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Abstract

Continual learning has gained substantial attention
within the deep learning community, offering promising so-
lutions to the challenging problem of sequential learning.
Yet, a largely unexplored facet of this paradigm is its sus-
ceptibility to adversarial attacks, especially with the aim
of inducing forgetting. In this paper, we introduce “Brain-
Wash,” a novel data poisoning method tailored to impose
forgetting on a continual learner. By adding the Brain-
Wash noise to a variety of baselines, we demonstrate how
a trained continual learner can be induced to forget its
previously learned tasks catastrophically, even when us-
ing these continual learning baselines. An important fea-
ture of our approach is that the attacker requires no ac-
cess to previous tasks’ data and is armed merely with the
model’s current parameters and the data belonging to the
most recent task. Our extensive experiments highlight the
efficacy of BrainWash, showcasing degradation in perfor-
mance across various regularization and memory replay-
based continual learning methods. Our code is available
here: https://github.com/mint-vu/Brainwash

1. Introduction
In real-world scenarios, data distributions are inherently
non-stationary, constantly evolving and shifting in unpre-
dictable ways. Such variability poses a significant chal-
lenge to machine learning and computer vision, where
model generalizability assumes stationary training and test-
ing/deployment distributions. Continual Learning (CL)
[13, 37, 61] has emerged as a prolific research domain fo-
cusing on efficient learning from an ongoing stream of data
or tasks. CL primarily seeks to: 1) enhance backward
knowledge transfer, which aims to maintain or improve per-
formance on previously learned tasks, thereby mitigating
catastrophic forgetting, and 2) bolster forward knowledge
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Figure 1. BrainWash is a poisoning attack targeting continual
learning systems. It sabotages a task so that, upon learning it, the
system’s rate of forgetting previously learned tasks is increased.

transfer, where learning a current task can boost perfor-
mance on or reduce the learning time for future tasks. CL
has significantly progressed in computer vision tasks, in-
cluding incremental image recognition [33, 59]. With the
increase in the adoption of CL algorithms, examining their
vulnerabilities is imperative to inform the development of
more robust CL methodologies.

Most research in CL has focused on overcoming catas-
trophic forgetting. Existing methods can be categorized into
three groups: 1) memory replay, 2) regularization, and 3)
parameter isolation methods. Nonetheless, there has been
limited focus on the robustness of CL approaches against
various types of adversarial attacks. Recent studies have
begun to address this gap by proposing backdoor attacks
[32, 57] and certain poisoning attacks [27, 39] within the
CL context. These contributions are critical in profiling
the vulnerabilities of CL methods, paving the way for de-
veloping more resilient CL algorithms. Additionally, these
findings have implications for closely related and emerging
fields such as machine unlearning [3, 9].

Recent works show that an adversary can insert misin-
formation into a task to distort a continual learner’s perfor-
mance. For instance, Umer et al. [57] show that backdoors
can be placed into a task to hijack the performance of a CL
method, and the backdoor remains effective even when new
tasks are learned. Here, we pose a fundamental question: Is
it possible to ‘brainwash’ a continual learner by poisoning
its current task in such a way that performance on all pre-
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Figure 2. In our proposed threat model, the attacker gains access to
the CL model and the data for the forthcoming task but remains un-
aware of the data from preceding tasks and the specific CL method
employed by the victim (top panel). The attack methodology un-
folds in two steps. Firstly, the attacker executes a model inversion
attack on the CL model to reconstruct an approximation of the vic-
tim’s data from earlier tasks (middle panel). Secondly, the attacker
employs bi-level optimization to contaminate the data for the cur-
rent task. This is done in such a way that performance on the
reconstructed data from previous tasks is significantly degraded.

vious tasks is significantly degraded? More succinctly, can
a task be designed to induce maximum forgetting of prior
knowledge in a CL context? We affirmatively answer this
question and demonstrate its validity across a wide range
of regularization-based CL methods, assuming minimal and
realistic conditions. This concept is depicted in Figure 1.

Recent advancements in foundational models have led to
the creation of massive models with billions of parameters.
These models require significant data resources, yet their
training is limited by computational power, restricting re-
peated passes over the data. Additionally, data isn’t sampled
in an independently and identically distributed (i.i.d.) man-
ner, necessitating continual learning to integrate new data
without forgetting existing knowledge [25]. This forgetting
vulnerability could be exploited by adversaries introducing
manipulated training data to erase key information.

This paper examines a realistic threat model targeting

regularization and memory-based CL methods. Under this
model, the attacker gains access to the victim’s current
model and aims to manipulate the victim’s next task. Cru-
cially, the attacker remains unaware of the specific CL al-
gorithm employed by the victim to learn tasks and lacks
access to data from prior tasks. We propose a novel method
denoted as “BrainWash” that allows for poisoning the cur-
rent task data to maximize forgetting on prior tasks.

In short, BrainWash consists of two main steps. First,
we perform a model inversion attack [24, 60] on the contin-
ual learner to approximate the data from the previous tasks.
Second, to poison the current task, we construct a bi-level
optimization problem such that: 1) the performance on in-
verted data of previous tasks is minimized, and 2) the per-
formance on the clean data of the current task is maximized.
Figure 2 demonstrates the threat model and the two steps.
Contributions. Our main contributions in this paper are:
1. Devising a novel poisoning attack algorithm for

regularization-based continual learning methods, de-
noted as BrainWash.

2. Demonstrating the effectiveness of BrainWash on bench-
mark CL datasets and across diverse regularization-
based CL algorithms.

3. Providing extensive ablation studies to deepen our un-
derstanding of BrainWash.

2. Related Work
Continual Learning is a subfield of ML focused on learn-
ing from nonstationary streams of data or tasks [13, 37]. Its
objectives include improving backward knowledge transfer
to maintain or enhance performance on previously learned
tasks helping to prevent catastrophic forgetting. It also aims
to strengthen forward knowledge transfer, where mastering
a current task can improve performance or decrease learn-
ing time for future tasks. Catastrophic forgetting prevention
is a central goal in this field. To tackle catastrophic forget-
ting, strategies in continual learning are typically grouped
into three main categories: 1) memory-based methods, 2)
regularization-based methods, and 3) architectural methods.
Memory-based methods involve techniques such as mem-
ory rehearsal or replay, generative replay, and gradient pro-
jection [2, 18, 19, 40, 49, 50, 52, 56, 58, 59, 66]. These
methods often rely on storing and revisiting previous learn-
ing experiences or artificially generating them to reinforce
learning. Regularization-based methods apply penalties on
changing parameters that are vital for tasks already learned
[1, 5, 34, 35, 63, 69]. These approaches help in preserving
the knowledge acquired from previous tasks while allow-
ing new learning. Architectural methods focus on modi-
fying the learning model itself. Strategies include expand-
ing the model structure [51, 53], isolating parameters spe-
cific to certain tasks [43, 44], and using masking techniques
[7, 47, 67] to manage the learning process for different
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tasks. In this paper, we focus on regularization-based meth-
ods, mainly due to their effective balance between plasticity
and stability, allowing for the integration of new knowledge
while preserving essential information from past learning
experiences. We propose a data poisoning attack that maxi-
mizes forgetting for regularization-based continual learners.

Data Poisoning is a training phase attack on a ML model
in which the attacker deliberately alters the victim’s training
data maliciously [4, 8, 20, 26, 31, 55, 70]. After the victim
trains their model using this compromised data, the model
would serve the attacker’s detrimental objectives, such as
significantly reducing the model’s test accuracy on all or
specific classes (i.e., targeted vs. non-targeted attacks).

Data poisoning is formally defined as a bi-level opti-
mization problem [6, 8]. In the outer level optimization,
the attacker optimizes the poisoning, which can be additive
noise [26], patch-based noise [12], or a conditional gener-
ative model for noise [21], to enforce their malicious in-
tention on the ‘resulting network’ parameters. This ‘result-
ing network’ itself is the solution to the inner optimization
problem that minimizes the training objective as would be
done by the victim. When the ML model is a deep neural
network, this bi-level optimization problem is generally in-
tractable, as it requires backpropagation through the entire
SGD training procedure [46]. Hence, the existing literature
often approximates this bi-level optimization using various
strategies, including first-order approximation methods [29]
and more sophisticated methods based on alternating opti-
mization [21]. Similar to [22, 29], our poisoning attack also
uses a first-order approximation method for solving the in-
duced bi-level optimization. In contrast with [29], however,
our bi-level optimization objective is maximizing forgetting
in a continual learner.
Model Inversion [24, 48, 60] encompasses attack strate-
gies designed to either reconstruct training data or deduce
sensitive attributes from a trained model. These strategies
are broadly divided into ‘optimization-based’ and ‘training-
based’ methods. Our study primarily explores optimization-
based methods, which are widely adopted in the literature
[48, 68]. These methods primarily adjust inputs in the data
space to maximally stimulate specific output neurons, such
as target classes. However, a key challenge arises from
the many-to-one mapping characteristic of deep neural net-
works, where a variety of inputs can lead to the same out-
put. To address this, the literature introduces various forms
of priors or regularization terms, making this optimization
process more tractable. Such regularization terms range
from simpler approaches like Total Variation and image
norm [42, 45] to more advanced techniques involving fea-
ture statistics [68] and the use of generative models [64]. In
this paper, we adopt a model inversion approach similar to
Yin et al. [68] to approximate the data that the continual
learner has been trained on from previous tasks.

3. Threat model
We consider a victim using a regularization or memory-
based CL method to learn a series of tasks. For example,
imagine a home robot that continuously learns from its en-
vironment to adapt to a new home [10]. The attacker’s ob-
jective is to poison the training data of the latest task (like
learning about a new room), causing the CL model to for-
get previously learned tasks upon acquiring new informa-
tion. Furthermore, the attacker poisons the data in our setup
by engineering norm-constrained additive noise. We ex-
amine two scenarios for an attack: 1) the ’reckless threat
model’ where the victim deploys the model without mon-
itoring its performance, allowing the attacker to maximize
forgetting of prior tasks without regard for current task per-
formance; and 2) the ’cautious threat model’ where the vic-
tim monitors the model’s performance on a potentially poi-
soned task, necessitating the attacker to balance inducing
forgetting while maintaining acceptable current task accu-
racy, making it a more challenging scenario. In both set-
tings, we assume that the attacker does not have access to
the continual learner’s training data from previous tasks.

4. Method
In this work, we aim to design a poisoning attack for reg-
ularization and memory-based multi-head CL approaches
that brainwashes the model, causing it to forget its previ-
ous tasks. We assume the attacker has full access to the
model and data from the latest task the continual learner
will encounter. However, the attacker does not have access
to continual learner’s data from the previous tasks.

We propose to utilize model inversion attacks [24, 68]
to obtain an approximation for the continual learner’s data
from prior tasks. Using the victim’s model, the inverted data
from previous tasks, and the data for the current task, the at-
tacker formalizes the poisoning problem through a bi-level
optimization and then solves it via a first-order approxima-
tion method. In what follows, we briefly review our no-
tations and then describe 1) the model inversion attack, 2)
poisoning as a bi-level optimization problem, and 3) our
proposed first-order approximation solver.

4.1. Notations

We denote the training data for task t ∈ {1, · · · , T} as
Dt = {(xit, yit)}

Nt
i=1 ⊂ X × Yt, where xit ∈ X denotes

the i’th sample from the t’th task (e.g., an input image) and
yit ∈ Yt = {1, · · · ,Kt} denotes its corresponding label
with Kt and Nt denoting the number of classes and ex-
amples for task t respectively. Let f(·; θ) denote the CL’s
backbone that extracts deep representations from the input
data, where θ indicates the backbone’s parameters, and let
ht(·;ψt) denote the classification head for task t, with ψt
representing its parameters.
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Throughout the paper, we consider the supervised clas-
sification problem and denote the classification loss (e.g.,
cross-entropy) as L(·). Moreover, we use ℓp(·) to denote the
p’th norm of a vector, and in particular, use ℓ∞ norm in our
experiments. Lastly, we indicate learned parameters cal-
culated on clean data with a superscript asterisk and those
calculated on the poisoned data with a tilde. For instance,
ψ∗
t represents the optimal parameters for the tth head, while

θ∗1:T−1 denotes the optimal parameters of the backbone af-
ter learning tasks 1 to T − 1, all calculated on the clean
data. And θ̃ and ψ̃T denote the backbone parameters and
the parameters of the T ’th head after poisoning.

4.2. Model Inversion

We propose executing a model inversion (MI) on the vic-
tim’s CL model to approximate data from previous tasks.
The outcome of this attack is proxy datasets for the previ-
ous tasks denoted as D̂t = {(x̂it, ŷit)}Mi=1, where x̂it is an
inverted sample corresponding to label ŷit. To construct D̂t

for t ∈ {1, · · · , T − 1}, the attacker can infer the num-
ber of classes, Kt, by examining the logits in the t’th head,
ht(·;ψ∗

t ). Following [68], we formulate the MI for a set of
randomly sampled target one-hot labels {ŷit ∈ Yt}Mi=1 as:

{x̂it}Mi=1 = argmin
{xi∈X}M

i=1

M∑
i=1

L(xi, ŷit, θ∗1:T−1, ψ
∗
t )+ (1)

M∑
i=1

Rprior(x
i) + αfRfeat({xi}Mi=1, θ

∗
1:T−1),

where Rprior is an image regularization term that acts as a
weak prior for natural images [45], and Rfeat is a feature-
statistics regularization [68]. For Rprior(x) we use:

Rprior(x) = αTVRTV(x) + αℓ2Rℓ2(x), (2)
where RTV (x) represents the total variation of image x,
Rℓ2(x) is the ℓ2 norm of the image, and αTV, αℓ2 , αf > 0
denote the regularization coefficients. The feature-statistics
regularization Rfeat leverages the prevalence of batch nor-
malization layers [30] in modern deep neural networks and
the fact that they maintain a running mean and variance of
training representations. Hence, Rfeat requires the feature-
statistics of the inverted samples {x̂it}Mi=1 to align with those
of the batch normalization layers, via:

Rfeat({xi}Mi=1, θ
∗
1:T−1) =

∑
l

∥∥µl({xi}Mi=1)−ml)
∥∥2
2

(3)

+
∑
l

∥∥σ2
l ({xi}Mi=1)− vl

∥∥2
2
.

Here, ml and vl are the running means and variances stored
at the lth batch normalization layer, and µl and σ2

l are the
corresponding mean and variance of {xi}Mi=1 across exam-
ples at this layer. Note that our model inversion does not
rely heavily on this regularizer, so it is still applicable in
other architectures with no batch normalization layer.

4.3. Poisoning Formulation

We first formalize our poisoning attack for the ‘reckless’
attacker. The attacker constructs additive noise to the data
from task T , such that when the victim trains their model on
this task, the performance on tasks 1 to T−1 plummets. We
assume that the attacker is oblivious to the victim’s specific
CL approach. Mathematically, we formalize the ‘reckless’
attacker problem as a bi-level optimization problem:

{δiT }
NT
i=1 = argmax

{δi}NT
i=1

T−1∑
t=1

M∑
j=1

L(x̂jt , ŷ
j
t , θ̃(δ), ψ

∗
t )

s.t. θ̃(δ), ψ̃T (δ) = argmin
θ,ψT

NT∑
i=1

L(xiT + δi, yiT , θ, ψT )

ℓ∞(δi) < ϵ, ∀i (4)
Here, δiT is the optimal additive noise for sample i of task
T , resulting in the poisoned data xiT + δiT , x̂jt represents
the j’th inverted sample from task t, and ϵ is the thresh-
old for the ℓ∞ norm of the noise, which ensures incon-
spicuousness. Lastly, θ̃(δ) is the updated parameters of the
CL model when trained on the poisoned data from task T ,
which depends on the noise, δ. Importantly, in the inner
optimization, the attacker is simply fine-tuning the model
on the poisoned data of task T , starting from θ∗1:T−1 and
ending at θ̃(δ). Unlike the victim, the attacker does not use
a CL algorithm for the inner optimization. We show that
even though the inner optimization differs from the victim’s
exact optimization process, the constructed noise is highly
effective against various CL approaches.

The bi-level optimization in (4) solely focuses on max-
imizing forgetting on tasks 1 through T − 1, even at the
cost of not learning task T , i.e., the ‘reckless threat model.’
In the ‘cautious threat model,’ on the other hand, the vic-
tim actively monitors the validation accuracy of the current
task. This necessitates the attacker to carefully craft the
training-time noise, such that forgetting of previous tasks
is maximized, while the error on the clean data from task T
is minimized. The bi-level optimization for the ‘cautious’
attacker is similar to that of the ‘reckless’ attacker, with an
additional term in the outer optimization loop:

{δiT }
NT
i=1 = argmax

{δi}NT
i=1

T−1∑
t=1

M∑
j=1

L(x̂jt , ŷ
j
t , θ̃(δ), ψ

∗
t )

− η

NT∑
i=1

L(xiT , yiT , θ̃(δ), ψ̃T (δ)), (5)

subject to the same constraints in (4). Note that the added
loss term with weight η > 0 in the outer-level optimiza-
tion ensures that the model trained on the poisoned data per-
forms well on the clean data. Next, we discuss our strategy
for solving these bi-level optimizations.
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4.4. First-Order Approximation

Solving the bi-level optimization problems in (4) and (5)
are intractable, as they require backpropagation through the
entire Stochastic Gradient Decent (SGD) training procedure
of the inner optimization. To address this, we follow [29]
and leverage a first-order method that approximates the bi-
level optimization problem using meta-learning [22].

In short, we simplify the inner objective (i.e., fine-tuning
on poisoned data) by limiting the training to only k SGD
steps for each evaluation of the outer objective. In other
words, the outer backpropagation is only performed through
the inner optimization’s k unrolled SGD steps. Notably,
such k-step methods are shown to decrease approximation
error exponentially [54] and have significant generalization
benefits [23]. In all our experiments, we set k = 1. Note
that, for each iteration of the inner optimization, the head
parameters for task T , ψT , are initialized randomly at each
iteration while the backbone parameters, θ, are initialized
from the learned backbone at the end of task T − 1, θ∗1:T−1.

5. Experiments
This section provides experimental results evaluating our at-
tack on various CL algorithms on three benchmark datasets.

5.1. Datasets and Model

We perform studies on three major CL benchmarks:
• 10-Split CIFAR-100: CIFAR-100[36] consists of 100

classes of 32 × 32 images. We generated 10 ten-way
classification tasks by splitting the classes. This dataset
serves as our small-scale benchmark.

• 10-Split miniImagenet: we also evaluated our noise on
miniImageNet[62] which is a dataset of 60,000 84 × 84
images, divided in 100 categories. Similarly, we divide
the miniImagenet to 10 classification tasks. This dataset
serves as our medium-scale benchmark.

• 20-Split tinyImagenet: As our large-scale benchmark,
we used the 20-split tinyImageNet[38], which is a dataset
of 200 classes with 100,000 images in total, each with the
size of 64× 64.

All experiments in this section use the ResNet-18 [28] ar-
chitecture with Stochastic Gradient Descent (SGD) opti-
mizer with learning rate 1e-2 and mini batchsize 16. All
images were normalized in the range of [0, 1], and the poi-
soned data was truncated to this range.

5.2. Regularization-Based CL Methods

In our experiments, we consider five renowned
regularization-based methods starting from the classic
Elastic Weight Consolidation (EWC) [34], Memory Aware
Synapsis (MAS) [5], and Riemannian Walk (RWALK), to
more recent methods like Active Forgetting of Negative
Transfer (AFEC) [65] and Auxiliary Networks in Continual

Learning (ANCL) [33]. Generally, the regularization-
based CL methods assign importance values to network
parameters and penalize the training for drastic changes
in the important parameters. At a high level, this can be
formulated as:

θ∗1:T = argmin
θ

NT∑
i=1

L(xiT , yiT , θ) + λRCL(θ, θ
∗
1:T−1),

where RCL is a CL method-dependent regularizer that en-
forces stability of the continual learner, λ is the regular-
ization coefficient that balances the stability vs. plasticity
trade-off, and θ is initialized at θ∗1:T−1. It is widely ac-
cepted that the performance of regularization-based meth-
ods highly depends on the choice of λ.

5.3. Evaluation Metrics

We use the Backward Transfer (BWT) [41] and the (poi-
soned) model’s accuracy on the last task for our evaluation
metric. For the sake of completion, let At,i denote the per-
formance of the CL model on task i after learning task t ≥ i.
Then, BWT is defined as:

BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i. (6)

Our poisoning attack aims to maximize forgetting on previ-
ous tasks or equivalently minimize the BWT.

5.4. Experiment Setup

We explore CL models that have been trained on T−1 tasks
using the ideal regularization coefficient (λ) for their re-
spective CL methods, aiming for a balance between plastic-
ity and stability. For each victim model, we introduce poi-
son to task T under two different ℓ∞ norm bounds: ϵ = 0.1
and ϵ = 0.3. These bounds are applied in both ’reckless’
and ’cautious’ attacker scenarios, as described by Equations
(4) and (5), leading to four distinct experimental setups. The
victim models then learn the poisoned task T using their CL
methods. Post learning, we evaluate the Backward Transfer
(BWT) and the accuracy on the clean data of the last task
for these victim models. For comparative analysis, we also
include the BWT and accuracy of the victim models trained
on the unpoisoned version of task T and on task T with
added uniform noise. The outcomes of all these experimen-
tal configurations are detailed in Table 1. Our results indi-
cate a significant BWT decrease when models are trained
on BrainWash data. Additionally, it is observed that the
‘cautious’ attacker often achieves higher accuracy on task
T compared to the ‘reckless’ attacker, albeit with a trade-
off of a less potent attack. As anticipated, the poisoning
effect increases with ϵ.

To aid in comprehending the results presented in Table
1, we have depicted the miniImageNet results as a spider
chart in Figure 3. Key observations from this visualization
include: 1) a discernible trade-off between enhanced for-
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ϵ = 0.1 ϵ = 0.3

Dataset Method
Clean

BWT(Acc)

Uniform
BWT(Acc)

Cautious
BWT(Acc)

Reckless
BWT(Acc)

Uniform
BWT(Acc)

Cautious
BWT(Acc)

Reckless
BWT(Acc)

C
IF

A
R

-1
00

EWC [34] -5.2 (68.3) -5.1 (67.0) -9.5 (58.8) -12.6 (51.0) -12.2 (57.5) -24.7 (42.2) -29.1 (25.5)

AFEC [65] -2.9 (65.6) -3.6 (64.1) -7.9 (57.2) -8.8 (55.4) -14.4 (52.4) -24.2 (49.0) -24.6 (36.9)

ANCL [33] -0.1 (81.5) -0.2 (80.4) -0.9 (61.7) -4.4 (64.9) -3.6 (68.5) -6.2 (53.8) -30.4 (44.3)

MAS [5] -1.8 (62.6) -1.8 (67.7) -5.8 (61.4) -6.4 (53.7) -9.6 (67.5) -22.8 (50.7) -17.9 (45.0)

RWALK [11] -6.0 (70.1) -5.1 (68.5) -16.3 (55.8) -14.5 (62.8) -25.5 (48.8) -32.5 (47.0) -21.6 (53.5)

m
in

i
Im

ag
eN

et

EWC -3.9 (56.8) -1.5 (64.2) -15.0 (42.5) -23.1 (28.3) -14.6 (58.0) -27.9 (32.2) -34.4 (22.5)

AFEC -1.3 (53.3) -1.4 (52.9) -14.7 (39.7) -22.6 (30.9) -15.1 (37.9) -27.6 (22.8) -38.2 (13.2)

ANCL -1.8 (74.5) -2.2 (68.5) -6.7 (34.8) -5.3 (29.5) -7.3 (59.0) -14.6 (38.0) -14.1 (21.4)

MAS -6.7 (54.6) -6.9 (57.2) -25.7 (40.3) -30.3 (23.6) -18.8 (48.8) -39.8 (22.6) -38.4 (16.4)

RWALK -5.6 (66.3) -8.4 (53.6) -13.5 (45.9) -17.9 (38.0) -22.6 (38.0) -21.4 (37.4) -27.4 (22.4)

tin
y

Im
ag

eN
et

EWC -0.4 (53.0) 0.7 (52.6) -5.8 (39.2) -7.1 (35.6) -7.3 (44.6) -28.4 (11.6) -25.9 (16.2)

AFEC -1.3 (51.6) -2.8 (51.0) -10.3 (34.2) -15.4 (30.4) -13.5 (34.0) -26.2 (15.0) -27.8 (14.8)

ANCL -1.7 (73.4) -1.5 (72.2) -4.3 (46.0) -6.7 (32.6) -3.4 (51.8) -10.7 (37.2) -16.0 (22.8)

MAS -1.1 (59.4) -1.8 (60.0) -5.0 (54.2) -12.9 (31.2) -8.0 (46.8) -25.5 (37.8) -28.0 (22.6)

RWALK -14.1 (40.6) -14.6 (39.6) -25.9 (38.8) -25.7 (44.2) -29.8 (21.2) -33.5 (26.6) -33.3 (25.8)

Table 1. The backward transfer (BWT) and accuracy (Acc) for training different CL methods on the benchmark datasets when the last task
is “clean” and when it is poisoned with BrainWash for ϵ ∈ {0.1, 0.3}. Uniform stands for uniform noise in the range of [−ϵ,+ϵ].

getting (i.e., decrease in BWT) and improved accuracy on
the last task, 2) a consistent increase in last task accuracy
for the ‘cautious’ attacker, though this comes with a reduc-
tion in forgetting efficiency, and 3) the notable superiority
of ANCL and RWALK in withstanding our poisoning attack
compared to other evaluated methods.

5.5. Replay-based CL Methods

We also explored the effectiveness of BrainWash on replay-
based CL methods, specifically ER [16] and ER-ACE [14]
with a single head network and a memory buffer size of
1000. We conducted experiments in a single-head, class in-
cremental learning scenario using 10-split CIFAR100. Our
threat model included two attacker profiles: one with read
access to the victim’s memory and one without memory ac-
cess. The results are reported in Table 2. We note that sce-
narios where the attacker has write access to the memory
represent a different yet significantly simpler threat model
not considered here. We evaluate the reckless attacker with
δ = 0.3, and report BWT and accuracy on the final task for
clean and poisoned settings under these threat models.

Table 2 shows that BrainWash remains effective against

(BWT/Acc) Clean
BrainWash
(Model Inv.)

BrainWash
(Access to Mem.)

ER [16] -18.9 / 71.2 -23.1 / 53.8 -27.7 / 49.5
ER-ACE [14] -9.8 / 80.1 -16.6 / 55.1 -17.0 / 55.9

Table 2. BrainWash against single-head replay-based CL methods.

replay-based methods. Importantly, the replay-based meth-
ods allow for a diverse set of threat models with various
levels of difficulty. For instance, whether the attacker has
read or write access to the memory buffer or not, or the size
of the memory buffer could significantly impact the results.

5.6. Data Poisoning Baselines

While there are no directly comparable baselines, we eval-
uated BrainWash against three additional data poisoning
baselines. This assessment used a task incremental setting
on 10-split CIFAR100 with EWC and the backward trans-
fer and the accuracy of the last task are detailed in Table 3.
We acknowledge that the evaluated baselines are not specif-
ically designed for attacking continual learners; however,
they provide a better insight into the dynamics of different
attacks in a CL setting. For instance, the Unlearnable Ex-
amples [15], drastically reduce the attacked task’s accuracy
while not being as effective as ours in inducing forgetting.

Clean
Unlearnable

Examples [15]
Deep-

Confuse [21]
Meta-

Poison [29]
Brain-
Wash

-5.2 / 68.3 -21.4 / 3.7 -19.42 / 10.0 -22.94 / 35.3 -29.1 / 25.5

Table 3. BrainWash against data poisoning baselines

Next, we conduct various ablation studies to gain deeper
insights into BrainWash.
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Figure 3. Forgetting (i.e., negative backward transfer) and accu-
racy of task T for different attacking strategies and on different
CL approaches trained on miniImageNet with ϵ = 0.3. As can be
seen, forgetting is minimal when the continual learner is trained on
the clean data. Adding uniform noise increases forgetting, while
‘cautious’ and ‘reckless’ attackers increase forgetting by a large
margin. Also, the trade-off between the attack’s success and the
accuracy of the last task is apparent.

Figure 4. Performance of BrainWash against victims using differ-
ent regularization coefficients.

6. Abaltion Studies
We performed various ablation studies to evaluate the sen-
sitivity of BrainWash to different design choices. Please
note that throughout the ablation experiments, we use the
term “forgetting”, corresponding to the negative of BWT.
Moreover, all our ablation studies were performed on EWC.

6.1. Sensitivity to λ

As previously mentioned in Section 5.4, our results reflect
the victim model’s natural behavior, particularly in choos-
ing the optimal λ for their CL algorithm. It’s important to
note that the degree of induced forgetting and the overall
performance of the victim is significantly influenced by the
value of λ. Also, there is a notion that increasing the net-
work’s stability (i.e., opting for higher values of λ) might
act as an effective defense against BrainWash, under the as-
sumption that the lesser the amount of “bad data” learned
by the victim, the lower the level of forgetting. This section
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Figure 5. Attack’s effectiveness with respect to different injec-
tion rates. Forgetting is defined as the negative value of back-
ward transfer. Note that the x-axis reports the injection rate for the
whole dataset, so 20% means 100% of the final task is poisoned.

delves into the relationship between BrainWash’s effective-
ness and the choice of λ.

To explore this, we conducted an experiment on 10-split
CIFAR-100. Here, the assumption is that the victim model
has been trained on the first nine tasks using various fixed λ
values, which remain constant throughout the CL process.
The BrainWash is then applied to the data of the 10th task.
It is crucial to point out that BrainWash remains oblivious to
the λ value used by the victim. Fig. 4 shows the sensitivity
of BrainWash to the victim’s choice of λ, which identifies
different degrees of network plasticity. The top plot shows
the amount of forgetting while the bottom plot demonstrates
the average accuracy of the victim on the past 9 tasks as
a function of λ. Figure 6.1 indicates that BrainWash con-
sistently leads to increased forgetting and reduced average
performance across different λ values, even when the vic-
tim opts for the optimal λ for their context, such as λ = 5e5
in this experiment. Although increasing the network’s in-
transigence (using higher λ values) marginally diminishes
the attack’s effectiveness, this approach also significantly
compromises the victim’s overall performance. Therefore,
BrainWash proves to be resilient to varying λ choices, and
utilizing high λ values is not an efficient defense strategy.

6.2. Dependency on Injection Rate and Noise Norm

To delve deeper into the dynamics of BrainWash, we as-
sessed its impact by varying the noise injection rate (the
percentage of data that is poisoned) and the noise magni-
tude. In an experiment using CIFAR-100 divided into five
tasks, we poisoned the last task with different injection rates
and noise magnitudes. It’s important to note that poisoning
the entire task equates to a 20% injection rate (since one out
of the five tasks is poisoned), and poisoning 10% of the last
task corresponds to a 2% injection ratio.

Figure 5 demonstrates how both the injection rate and
noise amplitude influence the extent of for getting. Our ob-
servations indicate a direct correlation between forgetting,
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Clean
Inv Data
No Reg

Inv Data
with Reg

Real
Data

Forgetting 5.2 23.6 28.8 28.16

Table 4. Difference between the induced forgetting while using
different alternatives for the past data

noise norm, and injection rate. This figure also reveals a
constant trade-off between the subtlety of the noise and the
amount of forgetting induced: increasing either the norm
or the injection rate leads to more pronounced forgetting.
However, in scenarios where stealthiness is crucial, such in-
creases in noise or rate can potentially expose BrainWash.
Despite this, the results show that effective forgetting can
still be achieved even with a minimal injection rate.

6.3. The Effect of Model Inversion

As previously mentioned, we considered a scenario where
the attacker might not have access to data from previous
tasks. To address this, we suggested using model inver-
sion, employing inverted samples as proxies. In this con-
text, we examined the significance of model inversion for
the effectiveness of BrainWash. Our study on CIFAR100,
segmented into 10 tasks, evaluated the impact of BrainWash
under three distinct conditions: 1) access to actual data from
preceding tasks, 2) application of a basic model inversion
technique without any regularization, and 3) utilization of
regularized model inversion, as detailed in Section 4.2.

The findings are presented in Table 4, which illustrates
the percentage of forgetting associated with each of these
strategies. The term ‘Clean’ refers to the inherent forgetting
experienced by the continual learner trained on the clean
final task. Notably, BrainWash, when implemented with
regularized model inversion, achieves results comparable to
the scenario with direct access to real data. Furthermore, the
robustness of BrainWash to the choice of model inversion
method is evident, as the basic, non-regularized inversion
demonstrates only marginal underperformance compared to
its more advanced counterpart.

6.4. Different Task Lengths

Here we focus on assessing the efficacy of BrainWash at
various stages of a continual learner’s training. We divided
CIFAR-100 into 20 five-way classification tasks and mea-
sured the extent of forgetting immediately after introducing
noise in the 10th, 15th, and 20th tasks. The results, depicted
in Table 5, confirm that BrainWash effectively induces for-
getting at different training stages of the continual learner.

An intriguing finding is the variation in the injection rate
of BrainWash across these stages. For instance, at task 10,
BrainWash has an injection rate of 10% (being applied to
one out of ten tasks). However, this rate decreases when
poisoning is applied to 15 or 20 tasks, leading to a corre-
sponding reduction in the attack’s strength. The result il-

Method 10 Tasks 15 Tasks 20 Tasks
Clean 1.4 2.17 2.16
Ours 17.47 14.61 14.04

Table 5. Effect of different number of tasks on forgetting

lustrates how the impact of BrainWash is influenced by its
relative scale in the context of the overall training process.

6.5. Efficacy on Different Architectures

To show the independence of BrainWash to the architecture,
we repeat the 10-split CIFAR-100 experiment with the Reg-
NetX [17] on ANCL, and report the results in Table 6.

(BWT/Acc) Clean BrainWash
RegNetX-1.6GF [17] -6.96 / 66.8 -17.6 / 43.3

Resnet-18 -0.1 / 81.5 -30.4 / 44.3

Table 6. BrainWash performed on ANCL on RegNetX.

7. Conclusion
This study presents BrainWash, an innovative poisoning at-
tack for regularization-based continual learning (CL) mod-
els. Its primary objective is to maximize the forgetting of
a continual learner on previously learned tasks. We intro-
duced two threat models: the ‘reckless’ and the ‘cautious’
attacker. Both threat models assume that the attacker can
only access the trained model and the clean data from the
last task. Critically, the attacker is unaware of the specific
CL method employed by the victim or any related hyper-
parameters. Our core strategy involves using model inver-
sion to approximate data from earlier tasks. The attacker
then employs a bilevel optimization problem to poison the
current task’s data. When the victim trains their model on
this manipulated data, their performance on prior tasks is
adversely affected. The ‘reckless’ attacker disregards the
victim’s performance on the last task’s clean data, while the
‘cautious’ attacker seeks to preserve high accuracy on it.

In our extensive experiments, we employed five well-
known continual learning methods and three benchmark
datasets to demonstrate the efficacy of BrainWash as a po-
tent poisoning attack. Moreover, we provided a series of
detailed ablation studies to offer a thorough understanding
of BrainWash’s mechanics and impacts.
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Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence, 44(7):3366–3385, 2021.
1, 2

[14] Caccia et al. New insights on reducing abrupt representation
change in online continual learning. In ICLR, 2021. 6

[15] Huang et al. Unlearnable examples: Making personal data
unexploitable. In ICLR, 2020. 6

[16] Rolnick et al. Experience replay for continual learning.
NeurIPS, 2019. 6

[17] Radosavovic et al. Designing network design spaces. In
CVPR, 2020. 8

[18] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.
Orthogonal gradient descent for continual learning. In Inter-
national Conference on Artificial Intelligence and Statistics,
pages 3762–3773. PMLR, 2020. 2

[19] Sebastian Farquhar and Yarin Gal. Towards ro-
bust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, 2018. 2

[20] Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. Learning to confuse:
Generating training time adversarial data with auto-encoder.
In Advances in Neural Information Processing Systems. Cur-
ran Associates, Inc., 2019. 3

[21] Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. Learning to con-
fuse: generating training time adversarial data with auto-
encoder. Advances in Neural Information Processing Sys-
tems, 32, 2019. 3, 6

[22] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages
1126–1135. PMLR, 2017. 3, 5

[23] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo
Grazzi, and Massimiliano Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In Interna-
tional conference on machine learning, pages 1568–1577.
PMLR, 2018. 5

[24] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications secu-
rity, pages 1322–1333, 2015. 2, 3

[25] Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari,
Raviteja Vemulapalli, Sachin Mehta, Oncel Tuzel, Vaishaal
Shankar, and Fartash Faghri. Tic-clip: Continual training of
clip models. arXiv preprint arXiv:2310.16226, 2023. 2

[26] Jonas Geiping, Liam H Fowl, W. Ronny Huang, Wojciech
Czaja, Gavin Taylor, Michael Moeller, and Tom Goldstein.
Witches’ brew: Industrial scale data poisoning via gradient
matching. In International Conference on Learning Repre-
sentations, 2021. 3

[27] Gyojin Han, Jaehyun Choi, Hyeong Gwon Hong, and Junmo
Kim. Data poisoning attack aiming the vulnerability of con-
tinual learning. In 2023 IEEE International Conference on
Image Processing (ICIP), pages 1905–1909. IEEE, 2023. 1

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proceed-
ings of 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 770–778. IEEE, 2016. 5

[29] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor,
and Tom Goldstein. Metapoison: Practical general-purpose
clean-label data poisoning. Advances in Neural Information
Processing Systems, 33:12080–12091, 2020. 3, 5, 6

24065



[30] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 4

[31] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu,
Cristina Nita-Rotaru, and Bo Li. Manipulating machine
learning: Poisoning attacks and countermeasures for regres-
sion learning. In 2018 IEEE symposium on security and pri-
vacy (SP), pages 19–35. IEEE, 2018. 3

[32] Siteng Kang, Zhan Shi, and Xinhua Zhang. Poisoning gen-
erative replay in continual learning to promote forgetting. In
Proceedings of the 40th International Conference on Ma-
chine Learning, pages 15769–15785. PMLR, 2023. 1

[33] Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and
Thomas Hofmann. Achieving a better stability-plasticity
trade-off via auxiliary networks in continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11930–11939, 2023. 1, 5, 6

[34] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 2, 5, 6

[35] Soheil Kolouri, Nicholas A Ketz, Andrea Soltoggio, and
Praveen K Pilly. Sliced cramer synaptic consolidation for
preserving deeply learned representations. In International
Conference on Learning Representations, 2020. 2

[36] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research). 5

[37] Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan
Babb, Maxim Bazhenov, Douglas Blackiston, Josh Bongard,
Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff
Clune, et al. Biological underpinnings for lifelong learn-
ing machines. Nature Machine Intelligence, 4(3):196–210,
2022. 1, 2

[38] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition
challenge. 2015. 5

[39] Huayu Li and Gregory Ditzler. Targeted data poisoning at-
tacks against continual learning neural networks. In 2022 In-
ternational Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2022. 1

[40] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp:
Trust region gradient projection for continual learning. In In-
ternational Conference on Learning Representations, 2022.
2

[41] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. Advances in neu-
ral information processing systems, 30, 2017. 5

[42] Aravindh Mahendran and Andrea Vedaldi. Understanding
deep image representations by inverting them. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5188–5196, 2015. 3

[43] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018. 2

[44] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 67–82, 2018. 2

[45] Alexander Mordvintsev, Christopher Olah, and Mike Tyka.
Deepdream-a code example for visualizing neural networks.
Google Research, 2(5), 2015. 3, 4
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