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Figure 1: The Slice-100K dataset consists of STL files and their G-code counterparts. Each pair
here consists of STL (left) and its slices (right) for G-code.

Abstract

G-code (Geometric code) or RS-274 is the most widely used computer numerical
control (CNC) and 3D printing programming language. G-code provides machine
instructions for the movement of the 3D printer, especially for the nozzle, stage,
and extrusion of material for extrusion-based additive manufacturing. Currently,
there does not exist a large repository of curated CAD models along with their
corresponding G-code files for additive manufacturing. To address this issue, we
present Slice-100K, a first-of-its-kind dataset of over 100,000 G-code files, along
with their tessellated CAD model, LVIS (Large Vocabulary Instance Segmentation)
categories, geometric properties, and renderings. We build our dataset from triangu-
lated meshes derived from Objaverse-XL and Thingil0K datasets. We demonstrate
the utility of this dataset by finetuning GPT-2 on a subset of the dataset for G-code
translation from a legacy G-code format (Sailfish) to a more modern, widely used
format (Marlin). Our dataset can be found here. Slice-100K will be the first step in
developing a multimodal foundation model for digital manufacturing.
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1 Introduction

In recent years, the integration of digital design and computer-aided manufacturing processes has
led to groundbreaking innovations in the manufacturing sector [1, 2]. One of the most transforma-
tive technologies at this intersection is additive manufacturing or 3D printing, which enables the
physical manufacturing of digital assets [3, 4]. 3D printing surpasses the limitations of traditional
manufacturing techniques by enabling the creation of parts with complex geometric shapes [5, 6]. A
commonly used 3D printing method is extrusion-based additive manufacturing [7, 8], often based on
Fused Deposition Modeling (FDM) for manufacturing plastic or polymer parts. In this method, bits
of thermoplastic material are sequentially extruded from a heated nozzle, which has three degrees of
freedom. The nozzle moves in a flat 2D plane and builds up the desired shape layer-by-layer.

A typical 3D printing process begins with creating a 3D model of the part in a computer-aided
design (CAD) program. This CAD model is then usually exported as a triangulated mesh file (for
example, STL, PLY, or OBJ). The triangulated model is then “sliced” into multiple layers based on
the resolution or the layer height of the 3D printer. Each layer is then converted into a sequence of
programmatic instructions for the movement of the 3D printer’s nozzle and extrusion of material
along the boundary or “contour” of each layer. The instructions also include the movement of the
nozzle and extrusion of material inside the contours or the “infill.” These instructions are then
directly sent to the 3D printer for physical manufacturing. The most common representation for
storing this information is G-code (Geometric code) or RS-274, a computer numerical control (CNC)
programming language. G-code provides machine instructions for the movement of the 3D printer,
especially for the nozzle, stage, and extrusion of material for extrusion-based additive manufacturing.
Although some extensions of G-code have been written to include basic abstractions such as for-loops,
the vast majority of G-code in use consists mainly of low-level instructions that provide a sequence
of commands to be carried out by the 3D printer.

Since 3D printing is a layered manufacturing process, it requires performing the slicing process. The
slicing process operates on the entire object and splits it along the print direction (usually the Z-axis
by default). Each layer is then used to generate the printer instructions for contour and infill. However,
achieving high-quality fabricated models often requires manual tuning of the slicing software. The
iterative improvement of a given G-code file to produce a 3D-printed model that exactly matches its
CAD representation is a non-trivial challenge. In addition, there are several “flavors” of G-code files
depending on the compatibility of the 3D printer’s controller hardware. Due to the low-level nature
of G-code, manually debugging a G-code file is cumbersome, if not impossible. Features such as
line-level and layer-level natural language comments are infrequent. While custom solutions such as
regular expression matching could be leveraged for correcting G-code, they fall under a rigid set of
methods and are not generalizable.

In the last few years, while advances in Al have impacted various domains, their potential in
computer-aided design (CAD) and cybermanufacturing remains largely untapped. Modern LLMs
and Vision-Language Models (VLMs) could provide an avenue to realize this potential. The ability
of LLMs to process, comprehend, and generate natural language descriptions, code, and other text
data can be leveraged to interpret, generate, and manipulate G-code. LLMs for 3D shape modeling
have been shown to enable operations on meshes [9, 10] and point clouds [11, 12]. G-code, with its
unique language-based structure, presents distinct challenges for machine learning, mainly due to the
context window limitations of current LLMs. Many existing deep-learning-based computer vision
applications leverage 2D datasets (images), text descriptions, or a combination of such modalities for
both supervised or self-supervised pre-training of foundation models (see Table 1). However, none
of these datasets provide a curated avenue for training a manufacturing domain-specific foundation
model.

To bridge this gap, we introduce Slice-100K, a curated multimodal dataset (see Figure 2 for reference)
of G-code, CAD models, renderings, and geometric properties to facilitate the application of VLMs
for additive manufacturing. We believe Slice-100K will encourage the research community to address
new problems in the design and manufacturing space. Our dataset, built using models from Objaverse-
XL and the ThingilOk dataset, encompasses a diverse range of 3D printable objects and provides a
comprehensive resource for training a manufacturing domain-specific foundation model.

Contributions: This paper introduces Slice-100K, a multimodal dataset for manufacturing appli-
cations. The main features include a first-of-its-kind curated dataset of more than 100,000 G-code
files along with their corresponding STL CAD files, renderings, LVIS (Large Vocabulary Instance
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Figure 2: Different data formats in Slice-100K. We build our dataset using CAD models (STL files)
and their renderings. Furthermore, we slice these STL files to generate G-code (build direction shown
by black arrow) and their categorical classifications.

Segmentation) categories, and geometric properties. We demonstrate the utility of Slice-100K by
evaluating existing LLMs for G-code geometric transformations. We also showcase a novel applica-
tion of our dataset on LLM-based G-code flavor translation. We believe that this multimodal dataset
will be the starting point for a foundation model in digital manufacturing.

2 Background and Related Work

G-code: G-code forms a crucial intermediary between digital design and physical manufacturing,
providing an expressive language-based representation for 3D objects. For example, the most
straightforward G-code command is G1, which directs the 3D printer to move its nozzle towards a
spatial coordinate. This is usually followed by a coordinate in the form Xaaa Yaaa, where movement
along the X and Y axes are given by a specific numeric value aaa. For extrusion-based 3D printers,
a thermoplastic material is extruded from a heated nozzle that has three degrees of freedom. An
example extrusion move is given by G1 X50.6 Y36.2 E2.3, where the nozzle moves 50.6 units
along X, 36.2 units along Y and extrudes 2.3 units of material. Other commands instruct the printer
to change settings, such as the material/ink feed rate, or perform more complex movements without
extruding material.

Language Models for Code: LLMs have also been used for programming language analysis and
code generation. Coding-focused LLMs are mainly trained on a mix of web-scraped data, coding
repositories, and instructions and often surpass general-purpose LLMs in code-related tasks. Current
research has lead to many such models [13—18]. Most notable ones include WizardCoder [18], Code
Llama [19], and Instruct-CodeGen [16]. Codex [20] is an early model deployed under Github’s
Copilot feature and acts as an IDE assistant that can understand local code context, make suggestions,
and generate entire blocks of code.

3D Datasets: The current research community has proposed and leveraged various 3D datasets
[21-28]. Notable ones include Objaverse 1.0 [23] and Objaverse-XL [24], with the former consisting
of over 800K 3D models with higher quality textures and geometry types (Table 1). The latter is
a massive dataset of over 10 million objects gathered from various sources, including Thingil0K
and GitHub repositories. The diversity of objects in terms of shapes and categories is an advantage
for Objaverse-XL. Most of the datasets currently used by the research community provide a single
modality (meshes or voxels), and some include text descriptions and renderings for visual supervision
tasks. However, none of the currently available datasets provide curated assets for encouraging
research in the manufacturing domain. The largest public G-code dataset we are aware of is the
Greater G-code [29] dataset, which only contains 860 G-code files paired with their STL renderings.

LLMs and 3D Datasets: Language understanding methods have been applied in the 3D domain for a
wide array of tasks including 3D captioning [26, 30], object grounding [11, 31], 3D conversation [32],
and text-conditioned generation [9, 10, 10]. Recently, there has been a surge of interest in multimodal
large language models (MLLMs). MLLMs combine the language-based reasoning and knowledge
of LLMs with the ability to comprehend other data modalities. Vision-augmented LLMs [33-35]
encode images into an LLM’s embedding space. These methods have been subsequently extended to
the 3D domain for different forms of 3D representation, such as point clouds [12, 36], and sparse
outdoor LiDAR data [37]. Paschalidou et al. [38] use a transformer-based model (not LLM) to
predict 3D objects in a scene autoregressively. 3DLLM [11] maps 3D scenes to a set of 2D image
embeddings and uses a query-token embedding technique based on BLIP-2’s Q-Former [34] to
perform a diverse set of 3D-related tasks. GPT4Point [36] also leverages a similar Q-Former for point-



Table 1: Comparison of different 3D multimodal datasets currently available.

Dataset Mesh Renderings Categories G-code
ABC v v X X
ShapeNet v v v X
Thingi10K v v X X
Objaverse 1.0 v v v X
Objaverse-XL v v v X
Slice-100K v v v v

text feature alignment. Chat3D [32] uses an object-centric 3D representation to train a 3D-LLM for
dialogue. Feng et al. [39] does in-context learning on room layouts from the 3D-FRONT dataset [40].
PointBERT [41] did some early work on point-cloud representation learning with transformers. Fu
et al. [30] align visual features from 3D scenes with text to finetune a LL.aMa-2-chat-70B [42] model
for scene understanding and question answering.

LLMs for Design and Manufacturing: Recent research has shown that natural language descriptions
can be used for various tasks related to 3D printing, such as generating novel shapes [43—46], editing
scenes [47], and reasoning about geometry in the volume space [48]. Makatura et al. [49] thoroughly
examine GPT-4’s suitability for automated design and manufacturing. Badini et al. [50] use ChatGPT
to modify G-code, but they only alter the parameters in the G-code header. These modifications allow
them to address common errors in the 3D printing process, such as warping, bed detachment, and
stringing. Kulits et al. [51] train an LLM to autoregressively generate structured representations of
simple 3D objects from the CLEVR dataset [52].

3 The Slice-100K Dataset

3.1 Data Collection Process

Dataset: We build our Slice-100K dataset using Objaverse-XL’s openly available 3D dataset and
ThingilOK dataset. Specifically, we download STL models from the Thingiverse branch of Objaverse-
XL since these are solid models specifically designed to be additively manufacturable. We filter
our models from the ThingilOK dataset using the following keywords: num components = 1, is
manifold, and is oriented. A summary of our dataset is shown in Table 2, and we describe each
data source below. In addition to providing STL models, our dataset includes renderings, descriptive
captions, and detailed geometric properties. The metadata for each model is generated using Open3D,
a library that facilitates the processing and analysis of 3D data. Key geometric properties such as
vertex manifold, edge manifold, and vertex count are calculated and included in the dataset. These
properties are essential for understanding the structural characteristics of the models and can be
leveraged in various applications, such as model optimization and error detection in 3D printing.

The Objaverse-XL dataset comprises of 3D objects gathered from Github, Thingiverse, Smithsonian
Institution, Polycam, and Sketchfab. We collect data from the Thingiverse subset of Objaverse-XL.
Thingiverse is one of the largest online platforms consisting of user-generated digital designs and is
particularly focused on 3D printable files, encouraging community interaction and collaboration. A
majority of these files are provided in the STL format and are available under Creative Commons
licenses. The models on Thingiverse cover a wide range of categories, including functional parts,
artistic creations, and educational tools. This extensive and diverse collection makes it an invaluable
resource for creating comprehensive datasets for additive manufacturing.

The ThingilOK dataset [27] is a collection of 10,000 3D models sourced from Thingiverse. It is
curated explicitly for research purposes and provides a diverse set of models that are manifold and
oriented, making them ideal for various computational geometry and 3D printing research applications.
The dataset includes metadata and annotations that facilitate the development of machine learning
models and other computational tools.



Table 2: Composition of Slice-100K.

Source Number of Objects
Objaverse-XL (Thingiverse) 96,479
Thingil0k 3,589
Total 100,068

G-code Generation: The G-code generation process is a critical component of the Slice-100K
dataset. We utilize PrusaSlicer’s [53] command line functionality to slice all our models. Each model
is sliced using two distinct G-code flavors—Sailfish and Marlin. Prusa’s slicer is an open-source
and widely-used slicing software that prepares 3D models for printing by converting them into
G-code, which provides specific instructions for 3D printers. Additionally, it allows for extensive
configuration options, allowing for fine-tuning of print settings such as layer height, infill density,
and support structures. This flexibility ensures that the generated G-code is high quality and suitable
for different 3D printers and printing conditions. Furthermore, to minimize our data footprint, we
generate G-code files in the binary G-code (. bgcode) format, a functionality recently incorporated
by Prusa’s slicer. An important aspect of the slicing pipeline is the infill pattern selection, primarily
due to its impact on total print time and structural properties of manufactured models. To encourage
diversity among our G-code files with respect to structural properties, while slicing each STL file,
we randomly select from four different infill patterns: (1) Gyroid: Empirically known to give equal
strength across all directions and optimizes for a quicker print time; (2) Honeycomb: Uses a grid of
hexagons, providing increased mechanical resistance, and non-crossing paths; (3) Cubic: Introduces
crossing paths, potentially generating air-pockets; and (4) Grid: Uses a two-way checkerboard-like
pattern for faster infill.

STL Renderings: To generate renderings of our STL files, we utilized Blender [54] rendering scripts
made available by Objaverse-XL. We modified the scripts to generate a total of 10 views for each
object - 6 orthogonal views (front, back, top, bottom, left, right) and 4 isometric views (captured from
top four corners of a cube). Each object was rendered with a random color. These renderings were
utilized for object category generation.

LVIS Object Categories: To generate the text category of each model in Slice-100K, we use the
framework shown in Figure 3. For each model in our dataset, we assign the top 3 of the 1200+ LVIS
(Large Vocabulary Instance Segmentation) categories [55]. This process helps enhance the utility of
the dataset, enabling better categorization and facilitating more effective use in various research and
development applications. For each CAD model, we generate multiple views using Blender. This
step ensures comprehensive visual coverage of the model, capturing its geometry from various angles.
The generated renderings serve as input to a pre-trained Vision-Language model to generate image
embeddings. Specifically, we utilize a pre-trained CLIP-ViT-L-14 [56, 57] to obtain embeddings
for each view. To integrate information from multiple views, we compute an average embedding
for each object. This average embedding combines the features from all views into a single, unified
representation, providing a comprehensive summary of the visual characteristics of the object.
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Figure 3: Framework to generate the LVIS categories of the 3D objects.



In parallel, we also process the 1200+ LVIS categories to obtain the text embeddings for all categories.
Using the average embedding, we then match each object to the closest categories in the text
embedding. By comparing the average embeddings, we identify the top 3 most relevant LVIS
categories for each object in our dataset.

3.2 G-code Translation

G-code translation involves converting a G-code from one flavor to another while preserving the
necessary context associated with each flavor and finding a correspondence between any two given
flavors of G-code. We begin with G-code data in two different flavors, Sailfish and Marlin. Sailfish is
a legacy G-code format that is not currently used by the 3D printing community. Marlin is a modern
G-code format that has been heavily adopted, and in some cases, other G-code flavors are built on top
of Marlin. Given this, we leverage our proposed dataset to finetune GPT-2 for the task of G-code
translation from Sailfish to Marlin. G-code is inherently a low-level language, and for a task like
translation, the quality of data being fed into an LLM has a significant impact on its performance.
Keeping this in mind, we perform some data pre-processing to effectively maintain the context across
lines of G-code.

3.2.1 Data Pre-Processing Methods

A major challenge in applying language-modeling-based techniques to G-code is the length of G-code
files. While the G-code representation of a 3D shape can be separated into layers (which do not share
information and hence be handled independently), this is still not sufficient, as a single layer can
be over the token limit. This motivates methods for further splitting of G-code layers, allowing us
to decompose mappings between G-code files into a series of mappings between smaller G-code
portions. Crucially, these methods can be applied to different G-codes regardless of the variants they
are written in while ensuring that the resulting pairs of G-code segments represent the same spatial
semantics. To accomplish this, we first permute the contours in each G-code layer so that they have
the same ordering. We then adaptively select portions to create matching pairs.

Contour Flipping: Let L 4 and L be two G-code layers that use different flavors to represent the

same 3D information. We can decompose each of these layers into a series of NV contours ch), . cg\’?)
and ch), - cg\],g), each represented using their respective flavor. Both sequences contain the same set

of unique contours irrespective of the flavors. Because of this, we can define a bijective mapping

M : [N] — [N] such that the contour cg\f()i) is equivalent to CEA)

The primary challenge in our preprocessing is to find this bijection, which, once found, allows us to
(B)

re-order the contours of L so that Vi € [N] we have that ¢;~’ is equivalent to cEB). To determine

M, we iterate over each contour CEA) in L 4 and find its corresponding contour 055()1.) in L. We

consider two contours to be matching if there are specific commands which are included in both.
More specifically, we define a method for representing a single line of G-code so that identical
representations will indicate matching contours.

To minimize the possibility of a duplicate representation (that could lead to a false match), we base
this criterion on G-code lines, which contain commands to extrude at specified coordinates. Other
commands are disregarded as they are likely to be repeated throughout a file or contain syntax that
differs across flavors. In contrast, extrusion locations are specified using floating point coordinates
with several digits of precision, making it rare for the same point to appear in different contours.
We further account for the possibility of duplicate locations by concatenating the line’s coordinates
with the next two lines in the contour where possible. If these following lines do not contain a
location-specific extrusion command, we simply include in their place a token denoting an empty
line. Together, this creates a string representation of each line that strips away flavor-specific syntax
while including enough contextual information to prevent unwanted duplicates.

Using this consistent characterization of G-code lines allows us to match contours by simply finding
a single pair of lines with the same representation. However, due to the length of G-code layers,
it is highly inefficient to consider all possible pairs of lines when looking to match contours. To
alleviate this, we pre-compute a lookup table for L. For each line of a contour cg) , the lookup table
maps from the line representation to the index 7. Then, when iterating over the contours of L 4, we
compute the representation for each line and search the lookup table. If there is a match, then we
add these indices to our bijection M. While this contour flipping method cannot be guaranteed to



always find the correct bijection M due to variations amongst some contours, we find that it is highly
reliable, producing aligned G-code for over 99.9% of the G-code layers in our dataset. We include
pseudocode for our method in the Appendix (Algorithm 1).

Pair Creation: Given two G-code layers that have undergone contour flipping so that they have
the same high-level semantic ordering, we can reasonably expect to divide them each into pairs of
contiguous sections sharing the same 3D information. Because there are often commands included in
one flavor but not the other, we cannot simply select portions of equal length and expect them to be
translatable. Instead, we have to adaptively determine the cutoff points for each section.

Here we represent the layers as sequences of lines, with L 4 = EgA), e Eg\’;l) and Lp = EEB), e (%,B).
Our goal of separating these layers into K matching chunks then amounts to finding pairs of delimiting
pA) (A B)  p(B)

kA A - kKB PRB 1
meet our requirements. In particular, we can ensure that the segments contain all the same content as
long as the beginning and end lines of each language correspond to the same commands.

line indices (k#, k?)X , so that the resulting G-code segments , and

Our pair creation approach finds these matching line indices while respecting a maximum length
parameter (see Algorithm 2 in Appendix). In short, we iteratively find index kﬁH by starting with

a candidate value which is kf}H plus the maximum length. We then try to find a matching line in
Lp and, if successful, consider this a pair. If we cannot find a matching line for our candidate, we
decrease the candidate line index by one and continue trying. We use a line representation similar to
the one used for contour flipping to determine whether a pair of lines is matching.

Handling Extrusion Values: Through the previously described preprocessing methods we have been
able to create pairs of G-code chunks which represent the same local information and can therefore
be translated between. However, there is an additional non-local dependence that must be accounted
for in the G-code extrusion values. In addition to telling the 3D printer where to move, a line of
G-code also tells it how much material to extrude during this movement.

This is specified through an "E" command which states how much total material will have been
extruded once that point is reached. For instance, if one line contains an E value of 3 and the next
line has an E value of 3.1, then .1 units of material should be extruded during this movement. There
are also specialized language-specific commands throughout a shape’s G-code, which reset the total
extrusion values to some smaller constant.

Because these values represent a cumulative sum of all material extruded up to that point starting
from the most recent reset value, there is a non-locality element that must be addressed. During
preprocessing, we amend each extrusion value by subtracting the previous line’s extrusion value. We
call this new value the relative extrusion. This represents only the amount of material that is to be
extruded during this movement and allows for any translation model to learn a simple local mapping
that is not dependent on other chunks. Finally, after generating the G-code in this relative form, we
convert it back to its original format by computing its cumulative sum.

3.3 Geometric Transformation - Scaling

Scaling is considered to be a simple geometric transformation that results in a geometry being
enlarged or shrunk depending on a scaling factor. We assume uniform scaling along all three principle
directions (X, Y, and Z). We evaluate the ability of current chat-based LLMs to perform this simple
linear transformation by providing them with a single layer of G-code and asking the prompts:

Can you scale the coordinates by a factor of 2 and give me the updated G-code?
Can you scale the entire layer by a factor of 2 and return the updated G-code?

At the time of our evaluation, we empirically arrived at the maximum number of lines of G-code an
LLM in our test suite can accept before crossing their respective token limits. We leverage this fact to
chunk the G-code before feeding it to an LLM.

3.4 Evaluation Metrics

To measure the quality of G-code generation models, we introduce an image-space IoU metric for
G-code fidelity in comparison to ground truth. Because small errors in the produced G-code can lead
to significant divergence in the produced shape, we find it insufficient to use a language-based metric
for evaluation. Instead, we use an image-based measure of fidelity by rendering top-down images of
each layer.



G-code Renderer: To the best of our knowledge, there does not currently exist open-source software
that can programmatically generate renderings of G-code objects. To remedy this, we introduce and
make public our Python-based tool for this purpose. The renderer generates a top-down rendering of
an individual layer. This layer-wise approach is sensible for examining the 3D structure as it avoids
occlusions and captures all relevant parts of the shape, even the infill that provides internal structural
support for the part and may not be visible from the outside.

Image-Space IoU: We make use of our top-down renderer by defining an Intersection over Union
(IoU) metric to capture similarity in image space rather than text space. To compute this loss for a
layer of translated G-code, we render the layer as well as its ground-truth counterpart into top-down
images and compute the 2D IoU. We can use this metric to quantify how well a G-code generation
model produces accurate instructions for printing in the physical space. To account for the 3D-printing
process’s varying levels of sensitivity to error, we further define the IOU@Fk metric as the percentage
of translated layers that have an IOU greater than k.

4 [Experiments

We use Slice-100K for two tasks: evaluating current LLMs for G-code geometric transformation
(scaling) and G-code flavor translation by finetuning GPT-2,

4.1 Evaluating Existing LL.Ms for G-code Geometric Transformations

We evaluate some of the existing chat-based LLMs (GPT series [58, 59], Claude [60], Llama-2 [42],
and Starcoder [61]) for performing geometric transformations, specifically scaling a layer of the
model. We find GPT-3.5 and GPT-4 struggle with the S-shape. Claude-2 is able to generate the outer
contour of the cylinder and cube but struggles with infill generation for the cylinder and the S-shape.
Furthermore, we see that the open-source models—Llama-2-70b and Starcoder—do not perform
well. We visualize the G-code outputs from the various LLMs in our test suite and render them using
Ultimaker’s Cura [62] slicing software. Our results are shown in Figure 4.
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Figure 4: G-code visualization for scaling operation on all LLMs. Expected G-code is shown in the
top row. Please see the referenced figures in the Appendix for additional renderings.

4.2 G-code Flavor Translation

For finetuning, we create a paired dataset of G-code chunks in each flavor using the preprocessing
methods outlined in Section 3.2.1 using a maximum chunk size of 20 lines. We then finetune a
lightweight GPT-2 model for translation using a next-token prediction loss. During inference, we do
not have access to the ground-truth Marlin G-code, which would be needed to determine the cutoff
lines for pair creation, so we instead split our Sailfish input into smaller chunks of fixed-length.



Table 3: Performance of GPT-2 models finetuned for G-Code translation using differently sized
subsets of SLICE-100k compared using 10U-based metrics. Training data reports the amount of
Slice-100K data that models were finetuned on. The IOU metrics use our G-Code renderer to measure
translation quality.

Model Training Data 10U Metrics
Files Layers Chunks | IOU@0.9 I0U@0.95 1I0U@0.98 10U@0.99
GPT-2 Base 0 0 0 67 61 17 4
GpT-2 1 49 3933 95 88 71 27
GPT-2® 5 545 13371 96 91 74 30
GPT-2® 25 2298 51295 98 94 71 30
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Figure 5: Renderings of G-code layers predicted by a translation model finetuned on Slice-100K.

Table 3 shows the results of performing finetuning on differently sized subsets of Slice-100K. We
denote a GPT-2 model finetuned on n shapes from our dataset as GPT-2("). Figure 5 shows example
renderings of shapes that have undergone flavor translation by our GPT-2° model. We also include an
example G-code that has been translated in the Appendix (Figure 11). We find that even finetuning on
minimal subsets of our dataset leads to significantly enhanced G-code translation abilities. Increasing
the amount of training data beyond just five G-code shapes finetuning ceases to yield improvements.
We attribute this to our preprocessing methods, which reduce the complex translation task to a simple
local mapping, thereby reducing the amount of data needed for learning.

5 Conclusion

In this paper, we presented Slice-100K, the first large-scale, curated dataset of over 100,000 G-
code files, along with their corresponding STL CAD files, renderings, and geometric properties.
This dataset addresses a significant gap in the availability of comprehensive resources for additive
manufacturing. We showcase our dataset explorer in Figure 6 and various modalities offered by Slice-
100K in Figure 7. Our evaluation demonstrated the usefulness of Slice-100K in utilizing existing
language models for tasks such as G-code debugging, geometric transformations, and comprehension.
Additionally, we introduced a novel application of using Slice-100K for LLM-based G-code flavor
translation, showcasing the potential of our dataset in advancing the field. We believe that Slice-100K
will serve as a foundational resource for future innovations in manufacturing, paving the way for the
development of domain-specific foundation models.

Limitations: Despite these advancements, Slice-100K has certain limitations. One major challenge
is the difficulty in verifying the LVIS categories of the models. Additionally, all models in Slice-100K
were sliced along the default Z-direction. This uniform slicing approach may limit the dataset’s
applicability for research into multi-directional slicing techniques and their impact on manufacturing
outcomes. Furthermore, we primarily focus on extrusion-based 3D printing among a plethora of
additive manufacturing techniques. Addressing these limitations in future versions of the dataset will
be crucial for further enhancing its utility and broadening its application scope.
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A Appendix

Algorithm 1 Contour Flipping

1: procedure CONTOURFLIP(Layer A, Layer B)
2 ContoursA < ContourSplit(LayerA)

3: ContoursB « ContourSplit(LayerB)
4: Lookup < HashMap() > Create hash index of contours in Layer B
5: for ¢ < 1 to length(ContoursB) do
6: for i < 1 to length(ContoursB]c]) do
7: line; < representation(ContoursB[c][i])
8: if line; € Lookup and Lookup|line;] # i then
9: Delete Lookuplline;]
10: else
11: Lookuplline;] + ¢
12: end if
13: end for
14: end for
15: Mapping < HashMap() > Find bijection between layers
16: for c4 < 1 to length(ContoursA) do
17: for i < 1 to length(ContoursA|c,]) do
18: line; < representation(ContoursAlcalli])
19: if line; € Lookup then
20: cp < Lookuplline,]
21: Mapping[cg] < ca
22: end if
23: end for
24: end for

25: FlippedB + Array(length(ContoursB|ca))]
26: for i + 1 to length(ContoursB) do

27: Flipped B[M appinglc;]] < ContoursB]i]
28: end for

29: return LayerA, Flipped B

30: end procedure

Figure 8: GPT-3. 5 outlier case for scaling a cylinder.

16



Algorithm 2 Pair Creation

1: procedure PAIR CREATION(Layer A, Layer B, maxLength)
2: start;, start; < 0,0

3: end; < maxLength
4: pairs < List()
5: while start; <= length(LayerA) do
6: end; < start; +1
7: found <+ False
8: while - found and (end; — start;) < maxLength do
9: if representation(Layer Alend;]) = representation(Layer Blend;]) then
10: found <+ True
11: end if
12: end; = end; +1
13: end while
14: if found then > Add matching pair of chunks to dataset
15: chunk, < LayerAlstart; : end;]
16: chunky, < LayerB[start; : end;]
17: pairs.append((chunk,, chunky))
18: else
19: end; = end; —1 > Could not find a line matching line end;, try a smaller chunk
20: end if

21: end while
22: return Layer A, FlippedB
23: end procedure

Figure 9: Llama-2-70b outlier case for scaling a cylinder

Figure 10: Claude-2 outlier case for Scaling S-shape.



Sailfish Input

Real Marlin

Predicted
Marlin

G1X57.724 Y65.24 E308.61973
G1X57.724 Y131.501 E311.34178
G1 X57.793 Y131.939 E311.36
G1X58.031 Y132.411 E311.38172
G1X58.416 Y132.772 E311.4034
G1 X58.902 Y132.981 E311.42513
G1X59.249 Y133.026 E311.4395
G1 X140.751 Y133.026 E314.78766
G1X141.189 Y132.957 E314.80588
G1 X141.661 Y132.719 E314.8276
G1 X142.022 Y132.334 E314.84928
G1X142.231 Y131.848 E314.87101
G1 X142.232 Y131.836 E314.8715
G1 X141.921 Y131.736 F7800
;TYPE:External perimeter

G1 F1800

G1 X141.947 Y131.501 E314.88121
G1 X141.947 Y64.911 E317.61678
G1 X145.553 Y64.911 E317.76492
G1 X145.553 Y66.714 E317.83899
G1 X145.553 Y134.858 E320.63839

G1 X57.724 Y65.24 E33.07738
G1 X57.724 Y131.501 E35.79943
G1 X57.793 Y131.939 E35.81765
G1 X58.031 Y132.411 E35.83937
G1 X58.416 Y132.772 E35.86105
G1 X58.902 Y132.981 E35.88278
G1 X59.249 Y133.026 E35.89715
G1 X140.751 Y133.026 E39.24531
G1 X141.189 Y132.957 E39.26353
G1 X141.661 Y132.719 E39.28525
G1 X142.022 Y132.334 E39.30693
G1 X142.231 Y131.848 E39.32866|
G1 X142.232 Y131.836 E39.32915
G1 X141.921 Y131.736 F7800

; TYPE:External perimeter

G1 F1800

G1 X141.947 Y131.501 E39.33886|
G1 X141.947 Y64.911 E42.07443
G1 X145.553 Y64.911 E42.22257
G1 X145.553 Y66.714 E42.29664
G1 X145.553 Y134.858 E45.09604]

G1 X57.724 Y65.24 E33.07738
G1 X57.724 Y131.501 E35.79943
G1 X57.793 Y131.939 E35.81765
G1 X58.031 Y132.411 E35.83937
G1 X58.416 Y132.772 E35.86105
G1 X58.902 Y132.981 E35.88278
G1 X59.249 Y133.026 E35.89715
G1 X140.751 Y133.026 E39.24531
G1 X141.189 Y132.957 E39.26353
G1 X141.661 Y132.719 E39.28525
G1 X142.022 Y132.334 E39.30693
G1 X142.231 Y131.848 E39.32866
G1 X142.232 Y131.836 E39.32915
G1 X141.921 Y131.736 F7800

; TYPE:External perimeter

G1 F1800

G1 X141.947 Y131.501 E39.33886
G1 X141.947 Y64.911 E42.07443
G1 X145.553 Y64.911 E42.22257
G1 X145.553 Y66.714 E42.29664
G1 X145.553 Y134.858 E45.09604
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Figure 11: Example of our translation model converting Sailfish G-code to Marlin G-code




