2 57.4 67.6
Linear 0 40.2 (2.3) 49.2 (2.6) 22.6 (0.9) 31.3 (0.5) 15.2 (0.3) 21.9 (0.4) 75.2 (0.5) 83.2 (0.6)

Full-FT 289M 60.6 (4.5) 68.3 (4.0) 37.9 (11.1) 52.0 (16.1) 42.2 (2.3) 67.1 (1.1) 87.2 (0.8) 90.8 (0.7)
LoRA (r=4) 375K 63.5 (3.0) 82.4 (2.3) 50.2 (6.8) 62.6 (5.2) 35.2 (2.9) 60.8 (1.2) 87.0 (0.9) 90.7 (0.4)
LoRA (r=1) 94K 67.7 (3.8) 83.8 (1.2) 50.4 (1.0) 62.5 (0.6) 32.9 (1.8) 56.6 (1.7) 87.0 (0.6) 90.8 (0.4)
NOLA-MLP 94K 70.6 (3.8) 86.0 (1.4) 51.7 (1.1) 63.8 (0.8) 36.9 (5.6) 61.6 (1.0) 87.4 (0.4) 90.9 (0.5)
NOLA-MLP 47K 69.6 (3.8) 84.8 (1.1) 49.9 (0.8) 62.8 (0.7) 36.1 (0.8) 58.8 (1.2) 87.1 (0.6) 90.9 (0.4)

Table 7: More results on vision tasks. Using ViT-B, NOLA achieves comparable performance as
LoRA (r=4) with just one-third the number of parameters on four challenging datasets. The linear
layer sizes are: 0.03M, 0.2M, 0.1M, 0.3M for Aircraft, Food101, Pets and SUN397 respectively.

Method # Train Aircraft Food101 Pets SUN397
Params 5 Shot 10 Shot 5 Shot 10 Shot 5 Shot 10 Shot 5 Shot 10 Shot

Nearest Neighbor 24.6 27.1 48.4 54.2 82.3 86.2 44.4 51.5
Linear 0 29.7 (2.3) 36.9 (2.1) 53.2 (0.3) 61.5 (0.1) 88.4 (0.4) 91.3 (0.3) 38.0 (0.8) 42.7 (0.4)
Full-FT 82M 31.4 (2.4) 43.2 (2.0) 48.6 (5.1) 65.8 (2.7) 82.7 (1.1) 91.1 (0.5) 45.0 (3.3) 52.6 (0.3)
LoRA (r=4) 0.141M 32.4 (1.4) 43.8 (1.5) 60.8 (1.6) 73.1 (0.6) 85.5 (0.8) 91.6 (0.5) 51.6 (0.4) 55.6 (0.3)
NOLA-MLP 0.047M 33.7 (2.2) 43.3 (1.4) 64.5 (0.8) 72.6 (0.4) 88.0 (0.6) 92.2 (0.3) 50.5 (0.4) 55.5 (0.3)

Results: Results on finetuning on image classification tasks are presented in Table 6. A naive
Nearest Neighbor approach performs competitively on the CUB and Caltech datasets. LoRA and
NOLA are significantly better than Linear and Full-FT on several settings (e.g. CIFAR-100 5
shot on ViT-B-MAE). This might be due to the overfitting of the Linear and Full-FT approaches
on the limited number of train samples. When using a similar number of training parameters,
NOLA outperforms LoRA in most of the settings across architectures and datasets. It also achieves
comparable performance to LoRA with just half or one-third of the training parameters of LoRA.
This is consistent with our observations on the NLG tasks. The difference between the two methods
is particularly noticeable when the number of training examples is small - either in 5 shot setup or
when the number of classes is small, as in CIFAR-10. This suggests that the improvement obtained
by NOLA could be due to the reduction in the number of training parameters. Both LoRA and
NOLA consistently and significantly outperform Linear and Full-FT approaches. NOLA can easily
be employed in MLP layers since the number of training parameters is decoupled from the weight
matrix dimensions. A similar application of LoRA would require 8× more training parameters due to
the large hidden layer dimensionality of the MLP module. We empirically observe that NOLA-MLP
slightly outperforms NOLA on attention block (see Table 10 in appendix). We provide results on
four additional datasets used for benchmarking transfer learning in Table 7. Aircraft, Food101 and
Pets are finegrained datasets while SUN397 is a large dataset with 397 classes. There is a bigger
difference in the performance of Nearest Neighbor and Linear approaches on most of these datasets
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compared to those in Table 6, suggesting that it is harder to adapt to these datasets. In line with
our prior observations in Table 6, NOLA with just one-third the number of parameters performs
comparably to LoRA.

4 RELATED WORKS

Vision and Language Transformer Models: Transformer networks, introduced by (Vaswani et al.,
2017), emerged as a sequence-to-sequence model in Natural Language Processing (NLP). Their
success soon extended to the computer vision community, with subsequent works (Dosovitskiy et al.,
2021; Touvron et al., 2021) introducing the Vision Transformer (ViT) network as a strong alternative
to the Convolutional Neural Network (CNN) backbones. Transformers accept a sequence of tokens
as input. These tokens can be, for instance, word embeddings in language or image patches in vision.
BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2018) in NLP, and MAE (He et al., 2021) and
DINO (Caron et al., 2021) in computer vision train transformer networks via self-supervision on
large amounts of unlabeled data. These studies demonstrate that large transformer networks when
trained on massive corpora, generalize well to downstream tasks even when finetuning on very few
task-specific examples. For example, (Brown et al., 2020) show that GPT-3 with 175B parameters
is a good few-shot learner. Lastly, the scaling law presented by (Kaplan et al., 2020) indicates that
a simultaneous increase in training data and model parameters can lead to significant performance
gains and emergent capabilities previously unavailable to smaller models.

Parameter Efficient Fine-Tuning: Owing to their unprecedented few-shot generalization perfor-
mance, large neural networks, such as foundation models and LLMs have gained immense popularity
in recent years. An increasing number of users are customizing these models to adapt them to
their specific tasks. However, given the colossal size of these models, fine-tuning and storing the
entire set of model parameters (Devlin et al., 2019; Radford et al., 2018) for each task is impractical.
This challenge is exacerbated as the number of tasks increases. In addition to storage concerns,
the overhead involved in loading task-specific models and transferring weights from CPU to GPU
often becomes a computational bottleneck in many applications. Parameter Efficient Fine-Tuning
(PEFT) approaches aim to address these issues by identifying the minimum number of parameters
needed to adapt a large model. Adapters (Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al., 2020b;
Mahabadi et al., 2021) are PEFT approaches that achieve adaptation by adding small modules to the
intermediate layers of the model. A major drawback of Adapters is the extra latency they introduce
in inference. BitFit (Zaken et al., 2021) only adapt bias of the network. Ladder tuning (Sung et al.,
2022a) reduce memory footprint in training by avoiding back-propagation through the main backbone.
IA3 (Liu et al., 2022) trains extra parameters in the attention module. Another widely adopted PEFT
approach is prompt-tuning for LLMs that involves optimizing a new set of input tokens, or prompts,
for each task (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al., 2020; Liu et al., 2021).
While reminiscent of prompt engineering, the distinction lies in training a specific set of prompt
tokens in prompt-tuning which might also increase inference latency.

(Hu et al., 2021) introduced LoRA, demonstrating that a low-rank modification of the original
weights is sufficient to adapt an LLM to a new task. Unlike adapters and prompt-tuning, these
low-rank modifications can be integrated into the original weights, thus avoiding additional overhead
during inference. However, LoRA has two main limitations: 1) the rank-one decomposition sets a
lower bound on the parameters needed for fine-tuning, and 2) the number of required parameters
is contingent upon the architecture and the rank choice. Our work, termed NOLA, addresses these
challenges by decoupling the trainable parameters from both the rank choice and the network
architecture. Several recent studies have sought to enhance LoRA by quantizing its parameters
(Dettmers et al., 2023; Xu et al., 2023; Kwon et al., 2022; Gong et al., 2023), optimizing the design
choice of LoRA through neural architecture search (Zhang et al., 2022), or dynamically allocating
parameters based on the required rank for each weight matrix (Zhang et al., 2023). Most of these
enhancements are also compatible with our proposed method. In fact, we demonstrate that NOLA
can be quantized to 4-bit without any performance degradation, thereby emphasizing that the concept
of quantization is distinct from and complementary to, NOLA.

Compact Deep Learning Models: A closely related area to PEFT is model compression. Pruning
(Kim et al., 2020; Lin et al., 2020a; Siems et al., 2021; Tiwari et al., 2021; Hayou et al., 2020; Wang
et al., 2020; Li et al., 2021) and quantization (Rastegari et al., 2016a; Lee et al., 2021) stand as the
principal methods for compressing neural networks. Techniques such as those in (Kusupati et al.,
2020; Isik et al., 2022) can achieve a high pruning rate, leading to significant compression.
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A APPENDIX

A.1 MEASURING THE RANK OF POSSIBLE SOLUTIONS IN NOLA VS PRANC:

Choosing n basis vectors (d dimensional each) in PRANC will result in all possible learned matrices
living in a n dimensional subspace. However, since NOLA with the same number of total parameters
(k+ l = n) uses A×B factorization, the possible solutions can live in a higher dimensional subspace.
We do a simple experiment by sampling several random coefficient vectors, reconstructing the ∆W
matrix, reshaping it to be a long (d2)-dimensional vector, and measuring the rank of the covariance
of samples to see how much of the whole space is covered by the samples. The results are shown in
Figure 2 for a simple experiment with varying d and n. As expected, NOLA can cover the whole
space (full-rank) using a small number of parameters compared to PRANC. Note that the rank in
this analysis is on the covariance of possible random samples of weight matrices and should not be
confused with the rank in LoRA or NOLA formulation.

Figure 2: Comparing the rank of samples in the solution subspace for PRANC and NOLA, given
the same number of parameters, n. “Percentage Coverage” is the subspace rank divided by the max
possible rank (d2), so 1.0 denotes full rank. As expected, the coverage for PRANC increases linearly
while it saturates very fast for NOLA.

A.2 NOLA IN TRAINING FROM SCRATCH:

MLP on MNIST (a toy experiment):

We believe NOLA is a better reparametrization than PRANC and can achieve local minimums that
PRANC cannot achieve. To show this empirically, we perform a very simple experiment where we
apply a 2-layer MLP for the MNIST classification task. Since we want to measure which method is
better at reaching the local minimums and not necessarily the generalization, we evaluate the models
by the training loss. Also, we intentionally use a large number of neurons in the hidden layer to
over-parameterize and increase the number of local minimums.

We use a linear layer from 784 features to 256 with bias followed by ReLU and a linear layer from
256 to 10 classes. We use all 60K samples for training to report the training loss. For both PRANC
and NOLA, we use 32 parameters for each layer. Other hyperparameters are same for both: 200
epochs, 512 batch size with lr = 0.05. We use rank r = 4 for NOLA. PRANC has a final training
loss of 0.87, while NOLA achieves a training loss of 0.71. This simple experiment empirically
supports that NOLA has better representation power. Additionally, PRANC training finishes in 1152
seconds while NOLA finishes in 579 seconds. We will leave the theoretical study of this comparison
for future work. Moreover, this experiment empirically shows that NOLA is a generic method, and
its success is not dependent on the architecture of transformers or attention modules.

CNN on ImageNet100 and CIFAR-10:

Moreover, to compare the representation power of NOLA and PRANC, we train NOLA from scratch
on an image classification task using a CNN architecture. For each convolution layer, we reshape
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all parameters of a layer into a matrix (close to square shape) and apply NOLA to the matrix. Then,
we reshape it to the original shape of the convolution. Additionally, we train LoRA using a similar
approach as NOLA. We follow a similar setup as (Nooralinejad et al., 2022) for our experiments on
image classification.

Datasets and Architectures: We consider two architectures in our experiments: ResNet20 with
270K parameters, and ResNet18 (He et al., 2016) with 11M parameters. We train ResNet20 on
CIFAR10 (Krizhevsky et al., 2014), and ResNet18 on ImageNet100 (Deng et al., 2009).

Results: We report result of ImageNet100 in Table 9, and CIFAR10 in Table 8. NOLA outperforms
both PRANC and LoRA with a similar number of parameters.

Implementation Details: For ImageNet100 and ResNet18, we use k = l = 2, 000 basis for each of
20 modules, and for the classifier (last linear layer), we used k = l = 10, 000, resulting in a total of
100, 000 trainable parameters excluding 9, 600 batchnorm parameters. We use rank 64 for all layers.
We train all models using Adam optimizer with a learning rate of 0.001 and batch size of 256 for 200
epochs. For CIFAR-10 and ResNet20, we use k = l = 250 basis for each convolutional module, and
for the linear layer, we use k = l = 1000 parameters. We use batch size 256, Adam optimizer, and a
learning rate of 0.001. We use a single NVIDIA-GeForce RTX 3090 for all experiments.

Training Time Comparison: We measure the training time of NOLA and PRANC on a single
NVIDIA-GeForce RTX 3090 GPU and batch size of 256. Note that training time includes both
forward and backward passes for each batch. On average, NOLA processes a batch in 228ms while
PRANC does the same in 1070ms, so NOLA is 4.6 times faster than PRANC.

Table 8: Training On CIFAR10: Result
of our method on CIFAR10 dataset and
ResNet20.

Method # Params Acc.
trained model 269,722 88.92%

PRANC 12,752 81.5%
LoRA 13,295 81.5%
NOLA 12,876 82.4%

Table 9: Training On ImageNet100: Result of our
method on ImageNet-100 dataset and ResNet18

Method # Params Acc.
trained model 11,227,812 82.1%

HashedNet (Chen et al., 2015) 129,200 52.96%
PRANC 119,200 61.08%
LoRA 150,000 63.50%
NOLA 109,600 64.66%

A.3 ABLATION AND DETAILS OF NOLA ON VISION TRANSFORMERS:

Implementation detail: We consider learning rates of 5e− 3, 1e− 3 and 5e− 4 for LoRA, NOLA
and Linear methods and 8e−5, 5e−5, 3e−5 and 1e−5 for Full-FT. The best settings is chosen based
on the performance on validation set. For creation of k-shot dataset, we randomly sample without
replacement from the train set. For each of these sets, we run with three different initializations of the
networks. This process is repeated four times and the averaged values are reported.

Comparison between NOLA-QV and NOLA-MLP: We experiment with NOLA layer in both the
attention and MLP modules of the vision transformer. We observe that applying NOLA on MLP
performs better than that on attention block (Table 10). Thus, we use NOLA-MLP as our default
setting. Note that the number of trainable parameters remains the same in both versions. Unlike this,
applying LoRA on MLP block would require significantly higher number of trainable parameters due
to the increased dimensions of the weight matrices in MLP compared to those in attention block.

Table 10: Comparison between NOLA in MLP and attention blocks: We observe that NOLA on
MLP block is more effective. We choose this as our default setting.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-L NOLA-QV 47K 87.0 (0.9) 91.6 (0.7) 74.8 (0.6) 80.4 (0.9) 75.3 (0.4) 81.7 (0.3) 87.9 (1.1) 90.6 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)
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A.4 RESULTS OF NLG TASK ON DART AND WEBNLG DATASETS:

In Table 11, we report more results similar to Table 1 using GPT-2 M and GPT-2 L on DART (Nan
et al., 2020) and WebNLG (Gardent et al., 2017) datasets.

Table 11: DART and WebNLG Dataset: Similar to Table 1 we compare NOLA to other methods.
NOLA is on par or better with other methods with the same number of parameters.

GPT-2 M
Method Adapted Adapter # Trainable DART WebNLG

Layers Rank Parameters BLEU↑ MET↑ TER↓ BLEU↑ MET↑ TER↓
Finetune All Layers - 354.000M 46.2 0.39 0.46 46.5 0.38 0.53
AdapterL Extra Layers - 0.370M 42.4 0.36 0.48 50.2 0.38 0.43
AdapterL Extra Layers - 11.000M 45.2 0.38 0.46 54.9 0.41 0.39
FinetuneTop2 Last 2 Layers - 24.000M 41.0 0.34 0.56 36.0 0.31 0.72
PreLayer Extra Tokens - 0.350M 46.4 0.38 0.46 55.1 0.41 0.40
LoRA QV 4 0.350M 47.1 0.39 0.46 54.9 0.41 0.39
LoRA QV 1 0.098M 46.4 0.38 0.48 53.5 0.40 0.40
NOLA (Ours) QV 8 0.096M 47.0 0.38 0.48 53.9 0.40 0.40
NOLA (Ours) MLP 8 0.096M 47.1 0.38 0.47 54.7 0.41 0.40
NOLA (Ours) QV 8 0.048M 45.7 0.38 0.49 53.8 0.40 0.40
NOLA (Ours) MLP 8 0.048M 45.5 0.38 0.49 53.0 0.40 0.40

GPT-2 L
Finetune All Layers - 774.000M 47.0 0.39 0.46 55.5 0.42 0.42
AdapterL Extra Layers - 0.880M 45.7 0.38 0.46 56.0 0.41 0.39
AdapterL Extra Layers - 230.000M 47.1 0.39 0.45 57.7 0.43 0.39
PreLayer Extra Tokens - 0.770M 46.7 0.38 0.45 56.3 0.42 0.40
LoRA QV 4 0.770M 47.5 0.39 0.45 57.1 0.43 0.38
LoRA QV 1 0.184M 47.7 0.39 0.47 55.9 0.42 0.39
NOLA (Ours) QV 8 0.144M 47.8 0.39 0.47 55.8 0.41 0.39
NOLA (Ours) MLP 8 0.144M 47.8 0.39 0.47 56.0 0.42 0.39
NOLA (Ours) QV 8 0.072M 46.4 0.38 0.48 55.5 0.41 0.38
NOLA (Ours) MLP 8 0.072M 46.8 0.38 0.48 55.8 0.41 0.39
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