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Abstract

Recently, there has been a lot of progress in reducing
the computation of deep models at inference time. These
methods can reduce both the computational needs and power
usage of deep models. Some of these approaches adaptively
scale the compute based on the input instance. We show that
such models can be vulnerable to a universal adversarial
patch attack, where the attacker optimizes for a patch that
when pasted on any image, can increase the compute and
power consumption of the model. We run experiments with
three different efficient vision transformer methods showing
that in some cases, the attacker can increase the computation
to the maximum possible level by simply pasting a patch
that occupies only 8% of the image area. We also show
that a standard adversarial training defense method can
reduce some of the attack’s success. We believe adaptive
efficient methods will be necessary in the future to lower
the power usage of expensive deep models, so we hope our
paper encourages the community to study the robustness of
these methods and develop better defense methods for the
proposed attack. Code is available at:
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1. Introduction

The field of deep learning has recently made significant
progress in improving model efficiency for inference. Two
broad categories of methods can be distinguished: 1) those
that reduce computation regardless of input, and 2) those that
reduce the computation depending on the input (adaptively).
Most methods, such as weight pruning or model quantiza-
tion, belong to the first category which reduces computation
by a constant factor regardless of the input. However, in
many applications, the complexity of the perception task
may differ depending on the input. For example, when a
self-driving car is driving between lanes in an empty street,
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the perception may be simpler and require less computa-
tion when compared to driving in a busy city street scene.
Interestingly, in some applications, simple scenes such as
highway driving may account for the majority of the time.
Therefore, we believe that adaptive computation reduction
will become an increasingly important research area in the fu-
ture, especially when non-adaptive methods reach the lower
bound of computation.

We argue that reduction of compute usually reduces
power usage, which is crucial, particularly in mobile de-
vices that run on battery, e.g., AR/VR headsets, humanoid
robots, and drones. For instance, increasing the size of the
battery for a drone may lead to a drastic reduction in its range
due to the increased battery weight. This is important since
the improvement in battery technology is much slower than
compute technology. For instance, the battery capacity from
iPhone [1] (1st generation) in 2007 to iPhone 15 Pro Max in
2023 improved from 5.18 watt-hour to 17.32 watt-hour (less
than 4 times) while the compute has increased by a much
larger factor. As an example, a delivery robot like Starship
uses a 1,200Wh battery and can run for 12 hours [2], so it
uses almost 100 watts for compute and mobility. Hence, an
adversary increasing the power consumption of the percep-
tion unit by 20 watts, will reduce the battery life by almost
20%, which can be significant. Note that 20 watts increase in
power is realistic assuming that it uses two NVIDIA Jetson
Xavier NX cards (almost 20 watts each).

Key idea: Assuming that a perception method is reduc-
ing the computation adaptively with the input, an adversary
can attack the model by modifying the input to increase the
computation and power consumption. Our goal is to design
a universal adversarial patch that when pasted on any input
image, it will increase the computation of the model leading
to increased power consumption. We believe this is an im-
portant vulnerability, particularly for safety-critical mobile
systems that run on battery.

Please note that in this paper, we do not experiment with
real hardware to measure the power consumption. Instead,
we report the change in FLOPs of the inference time assum-
ing that the power consumption is positively correlated with
the number of FLOPs, as studied in [73].
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Figure 1. Computation and Energy Attack on Vision Transformers: Given a pre-trained input-dependent computation efficient model,
the adversary first attaches an adversarial patch to all images in a dataset and optimizes this patch with our method such that it maximizes the
model’s computation for each sample. During inference, the adversary modifies the input of the victim’s model by applying the learnt patch
to it. This results in an increase in compute in the victim’s model. The attack will thus potentially slowdown and also lead to increased

energy consumption and CPU/GPU usage on the victim’s device.

We design our attack, SlowFormer, for three different
methods (A-ViT [88], ATS [25], and Ada-VIT [63]) that re-
duce the computation of vision transformers. These methods
generally identify the importance of each token for the final
task and drop the insignificant ones to reduce the computa-
tion. We show that in all three cases, our attack can increase
the computation by a large margin, returning it to the full-
compute level (non-efficient baseline) for all images in some
settings. Our threat model is agnostic to the accuracy of the
model and attacks the computation and power consumption
only. Figure | shows our attack.

There are some prior works that design a pixel-level per-
turbation attack to increase the compute of the model. We
believe universal patch-based attacks that do not change with
the input image (generalize from training data to test data)
are much more practical in real applications. Note that to
modify the pixel values on a real robot, the attacker needs
to access and manipulate the image between the camera and
compute modules, which is impossible in many applications.

Contributions: We show that efficient vision transformer
methods are vulnerable to a universal patch attack that can in-
crease their compute and power usage. We demonstrate this
through experiments on three different efficient transformer
methods. We show that an adversarial training defense can
reduce attack success to some extent.

2. Related Work

Vision Transformers: The popularity of transformers [79]
in vision has grown rapidly since the introduction of the first
vision transformer [20, 78]. Recent works demonstrate the
strength of vision transformers on a variety of computer vi-
sion tasks [11, 18, 21, 56, 69, 77, 90, 93, 94, 96]. Moreover,
transformers are the backbone of recent Self-Supervised

Learning (SSL) models [12, 37], and vision-language mod-
els [67]. In our work, we design an attack to target the
computation and energy efficiency of vision transformers.

Efficient Vision Transformers: Due to the recent im-
portance and popularity of vision transformers, many works
have started to study the efficiency of vision transformers
[7, 46, 89]. To accomplish this, some lines of work study
token pruning with the goal of removing uninformative to-
kens in each layer [25, 62, 63, 68, 88]. ToMe [6] merges
similar tokens in each layer to decrease the computation.
Some works address quadratic computation of self-attention
module by introducing linear attention [3, 45, 48, 58, 74].
Efficient architectures [40, 55] that limit the attention span
of each token have been proposed to improve efficiency. In
our paper, we attack token pruning based efficient trans-
formers where the computation varies based on the input
samples [25, 63, 88].

Dynamic Computation: There are different approaches
to reducing the computation of vision models, including
knowledge distillation to lighter network [39, 59], model
quantization [54, 70] and model pruning [51]. In these
methods, the computation is fixed during inference. In con-
trast to the above models, some works address efficiency
by having variable computation based on the input. The
intuition behind this direction is that not all samples require
the same amount of computation. Several recent works
have developed models that dynamically exit early or skip
layers [5, 22, 28, 33, 34, 44, 76, 80, 82] and selectively
activate neurons, channels or branches for dynamic width
[4,9, 13,26, 31, 38,43, 91] depending on the complexity of
the input sample. Zhou et al. show that not all locations in an
image contribute equally to the predictions of a CNN model
[95], encouraging a new line of work to make CNNs more



efficient through spatially dynamic computation. Pixel-Wise
dynamic architectures [10, 14, 23, 47, 71, 81, 85] learn to
focus on the significant pixels for the required task while
Region-Level dynamic architectures perform adaptive infer-
ence on the regions or patches of the input [29, 53]. Finally,
lowering the resolution of inputs decreases computation, but
at the cost of performance. Conventional CNNs process all
regions of an image equally, however, this can be inefficient
if some regions are “easier” to process than others [42]. Cor-
respondingly, [86, 87] develop methods to adaptively scale
the resolution of images.

Transformers have recently become extremely popular for
vision tasks, resulting in the release of a few input-dynamic
transformer architectures [24, 63, 88]. Fayyaz et al. [24]
introduce a differentiable parameter-free Adaptive Token
Sampler (ATS) module which scores and adaptively samples
significant tokens. ATS can be plugged into any existing
vision transformer architecture. A-ViT [88] reduces the
number of tokens in vision transformers by discarding redun-
dant spatial tokens. Meng et al. [63] propose AdaViT, which
trains a decision network to dynamically choose which patch,
head, and block to keep/activate throughout the backbone.

Adversarial Attack: Adversarial attacks are designed to
fool models by applying a targeted perturbation or patch on
an image sample during inference [32, 50, 75]. These meth-
ods can be incorporated into the training set and optimized
to fool the model. Correspondingly, defenses have been pro-
posed to mitigate the effects of these attacks [27, 52, 65, 84].
Patch-Fool [30] considers adversarial patch-based attacks on
transformers. Some recent works [61, 83, 92] also study and
design methods for the transferability of adversarial attacks
on vision transformers. However, most prior adversarial
attacks target model accuracy, ignoring model efficiency.

Energy Attack: Very recently, there have been a few
works on energy adversarial attacks on neural networks.
In ILFO [35], Haque et al. attack two CNN-based input-
dynamic methods: SkipNet [82] and SACT [28] using im-
age specific perturbation. DeepSloth [4 1] attack focuses on
slowing down early-exit methods, reducing their energy ef-
ficiency by 90-100%. GradAuto [64] successfully attacks
methods that are both dynamic width and dynamic depth.
NICGSlowDown and TransSlowDown [16, 17] attack neu-
ral image caption generation and neural machine translation
methods, respectively. All these methods primarily employ
image specific perturbation based adversarial attack. Sloth-
Bomb injects efficiency backdoors to input-adaptive dynamic
neural networks [15] and NodeAttack [36] attacks Neural
Ordinary Differential Equation models, which use ordinary
differential equation solving to dynamically predict the out-
put of a neural network. Our work is closely related to ILFO

35], DeepSloth [41] and GradAuto [64] in that we attack the
computational efficiency of networks. However, unlike these
methods, we focus on designing an adversarial patch-based

attack that is universal and on vision transformers. We addi-
tionally provide a potential defense for our attack. We use a
patch that generalizes from train to test set and thus we do
not optimize per sample during inference. Our patch-based
attack is especially suited for transformer architectures [30].

3. Computation and Energy Attack
3.1. Threat Model:

We consider a scenario where the adversary has access to the
victim’s trained deep model and modifies its input such that
the energy consumption and computational demand of the
model is increased. The attack is agnostic to model accuracy.
To make the setting more practical, instead of perturbing the
entire image, we assume that the adversary can modify the
input image by only pasting a patch [8, 72] on it and that
the patch is universal, that is, image independent. During
inference, a pretrained patch is pasted on the test image
before propagating it through the network.

In this paper, we attack three state-of-the-art efficient
transformers. Since the attacker manipulates only the input
image and not the network parameters, the attacked model
must have dynamic computation that depends on the input
image. As stated earlier, several recent works have devel-
oped such adaptive efficient models and we believe that
they will be more popular in the future due to the limits of
non-adaptive efficiency improvement.

3.2. Attack on Efficient Vision Transformers:

Universal Adversarial Patch: We use an adversarial patch
to attack the computational efficiency of transforms. The
learned patch is universal, that is, a single patch is trained
and is used during inference on all test images. The patch
generalizes across images but not across models. The patch
optimization is performed only on the train set. The patch
is pasted on an image by replacing the image pixels using
the patch. We assume the patch location does not change
from train to test. The patch pixels are initialized using i.i.d.
samples from a uniform distribution over [0, 255]. During
each training iteration, the patch is pasted on the mini-batch
samples and is updated to increase the computation of the at-
tacked network. The patch values are projected onto [0, 255]
and quantized to 256 uniform levels after each iteration.
Note that we use a pretrained network and do not update its
parameters either in the training or in the evaluation of our
attack. During inference, the trained patch is pasted on the
test images and the computational efficiency of the network
on the adversarial image is measured.

Here, we focus on three methods employing vision
transformers for the task of image classification. All these
methods modify the computational flow of the network
based on the input image for faster inference. A pretrained
model is used for the attack and is not modified during



our adversarial patch training. We first provide a brief
background of each method before describing our attack.

Attacking A-ViT :

Background: A-ViT [88] adaptively prunes image to-
kens to achieve speed-up in inference with minimal loss
in accuracy. For a given image, a dropped token will not
be used again in the succeeding layers of the network. Let
x be the input image and {t'}1.x be the corresponding K
tokens at layer /. An input-dependent halting score hé for
a token k at layer [ is calculated and the token is dropped
at layer NV, where its cumulative halting score exceeds a
fixed threshold value 1 — e for the first time. The token is
propagated until the final layer if its score never exceeds the
threshold. Instead of introducing a new parameter for h' , the
first dimension of each token is used to predict the halting
score for the corresponding token. The network is trained
to maximize the cumulative halting score at each layer and
thus drop the tokens earlier. The loss, termed ponder loss, is
given by:

K
ponder = § Nk + Tk
k:

Additionally, A-ViT enforces a Gaussian prior on the ex-
pected halting scores of all tokens via K L-divergence based
distribution loss, Lgis.. These loss terms are minimized
along with the task-specific loss Lys. Thus, the overall
training objective is £ = Liask + aListr. + ¥pLponder Where
ag and «y, are hyperparameters.

Attack: Here, we train the patch to increase the inference
compute of a trained A-ViT model. Since we are interested
in the compute and not task-specific performance, we simply
use —(qLais. + pLponder) as our loss. It is possible to
preserve (or hurt) the task performance by additionally using
+Liask (0r —Liag) in the loss formulation.

Attacking AdaViT:

Background: To improve the inference efficiency of vi-
sion transformers, AdaViT [63] inserts and trains a decision
network before each transformer block to dynamically de-
cide which patches, self-attention heads, and transformer
blocks to keep/activate throughout the backbone. The /™"
block’s decision network consists of three linear layers with
parameters W; = W/, VVlh, Wlb which are then multiplied by
each block’s input Z; to get m.

(ml7ml7ml) (VVlaVVlawl) (2)

The value m is then passed to sigmoid function to convert
it to a probability value used to make the binary decision of
keep/discard. Gumbel-Softmax trick [60] is used to make
this decision differentiable during training. Let M be the

keep/discard mask after applying Gumbel-Softmax on m.
The loss on computation is given by:

usaqe = Z Mp Vp Z Md - ’Yh
Dy d=1
1
+ (EZMS — )’ (3)
d=1

where D,,, Dy,, Dy represent the number of total patches,
heads, and blocks of the entire transformer, respectively.
Yps Yhs Yo denote the target computation budgets i.e. the
percentage of patches/heads/blocks to keep. The total loss is
a combination of task loss (cross-entropy) and computation
loss: £ = Lece + Lusage-

Attack: To attack this model, we train the patch to
maximize the computation loss £,sq4e. More specifically,
we set the computation-target v values to 0 and negate the
Lysage term in Eq. 3. As a result, the patch is optimized
to maximize the probability of keeping the corresponding
patch (p), attention head (h), and transformer block (b). We
can also choose to attack the prediction performance by
selectively including or excluding the L., term.

Attacking ATS:

Background: Given N tokens with the first one as the

classification token, the transformer attention matrix A is
calculated by the following dot product:
A = Softmax (QICT / \/E) where v/d is a scaling coeffi-
cient, d is the dimension of tokens, Q, K and V are the query,
key and value matrices, respectively. The value A, ; denotes
the attention of the classification token to token j. ATS [25]
assigns importance score .S; for each token j by measuring
how much the classification token attends to it:

Avg < [[Vill

S —
T i A x Vil

“4)

The importance scores are converted to probabilities and are
used to sample tokens, where tokens with a lower score have
more of a chance of being dropped.

Attack: Since ATS uses inverse transform sampling, it
results in fewer samples if the importance distribution is
sharp. To maximize the computation in ATS, we aim to
obtain a distribution of scores with high entropy to maximize
the number of retained tokens. Therefore, we optimize the
patch so that the attention of the classification token over
other tokens is a uniform distribution using the following
MSE loss:

N
— 1 2
L= [lAui— i3 5)
=2

Note that one can optimize S to be uniform, but we found
the above loss to be easier to optimize. For a multi-head



attention layer, we calculate the loss for each head and then
sum the loss over all heads. Moreover, ATS can be applied
to any layer of a vision transformer. For a given model,
we apply our loss at all ATS layers and use a weighted
summation for optimization.

4. Defense

An obvious defense, although weak, will be to use non-
dynamic efficient methods only, e.g., weight pruning, where
the reduction in compute is deterministic and does not de-
pend on the input. However, most such methods do not
achieve high levels of computation efficiency since they do
not take advantage of the simplicity of images.

We adopt standard adversarial training as a better defense
method for our attack. In the standard way, at each iteration
of training the model, one would load an image, attack it,
and then use it with correct labels in training the model. We
cannot adopt this out-of-the-box since our attack generalizes
across images and is not dependent on a single image only.
To do this, we maintain a set of adversarial patches, and at
each iteration sample one of them randomly (uniformly), and
use it at the input while optimizing the original loss of the
efficient model to train a robust model. To adapt the set of
adversarial patches to the model being trained, we interrupt
the training at every 20% mark of each epoch and optimize
for a new patch to be added to the set of patches. To limit the
computational cost of training, we use only 500 iterations
to optimize for a new patch, which results in an attack with
reasonable accuracy compared to our main results.

5. Experiments
5.1. Attack on Efficient Vision Transformers

Dataset: We evaluate the effectiveness of our attack on
two datasets: ImageNet-1K [19] and CIFAR-10 [49].
ImageNet-1K contains 1.3M images in the train set and
50K images in the validation set with 1000 total categories.
CIFAR-10 has 50K images for training and 10K images for
validation with 10 total categories.

Metrics: We report Top-1 accuracy and average com-
putation in terms of GFLOPs for both attacked and
unattacked models. Similar to Attack Success Rate in a
standard adversarial attack, we introduce a metric: Attack
Success to quantify the efficacy of the attack. We define
Attack Success as the number of FLOPs increased by the
attack divided by the number of FLOPs decreased by the
efficient method. Attack Success = (gi%?;‘;iikjgfgpif‘:‘n"))
where FLOPsi, is the compute of the efficient model
and FLOPs,,x is that of the original inefficient model.
Attack Success is thus capped at 100% while a negative
value denotes a reduction in FLOPs. Note that our

Attack Success metric illustrates the effectiveness of an at-
tack in reversing the FLOPs reduction of a particular method.

Baselines: We propose three alternative approaches to Slow-
Former (ours) to generate the patch.

Random Patch: A simple baseline is to generate a randomly
initialized patch. We sample IID pixel values from a uniform
distribution between 0 and 255 to create the patch.

NTAP: We consider a standard adversarial patch that is
trained to attack the model task performance instead of com-
pute. We use a non-targeted universal adversarial patch
(NTAP) to attack the model. We train the patch to fool the
model by misclassifying the image it is pasted on. We use
the negative of the cross-entropy loss with the predicted and
ground-truth labels as the loss to optimize the patch.

TAP: We train a universal targeted adversarial patch (TAP).
The patch is optimized to classify all images in the train set
to a single fixed category. Similar to NTAP, the adversarial
attack here is on task performance and not computation. We
experiment with ten randomly generated target category
labels and report the averaged metrics.

Implementation Details: We use PyTorch [66] for all ex-
periments. Unless specified, we use a patch of size 64 x 64,
train and test on 224 x 224 images, and we paste the patch
on the top-left corner. Note that our patch occupies just 8%
of the total area of an input image. We use AdamW [57] opti-
mizer to optimize the patches and use 4 NVIDIA RTX 3090
GPUs for each experiment. We use varying batch sizes and
learning rates for each of the computation-efficient methods.
ATS Details: As in ATS [25], we replace layers 3 through
9 of ViT networks with the ATS block and set the max-
imum limit for the number of tokens sampled to 197 for
each layer. We train the patch for 2 epochs with a learn-
ing rate of 0.4 for ViT-Tiny and {r = 0.2 for ViT-Base
and ViT-Small. We use a batch size of 1024 and different
loss coefficients for each layer of ATS. For DeiT-Tiny we
use [1.0,0.2,0.2,0.2,0.01,0.01,0.01], for DeiT-Small we
use [1.0,0.2,0.05,0.01,0.005, 0.005, 0.005], and for DeiT-
Base we use [2.0,0.1,0.02,0.01,0.005,0.005, 0.005]. The
weights are vastly different at initial and final layers to ac-
count for the difference in loss magnitudes across layers.
A-ViT Details: When attacking A-VIT[88], the patches are
optimized for one epoch with a learning rate of 0.2 and a
batch size of 512 (128 x 4GPUs) using AdamW [57] opti-
mizer. We optimize the patches for 4 epochs for patch length
32 and below. For CIFAR-10 experiments, the images are
resized from 32 x 32 to 256 x 256 and a 224 x 224 crop
is used as the input. For the training of adversarial defense,
we generate 5 patches per epoch of adversarial training and
limit the number of iterations for patch generation to 500.
The learning rate for patch optimization is increased to 0.8
for faster convergence.



Table 1. Computation and Energy Attack on Efficient Vision Trans- Figure 2. Visualization of our Energy Attack on Vision Trans-
formers: Comparison of the effect of our attack with baselines: No Attack, formers: We visualize the A-ViT-Small with and without our
Random Patch, targeted (TAP), and non-targeted (NTAP) adversarial patches  attack. We use patch size of 32 for the attack (on the top-left
applied to three input-dynamic computation efficient pre-trained models of ~ corner). We show pruned tokens at layer 8 of A-ViT-Small.
varying architectures. The maximum possible compute for a given archi- Our attack can recover most of the pruned tokens, resulting in in-
tecture is provided in bold. On A-ViT , we completely undo the efficiency creased computation and power consumption. Note that although
gains obtained by the efficient method through our attack, achieving Attack  the patch is reasonably small and is in the corner of the view, it
Success of 100%. We achieve high Attack Success on all approaches while  can affect the whole computational flow of the network. This is
the baselines expectedly do not contribute to increase in compute.

probably due to the global attention mechanism in transformers.

Attacked Efficient Model Attacked Efficient Model

Method Attack Model  Top-1  Attack
GFLOPs  Acc  Success
ViT-Tiny 1.3 - -
No attack 0.87 71.4% -
Random Patch 0.87 70.8% -1%
A-ViT TAP 0.85 0.1% -5%
NTAP 0.83 0.1% -10%
SlowFormer (ours) 1.3 4.7% 100%
ViT-Small 4.6 - -
No attack 3.7 78.8% -
Random Patch 3.7 78.4% 2%
A-ViT TAP 3.6 0.1% -12%
NTAP 3.6 0.1% -7%
SlowFormer (ours) 4.6 2.3% 99%
ViT-Tiny 1.3 - -
No attack 0.84 70.3% -
Random Patch 0.83 69.8% 2%
ATS TAP 0.76 0.1% -17%
NTAP 0.61 0.1% -50%
SlowFormer (ours) 1.0 1.2% 35%
ViT-Small 4.6 - -
No attack 3.1 79.2% -
Random Patch 3.1 78.6% -1%
ATS TAP 3.0 0.1% -7%
NTAP 2.4 0.1% -47%
SlowFormer (ours) 4.0 1.0% 60%
ViT-Base 17.6 - -
No attack 12.6 81.3% -
Random Patch 12.5 81.2% 2%
ATS TAP 12.0 0.1% -12%
NTAP 11.0 0.1% -32%
SlowFormer (ours) 154 0.2% 52%
ViT-Small 4.6 - -
No attack 2.25 77.3% -
Random Patch 2.20 76.9% 2%
AdaViT TAP 2.28 0.1% 1%
NTAP 2.15 0.1% -4%
SlowFormer (ours) 3.2 0.4% 40%

AdaViT Details:

For AdaViT[63], we first freeze the
weights and use a learning rate of 0.2 and a batch size of 128
with 4 GPUs for patch optimization. We use AdamW [57]

optimizer with no decay and train for 2 epochs with a patch
size of 64 x 64. We train on the ImageNet-1k train dataset
and evaluate it on the test set.



Table 2. Results on CIFAR10 dataset. We report results on CIFAR10
dataset to show that our attack is not specific to ImageNet alone.
CIFAR-10 is a small dataset compared to ImageNet and thus results in
an extremely efficient A-ViT model. Our attack increases the FLOPs
from 0.11 to 0.58 which restores nearly 41% of the original reduction

Table 3. Accuracy controlled compute adversarial attack: We at-
tack the the efficiency of A-ViT while either maintaining or destroying
its classification performance. We observe that our attack can achieve
a huge variation in task performance without affecting the Attack Suc-
cess. The ability to attack the computation without affecting the task

in the FLOPs. performance might be crucial in some applications.
Method Model Top-1  Attack Attack Model Attack  Top-1
FLOPs  Acc  Success GFLOPs Success  Acc
ViT-Tiny 1.26 95.9% - ViT-Tiny 1.26 - -
‘;]‘V‘ETmy 8' é é Zgg;’o e No attack 0.87 S 714%
owFormer (ours) 0. 2% o Accagnostic 126 100%  4.7%
ATS-Tiny 0.85 94.7% - Preserve acc 1.23 92% 68.5%
SlowFormer (ours) 0.99 247%  34.1% Destroy acc 1.26 100% 0.1%

Table 5. Attack with adversarial perturbation on ImageNet.
The efficient methods are also susceptible universal perturbation
based attacks. We use an £+, bound on the perturbation.

Method Epsilon Attack Model Top-1 Attack
(/255.) GFLOPs  Accuracy Success
ViT-Tiny 1.3 - -
Figure 3. Visualization of optimized patch: We show the learned N No attack 0.87 71.4% -
universal patches for each of the three efficient methods. A-ViT 16 SlowFormer 1.15 6.1% 73%
32 SlowFormer 1.25 0.5% 98.4%
Table 4. Effect of patch size: Analysis of the effect of adversarial _ No attack 0.84 70.3% _
patch size on the attack success rate on A-ViT. Our attach is rea- ATS 16 SlowFormer 0.98 15.6% 30.4%
sonably successful even using a small patch size (32 x 32), which 32 SlowFormer 1.04 0.8% 43.5%
is only 2% of .the image area. InteresFingly, a small patcb on the ViT-Small 46 - i
corner of the view affects the computational flow of the entire trans- . No attack 37 788% )
former model. This might be due to the global attention mechanism A-ViT 16 SlowFormer 4.48 20% 86.4%
in transformers. 32 SlowFormer ~ 4.59 1% 98.1%
- - No attack 3.1 79.2% -
Patch Size Model Top-1 ~ Attack ATS 16 SlowFormer 3.6 31.0%  333%
(Area) GFLOPs  Accuracy Success 32 SlowFormer 3.8 3.6% 46.7%
ViT-Tiny 126 ) ] AV 16 Slow ;ttaCk 232()5 Z?Za 31.9%
. . avit owrormer . A7 J70
A-ViT-Tiny 0.87 71.4% - 32 SlowFormer 32 28%  40.4%
64 (8%) 1.26 4.7% 100%
48 (5%) 1.26 1.8% 99%
32 (2%) 122 17.4% 90% by A-ViT . Our attack has an Attack Success of 60% on
16 (0.5%) 0.98 63.3% 27% ATS and 40% on AdaViT with ViT-Small. A random patch
ViT-Small 4.6 - - attack has little effect on both the accuracy and computation
A-ViT-Small 37 78.8% - of the method. Both standard adversarial attack baselines,
TAP and NTAP, reduce the accuracy to nearly 0%. Inter-
64 (8%) 4.6 2.3% 99% o e matehos further oo oY
48 (5%) 46 51% 8% estingly, these patches further decrease the computation o
32 (29 4'4 39’ 5, 789% the efficient model being attacked. This might be because
(2%) : 7 ’ of the increased importance of adversarial patch tokens to
16 (0.5%) 3.8 78.2% 16%

the task and thus reduced importance of other tokens. Tar-
geted patch (TAP) has a significant reduction in FLOPs on
the ATS method. Since the token dropping in ATS relies

Results. The results of our attack, SlowFormer , on various
methods on ImageNet dataset are shown in table 1. In A-ViT,
we successfully recover 100% of the computation reduced

on the distribution of attention values of classification to-
kens, a sharper distribution due to the increased importance
of a token can result in a reduction in computation. The



computation increase with SlowFormer for AdaViT is com-
paratively low. To investigate, we ran a further experiment
using a patch size of 224 x 224 (entire image size) to find the
maximum possible computation for an image. This resulted
in 4.18 GFLOPs on the ImageNet-1K validation set, which
is markedly lower than the limit of 4.6. Using this as an
upper-bound of GFLOPs increase, SlowFormer achieves a
49% Attack Success.

We report the results on CIFAR-10 dataset in Table 2.
The efficient model (A-ViT ) drastically reduces the com-
putation from 1.26 GFLOPs to 0.11 GFLOPs. Most of the
tokens are dropped as early as layer two in the efficient
model. SlowFormer is able to effectively attack even in such
extreme scenarios, achieving an Attack Success of 40% and
increasing the mean depth of tokens from nearly one to five.
SlowFormer is similarly effective on ATS with an Attack
Success of 34%.

We additionally visualize the effectiveness of our attack
in Figure 2. The un-attacked efficient method retains only
highly relevant tokens at the latter layers of the network.
However, our attack results in nearly the entire image being
passed through all layers of the model for all inputs. In
Fig. 3, we visualize the optimized patches for each of the
three efficient methods.

5.2. Ablations:

We perform all ablations on the A-ViT approach using their
pretrained ViT-Tiny architecture model.

Accuracy controlled compute adversarial attack: As seen
in Table 1, our attack can not only increase the computation,
but also reduce the model accuracy. This can be desirable or
hurtful based on the attacker’s goals. A low-accuracy model
might be an added benefit, similar to regular adversaries, but
might also lead to the victim detecting the attack. We show
that it is possible to attack the computation of the model
while either preserving or destroying the task performance
by additionally employing a task loss in the patch optimiza-
tion. Table 3 indicates that the accuracy can be significantly
modified while maintaining a high Attack Success.

Effect of patch size: We vary the patch size from 64 x 64 to
16 x 16 (just a single token) and report the results in Table 4.
Interestingly, our attack with ViT-Small has a 73% Attack
Success with a 32 x 32 patch size, which occupies only 2%
of the input image area.

Effect of patch location: We vary the location of the patch
to study its effect on the Attack Success of the model. We
randomly sample a location in the image for where we paste
the patch on. We perform five such experiments and observe
an Attack Success of 100% for all patch locations.
Perturbation attack: While we focus on patch based attacks
in this paper, efficient transformers are also susceptible to
perturbation based attacks (table 5). In perturbation attacks,

Table 6. Defense using adversarial training: We propose and
show the impact of our defense for our adversarial attack on A-ViT.
Our defense is simply maintaining a set of universal patches and
training the model to be robust to a random sample of those at
each iteration. The defense reduces the computation to some extent
(1.26 to 1.01), but is still far from the unattacked model (0.87).

Method GFLOPs Top-1  Attack

Acc. Success
No attack 0.87 71.4 -
SlowFormer 1.26 4.7% 100%
AdvDefense+ 4 o1 6589, 349
SlowFormer

all pixels in the image can be modified, but with an upper
bound on the ¢, norm of the perturbation.

5.3. Adversarial training based defense

Our simple defense that is adopted from standard adversarial
training is explained in Section 4. The results for defending
against attacking A-ViT are shown in Table 6. The original
A-ViT reduces the GFLOPs from 1.26 to 0.87, our attack
increases it back to 1.26 with 100% attack success. The
proposed defense reduces the GFLOPs to 1.01 which is still
higher than the original 0.87. We hope our paper encourages
the community to develop better defense methods to reduce
the vulnerability of efficient vision transformers.

6. Conclusion

Recently, we have seen efficient vision transformer models
in which the computation is adaptively modified based on
the input. We argue that this is an important research direc-
tion and that there will be more progress in this direction in
the future. However, we show that the current methods are
vulnerable to a universal adversarial patch that increases the
computation and thus power consumption at inference time.
Our experiments show promising results for three SOTA
efficient transformer models, where a small patch that is
optimized on the training data can increase the computation
to the maximum possible level in the testing data in some
settings. We also propose a defense that reduces the effective-
ness of our attack. We hope that our paper will encourage the
community to study such attacks and develop better defense
methods on various machine learning methods, including
generative models, that reduce the computation adaptively
with the input.
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