
Mathematical Programming (2024) 207:55–106
https://doi.org/10.1007/s10107-023-01999-5

FULL LENGTH PAPER

Series A

First- and second-order high probability complexity bounds
for trust-region methods with noisy oracles

Liyuan Cao1 · Albert S. Berahas2 · Katya Scheinberg3

Received: 12 May 2022 / Accepted: 21 June 2023 / Published online: 29 July 2023
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023

Abstract
In this paper, we present convergence guarantees for a modified trust-region method
designed for minimizing objective functions whose value and gradient and Hessian
estimates are computedwith noise. These estimates are produced by generic stochastic
oracles, which are not assumed to be unbiased or consistent. We introduce these
oracles and show that they are more general and have more relaxed assumptions than
the stochastic oracles used in prior literature on stochastic trust-region methods. Our
method utilizes a relaxed step acceptance criterion and a cautious trust-region radius
updating strategy which allows us to derive exponentially decaying tail bounds on
the iteration complexity for convergence to points that satisfy approximate first- and
second-order optimality conditions. Finally, we present two sets of numerical results.
We first explore the tightness of our theoretical results on an example with adversarial
zeroth- and first-order oracles. We then investigate the performance of the modified
trust-region algorithm on standard noisy derivative-free optimization problems.

Mathematics Subject Classification 65K05 · 68W01 · 90C30 · 90C56

1 Introduction

The trust-region (TR) methods form a well-established class of iterative numerical
methods for optimizing nonlinear continuous functions. In each iteration, TRmethods
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minimize an approximation model of the objective function, often a quadratic model,
within a trust-region. The book [11] contains an exhaustive coverage of these methods
up to the time of its publication, and [23] offers a more recent survey. In this article,
we consider the behavior of TR methods on unconstrained continuous optimization
problems

min
x∈Rn

φ(x), (1.1)

where φ : Rn → R is (twice) differentiable with Lipschitz continuous derivatives,
but neither the objective function nor its associated derivatives are assumed to be
computable accurately.

Under the condition that the function φ and its derivatives can be evaluated
accurately, the complexity analysis of TR methods (for solving problem (1.1)) is
well-established [11]. However, this condition is not always satisfied in the real-world
problems. For example, in derivative-free optimization (DFO), the functionφ is often a
mapping between the input and the output of a computer program, such as a simulation
of the physical world or the training of a machine learning model. As a result, there
can be noise in the evaluation of φ due to limited numerical precision or randomness.
Furthermore, the derivatives of φ cannot be computed directly and, when needed, can
only be estimated using zeroth-order information. Another example is empirical risk
minimization (ERM), where the objective function is the average of many functions,
i.e., φ(x) = 1

N

∑N
i=1 l(x, di ). In settings where the number of functions N is large

(or even infinite, in which case the average becomes an expectation), it is typical to
use the average of a subset of the functions, i.e., φB(x) = 1

|B|
∑

di∈B l(x, di ), where
B ⊆ {d1, . . . , dN }, instead of the true objective function φ to reduce the computational
effort, at the cost of introducing errors in the evaluations.

When dealing with such problems, algorithms utilize various, usually stochastic,
approximations of the objective function and derivative information (φ(x),∇φ(x) and
∇2φ(x)) in lieu of their exact counterparts. These approximations vary in terms of
quality and reliability, and a variety of algorithms, not just TR methods, have been
proposed and analyzed under different assumptions on the approximations employed.
In order to give an overview of existing works and to clearly describe the contributions
of this paper, we find it convenient to first propose and define general oracles that
compute approximations of φ(x), ∇φ(x) and ∇2φ(x), and then discuss the different
assumptions on these oracles made in prior literature as compared to thosemade in this
paper. Definition 1.1 presents the general form of the stochastic oracles considered.

Definition 1.1 (Stochastic j th-order oracle over a set S j ) We say that the j th-order
oracle ϕ j is implementable over a set S j ⊆ [0,+∞) × [0, 1] if it is capable of
producing an estimate of ∇ jφ that satisfies

Pξ ( j)

{
‖ϕ j (x, ξ

( j)) − ∇ jφ(x)‖ ≤ A j

}
≥ p j (1.2)

for each (A j , p j ) ∈ S j and any x ∈ R
n , where ξ ( j) is a random variable defined

on some probability space whose distribution depends on (A j , p j ) and x , and Pξ ( j)

denotes probability with respect to that distribution.
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Here ∇ jφ(x) denotes the j-th derivative of φ(x), where ∇0φ(x) reduces to φ(x).
Clearly, if (A j , p j ) ∈ S j for some (A j , p j ), then [A j ,+∞)×[0, p j ] ⊆ S j . The cost
of implementing the oracles depends on the application and will not be considered in
this paper. Inmost applications, the actual cost depends on (A j , p j ) andmonotonically
decreases as A j increases and p j decreases. We use DFO and ERM as examples to
discuss how to implement oracles satisfying (1.2) for a given (A j , p j ) in Sect. 2.
That being said, the focus of this paper is on the analysis of TR methods under weak
assumptions on the oracles in terms of the sets S j . The results will thus apply whenever
an oracle is implementable over the corresponding sets.

There are a variety of TR and line search algorithms in the literature that rely on
stochastic oracles of this general form, although they are typically posed in a different
way, specialized for each paper. For example [2, 13], analyze the convergence of TR
methods under the assumption that the zeroth-order oracle gives exact function values,
and, at each iteration k, the first-order oracle can produce, with sufficiently high proba-
bility, a gradient estimate whose error is no more than the TR radius (δk) multiplied by
a constant. Since δk is not guaranteed to be bounded away from zero, theseworks effec-
tively assume that the first-order oracle can produce gradient estimates with arbitrarily
high precision, albeit only with a sufficiently high probability. Using our definition of
stochastic oracles, [2, 13] assume their zeroth-order oracles are implementable over
the (largest possible) set S0 that contains (0, 1), and their first-order oracles are imple-
mentable over (0,∞) × [0, p̄1], where p̄1 is sufficiently large (e.g., p̄1 > 1

2 in [2]).
In contrast, [6, 10] analyze a first-order TR method under the assumption that both
zeroth- and first-order oracles are implementable over (0,∞) × [0, p̄ j ], j = 0, 1,
for sufficiently large p̄0 and p̄1. In [6], a second-order TR method is also analyzed
under the assumption that S j = (0,∞) × [0, p̄ j ], j = 0, 1, 2, for sufficiently large
p̄0, p̄1 and p̄2, with an additional bound on Eξ0 [|ϕ0(x, ξ0) − φ(x)|]], which requires
a larger set S0. Finally, we mention a recent technical report [21] where a first-order
TR method with a relaxed step acceptance criterion is analyzed for oracles with deter-
ministically bounded noise, i.e., S0 = [ε f ,+∞)×[0, 1] and S1 = [εg,+∞)×[0, 1]
for some positive constants ε f and εg , which represent the irreducible upper bounds
on the noise in the oracles.

Examples of “line search”-like methods1 based on stochastic oracles include the
following. The authors in [9] analyze a stochastic line searchmethod in the same oracle
setting as in [2, 13]. In [18], a modified stochastic line search method is proposed and
analyzed in a setting similar to that of [6]. A line search method with relaxed Armijo
condition is analyzed in [3] under deterministic oracle assumptions, i.e., the sets S0
and S1 contain pairs (ε f , 1) and (εg, 1), respectively, for some positive constants ε f

and εg . In [5], the analysis of the line search method with relaxed Armijo condition
is extended to less restrictive oracle settings where S0 = [ε f ,+∞) × [0, 1] and
S1 = [0,+∞) × [0, p̄1] for some positive ε f and sufficiently large p̄1.

In a recent paper [14], the same line search as in [3, 5] was analyzed under weaker
oracle conditions. In particular, S1 = [εg,+∞) × [0, p̄1], where εg (some positive
constant) is the best possible accuracy that the first-order oracle can guarantee and p̄1

1 These methods change the random search direction even when reducing step size, thus, should not be
strictly called “line search” methods. In [14], the term “step search” was introduced to distinguish the two
classes of methods.
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is some constant larger than 1/2. The zeroth-order oracle is a bit more complex: specif-
ically, it is assumed to be implementable over S0 = {(A0, p0) : A0 ≥ ε f and p0 ≤
1 − exp(a(ε f − A0))},2 for some a > 0 and ε f ≥ 0. This means that the errors in
the function value estimates may not be bounded by ε f , but the distribution of the
estimates is such that the probability of this error being larger than ε f , while positive,
decays exponentially. Amore extensive discussion and comparison of different oracles
is presented in Sect. 2.

Whilemost of the prior papers provide the analysis of expected iteration complexity
of the corresponding algorithms, in [14], as well as [13], high probability (with expo-
nentially decaying tail) bounds on the iteration complexity are derived. In this paper
we draw inspiration from [14] and propose a TR method with a relaxed step accep-
tance criterion, and provide convergence guarantees under similar oracle conditions.
In summary, our improvement upon the latest literature is as follows:

• In comparison to [6], we allow irreducible noise in the zeroth-, first-, and second-
order oracles, so our analysis applies to problemswhere evaluation noise cannot be
reduced below certain level. Our zeroth-order oracle is both more relaxed because
it allows irreducible noise and yet somewhat stronger because it assumes a light-
tailed distribution of the noise. This allows us to derive high probability complexity
bounds for both first- and second-order versions of the algorithm as compared to
bounds in expectation.

• In comparison to [13], we use more relaxed first- and second-order oracles, by
allowing irreducible noise, and also a significantly more relaxed zeroth-order ora-
cle, as it is assumed to be exact in [13].

• In comparison to [14], which analyzed a first-order step search method, we ana-
lyze first- and second-order TR methods. The difference between the complexity
analyses for the two types of algorithms is significant, particularly in the presence
of irreducible noise. New analytical techniques are employed to derive our results,
e.g., the step size threshold ᾱ in [14] is a constant whereas the TR radius threshold
�̄ in this paper is a random variable. Second order analysis presented here is the
first such analysis for irreducible noise.

In terms of iteration complexity, we obtain similar bounds to those in [6, 13, 14]. It is
important to note that in this paper, as inmany others that we discuss above, we analyze
iteration complexity under specific assumptions on the oracles, but without directly
accounting for the oracle costs. All the algorithms mentioned above are designed to
update oracle accuracy (and thus their costs) adaptively, which makes the algorithms
more practical, but harder to analyze in terms of the total oracle cost (or work).

Organization The paper is organized as follows. In Sect. 2, we introduce the assump-
tions and oracles, as well as motivate the oracles with examples from the literature.
In Sect. 3, we introduce our modified TR algorithms and present some preliminary
technical results and describe the stochastic process used to analyze the algorithms.
The high probability tail bounds on the iteration complexity of the first- and second-
order algorithms are presented in Sects. 4 and 5, respectively. In Sect. 6, we present
synthetic numerical experiments that simulate the worst-case behavior allowed under

2 This is a simplified version of the actual zeroth-order oracle in [14].
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our oracle assumptions to support our theoretical findings. Finally, we test a practical
TR algorithm with our proposed modification numerically in Sect. 7. We summarize
the article in Sect. 8.

2 Assumptions and oracles

We consider the unconstrained optimization problem (1.1) with the following assump-
tions on φ. Let 〈·, ·〉 denote the sum of entry-wise products and ‖ · ‖ the 2-norm.

Assumption 2.1 (Lipschitz-smoothness) The function φ is continuously differen-
tiable, and the gradient of φ is L1-Lipschitz continuous on R

n , i.e., ‖∇φ(y) −
∇φ(x)‖ ≤ L1‖y − x‖ for all (y, x) ∈ R

n × R
n .

Assumption 2.2 (Lipschitz continuous Hessian) The function φ is twice continuously
differentiable, and the Hessian of φ is L2-Lipschitz continuous onRn , i.e., ‖∇2φ(y)−
∇2φ(x)‖ ≤ L2‖y − x‖ for all (y, x) ∈ R

n × R
n .

Assumption 2.3 (Lower bound on φφφ) The function φ is bounded below by a scalar φ̂

on Rn .

Our algorithms utilize approximations of φ, ∇φ, and ∇2φ obtained via stochastic
oracles.We assume our zeroth-, first- and second-oracles have the following properties
in terms of accuracy and reliability.

Oracle 0 (Stochastic zeroth-order oracle) Given a point x ∈ R
n, the oracle computes

f (x, ξ (0)), a (random) estimate of the function value φ(x), where ξ (0) is a random
variable whose distribution may depend on x. Let e(x, ξ (0)) = f (x, ξ (0))−φ(x). For
any x ∈ R

n, e(x, ξ (0)) satisfies at least one of the two conditions:

1. (Deterministically bounded noise: zeroth-order oracle implementable over S0 =
[ε f ,∞) × [0, 1]]) There is a constant ε f ≥ 0 such that |e(x, ξ (0))| ≤ ε f for all
realizations of ξ (0).

2. (Independent subexponential noise: zeroth-order stochastic oracle implementable
over S0 = {(A0, p0) : A0 ≥ ε f and p0 ≤ 1 − exp(a(ε f − A0))}) There are
constants ε f ≥ 0 and a > 0 such that Pξ (0)

{|e(x, ξ (0))| > t
} ≤ exp(a(ε f − t))

for all t ≥ 0.

Remark 2.4 The two oracles introduced above will be referred to as Oracle 0.1 and
Oracle 0.2, respectively. When Oracle 0.1 is implemented for any x ∈ R

n , it returns
an estimate of φ(x) with bounded noise. This case includes deterministic or even
adversarial noise, as long as it is bounded by ε f . Otherwise, when Oracle 0.2 is
implemented, the cumulative distribution of the noise has a subexponential tail whose
rate of decay is governed by a, but is unrestricted on the interval [−ε f , ε f ] as the right-
hand side exp(a(ε f − t)) ≥ 1 when t ≤ ε f . The constants ε f and a are considered to
be intrinsic to the oracle.

Oracle 1 (Stochastic first-order oracle implementable over S1 = (εg,∞) × [0, p1])
Given δ(1) > 0, a probability p1 ∈ [0.5, 1], and a point x ∈ R

n, the oracle computes
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g(x, ξ (1)), a (random) estimate of the gradient ∇φ(x) that satisfies

Pξ (1)

{
‖g(x, ξ (1)) − ∇φ(x)‖ ≤ εg + κegδ

(1)
}

≥ p1, (2.1)

where ξ (1) is a random variable (whose distribution may depend on the input x and
δ(1)).

Oracle 2 (Stochastic second-order oracle implementable over S2 = (εH ,∞) ×
[0, p2]) Given δ(2) > 0, a probability p2 ∈ [0.5, 1] and a point x ∈ R

n, the ora-
cle computes H(x, ξ (2)), a (random) estimate of the Hessian ∇2φ(x), such that

Pξ (2)

{
‖H(x, ξ (2)) − ∇2φ(x)‖ ≤ εH + κehδ

(2)
}

≥ p2, (2.2)

where ξ (2) is a random variable (whose distribution may depend on the input x and
δ(2)).

Remark 2.5 The inputs to the first- and second-order oracles are the triplets
(δ( j), p j , x), j = 1, 2. The constants εg , εH , κeg and κeh are nonnegative and are
intrinsic to the oracles.3 Note that εg and εH limit the achievable accuracy, thus allow-
ing the oracle to have error up to εg and εH , respectively, with probability up to 1. The
positive values δ(1) and δ(2) will be chosen dynamically by the algorithm, according
to the TR radius. The probabilities p1 and p2 will be chosen to be constant and will
need to satisfy certain bounds which will be derived in the theoretical analyses of our
algorithms.

These oracle definitions are special cases of the oracle defined in the introduc-
tion (Definition 1.1). Henceforth, we will use f (x, ξ (0)), g(x, ξ (1)) and H(x, ξ (2)) to
denote the outputs of the oracles (instead of ϕ j (x, ξ ( j)), j = 0, 1, 2, in Definition 1.1).
The expressions g(x, ξ (1)) and H(x, ξ (2))will be further abbreviated to g(x) and H(x)
in the rest of Sect. 2, and their realizations will be denoted by gk and Hk once they are
put in the context of algorithms (Sect. 3 and beyond), where k is the iteration index.
Similarly, f (x, ξ (0)) will be abbreviated as f (x). The realizations of f (xk, ξ (0)) and
e(xk, ξ (0)) will be denoted by fk and ek , respectively.

2.1 Stochastic oracles used in prior literature

We now discuss different stochastic oracles used in prior literature for unconstrained
optimization and show how our stochastic oracle definition (Definition 1.1) relates to
them by comparing their respective sets S j , j = 0, 1, 2, to those used by Oracles 0, 1
and 2. A visual comparison of various such sets considered in the literature is provided
in Fig. 1. Each subfigure of Fig. 1 shows a different set S j on the A j -p j plane.

There is an important difference between the sets in Fig. 1b, c. When a stochastic
oracle is implementable over the first set (Fig. 1b), itmeans that it is possible to evaluate

3 “eg” and “eh” stand for “error in the gradient” and “error in the Hessian”, respectively.
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Fig. 1 A visual comparison of various assumptions on the oracle. Each subfigure shows a different set S j
on the A j -p j plane

the function or its derivative exactly, with probability at least p̄ j . In contrast, when a
stochastic oracle is implementable over the second set (Fig. 1c), it is assumed that the
upper bound on the error (that holds with probability p̄ j ) can be made arbitrarily small
but never zero. An oracle of this second type appears naturally when, for example,
φ is an expectation over a distribution from which one can obtain arbitrarily large
number of samples. Figure1e, f depict the two conditions assumed for Oracle 0, the
zeroth-order oracle used in this paper. The conditions assumed for Oracle 1 and 2 are
both depicted in Fig. 1d, with ε1 = εg + κegδ

(1) and ε2 = εH + κehδ
(2), respectively.

Probabilistic Taylor-like Conditions Corresponding to a norm ‖ · ‖, let B(x, δ) denote
a ball of radius δ centered at x ∈ R

n . If the gradient and Hessian estimates, g(x) and
H(x), respectively, satisfy

‖g(x) − ∇φ(x)‖ ≤ κegδ and ‖H(x)‖ ≤ κbhm (2.3)

for some nonnegative scalars κeg and κbhm
4, then the model m : Rn → R defined by

m(y) = φ(x) + 〈g(x), y − x〉 + 1

2
〈H(x)(y − x), y − x〉

gives an approximation of f (y) within B(x, δ) that is comparable to that given by
an accurate first-order Taylor series approximation (with error dependent on δ). Such
models, introduced in [12], are known as fully-linearmodels on B(x, δ). Similarly, if

‖g(x) − ∇φ(x)‖ ≤ κegδ
2 and ‖H(x) − ∇2φ(x)‖ ≤ κehδ, (2.4)

4 “bhm" stands for “bound on the Hessian of the model".
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for some nonnegative scalars (κeg, κeh), thenm(y) gives an approximation of f (y) that
is comparable to that given by an accurate second-order Taylor series approximation.
Such models are known as fully-quadratic models on B(x, δ).

The concept of p-probabilistically fully-linear and fully-quadratic models was
introduced in [2] and requires conditions (2.3) or (2.4) to hold with probability p
at each iteration of a trust-region algorithm, conditioned on the past. Thus, a p-
probabilistically fully-linear model can be constructed given access to Oracle 1 with
εg = 0 and input δ(1) = δ and p1 = p, and a p-probabilistically fully-quadratic model
can be built given access to Oracle 1 with εg = 0 and input δ(1) = δ2 and Oracle 2
with εH = 0 and input δ(2) = δ and p1 p2 ≥ p.

In [2, 13], the convergence and complexity of a trust region method were analyzed
under the assumption that Oracles 1 and 2 are implementable over S j = (0,∞) ×
[0, p̄ j ], where p̄ j is sufficiently large, j = 1, 2 (Fig. 1c). On the other hand, the
function oracle in [2, 13] was assumed to be exact and not stochastic, i.e., Oracle 0.1
with ε f = 0 (Fig. 1a).

In [6, 10], the conditions on the zeroth-order oracle were significantly relaxed by
assuming (in the first-order analysis) that

P
{
| f (x) − φ(x)| ≤ κefδ

2
}

≥ p̄0

for a sufficiently large p̄0, where κef is some positive constant. That is, S0 = (0,∞)×
[0, p̄0], for some sufficiently large p̄0 (see Fig. 1c). For the second-order analysis, the
assumptions are stronger, requiring

P
{
| f (x) − φ(x)| ≤ κefδ

3
}

≤ p̄0

to hold for some sufficiently large p̄0 and

E [| f (x) − φ(x)|] ≤ κFδ3

for some κF . If δ is not bounded below by a positive number, the second condition
implies a zeroth-order oracle implementable over (0,+∞) × [0, 1). However, if δ

is bounded below by a positive number, then these two conditions imply weaker
conditions on S0 than our assumptions on Oracle 0, allowing heavy tailed distributions
of the error | f (x)−φ(x)|. Establishing algorithm complexity under the oracles in [6,
10] requires a different type of analysis than the one presented in this paper, which
so far has not been extended to deriving a high probability complexity bound and has
resulted in worse bounds on p̄1 and p̄2 as well as worse constants in the complexity
bound.

Gradient Norm Condition The fully-linear model condition is strongly tied to the TR
algorithm by the use of the TR radius on the right-hand side of (2.3) and (2.4). If,
instead of the TR method, a line search method based on inexact gradient estimates
{g(xk)}k=0,1,... is used for obtaining a solution x∗ with ‖∇φ(x∗)‖ ≤ ε for some ε > 0,
then to establish the computational complexity, it is sufficient that the gradient estimate
g(x) satisfies the gradient norm condition
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‖g(x) − ∇φ(x)‖ ≤ θ‖∇φ(x)‖, (2.5)

at all the iterates x ∈ {xk}k=0,1,..., for some θ ∈ [0, 1) with sufficiently high proba-
bility. To satisfy this condition, the first order oracle needs to be implementable over
[ε,+∞) × [0, p̄1] for a sufficiently large p̄1.

The norm condition (2.5) was first introduced in [8] in the context of TR methods.
This condition, with sufficiently small θ ensures the convergence of popular methods
such as Armijo backtracking line-search. Verifying the gradient norm condition (2.5)
requires knowledge of ‖∇φ(xk)‖, thus it cannot be enforced, even with some fixed
probability, in the case of expected risk minimization [7]. However, in some settings,
where g(x) is a randomized finite difference approximation of the gradient of a (pos-
sibly noisy) function [17], it is possible to ensure (2.5) holds with sufficiently high
probability [4].

Stochastic Gradient Norm Conditions When the norm condition cannot be ensured,
one again can resort to some Taylor-like conditions. In the case of line search, however,
those have to hold in a region, whose size is a product of the step size parameter α and
the norm of the search direction ‖g(x)‖. Thus, the following conditions inspired by the
concept of fully-linear models have been used in the literature to ensure convergence
of line search methods [9, 18],

| f (x) − φ(x)| ≤ κefα
2‖g(x)‖2 and ‖g(x) − ∇φ(x)‖ ≤ κegα‖g(x)‖, (2.6)

for some nonnegative constants (κef , κeg), where α is a step size parameter. When
(2.6) holds, the linear model φ(x)+〈g(x), y− x〉 gives an approximation of φ around
y = x − αg(x) that is comparable to that given by the first-order Taylor expansion of
φ in B(x, α‖g(x)‖). In [9, 18], complexity analyses of randomized and stochastic line
search algorithms were derived under the condition that (2.6) holds with sufficiently
high probability. A possible procedure of ensuring this conditions was outlined in [9]
and in essence requires access to a stochastic first-order oracle implementable over
S1 = (0,∞) × [0, p̄1], where p̄1 is sufficiently large. The zeroth-order oracle in
[9], as in [2, 13], is exact. In [18], as in [6], the zeroth-order oracle is assumed to be
implementable over (0,∞) × [0, p̄0] ⊂ S0 (Fig. 1c).

Finally, an almost identical Oracle 0 as the one in this paper is proposed in [14],
while the first-order oracle is similar to our Oracle 1 but with ‖g(x)‖ appearing in
the bound on the accuracy, as in other papers on line search methods. There is no
second-order analysis in [14], thus no second-order oracle is defined.

In summary, our first- and second-order oracles are more general than those used in
prior literature. Our assumptions on the zeroth-order oracle, while not general enough
to include those in [6, 10], are relevant to practice and yet allow for strong theoretical
results. In the next two settings, we discuss two common settings for the stochastic
zeroth-, first-, and second-order oracles.
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2.2 Expected risk minimization

In this setting, φ(x) = Ed∼D[l(x, d)], where x are the model parameters, d is a data
sample following distribution D, and l(x, d) : Rn → R is the loss function of the
d-th data point parametrized by x . The zeroth- and first-order oracles estimates are
obtained by sample averages of the loss function and its gradient, respectively, over B
(a mini-batch sampled from D), i.e.,

fB(x) = 1

|B|
∑

d∈B
l(x, d) and gB(x) = 1

|B|
∑

d∈B
∇x l(x, d). (2.7)

In [14] it is shown that the conditions of Oracle 0.2 are satisfied for any x for which
l(x, d) has a subexponential distribution (e.g., when the support of D is bounded and
l is Lipschitz) by selecting an appropriate sample size |B|.

Let us show how Oracle 1 is easily implemented in this setting and explain the
roles of εg and κeg. Assume that the variance of stochastic gradient is bounded,
Ed∼D

[‖∇l(x, d) − ∇φ(x)‖2] ≤ σ 2. Given input δ(1) and p1, choose random i.i.d.

mini-batch B whose size is at least min{N ,
(
(1 − p1)δ(1)

)−2}, where N is the maxi-
mum possible mini-batch size that the oracle can generate. Then, we have

EB [‖gB(x) − ∇φ(x)‖] ≤
√
EB

[‖gB(x) − ∇φ(x)‖2] ≤ max

{
σ√
N

, σ (1 − p1)δ
(1)
}

,

which by Markov inequality implies

P

{

‖gB(x) − ∇φ(x)‖ ≤ σ

(1 − p1)
√
N

+ σδ(1)
}

≥ P

{

‖gB(x) − ∇φ(x)‖ ≤ max

{
σ

(1 − p1)
√
N

, σ δ(1)
}}

≥ p1. (2.8)

Thus, we have Oracle 1 with input δ(1) and p1, with εg = σ

(1−p1)
√
N

and κeg = σ .

We note that εg and κeg need not be known for the execution of Algorithm 1, but
Algorithm 2 requires an estimate of εg .

2.3 Gradient and Hessian approximation via zeroth-order oracle

Let us consider the setting in which only the zeroth-order oracle is available for the
objective function. This zeroth-order oracle can come from a variety of settings, such
as simulation-based optimization, machine learning, or solutions for complex systems
[12]. Both cases, Oracle 0.1 and Oracle 0.2, have numerous applications. Let us now
discuss how Oracle 1 and Oracle 2 can be implemented using only function estimates
via finite differences.

Consider the following first-order oracle: given x ∈ R
n , choose σ > 0 and compute

f (y) for all y in the setY = {x}∪{x+σui }ni=1 usingOracle 0, where ui , i = 1, . . . , n,
denotes the unit vector along the i-th coordinate. Compute g(x) as follows
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g(x) =
n∑

i=1

f (x + σui ) − f (x)

σ
ui . (2.9)

The following proposition holds.

Proposition 2.6 ([4] Theorem 2.1) Assume that | f (y) − φ(y)| ≤ ε̂ f for all y ∈ Y .
Then, under Assumption 2.1

‖g(x) − ∇φ(x)‖ ≤
√
nL1σ

2
+

√
nε̂ f

σ
. (2.10)

Now consider the following second-order oracle: given x ∈ R
n , choose σ > 0 and

compute f (y) for all y in the set Y = {x} ∪ {x + σui }ni=1 ∪ {x + σui + σu j }ni, j=1
using Oracle 0. Compute H(x) as follows

H(x) =
n∑

i=1

n∑

j=1

f (x + σui + σu j ) − f (x + σui ) − f (x + σu j ) + f (x)

σ 2 uiu
ᵀ
j ,

(2.11)

The following proposition holds.

Proposition 2.7 Assume that | f (y)−φ(y)| ≤ ε̂ f for all y ∈ Y . Then, under Assump-
tion 2.2

‖H(x) − ∇2φ(x)‖ ≤ (
√
2 + 1)nL2σ

3
+ 4nε̂ f

σ 2 . (2.12)

First let us assume that Oracle 0.1 is used. Then, Propositions 2.6 and 2.7 apply with
ε̂ f = ε f with probability 1. Hence, by selecting σ that minimizes the right-hand sides

of (2.10), the finite difference formula (2.9) gives us Oracle 1 with εg =
√

nL1ε f
2 ,

κeg = 0 for any δ(1) > 0 and for p1 = 1. Similarly, by choosing σ to minimize
the right-hand side of (2.12), we obtain from formula (2.11) an Oracle 2 with εH =
(21/3 + 2−2/3)n 3

√
4(

√
(2) + 1)2L2ε̂ f /9, κeh = 0 for any δ(2) > 0 and for p2 = 1.

Next, let us consider the case of Oracle 0.2. It is not guaranteed that | f (y)−φ(y)| ≤
ε̂ f for all y ∈ Y . However, for any ε̂ f > ε f , we have that for any y, | f (y)−φ(y)| ≤ ε̂ f

with probability at least 1−ea(ε f −ε̂ f ). Thus, with probability at least (1−ea(ε f −ε̂ f ))n+1

it holds that | f (y) − φ(y)| ≤ ε̂ f for all y ∈ Y defined in the first-order oracle.
Proposition 2.6 implies that the first-order oracle defined above delivers Oracle 1

with εg =
√

nL1ε̂ f
2 , κeg = 0 for any δ(1) > 0 and for p1 = (1 − ea(ε f −ε̂ f ))n+1.

Similarly, | f (y) − φ(y)| ≤ ε̂ f for all y ∈ Y , defined by the second-order oracle,
with probability at least (1 − ea(ε f −ε̂ f ))(n+1)(n+2)/2, and thus we have Oracle 2 with

εH = (21/3 + 2−2/3)n 3
√
4(

√
(2) + 1)2L2ε̂ f /9, κeh = 0 for any δ(2) > 0 and for

p2 = (1 − ea(ε f −ε̂ f ))(n+1)(n+2)/2.
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Now, let us consider a first-order oracle based on polynomial interpolation. Specif-
ically, for a given x choose σ > 0 and a linearly independent set of vectors {ui }ni=1,
such that ‖ui‖ ≤ 1. Compute f (y) for all y in the set Y = {x} ∪ {x + σui }ni=1 using
Oracle 0. Let U ∈ R

n×n denote matrix whose rows are {uᵀ
i }ni=1 and let ũi denote the

columns of U−1. Compute

g(x) =
n∑

i=1

f (x + σui ) − f (x)

σ
ũi .

It is shown in [4] that if | f (y)−φ(y)| ≤ ε̂ f , for all y ∈ Y and underAssumption 2.1
the following bound holds.

‖g(x) − ∇φ(x)‖ ≤ ‖U−1‖
[√

nL1σ

2
+ 2

√
nε f

σ

]

,

Using arguments similar to those used above for finite differences, one can easily
show that the interpolation oracle provides Oracle 1 with appropriately chosen εg and
κeg = 0 and for any δ(1) > 0. The additional nuance of this case is the choice of
U , so that ‖U−1‖ is bounded from above either deterministically or probabilistically,
depending on an algorithm employed, thus p(1) of this Oracle 1 is defined according
to the choice of U and the instance of Oracle 0 employed.

Similarly, Oracle 2 can be implemented using techniques such as quadratic inter-
polation by choosing an appropriate sample set. How to choose such a sample set
involves the convoluted concept of poisedness which is out of the scope of this paper.
We refer interested readers to [12, 19, 20]. In [2] a stochastic second-order oracle is
generated by using quadratic interpolation a randomly sampled set, which allows for
a more efficient second-order oracle, when ∇φ(x) is approximately sparse. A further
discussion of stochastic oracles in [2] and other settings that fit our generic oracle
definition is a worthwhile topic, but is beyond the scope of this paper.

3 Trust-region algorithms for noisy optimization

In this section, we propose first- and second-order modified TR algorithms which
utilize the stochastic oracles discussed in Sect. 2 to produce models of the objective
function. We also define the requirements on these models and derive some key prop-
erties of both algorithms under these requirements.We finish the section by describing
the algorithms as stochastic processes which we then analyze in subsequent sections.

3.1 Algorithms

In every iteration k ∈ {0, 1, . . . } of ourmodifiedfirst- and second-order TRalgorithms,
a quadratic model

mk(xk + s) = φ(xk) + 〈gk, s〉 + 1

2
〈Hks, s〉 (3.1)
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is constructed to approximate the objective function near the iterate xk . The constant
term φ(xk) appears in (3.1) for clarity, but is not needed in the algorithm, since only
changes in the model value mk(xk) − mk(xk + s) are computed. The model gradient
gk = ∇mk(xk) is computed as a (random) approximation of ∇φ(xk) by the first-order
oracle (Oracle 1) with a specified accuracy and reliability for the iterate xk . The model
Hessian Hk = ∇2mk(xk) can be a quasi-Newton matrix or other (not necessarily
random or accurate) approximation of ∇2φ(xk), that satisfies the following standard
assumption [11].

Assumption 3.1 For all k = 0, 1, 2, . . . , ‖Hk‖ ≤ κbhm, where κbhm is a positive
constant.

Our modified first-order TR method is stated in Algorithm 1. In the execution of
Algorithm 1 (Line 2) it is required that the TR subproblem, defined as

min
s∈B(xk ,δk )

mk(xk + s), (3.2)

where B(xk, δk) is a Euclidean ball with center xk and radius δk > 0, is consistently
solved accurately enough so that the step sk satisfies

mk(xk) − mk(xk + sk) ≥ κfcd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

, (3.3)

for some (chosen) constant κfcd ∈ (0, 1].5 Condition (3.3) is commonly used in the
literature and is satisfied by the Cauchy point with κfcd = 1. See [11, Section 6.3.2]
for more details.

Algorithm 2 is our modified second-order TR algorithm. Similar to Algorithm 1,
in the execution of Algorithm 2 (Line 2) the TR subproblem (3.2) needs to be solved
sufficiently accurately, and the step sk computed needs to satisfy the following stronger
condition

mk(xk) − mk(xk + sk) ≥ κfod

2
max

{

‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

,−λmin(Hk)δ
2
k

}

,

(3.4)

for some (chosen) constant κfod ∈ (0, 1].6 Contrary to Algorithm 1, the Hessian
approximations Hk in Algorithm 2 are required to be sufficiently accurate and not just
bounded in norm. Furthermore, instead of comparing ‖gk‖ to η2δk to determine the
adjustment of the TR radius, the following value is used:

βm
k

def= max {‖gk‖,−λmin(Hk)} . (3.5)

5 “fcd" stands for “fraction of Cauchy decrease”.
6 “fod" stands for “fraction of decrease”.
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Algorithm 1: Modified First-Order Trust-Region Algorithm
Inputs: starting point x0; initial TR radius δ0 > 0; hyperparameters for controlling the TR radius
η1 > 0, η2 > 0, γ ∈ (0, 1); tolerance parameter r > 0; and probability parameter p1.
for k = 0, 1, 2, . . . do

1 Compute vector gk using stochastic Oracle 1 with input (δk , p1, xk ) and matrix Hk that satisfies
Assumption 3.1.

2 Compute sk by approximately minimizing mk in B(xk , δk ) so that it satisfies (3.3).

3 Compute fk using Oracle 0, with input xk , and f +
k using Oracle 0, with input xk + sk , and then

compute

ρk = fk − f +
k + r

mk (xk ) − mk (xk + sk )
.

4 if ρk ≥ η1 then
Set xk+1 = xk + sk and

δk+1 =
{

γ −1δk if ‖gk‖ ≥ η2δk

γ δk , if ‖gk‖ < η2δk .

5 else
Set xk+1 = xk and δk+1 = γ δk .

Algorithm 2: Modified Second-Order Trust-Region Algorithm
Inputs: starting point x0; initial TR radius δ0 > 0; hyperparameters for controlling the TR radius
η1 > 0, η2 > 0, γ ∈ (0, 1); tolerance parameter r > 0; and probability parameters p1 and p2.
for k = 0, 1, 2, . . . do

1 Compute vector gk using stochastic Oracle 1 with input (δ2k , p1, xk ) and matrix Hk using
stochastic Oracle 2 with input (δk , p2, xk ).

2 Compute sk by approximately minimizing mk in B(xk , δk ) so that it satisfies (3.4).

3 Compute fk using Oracle 0, with input xk , and f +
k using Oracle 0, with input xk + sk , and then

compute

ρk = fk − f +
k + r

mk (xk ) − mk (xk + sk )
.

4 if ρk ≥ η1 then
Set xk+1 = xk + sk and using βm

k defined in (3.5)

δk+1 =
{

γ −1δk if βm
k ≥ η2δk

γ δk , if βm
k < η2δk .

5 else
Set xk+1 = xk and δk+1 = γ δk .

We also note that if by any chance mk(xk) = mk(xk + sk) in any iteration of either
of these two algorithms, the step sk is automatically rejected, i.e., xk+1 = xk and
δk+1 = γ δk .

Remark 3.2 Algorithms 1 and 2 are very similar to classical TR algorithms [11]. The
major difference pertains to the fact that the step acceptance criterion is relaxed. The
relaxation is similar to that in [3, 5, 14] for line/step search methods. A user-defined
tolerance parameter is added to the numerator in order to account for the noise in the
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zeroth-order oracle. The value of r in Algorithm 1 is set to 2ε f if ε f is known (for
example when the zeroth-order oracle satisfies Oracle 0.1 with a known noise bound);
otherwise, we simply let r be any value large enough to be no less than 2ε f . Similarly,

the value of r in Algorithm 2 is set to 2ε f + ε
3/2
g if both ε f and εg are known, and

set to any large enough value otherwise. The effect of choosing particular values of r
will be discussed later in the paper.

3.2 Approximationmodel accuracy

Let us introduce a definition of a sufficiently accurate model.

Definition 3.3 An approximation model of the form (3.1) is said to be first-order
sufficiently accurate if there are nonnegative constants κeg and εg such that

‖∇φ(xk) − gk‖ ≤ κegδk + εg, (3.6)

and, is said to be second-order sufficiently accurate if there are nonnegative constants
κeg, κeh, εg and εH such that

‖∇2φ(xk) − Hk‖ ≤ κehδk + εH (3.7a)

‖∇φ(xk) − gk‖ ≤ κegδ
2
k + εg. (3.7b)

Note that (3.6) is satisfied with probability p1 by Oracle 1 with input (δk, p1, xk),
(3.7b) is satisfied with probability p1 by Oracle 1 with input (δ2k , p1, xk) and (3.7a) is
satisfied with probability p2 by Oracle 2 with input (δk, p2, xk).

Under (3.6) (resp., (3.7)), error bounds on the model accuracy can be derived.
The first lemma below provides a bound on the approximation error of the model in
B(xk, δk) under (3.6).

Lemma 3.4 Under Assumptions 2.1 and 3.1, if (3.6) holds, it follows

|φ(xk + s) − mk(xk + s)| ≤ (L1 + κbhm + 2κeg)δ
2
k/2 + εgδk (3.8)

for all xk + s ∈ B(xk, δk).

Proof By the triangle inequality, Assumptions 2.1 and 3.1 and (3.6), it follows that,

|φ(xk + s) − mk(xk + s)|
= |φ(xk + s) − φ(xk) − 〈gk, s〉 − 〈Hks, s〉/2|
≤ |φ(xk + s) − φ(xk) − 〈∇φ(xk), s〉| + |〈∇φ(xk), s〉 − 〈gk, s〉| + |〈Hks, s〉/2|
≤ L1‖s‖2/2 + ‖∇φ(xk) − gk‖‖s‖ + κbhm‖s‖2/2
≤ L1δ

2
k/2 + (κegδk + εg)δk + κbhmδ2k/2

= (L1 + κbhm + 2κeg)δ
2
k/2 + εgδk .

��
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The next result provides a bound on the approximation error of the model in
B(xk, δk) under (3.7).

Lemma 3.5 Under Assumption 2.2, if (3.7) holds, it follows

|φ(xk + s) − mk(xk + s)| ≤ (L2/6 + κeg + 1 + κeh/2)δ
2
k‖s‖ + εH δk‖s‖/2 + ε

3/2
g

(3.9)

for all xk + s ∈ B(xk, δk).

Proof First let us show that if (3.7b) holds, then

‖∇φ(xk) − gk‖ ≤ (κeg + 1)δ2k + min
{
ε
3/2
g /δk, εg

}
. (3.10)

Clearly if ε
3/2
g /δk ≥ εg , then (3.7b) trivially implies (3.10). On the other hand, if

ε
3/2
g /δk ≤ εg , then δk ≥ ε

1/2
g and thus κegδ

2
k + εg ≤ (κeg + 1)δ2k , hence again (3.7b)

implies (3.10).
Thus, by the triangle inequality, Assumption 2.2 and (3.7), it follows that,

|φ(xk + s) − mk(xk + s)|
= |φ(xk + s) − φ(xk) − 〈gk, s〉 − 0.5〈Hks, s〉|
≤
∣
∣
∣φ(xk + s) − φ(xk) − 〈∇φ(xk), s〉 − 〈∇2φ(xk)s, s〉/2

∣
∣
∣

+ |〈∇φ(xk), s〉 − 〈gk, s〉| +
∣
∣
∣〈∇2φ(xk)s, s〉 − 〈Hks, s〉

∣
∣
∣ /2

≤ L2‖s‖3/6 + ‖∇φ(xk) − gk‖‖s‖ + ‖∇2φ(xk) − Hk‖‖s‖2/2
≤ L2‖s‖3/6 + ((κeg + 1)δ2k + ε

3/2
g /δk)‖s‖ + (κehδk + εH )‖s‖2/2

≤ (L2/6 + κeg + 1 + κeh/2)δ
2
k‖s‖ + εH δk‖s‖/2 + ε

3/2
g .

��

3.3 Algorithms viewed as stochastic processes

For the purposes of analyzing the convergence of Algorithms 1 and 2, we view the
algorithms as stochastic processes. Here we introduce and explain some useful nota-
tion.

Let {Xk}, {X+
k } denote the sequences of random vectors in R

n whose realizations
are {xk} and {xk + sk}, respectively. Let {�k} denote the sequence of random positive
numbers whose realizations are {δk}, and {Mk} denote the sequence of randommodels
whose realizations are {mk}. For the error in the zeroth-order oracle, we denote by
{Ek} and {E+

k } the absolute errors whose realizations are {| fk − φ(xk)|} and {| f +
k −

φ(xk + sk)|}, respectively. Additionally, with a slight abuse of notation, let {ρk} be the
random variables that share the same symbols as their realizations.
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With these random variables, Algorithms 1 or 2 first generate in each iteration
(random) gradient and Hessian approximations, g(Xk, ξ

(1)) and H(Xk, ξ
(2)), using

Oracles 1 and 2, respectively. Subsequently, a random model Mk is constructed
deterministically around the current iterate Xk using these approximations and then
minimized within the trust-region to generate X+

k (deterministically, given Xk and

Mk). Then, random function value estimates f (Xk, ξ
(0)
k ) and f (X+

k , ξ
(0+)
k ) are gen-

erated using Oracle 0, which define the random errors Ek = |e(Xk, ξ
(0)
k )| and

E+
k = |e(X+

k , ξ
(0+)
k )|. And finally, ρk , �k+1 and Xk+1 are computed in a deter-

ministic manner (given Xk , Mk and the function values). Thus, given Xk and �k , the
randomness at the k-th iteration is generated by the variables ξ

(0)
k , ξ (0+)

k , ξ (1)
k and ξ

(2)
k .

Let Fk−1 denote the σ -algebra

Fk−1 = σ
((

ξ
(0)
0 , ξ

(0+)
0 , ξ

(1)
0 , ξ

(2)
0

)
, . . . ,

(
ξ

(0)
k−1, ξ

(0+)
k−1 , ξ

(1)
k−1, ξ

(2)
k−1

))
. (3.11)

Similarly, let

F ′
k−1 = σ

((
ξ

(0)
0 , ξ

(0+)
0 , ξ

(1)
0 , ξ

(2)
0

)
, . . . ,

(
ξ

(0)
k−1, ξ

(0+)
k−1 , ξ

(1)
k−1, ξ

(2)
k−1

)
,
(
ξ

(1)
k , ξ

(2)
k

))

(3.12)

We note that the random variables {Xk} and �k are defined by Fk−1, the random
variables {X+

k } and Mk are defined by F ′
k−1, and the random variables {Ek}, {E+

k } and
ρk are defined by Fk .

4 First-order stochastic convergence analysis

In this section, we analyze the first-order convergence of Algorithm 1. The goal is to
derive a probabilistic result of the form

P

{

min
0≤k≤T−1

‖∇φ(Xk)‖ < ε

}

≥ a function of T that converges to 1 as T increase

for any sufficiently large ε. This result cannot hold for arbitrarily small values of ε > 0
unless ε f = εg = 0. The specific lower bounds on ε in terms of ε f and εg will be
presented in Theorems 4.11 and 4.18.

Webegin by stating andproving three key lemmas about the behavior ofAlgorithm1
when (3.6) and Assumptions 2.1 and 3.1 hold. Let ek = fk − φ(xk) and e+

k =
f +
k − φ(xk + sk). The first lemma provides a sufficient condition for accepting a step

(xk+1 = xk + sk).

Lemma 4.1 (Sufficient condition for accepting step) Under Assumptions 2.1 and 3.1,
if (3.6) holds, r ≥ e+

k − ek , and

δk ≤ (1 − η1)κfcd

L1 + κbhm + 2κeg
‖gk‖ − 2

L1 + κbhm + 2κeg
εg, (4.1)
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then, ρk ≥ η1 in Algorithm 1.

Proof Since δk ≤ (1−η1)κfcd‖gk‖/(L1 +κbhm +2κeg) ≤ ‖gk‖/κbhm ≤ ‖gk‖/‖Hk‖,
(3.3) suggestsmk(xk)−mk(xk + sk) ≥ κfcd‖gk‖δk/2. Combining this inequality with
ek − e+

k + r ≥ 0 and Lemma 3.4, we have

ρk =φ(xk) + ek − φ(xk + sk) − e+
k + r

mk(xk) − mk(xk + sk)

≥ φ(xk) − φ(xk + sk)

mk(xk) − mk(xk + sk)

(3.8)≥ φ(xk) − mk(xk + sk) − (L1 + κbhm + 2κeg)δ2k/2 − εgδk

mk(xk) − mk(xk + sk)

(3.1)= 1 − (L1 + κbhm + 2κeg)δ2k/2 + εgδk

mk(xk) − mk(xk + sk)

(3.3)≥ 1 − (L1 + κbhm + 2κeg)δ2k + 2εgδk
κfcd‖gk‖δk

(4.1)≥ 1 − (1 − η1) = η1.

��

The next lemma provides a sufficient condition for a successful step (xk+1 = xk+sk
and δk+1 = γ −1δk).

Lemma 4.2 (Sufficient condition for successful step) Under Assumptions 2.1 and 3.1,
if (3.6) holds, r ≥ e+

k − ek , and

δk ≤ C1‖∇φ(xk)‖ − C2εg, (4.2)

where

C1
def= min

{
(1 − η1)κfcd

L1 + κbhm + 2κeg + (1 − η1)κfcdκeg
,

1

κeg + η2

}

C2
def= max

{
(1 − η1)κfcd + 2

L1 + κbhm + 2κeg + (1 − η1)κfcdκeg
,

1

κeg + η2

}

(4.3)

then, ρk ≥ η1 and ‖gk‖ ≥ η2δk in Algorithm 1.

Proof By (3.6) we have

‖gk‖ ≥ ‖∇φ(xk)‖ − ‖∇φ(xk) − gk‖ ≥ ‖∇φ(xk)‖ − κegδk − εg.
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Then

(1 − η1)κfcd

L1 + κbhm + 2κeg
‖gk‖ − 2

L1 + κbhm + 2κeg
εg

≥ (1 − η1)κfcd

L1 + κbhm + 2κeg
(‖∇φ(xk)‖ − κegδk − εg) − 2

L1 + κbhm + 2κeg
εg

(4.2)≥ δk .

The last inequality holds due to (4.2) with C1 and C2 set to the first term in their
corresponding min/maximization operation. Then by Lemma 4.1, we have ρk ≥ η1.
We also have

‖gk‖ ≥ ‖∇φ(xk)‖ − κegδk − εg
(4.2)≥ η2δk .

��
The last lemma provides a lower bound on the progress made in each iteration.

Lemma 4.3 (Progress made in each iteration) In Algorithm 1, if ρk ≥ η1 and ‖gk‖ ≥
η2δk , then

φ(xk) − φ(xk+1) ≥ h(δk) − ek + e+
k − r ,

where

h(δ) = C3δ
2 and C3

def= 1

2
η1η2κfcd min

{
η2

κbhm
, 1

}

. (4.4)

If ρk ≥ η1 but ‖gk‖ < η2δk , then

φ(xk) − φ(xk+1) ≥ −ek + e+
k − r . (4.5)

If ρk < η1, then φ(xk+1) = φ(xk).

Proof Let ρk ≥ η1. We have

η1 ≤ ρk = φ(xk) + ek − φ(xk + sk) − e+
k + r

mk(xk) − mk(xk + sk)
,

which can be rearranged toφ(xk)−φ(xk+1) ≥ η1[mk(xk)−mk(xk+sk)]−ek+e+
k −r .

If ‖gk‖ ≥ η2δk , the first term of this expression satisfies

η1[mk(xk) − mk(xk + sk)]
(3.3)≥ η1κfcd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

≥ η1κfcd

2
η2δk min

{
η2δk

κbhm
, δk

}

= h(δk);
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otherwise

η1[mk(xk) − mk(xk + sk)]
(3.3)≥ η1κfcd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

≥ 0.

If ρk < η1, we have xk+1 = xk , so φ(xk+1) = φ(xk). ��
Next, our analysis relies on categorizing iterations k = 0, 1, . . . , T−1 into different

types, where T is any positive integer. These types are defined using the following
random indicator variables:

Ik = 1{‖∇φ(Xk) − ∇Mk(Xk)‖ ≤ κeg�k + εg}
(whether the model is first-order sufficiently accurate)

Jk = 1{r ≥ E+
k + Ek}

(whether function evaluation errors are compensated by r )

�k = 1{ρk ≥ η1 and ‖∇Mk(Xk)‖ ≥ η2�k}
(whether the step is successful)

�′
k = 1{ρk ≥ η1} (whether the step is accepted)

�k = 1{�k > �̄}, �′
k = 1{�k ≥ �̄′},

where �̄ and �̄′ are defined as

�̄ = C1 min
0≤k≤T−1

‖∇φ(Xk)‖ − C2εg,

�̄′ = min
l

{γ lδ0 : γ lδ0 > γ �̄ and l ∈ Z}, (4.6)

and the positive constants C1 and C2 are defined in (4.3).
Notice that under Oracle 0.1, the condition r ≥ 2ε f ≥ E+

k + Ek always holds,
thus Jk = 1. The random variable �̄ is crucial to our analysis not only because it
involves the valuemin0≤k≤T−1 ‖∇φ(Xk)‖, but also because of the following corollary
to Lemma 4.2, which shows that if the errors from Oracles 0 and 1 are small, and the
TR radius is also small, then the iteration is successful.

Corollary 4.4 If Ik Jk = 1 and �k = 0, then �k = 1.

We also have the following lemma as a direct consequence of the definitions of
Oracle 1 and Ik .

Lemma 4.5 The random sequence {Mk} satisfies the submartingale-type condition

P{Ik = 1|Fk−1} ≥ p1 for all k ∈ {0, 1, . . .}, (4.7)

where Fk−1 is defined in (3.11).

Remark 4.6 To be specific, the random process
{∑t−1

k=0 Ik − p1t
}

t=0,1,...
is a sub-

martingale.
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Before we state and prove the main results of this section (Theorem 4.11 for Ora-
cle 0.1 and Theorem 4.18 for Oracle 0.2), we state and prove three technical lemmas
that are used in the analysis of Algorithm 1 under both Oracle 0.1 and Oracle 0.2. The
first lemma provides an upper bound on the number of successful iterations with large
(defined by �′

k) TR radius.

Lemma 4.7 For any positive integer T , we have

h(γ �̄)

T−1∑

k=0

�k�
′
k < φ(x0) − φ̂ +

T−1∑

k=0

�′
k

(Ek + E+
k + r

)
. (4.8)

Proof Notice h(·) (defined in (4.4)) is a monotonically non-decreasing function, so
h(�k) ≥ h(�̄′) if �′

k = 1. By Lemma 4.3,

φ(Xk) − φ(Xk+1) ≥
⎧
⎨

⎩

h(�̄′) − Ek − E+
k − r if �k�

′
k = 1

−Ek − E+
k − r if �′

k = 1
0 otherwise.

Thus,

φ(x0) − φ̂ ≥ φ(x0) − φ(XT ) =
T−1∑

k=0

φ(Xk) − φ(Xk+1) ≥
T−1∑

k=0

�k�
′
kh(�̄′)

−
T−1∑

k=0

�′
k

(Ek + E+
k + r

)
.

Since using �̄′ over-complicates later analysis, we derive a slightly weaker inequality
in (4.8) by using the fact that h(�̄′) > h(γ �̄). ��

Thenext lemmabounds the difference between the number of iterationswith�k(1−
�′

k) = 1 or (1−�k)�k = 1, where the TR radius moves towards the interval [�̄′, �̄],
and the number of iterations with (1− �k)(1− �k) = 1 or �k�

′
k = 1, where the TR

radius moves away from this interval.

Lemma 4.8 For any positive integer T , we have

T−1∑

k=0

�k(1 − �′
k) − (1 − �k)(1 − �k) + (1 − �k)�k − �k�

′
k

≤
∣
∣
∣
∣logγ

�̄′

δ0

∣
∣
∣
∣ <

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+ 1. (4.9)

Proof Consider the sequence

ζk = max
{
log(�k/�̄

′), 0
}
.
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This non-negative value starts at ζ0 = max
{
log(δ0/�̄′), 0

}
and increases by − log γ

in iteration k if �k�
′
k = 1 or decreases by − log γ if (1 − �k)�k = 1. Other types

of iterations do not affect this value. Thus,

ζT = ζ0 +
T−1∑

k=0

−�k�
′
k log γ + (1 − �k)�k log γ ≥ 0,

from which it follows that,

T−1∑

k=0

−�k�
′
k + (1 − �k)�k ≤ − ζ0

log γ
= max

{

logγ

�̄′

δ0
, 0

}

.

Similarly, consider the sequence

ζ ′
k = max

{
log(�̄′/�k), 0

}
.

It decreases by − log γ if �k(1 − �′
k) = 1 and increases by − log γ if (1 − �k)(1 −

�k) = 1. Thus,

ζ ′
T = ζ ′

0 +
T−1∑

k=0

−(1 − �k)(1 − �k) log γ + �k(1 − �′
k) log γ ≥ 0

from which it follows that,

T−1∑

k=0

−(1 − �k)(1 − �k) + �k(1 − �′
k) ≤ − ζ ′

0

log γ
= max

{

logγ

δ0

�̄′ , 0
}

.

The first inequality in (4.9) follows by combining the above two results. The second
inequality is trivially true. As in the previous lemma, we relax the right-hand side to
a function of �̄ instead of �̄′ in order to simplify the subsequent analysis. ��

The last lemma uses the Azuma-Hoeffding inequality to establish a probabilistic
lower bound on the number of iterations with sufficiently accurate models.

Lemma 4.9 For any positive integer T and any p̂1 ∈ [0, p1], we have

P

{
T−1∑

k=0

Ik > p̂1T

}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

. (4.10)

Proof Consider the submartingale
{∑t−1

k=0 Ik − p1t
}

t=0,1,...
. Since

∣
∣
∣
∣
∣
∣

⎛

⎝
(t+1)−1∑

k=0

Ik − p1(t + 1)

⎞

⎠−
(

t−1∑

k=0

Ik − p1t

)∣∣
∣
∣
∣
∣
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= |It − p1| ≤ max{|0 − p1|, |1 − p1|} = p1

for any t ∈ N, by the Azuma-Hoeffding inequality, we have for any positive integer
T and any positive real c

P

{
T−1∑

k=0

Ik − T p1 ≤ −c

}

≤ exp

(

− c2

2T p21

)

.

Setting c = (p1 − p̂1)T and subtracting 1 from both sides yields the result. ��

4.1 Convergence analysis: the bounded noise case

We present in this subsection our result on Algorithm 1with Oracle 0.1. The following
lemma combines the inequalities from Lemmas 4.7–4.9.

Lemma 4.10 For any positive integer T and any p̂1 ∈ [0, p1], we have

P

{(

p̂1 − 1

2
− 2ε f + r

h(γ �̄)

)

T <
φ(x0) − φ̂

h(γ �̄)
+ 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ 1

− exp

(

− (1 − p̂1/p1)2

2
T

)

. (4.11)

Proof Multiply

T−1∑

k=0

�k(1 − �′
k) + (1 − �k)(1 − �k) + (1 − �k)�k + �k�

′
k =

T−1∑

k=0

1 = T

by (2ε f + r)/h(γ �̄) − 0.5 and (4.9) by 0.5, then add the results together to obtain

2ε f + r

h(γ �̄)

[
T−1∑

k=0

1

]

−
[
T−1∑

k=0

(1 − �k)(1 − �k) + �k�
′
k

]

<

(
2ε f + r

h(γ �̄)
− 1

2

)

T + 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2
. (4.12)

As a first step to proving (4.11), we derive the following probabilistic bound:

P

{
T−1∑

k=0

−�k�
′
k + 2ε f + r

h(γ �̄)
�′

k <

(
2ε f + r

h(γ �̄)
+ 1

2
− p̂1

)

T + 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ P

{[
T−1∑

k=0

(1 − �k)(1 − �k)

]

− 2ε f + r

h(γ �̄)

[
T−1∑

k=0

1 − �′
k

]
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< (1 − p̂1)T and (4.12) holds.

}

= P

{[
T−1∑

k=0

(1 − �k)(1 − �k)

]

− 2ε f + r

h(γ �̄)

[
T−1∑

k=0

1 − �′
k

]

< (1 − p̂1)T

}

≥ P

{
T−1∑

k=0

(1 − �k)(1 − �k) + (1 − Ik)�k + (1 − Ik)(1 − �k)�k

< (1 − p̂1)T

}

= P

{
T−1∑

k=0

Ik(1 − �k)(1 − �k) + (1 − Ik) < (1 − p̂1)T

}

= P

{
T−1∑

k=0

(1 − Ik) < (1 − p̂1)T

}

= P

{
T−1∑

k=0

Ik > p̂1T

}

(4.10)≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

.

The first inequality holds because the event in the first line is an inequality obtained by
the sumof (4.12)with thefirst inequality in the second line. The second inequality holds
because the left-hand side of the inequality in the fourth line is greater than or equal
to the left-hand side of the inequality in the third line. The second last equality holds
since Jk = 1 for all k and then

∑T−1
k=0 Ik(1 − �k)(1 − �k) = 0 due to Corollary 4.4.

Meanwhile, by Lemma 4.7 and Oracle 0.1, we have

h(γ �̄)

T−1∑

k=0

�k�
′
k ≤ φ(x0) − φ̂ + (2ε f + r)

T−1∑

k=0

�′
k

or equivalently − φ(x0) − φ̂

h(γ �̄)
≤ −

T−1∑

k=0

�k�
′
k + 2ε f + r

h(γ �̄)
�′

k .

Combining the above two results, it follows that

P{A} = P

{

−φ(x0) − φ̂

h(γ �̄)
<

(
2ε f + r

h(γ �̄)
+ 1

2
− p̂1

)

T + 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

. ��
Our main theorem follows the above lemma.

Theorem 4.11 Let Assumptions 2.1 and 2.3 hold for the objective function φ. Let

Assumptions 3.1 and r ≥ 2ε f hold for Algorithm 1. Given any ε >

√
4ε f +2r

C3γ 2C2
1 (2p1−1)

+
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C2
C1

εg, where C1, C2 and C3 are defined in (4.3) and (4.4), the sequence of iterates
generated by Algorithm 1 with Oracle 0.1 satisfies

P

{

min
0≤k≤T−1

‖∇φ(Xk)‖ ≤ ε

}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

(4.13)

for any p̂1 ∈
(
1
2 + 2ε f +r

C3γ 2(C1ε−C2εg)2
, p1

]
and any

T ≥
(

p̂1 − 1

2
− 2ε f + r

C3γ 2(C1ε − C2εg)2

)−1

[
φ(x0) − φ̂

C3γ 2(C1ε − C2εg)2

+1

2
logγ

(

min

{
C1ε − C2εg

δ0
,

δ0

C1‖∇φ(x0)‖ − C2εg

})

+ 1

2

]

. (4.14)

Proof Recall �̄ is defined as C1 min0≤k≤T−1 ‖∇φ(Xk)‖ − C2εg . If �̄ ≤ 0, then
min0≤k≤T−1 ‖∇φ(Xk)‖ ≤ C2εg/C1, and the result is trivially true. Now assume
�̄ > 0. Consider the univariate function

Q(y) =
(

p̂1 − 1

2
− 2ε f + r

C3γ 2(C1y − C2εg)2

)−1

[
φ(x0) − φ̂

C3γ 2(C1y − C2εg)2
+ 1

2

∣
∣
∣
∣logγ

C1y − C2εg

δ0

∣
∣
∣
∣+

1

2

]

.

The probabilistic bound (4.11) we proved in Lemma 4.10 is

P

{

T < Q

(

min
0≤k≤T−1

‖∇φ(Xk)‖
)}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

,

and (4.14) implies T ≥ Q(ε). To prove (4.13), we only need to show that
T < Q

(
min0≤k≤T−1 ‖∇φ(Xk)‖

)
implies min0≤k≤T−1 ‖∇φ(Xk)‖ ≤ ε. Sup-

pose, for the sake of contradiction, that T < Q
(
min0≤k≤T−1 ‖∇φ(Xk)‖

)
but

min0≤k≤T−1 ‖∇φ(Xk)‖ > ε.
If �̄ ≤ δ0, we have C1ε − C2εg ≤ C1 min0≤k≤T−1 ‖∇φ(Xk)‖ − C2εg = �̄ ≤ δ0

and the function Q decreases monotonically between ε and min0≤k≤T−1 ‖∇φ(Xk)‖
(recall 0 < γ < 1). It follows that Q(ε) > Q(min0≤k≤T−1 ‖∇φ(Xk)‖), which

contradicts Q(ε)
(4.14)≤ T < Q(min0≤k≤T−1 ‖∇φ(Xk)‖).

Alternatively, if �̄ > δ0, the condition T < Q
(
min0≤k≤T−1 ‖∇φ(Xk)‖

)
implies

T <

(

p̂1 − 1

2
− 2ε f + r

h(γ �̄)

)−1
[

φ(x0) − φ̂

h(γ �̄)
+ 1

2
logγ

δ0

�̄
+ 1

2

]
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≤
(

p̂1 − 1

2
− 2ε f + r

h(γ �̄)

)−1
[

φ(x0) − φ̂

h(γ �̄)
+ 1

2
logγ

δ0

C1‖∇φ(x0)‖ − C2εg
+ 1

2

]

<

(

p̂1 − 1

2
− 2ε f + r

C3γ 2(C1ε − C2εg)2

)−1

[
φ(x0) − φ̂

C3γ 2(C1ε − C2εg)2
+ 1

2
logγ

δ0

C1‖∇φ(x0)‖ − C2εg
+ 1

2

]

,

where the last inequality holds because of the assumptionmin0≤k≤T−1 ‖∇φ(Xk)‖ > ε

and the fact that the function

Q′(y) =
(

p̂1 − 1

2
− 2ε f + r

C3γ 2(C1y − C2εg)2

)−1

[
φ(x0) − φ̂

C3γ 2(C1y − C2εg)2
+ 1

2
logγ

δ0

C1‖∇φ(x0)‖ − C2εg
+ 1

2

]

decreases monotonically on [ε,+∞). However, this contradicts (4.14). Thus, T <

Q
(
min0≤k≤T−1 ‖∇φ(Xk)‖

)
implies min0≤k≤T−1 ‖∇φ(Xk)‖ ≤ ε. ��

Remark 4.12 The bound (4.14) is rather complicated. Notice it can also be written as

T ≥ φ(x0) − φ̂

( p̂1 − 0.5)C3γ 2(C1ε − C2εg)2 − 2ε f − r

+
1
2 logγ

(
min

{
C1ε−C2εg

δ0
, δ0
C1‖∇φ(x0)‖−C2εg

})
+ 1

2

( p̂1 − 0.5)C3γ 2(C1ε − C2εg)2 − 2ε f − r
C3γ

2(C1ε − C2εg)
2.

(4.15)

The first term on the right-hand side is term that results inO(ε−2) complexity, which
is typical (and optimal) for first-order optimization algorithms on smooth nonconvex
functions. The second term represents the number of iterations the algorithm takes
to adjust the TR radius to a desired level. If the initial radius δ0 is too big, then
δ0/(C1ε − C2ε f ) is larger and the second term represents the number of iterations
needed for the TR to shrink to a level that can achieve a solution with ε-accuracy.
Alternatively, if the initial radius is too small, then (C1‖∇φ(x0)‖−C2εg)/δ0 is larger
and the second term represents the number of iterations needed for the TR to expand
to a level so that meaningful steps can be taken. Since ε is always assumed to be small,
the second term is typically much smaller than the first term. Additionally, regarding

the best achievable accuracy, condition ε >

√
4ε f +2r

C3γ 2C2
1 (2p1−1)

+ C2
C1

εg together with

r ≥ 2ε f gives a lower bound that can be roughly summarized as ε ≥ O(
√

ε f )+O(εg).

The above theorem has a “moving component” in p̂1. Maximizing the right-hand
side of (4.13) over p̂1 subject to the constraint (4.14) gives us the optimal value for
p̂1, which is
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1

2
+ 2ε f + r

C3γ 2(C1ε − C2εg)2
+ 1

T

[
φ(x0) − φ̂

C3γ 2(C1ε − C2εg)2

+1

2
logγ

(

min

{
C1ε − C2εg

δ0
,

δ0

C1‖∇φ(x0)‖ − C2εg

})

+ 1

2

]

.

By setting p̂1 to this value, we have the following corollary to Theorem 4.11.

Corollary 4.13 Under the settings of Theorem 4.11, given any ε >

√
4ε f +2r

C3γ 2C2
1 (2p1−1)

+
C2
C1

εg, it follows that

P

{

min
0≤k≤T−1

‖∇φ(Xk)‖ ≤ ε

}

≥ 1

− exp

(

− 1

2p21T

{(

p1 − 1

2
− 2ε f + r

C3γ 2(C1ε − C2εg)2

)

T

−
[

φ(x0) − φ̂

C3γ 2(C1ε − C2εg)2

+ logγ

(

min

{
C1ε − C2εg

δ0
,

δ0

C1‖∇φ(x0)‖ − C2εg

})

+ 1

2

]}2
)

for any T following (4.14) with the optimal p̂1.

4.2 Convergence analysis: the subexponential noise case

We now extend the analysis for the use of Oracle 0.2. Since Lemmas 3.4, 4.1 –4.3,
4.5, and 4.7–4.9 still hold when Oracle 0.2 is used instead of Oracle 0.1, we only
need two additional lemmas before we can prove convergence. Lemma 4.14 provides
a guarantee on the number of iterations with favorable function evaluations (Jk = 1).

Lemma 4.14 Let

p0 = 1 − 2 exp
(
a(ε f − r/2)

)
, (4.16)

where a is the positive constant from Oracle 0.2. Then, we have the submartingale
condition

P{Jk = 1|F ′
k−1} ≥ p0, for all k ∈ {0, 1, . . . }, (4.17)

where F ′
k−1 is the σ -algebra defined in (3.12). Furthermore, if r > 2ε f + 2

a log 4
(equivalent to p0 > 1/2), then for any positive integer T and any p̂0 ∈ [0, p0], it
follows that
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P

{
T−1∑

k=0

Jk > p̂0T

}

≥ 1 − exp

(

− (1 − p̂0/p0)2

2
T

)

. (4.18)

Proof By the definition of Oracle 0.2, we have

P
ξ

(0)
k

{

|e(Xk, ξ
(0)
k )| > t

∣
∣
∣
∣F ′

k−1

}

≤ exp(a(ε f − t))

and P
ξ

(0+)
k

{

|e(X+
k , ξ

(0+)
k )| > t

∣
∣
∣
∣F ′

k−1

}

≤ exp(a(ε f − t))

for all k ∈ {0, 1, . . . }. Consequently,

P

{

Jk = 0

∣
∣
∣
∣F ′

k−1

}

=P

{

r < Ek + E+
k

∣
∣
∣
∣F ′

k−1

}

≤ P

{

Ek > r/2 or E+
k > r/2

∣
∣
∣
∣F ′

k−1

}

≤ P

{

Ek > r/2

∣
∣
∣
∣F ′

k−1

}

+ P

{

E+
k > r/2

∣
∣
∣
∣F ′

k−1

}

≤ exp
(
a(ε f − r/2)

)+ exp
(
a(ε f − r/2)

) = 1 − p0.

Thus, (4.17) holds, and the random process
{∑t−1

k=0 Jk − p0t
}

t=0,1,...
is a submartin-

gale. Since

∣
∣
∣
∣
∣
∣

⎛

⎝
(t+1)−1∑

k=0

Jk − p0(t + 1)

⎞

⎠−
(

t−1∑

k=0

Jk − p0t

)∣∣
∣
∣
∣
∣
= |Jt − p0|

≤ max{|0 − p0|, |1 − p0|} = p0

for any t ∈ N, by the Azuma-Hoeffding inequality, we have for any positive integer
T and any positive real c

P

{
T−1∑

k=0

Jk − T p0 ≤ −c

}

≤ exp

(

− c2

2T p20

)

.

Setting c = (p0 − p̂0)T and subtracting 1 from both sides yields (4.18). ��
We largely rely on [22, Chapter 2] when it comes to the analysis of subexponential

random variables, but the results in that book are not sufficient for our convergence
analysis as the subexponential distribution defined there is controlled by one param-
eter, whereas the one in Oracle 0.2 is controlled by two parameters, a and ε f . A
somewhat stronger result is stated in the following proposition and its proof offered
in Appendix A.
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Proposition 4.15 Let X be a random variable such that for some a > 0 and b ≥ 0,

P{|X | ≥ t} ≤ exp(a(b − t)), for all t > 0. (4.19)

Then, it follows that

E exp(λ|X |) ≤ 1

1 − λ/a
exp(λb), for all λ ∈ [0, a) . (4.20)

With Proposition 4.15, we establish in Lemma 4.16 a probabilistic upper bound on
the total increase in the objective function value caused by the noise in the function
evaluations.

Lemma 4.16 With Oracle 0.2, for any t ≥ 0,

P

{
T−1∑

k=0

�′
k

(Ek + E+
k

) ≥ T (4/a + 2ε f ) + t

}

≤ exp
(
−a

4
t
)

. (4.21)

Proof With Oracle 0.2,P

{

Ek ≥ t

∣
∣
∣
∣F ′

k−1

}

≤ exp(a(ε f − t)), and by Proposition 4.15

it follows that

E

{

exp(2λEk)
∣
∣
∣
∣F ′

k−1

}

≤ 1

1 − 2λ/a
exp(2λε f ) for all λ ∈

[
0,

a

2

)
.

A similar result applies to E+
k . Then, by the Cauchy-Schwarz inequality, it follows

that for all λ ∈ [0, a/2)

E

{

exp(λEk + λE+
k )

∣
∣
∣
∣F ′

k−1

}

≤
√

E

{

exp(2λEk)
∣
∣
∣
∣F ′

k−1

}

· E
{

exp(2λE+
k )

∣
∣
∣
∣F ′

k−1

}

≤ 1

1 − 2λ/a
exp(2λε f ). (4.22)

By Markov’s inequality, for any λ ∈ [0, a/2), t ≥ 0, and positive integer T ,

P

{
T−1∑

k=0

�′
k

(Ek + E+
k

) ≥ t

}

≤ P

{
T−1∑

k=0

(Ek + E+
k

) ≥ t

}

= P

{

exp

(

λ

T−1∑

k=0

(Ek + E+
k

)
)

≥ exp(λt)

}

≤ e−λt
E

{

exp

(

λ

T−1∑

k=0

(Ek + E+
k

)
)}

≤ e−λt
(

1

1 − 2λ/a
exp(2λε f )

)T

,
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where the last inequality can be proved by induction as follows. Firstly, this inequality
holds for T = 1 due to (4.22). Now if it holds for any positive integer T , then for
T + 1

e−λt
E

⎧
⎨

⎩
exp

⎛

⎝λ

(T+1)−1∑

k=0

(Ek + E+
k

)
⎞

⎠

⎫
⎬

⎭

= e−λt
E

{

exp

(

λ

T−1∑

k=0

(Ek + E+
k

)
)

E
ξ

(0)
T ,ξ

(0+)
T

[

exp
(
λET + λE+

T

)
∣
∣
∣
∣F ′

T−1

]}

(4.22)≤ e−λt
E

{

exp

(

λ

T−1∑

k=0

(Ek + E+
k

)
)

1

1 − 2λ/a
exp(2λε f )

}

≤ e−λt
(

1

1 − 2λ/a
exp(2λε f )

)T 1

1 − 2λ/a
exp(2λε f ),

which shows this inequality holds for T + 1 and thus for any positive integer T . For
ease of exposition, we use the fact that 1/(1 − x) ≤ exp(2x) for all x ∈ [0, 1/2] to
simplify the above result

P

{
T−1∑

k=0

�′
k

(Ek + E+
k

) ≥ t

}

≤ e−λt [exp(4λ/a) exp(2λε f )
]T

= exp
(
λ
[
T (4/a + 2ε f ) − t

])
for all λ ∈

[
0,

a

4

]
.

Clearly the right-hand side is only less than or equal to 1 when t ≥ T (4/a + 2ε f ),
which makes the right-hand side a monotonically non-increasing function of λ. We
choose λ = a/4 and apply a change of variable to obtain the final result. ��

Similar to Lemma 4.10, we combine the inequalities from the established lemmas.

Lemma 4.17 Under Oracle 0.2, it holds for Algorithm 1 that

P

{(

p̂0 + p̂1 − 3

2
− 2ε f + 4/a + r

h(γ �̄)

)

T <
φ(x0) − φ̂ + t

h(γ �̄)
+ 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

− exp

(

− (1 − p̂0/p0)2

2
T

)

− exp
(
−a

4
t
)

(4.23)

for any positive integer T , any p̂1 ∈ [0, p1], and any t ≥ 0.

Proof Multiply

T−1∑

k=0

�k(1 − �′
k) + (1 − �k)(1 − �k) + (1 − �k)�k + �k�

′
k =

T−1∑

k=0

1 = T
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with (2ε f + 4/a + r)/h(γ �̄) + 0.5 and (4.9) with 0.5 and add the two expressions to
obtain

2ε f + 4/a + r

h(γ �̄)
T +

[
T−1∑

k=0

�k(1 − �′
k) + (1 − �k)�k

]

<

(
2ε f + 4/a + r

h(γ �̄)
+ 1

2

)

T + 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2
. (4.24)

Then,

P

{
2ε f + 4/a + r

h(γ �̄)
T −

T−1∑

k=0

�k�
′
k <

(
2ε f + 4/a + r

h(γ �̄)
+ 3

2
− p̂0 − p̂1

)

T

+1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ P

{
T−1∑

k=0

−�k − (1 − �k)�k < (1 − p̂0 − p̂1)T and (4.24) holds.

}

= P

{
T−1∑

k=0

−�k − (1 − �k)�k < (1 − p̂0 − p̂1)T

}

≥ P

{
T−1∑

k=0

[−�k − (1 − �k)�k] Ik Jk + (1 − Ik)(1 − Jk) < (1 − p̂0 − p̂1)T

}

= P

{
T−1∑

k=0

−Ik Jk + (1 − Ik)(1 − Jk) < (1 − p̂0 − p̂1)T

}

≥ P

{
T−1∑

k=0

Ik > p̂1T and
T−1∑

k=0

Jk > p̂0T

}

= P

{
T−1∑

k=0

Ik > p̂1T

}

+ P

{
T−1∑

k=0

Jk > p̂0T

}

− P

{
T−1∑

k=0

Ik > p̂1T or
T−1∑

k=0

Jk > p̂0T

}

≥
[

1 − exp

(

− (1 − p̂1/p1)2

2
T

)]

+
[

1 − exp

(

− (1 − p̂0/p0)2

2
T

)]

− 1

= 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

− exp

(

− (1 − p̂0/p0)2

2
T

)

,
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where the second equality holds due to Corollary 4.4, and the last inequality holds due
to Lemmas 4.9 and 4.14. Unlike the bounded noise case, Lemmas 4.7 and 4.16 imply

h(γ �̄)

T−1∑

k=0

�k�
′
k ≤ φ(x0) − φ̂ +

T−1∑

k=0

�′
k

(Ek + E+
k + r

)

≤ φ(x0) − φ̂ + (2ε f + 4/a + r)T + t

or equivalently − φ(x0) − φ̂ + t

h(γ �̄)
≤ 2ε f + 4/a + r

h(γ �̄)
T −

T−1∑

k=0

�k�
′
k,

with probability at least 1− exp(−at/4) for any t ≥ 0. Thus, we can combine the two
previous results to obtain (4.23). ��

We present our high probability complexity bound for Algorithm 1 with Oracle 0.2
in the following theorem. The proof is analogous to that of Theorem 4.11 and hence
omitted.

Theorem 4.18 Let Assumptions 2.1 and 2.3 hold for the objective function φ. Let
Assumption 3.1 and r ≥ 2ε f hold for Algorithm 1. Let p0 be defined as in (4.16).

Given any ε >

√
4ε f +8/a+2r

C3γ 2C2
1 (2p0+2p1−3)

+ C2
C1

εg, where C1, C2 and C3 are defined in (4.3)

and (4.4), the sequence of iterates generated by Algorithm 1 with Oracle 0.2 satisfy

P

{

min
0≤k≤T−1

‖∇φ(Xk)‖ ≤ ε

}

≥ 1 − exp

(

− (1 − p̂1/p1)2

2
T

)

− exp

(

− (1 − p̂0/p0)2

2
T

)

− exp
(
−a

4
t
)

(4.25)

for any p̂0 and p̂1 such that p̂0 + p̂1 ∈
(
3
2 + 2ε f +4/a+r

C3γ 2(C1ε−C2εg)2
, p0 + p1

]
, any t ≥ 0,

and any

T ≥
(

p̂0 + p̂1 − 3

2
− 2ε f + 4/a + r

C3γ 2(C1ε − C2εg)2

)−1

[
φ(x0) − φ̂ + t

C3γ 2(C1ε − C2εg)2

+1

2
logγ

(

min

{
C1ε − C2εg

δ0
,

δ0

C1‖∇φ(x0)‖ − C2εg

})

+ 1

2

]

. (4.26)

Similar to Theorem 4.11, one can optimize the bounds in Theorem 4.18 by max-
imizing the right-hand side of (4.25) while satisfying (4.26). However, since there is
no closed form solution, we omit this corollary.
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5 Second-order stochastic convergence analysis

The convergence analysis of Algorithm 2 is analogous to that of Algorithm 1 with
the difference that the goal is for the algorithm to find an approximate second-order
critical point, i.e., a point x such that max{‖∇φ(x)‖,−λmin(∇2φ(x))} ≤ ε for some
sufficiently large ε. However, to keep our results concise, we define an optimality
measure

β(x)
def= max

{
C4‖∇φ(x)‖ − C5εg,−C6λmin(∇2φ(x)) − C7εH

}
,

where C4,C5,C6, and C7 are positive constants defined in (5.3). The main goal of
this section is to derive a probabilistic result of the form

P

{

min
0≤k≤T−1

β(Xk) < ε′
}

≥ a function of T that converges to 1 as T increases

for any sufficiently large ε′. It should be clear that ε is simply a scaled version of ε′
plus the errors coming from εg and εH .

In what follows, we are mainly concerned with iterations where δk ≤ β(xk). To
simplify some of the analysis we find that it is useful to have δk ≤ 1 whenever
δk ≤ β(xk). To this end, we introduce the following simple and technical assumption.
It plays a similar role as [6, Assumption 6b]. Such an assumption can be avoided, but
at the expense of a significant increase in the complexity of the analysis.

Assumption 5.1 (Upper bound on convergence accuracy) The optimization problem
is properly scaled so that the desired accuracy satisfies ε′ ≤ 1 and the irreducible noise
constants satisfy εg, εH � 1.

Under this assumption, we can see that we are mainly interested in iterations where
β(xk) ≤ 1, thus, assuming δk ≤ 1 whenever δk ≤ β(xk) is without loss of generality.

Analogous to Sect. 4, we begin by stating and proving three key lemmas about the
behavior of Algorithm 2 under Assumptions 2.2 and 3.1 and assuming (3.7) holds.
The first lemma provides a sufficient condition for accepting a step.

Lemma 5.2 (Sufficient condition for accepting step) Under Assumptions 2.2 and 3.1,
if (3.7) holds, r ≥ e+

k − ek + ε
3/2
g , δk ≤ 1, and

δk ≤ max

{

min

{
1

κbhm
,

(1 − η1)κfod

L2/3 + 2κeg + 2 + κeh + εH

}

‖gk‖,
−(1 − η1)κfodλmin(Hk) − εH

L2/3 + 2κeg + 2 + κeh

}

, (5.1)

then ρk ≥ η1 in Algorithm 2.
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Proof First,

ρk = φ(xk) + ek − φ(xk + sk) − e+
k + r

mk(xk) − mk(xk + sk)

≥ φ(xk) − φ(xk + sk) + ε
3/2
g

mk(xk) − mk(xk + sk)

(3.9)≥ φ(xk) − mk(xk + sk) − (L2/6 + κeg + 1 + κeh/2)δ3k − εH δ2k/2

mk(xk) − mk(xk + sk)

(3.1)= 1 − (L2/6 + κeg + 1 + κeh/2)δ3k + εH δ2k/2

mk(xk) − mk(xk + sk)

(3.4)≥ 1 − (L2/3 + 2κeg + 2 + κeh)δ
3
k + εH δ2k

κfod max{‖gk‖min{‖gk‖/‖Hk‖, δk},−λmin(Hk)δ
2
k }

.

We consider two cases. If the first term in the maximization operation in (5.1) is larger,
it follows that δk ≤ ‖gk‖/κbhm ≤ ‖gk‖/‖Hk‖ and

ρk ≥ 1 − (L2/3 + 2κeg + 2 + κeh)δ
3
k + εH δ2k

κfod‖gk‖δk
≥ 1 − (L2/3 + 2κeg + 2 + κeh)δ

2
k + εH δ2k

κfod‖gk‖δk
(5.1)≥ 1 − (1 − η1) = η1.

If the second term in the maximization operation in (5.1) is larger, then

ρk ≥ 1 − (L2/3 + 2κeg + 2 + κeh)δ
3
k + εH δ2k

−κfodλmin(Hk)δ
2
k

(5.1)≥ 1 − (1 − η1) = η1.

��
The next result provides a sufficient condition for a successful step.

Lemma 5.3 (Sufficient condition for successful step) Under Assumptions 2.2 and 3.1,
if (3.7) holds, r ≥ e+

k − ek + ε
3/2
g , δk ≤ 1, and

δk ≤ β(xk)
def= max

{
C4‖∇φ(xk)‖ − C5εg,−C6λmin(∇2φ(xk)) − C7εH

}
, (5.2)

where

C4
def= min

{
1

κbhm + κeg
,

(1 − η1)κfod

(L2/3 + 2κeg + 3 + κeh) + (1 − η1)κfodκeg
,

1

κeg + η2

}

C5
def= max

{
1

κbhm + κeg
,

(1 − η1)κfod

(L2/3 + 2κeg + 3 + κeh) + (1 − η1)κfodκeg
,

1

κeg + η2

}

C6
def= min

{
(1 − η1)κfod

L2/3 + 2κeg + 2 + κeh + (1 − η1)κfodκeh
,

1

κeh + η2

}
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C7
def= max

{
(1 − η1)κfod + 1

L2/3 + 2κeg + 2 + κeh + (1 − η1)κfodκeh
,

1

κeh + η2

}

(5.3)

then, ρk ≥ η1 and βm
k ≥ η2δk in Algorithm 2.

Proof By (3.7), we have

‖gk‖ ≥ ‖∇φ(xk)‖ − ‖gk − ∇φ(xk)‖ ≥ ‖∇φ(xk)‖ − κegδ
2
k − εg

and

−λmin(Hk) ≥ −λmin(∇2φ(xk)) − ‖Hk − ∇2φ(xk)‖ ≥ −λmin(∇2φ(xk)) − κeh − εH .

We first show ρk ≥ η1. We consider two cases. If the first term in the maximization
operation in (5.2) is larger, then

‖gk‖
κbhm

≥ ‖∇φ(xk)‖ − κegδ
2
k − εg

κbhm
≥ ‖∇φ(xk)‖ − κegδk − εg

κbhm

(5.2)≥ δk,

and

(1 − η1)κfod

(L2/3 + 2κeg + 2 + κeh) + εH
‖gk‖

≥ (1 − η1)κfod

(L2/3 + 2κeg + 2 + κeh) + 1
(‖∇φ(xk)‖ − κegδk − εg)

(5.2)≥ δk .

Alternatively, if the second term in the maximization operation in (5.2) is larger,
then

−(1 − η1)κfodλmin(Hk) − εH

L2/3 + 2κeg + 2 + κeh

≥ (1 − η1)κfod(−λmin(∇2φ(xk)) − κehδk − εH ) − εH

L2/3 + 2κeg + 2 + κeh

(5.2)≥ δk .

Thus, ρk ≥ η1 according to Lemma 5.2.
For the condition βm

k ≥ η2δk , first consider the case where the first term in the
maximization operation in (5.2) is larger, then

‖gk‖ ≥ ‖∇φ(xk)‖ − κegδ
2
k − εg ≥ ‖∇φ(xk)‖ − κegδk − εg

(5.2)≥ η2δk .

If the second term in the maximization operation in (5.2) is larger, then

−λmin(Hk) ≥ −λmin(∇2φ(xk)) − κehδk − εH
(5.2)≥ η2δk .

��
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The last result provides a bound on the progress made at each iteration. The proof
uses similar arguments as in Lemma 4.3 and [13, Lemma 3.7].

Lemma 5.4 (Progress made in each iteration) In Algorithm 2, if ρk ≥ η1, δk ≤ 1 and
βm
k ≥ η2δk , then

φ(xk) − φ(xk+1) ≥ h(δk) − ek + e+
k − r ,

where

h(δ) = C8 min{1, δ3}, where C8
def= η1η2κfod

2
min

{
η2

κbhm
, 1

}

. (5.4)

If ρk ≥ η1 but βm
k < η2δk , then

φ(xk) − φ(xk+1) ≥ −ek + e+
k − r . (5.5)

If ρk < η1, then φ(xk+1) = φ(xk).

Proof Similar to Lemma4.3, letρk ≥ η1 andwe haveφ(xk)−φ(xk+1) ≥ η1[mk(xk)−
mk(xk+sk)]−ek+e+

k −r . Ifβm
k = −λmin(Hk) ≥ η2δk , the first term of this expression

satisfies

η1[mk(xk) − mk(xk + sk)]
(3.4)≥ η1κfod

2

(
−λmin(Hk)δ

2
k

)
≥ η1κfod

2
η2δ

3
k ;

If βm
k = ‖gk‖ ≥ η2δk , it satisfies

η1[mk(xk) − mk(xk + sk)]
(3.4)≥ η1κfod

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

≥ η1κfod

2
η2δk min

{
η2δk

κbhm
, δk

}

≥ η1η2κfod

2
min

{
η2

κbhm
, 1

}

δ3k

If βm
k < η2δk , then

η1[mk(xk) − mk(xk + sk)]
(3.4)≥ η1κfod

2
max

{

‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

,−λmin(Hk)δ
2
k

}

≥ 0.

If ρk < η1, we have xk+1 = xk , so φ(xk+1) = φ(xk). ��
Next, to categorize the iterations k = 0, 1, . . . , T − 1 into different types, we

redefine the random indicator variables as follows:

Ik = 1

{ ‖∇2Mk(Xk) − ∇2φ(Xk)‖ ≤ κeh�k + εH
and ‖∇Mk(Xk) − ∇φ(Xk)‖ ≤ κeg�

2
k + εg

}

,
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Jk = 1{r ≥ E+
k + Ek + ε

3/2
g }

�k = 1{ρk ≥ η1 and βm
k ≥ η2�k}, (5.6)

where βm
k is defined in (3.5) and �̄ is now defined as

�̄ = min
0≤k≤T−1

β(Xk). (5.7)

The interpretations of the indicators variables Ik , Jk and �k remain the same as in
Sect. 4, as does the definition of �′

k . The definitions of �k,�
′
k , and �̄′ also remain

the same but with the newly defined �̄.
Similar to the first-order case, with the redefined random indicator variables, it

follows from Lemma 5.3 that if Ik Jk = 1 and �k = 0, then �k = 1 (and the step is
successful). We formalize this in the corollary below.

Corollary 5.5 (Corollary to Lemma 5.3) If Ik Jk = 1 and �k = 0, then �k = 1.

Corollary 5.5 shows that if the gradient and Hessian approximations are accurate and
the relaxation parameter is sufficiently large (relative to the noise in the function eval-
uations), and the TR radius is larger than a threshold, then the iteration is successful.

The following lemma is a direct consequence of the definitions of Oracles 1 and 2
and the new definition of Ik in (5.6).

Lemma 5.6 The random sequence {Mk} satisfies the submartingale-type condition

P{Ik = 1|Fk−1} ≥ p1 p2
def= p12, (5.8)

where Fk−1 is defined in (3.11).

With the redefined random variables, Lemmas 4.8 and 4.9 hold for Algorithm 2.
Lemma 4.7 also holds for Algorithm 2 with the function h defined in (5.4), and
Lemma 4.14 holds with

p0 = 1 − 2 exp
(a

2
(2ε f + ε

3/2
g − r)

)
. (5.9)

Furthermore, Lemma 4.16 holds without any changes. Therefore, with the newly
redefined random variables, h and p0, the twomain lemmas that combine inequalities,
Lemmas 4.10 and 4.17, still hold. We can arrive at the following two theorems for
both bounded and subexponential noise cases. Their proofs are analogous to those of
Theorems 4.11 (with Lemma 4.10) and 4.18 (with Lemma 4.17), respectively, and,
thus, for brevity we provide a sketch of the proof for Theorem 5.7 and omit the others.

Theorem 5.7 Let Assumptions 2.2 and 2.3 hold for the objective function φ. Let
Assumption 3.1 and r ≥ 2ε f + ε

3/2
g hold for Algorithm 2. Under Assumption 5.1,

given any ε′ > 3
√

4ε f +2r
C8γ 3(2p12−1)

, where C8 is defined in (5.4), the sequence of iterates
generated by Algorithm 2 with Oracle 0.1 satisfies

P

{

min
0≤k≤T−1

β(Xk) ≤ ε′
}

≥ 1 − exp

(

− (1 − p̂12/p12)2

2
T

)

(5.10)
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for any p̂12 ∈
(
1
2 + 2ε f +r

C8(γ ε′)3 , p12
]
and any

T ≥
(

p̂12 − 1

2
− 2ε f + r

C8(γ ε′)3

)−1
[

φ(x0) − φ̂

C8(γ ε′)3
+ 1

2
logγ

(

min

{
ε′

δ0
,

δ0

β(x0)

})

+ 1

2

]

.

(5.11)

Proof Analogous to Lemma 4.10, one can prove that for any positive integer T and
any p̂1 ∈ [0, p1]

P

{(

p̂12 − 1

2
− 2ε f + r

h(γ �̄)

)

T <
φ(x0) − φ̂

h(γ �̄)
+ 1

2

∣
∣
∣
∣logγ

�̄

δ0

∣
∣
∣
∣+

1

2

}

≥ 1 − exp

(

− (1 − p̂12/p12)

2
T

)

. (5.12)

Now recall h(γ �̄) = C8 min{1, γ 3�̄3} = C8 min{1, γ 3 min0≥k≤T−1 β(Xk)}3 and
0 < γ < 1. Analogous to Theorem 4.11, when �̄ ≤ δ0, since the function Q defined
below is a decreasing function of y,

Q(y) =
(

p̂12 − 1

2
− 2ε f + r

C8γ 3y3

)−1
[

φ(x0) − φ̂

C8γ 3y3
+ 1

2
logγ

y

δ0
+ 1

2

]

,

condition (5.11) implies T ≥ Q(ε′), and the event in (5.12) is T < Q(min{γ −1,

min0≥k≤T−1 β(Xk)}), we havemin{γ −1,min0≥k≤T−1 β(Xk)} < ε′. Considering ε′ ≤
1 < γ −1, this meansmin0≥k≤T1 β(Xk) < ε′. If �̄ > δ0, we replace the 0.5 logγ (y/δ0)
in function Q with the constant 0.5 logγ (δ0/β(x0)) and apply the same argument with
the decreasing function. ��

Remark 5.8 Condition ε′ > 3
√

4ε f +2r
C8γ 3(2p0+2p12−3)

together with r ≥ 2ε f + ε
3/2
g implies

a lower bound on ε′ of O( 3
√

ε f ) + O(
√

εg). Then, Theorem 5.7 implies the best
achievable accuracy ε for an approximate second-order critical point is of the form
ε ≥ O( 3

√
ε f ) + O(

√
εg) + O(εH ).

Additionally, the optimal value for p̂12 in Theorem 5.7 is

1

2
+ 2ε f + r

C8(γ ε′)3
+ 1

T

[
φ(x0) − φ̂

C8(γ ε′)3
+ 1

2
logγ

(

min

{
ε′

δ0
,

δ0

β(x0)

})

+ 1

2

]

,

and by setting p̂12 to this value, we derive the following corollary to Theorem 5.7.

Corollary 5.9 Under the setting of Theorem 5.7, given any ε′ > 3
√

4ε f +2r
C8γ 3(2p12−1)

, where

C8 is defined in (5.4), it follows that

P

{

min
0≤k≤T−1

β(Xk) ≤ ε′
}
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≥ 1 − exp

(

− 1

2p212T

{(

p12 − 1

2
− 2ε f + r

C8(γ ε′)3

)

T

−
[

φ(x0) − φ̂

C8(γ ε′)3
+ 1

2
logγ

(

min

{
ε′

δ0
,

δ0

β(x0)

})

+ 1

2

]}2
⎞

⎠

for any T satisfying (5.11) with the optimal p̂12.

The final theorem is for the setting of Oracle 0.2.

Theorem 5.10 Let Assumptions 2.2 and 2.3 hold for the objective function φ. Let
Assumptions 3.1 and r ≥ 2ε f + ε

3/2
g holds for Algorithm 2. Let p0 be defined as (5.9).

Given ε′ > 3
√

4ε f +8/a+2r
C8γ 3(2p0+2p12−3)

, where C8 is defined in (5.4), the sequence of iterates

generated by Algorithm 2 with Oracle 0.2 satisfies

P

{

min
0≤k≤T−1

β(Xk) ≤ ε′
}

≥ 1 − exp

(

− (1 − p̂12/p12)2

2
T

)

− exp

(

− (1 − p̂0/p0)2

2
T

)

− exp
(
−a

4
t
)

(5.13)

for any p̂0 and p̂12 such that p̂0 + p̂12 ∈
(
3
2 + 2ε f +4/a+r

C8(γ ε′)3 , p0 + p12
]
, any t ≥ 0, and

any

T ≥
(

p̂0 + p̂12 − 3

2
− 2ε f + 4/a + r

C8(γ ε′)3

)−1

[
φ(x0) − φ̂ + t

C8(γ ε′)3
+ 1

2
logγ

(

min

{
ε′

δ0
,

δ0

β(x0)

})

+ 1

2

]

. (5.14)

6 Numerical experiments: adversarial example

In this section, we explore the tightness of our theoretical results through numerical
experiments. The goal is to investigate whether over the course of optimization the
minimum gradient norm ‖∇φ(xk)‖ encountered by Algorithm 1 in the presence of
noise is consistent with our theoretical lower bounds on ε. Since our analysis is for
the worst-case scenario, we consider synthetic experiments where we injected noise
in an adversarial manner to make the algorithm perform as poorly as possible at each
step.

First, we choose a simple function, φ(x) = L1‖x‖2/2, that satisfies Assump-
tions 2.1 and 2.3. We apply Algorithm 1 using linear models, thus, Assumption 3.1
is satisfied with κbhm = 0. We do not consider quadratic models in this experi-
ment because developing the adversarial numerical example becomes significantly
more complex. The solution of the trust-region subproblem for linear models can be
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expressed as

sk =
{
0 if gk = 0

− δk‖gk‖gk otherwise.
(6.1)

When sk = gk = 0, the step is rejected. In most of the discussion below, gk is assumed
to be nonzero unless stated otherwise. Given the trial step sk , the noise in the function
value is set as follows to “encourage” the algorithm to reject good steps (those that
decrease φ) and to accept bad steps (those that increase φ). Specifically, the noise was
set as follows,

(ek, e
+
k ) =

{
(−ε f ,+ε f ) if φ(xk + sk) ≤ φ(xk)

(+ε f ,−ε f ) otherwise.
(6.2)

The noise setting (6.2) does not ensure theworst-case behavior over all iterations of the
algorithm, since accepting a good step may increase the trust-region radius and result
in worse performance later on. However, this setting reflects our theoretical analysis,
which considers only the worse outcome of each iteration separately.

To generate gradient approximations in an adversarial manner, we again aim for the
algorithm to accept steps that make φ increase as much as possible and avoid taking
steps when increasing φ is not possible. Since our Oracle 1 only offers sufficiently
accurate gradient with probability p1, at the beginning of each iteration, we set a
random variable Ik to 1 with probability p1 and 0 with probability 1 − p1. During
iterations where the gradient is not sufficiently accurate (Ik = 0), gk is chosen so that
the increase in function value φ(xk + sk)−φ(xk) = −L1δk〈xk, gk/‖gk‖〉+ L1δ

2
k/2 is

maximized under condition that the step is accepted, i.e., ρk ≥ η1. Thus, the following
problem is solved.

max
gk

φ(xk + sk) − φ(xk) = −L1δk〈xk, gk/‖gk‖〉 + L1δ
2
k/2

Maximize loss.

s.t. ρk = L1‖xk‖2/2 − L1‖xk − δkgk/‖gk‖‖2/2 + 2ε f + r

‖gk‖δk ≥ η1

Step accepted.

‖gk‖ > 0. (6.3)

If (6.3) is infeasible or its optimal value is less than zero, then gk is set to zero
so that the step is rejected, otherwise gk is set to its optimal solution. We note that
expressions for ρk depends on how we use (6.2). Since the goal here is to accept a
step with possible increase in φ, we then set (ek, e

+
k ) = (+ε f ,−ε f ) and expression

for ρk is

ρk = φ(xk) − φ(xk + sk) + 2ε f + r

m(xk) − m(xk + sk)
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= L1‖xk‖2/2 − L1‖xk − δkgk/‖gk‖‖2/2 + 2ε f + r

‖gk‖δk . (6.4)

On the other hand, if Ik = 1, problem (6.3) needs to be solved with the additional
constraint that the gradient is sufficiently accurate, i.e.,

‖gk − ∇φ(xk)‖ = ‖gk − L1xk‖ ≤ κegδk + εg Gradient sufficiently accurate.

(6.5)

Either with the additional constraint (6.5) or not, problem (6.3) is not solved as is,
butwith the change of variables y1 = 〈xk, gk/‖gk‖〉 and y2 = ‖gk‖. The reformulation
is

min
y1,y2

y1 Maximize loss.

s.t. η1y2 − L1y1 ≤ (2ε f + r)/δk − L1δk/2 Step accepted.

|y1| ≤ ‖xk‖ and y2 ≥ min{10−6, 10−2‖L1xk‖}, (6.6)

where y2 = ‖gk‖ > 0 is replaced by y2 ≥ min{10−6, 10−2‖L1xk‖} so that the
“minimization” is well-defined. Constraint (6.5) is then written as

y22 − 2L1y1y2 + (L1‖xk‖)2 ≤ (κegδk + εg)
2 Gradient sufficiently accurate.

(6.7)

Problem (6.6) (with or without (6.7)) can be solved analytically, and the corre-
sponding optimal gk can be recovered from the optimal y1 and y2. The procedures are
detailed in Appendix B.

When Ik = 1, if the optimal value of (6.6)–(6.7) is less than δk/2 (meaning the loss
is greater than 0), gk is set using the optimal values of y1 and y2; if this problem is
infeasible, then gk is simply set to ∇φ(xk) = L1xk , since an acceptable step does not
exist anyway; and, if the optimal value of this problem is greater than or equal to δk/2,
the algorithm cannot be tricked into taking a step that increases φ, so the worst-case
scenario is when no step is taken at all. In the third case, we try to find a value for gk
to prevent any step from being taken by solving the two optimization problems (6.8)
and (6.9) described below:

max
y1,y2

η1y2 − L1y1 Try to get the step rejected.

s.t. y22 − 2L1y1y2 + (L1‖xk‖)2 ≤ (κegδk + εg)
2 Gradient sufficiently accurate.

y1 < δk/2 Step leads to loss of progress.

|y1| ≤ ‖xk‖ and y2 ≥ min{10−6, 10−2‖L1xk‖} (6.8)
max
y1,y2

η1y2 − L1y1 Try to get the step rejected

s.t. y22 − 2L1y1y2 + (L1‖xk‖)2 ≤ (κegδk + εg)
2 Gradient sufficiently accurate.

y1 ≥ δk/2 Step leads to progress.
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|y1| ≤ ‖xk‖ and y2 ≥ min{10−6, 10−2‖L1xk‖}. (6.9)

There are two problems because of (6.2). In the first problem where the second con-
straint is φ(xk+sk) > φ(xk), ρk (6.4) is calculated with a+2ε f term in the numerator;
and, in the second problemwhere the second constraint is φ(xk+sk) ≤ φ(xk), ρk (6.4)
is calculated with a−2ε f term in the numerator. If either one of the two optimal values
is greater than (±2ε f + r)/δk − L1δk/2, then we set gk to the corresponding optimal
solution, which will lead to a rejection of the step; otherwise, a step that decreases φ

would be unavoidable, so we try to inject noise that can minimize the decrease in φ

by solving the following problem:

min
y1,y2

y1 Minimize gain.

s.t. y22 − 2L1y1y2 + (L1‖xk‖)2 ≤ (κegδk + εg)
2 Gradient sufficiently accurate.

|y1| ≤ ‖xk‖ and y2 ≥ min{10−6, 10−2‖L1xk‖}. (6.10)

Similar to (6.6), the optimization problems (6.8), (6.9), (6.10), can be solved ana-
lytically. See Appendix B for details.

For our experiments, we set the parameters of the objective function to n =
20, L1 = 1; the parameters for the approximation models to p1 = 0.8, κeg = 1;
and the parameters for the algorithm to η1 = 0.25, η2 = 1, γ = 0.8, and r = 2ε f .
Then, the theoretical lower bound on ε in Theorem 4.11 is 5

√
30ε f + 7/3εg ≈

27.39
√

ε f +2.33εg . Aminor detail here in calculating this theoretical value is that κfcd
is set to 2 because themodel decrease is ‖gk‖δk , even thoughwe assumed κfcd ∈ (0, 1].
This is not an issue because the property κfcd ≤ 1 was never used in the analysis.

We experiment with four noise settings where (ε f , εg) is set to (0.2, 4), (0, 4),
(0.2, 0) and (0, 0), respectively. We initialize Algorithm 1 at x0 = 1.4 · 1 and with
δ0 = 0.5, and inject adversarial noise as described above at each iteration. Fig-
ure2 shows how ‖∇φ(xk)‖ and δk change over the first 250 iterations. We note that
‖∇φ(xk)‖ stabilizes around 4.8, 4, 1.2, and 0, respectively, for the four noise settings,
and executing the same experiment multiple times yields similar results. In compari-
son, their theoretical lower bounds on ε are 21.58(= 12.25+9.33 ≈ 5

√
30ε f +7εg/3),

9.33, 12.25, and 0, respectively. This indicates in the lower bound on ε in Theorem4.11
the coefficient of εg is at most 7/3 times its optimal value, but the coefficient of

√
ε f

can be up to 10 times as big. This indicates the theoretical lower bound on ε is not
unreasonably large.

7 Numerical experiments: investigating the effect of r

In this section, we explore numerically the effect of the choice of the hyperparameter r
on the performance of the algorithm. Our theory requires that r ≥ 2ε f in Algorithm 1

and r ≥ 2ε f + ε
3/2
g in Algorithm 2 to offset the function evaluation errors at xk

and xk + sk . If r is set smaller than these values, it is possible, under our particular
assumptions on the zeroth-order oracle, that the algorithm will fail to make successful
steps due to noise in the function evaluations, even if the gradient ‖∇φ(·)‖ is not small.
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Fig. 2 Performance of Algorithm 1 with linear approximation models on φ(x) = L1‖x‖2/2 under adver-
sarial noise when r = 2ε f

Setting r to be larger than 2ε f or 2ε f + ε
3/2
g allows the algorithm to progress until

‖∇φ(·)‖ reaches the lower bound ε, whose value is monotonically increasing with r ,
as can be seen in both Theorem 4.11 and Theorem 5.7. In other words, the larger the
value of r the larger is the best achievable accuracy ε and the complexity bound on
T . Thus, when Oracle 0.1 is used, it is clearly optimal to set r = 2ε f in Algorithm 1

and r = 2ε f + ε
3/2
g in Algorithm 2. However, as ε f (and εg) may not be known in

practice, here we explore the effect of setting r to a variety of different values with
respect to ε f .
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In the first set of experiments, we used the same setting as described in Sect. 6,
with ε f = 0.2 and εg = 4 but with r set to different values. Figure3, along with the
first line of Fig. 2, shows the change of ‖∇φ(xk)‖ and δk over the iterations when r =
0, ε f , 2ε f , 4ε f , and 8ε f . For experiments with r ≥ 2ε f , the level at which ‖∇φ(xk)‖
stabilizes get larger with larger values of r . This phenomenon is already suggested by
the theory and is expected. However, while the theory suggests that the algorithmmay
get “stuck” if r < 2ε f , this did not occur in our experiments. Instead, we observe the
following behavior when r = 0: in the initial stages of the optimization the algorithm
makes consistent progress because both‖∇φ(xk)‖ and δk are large enough to overcome
the noise. Moreover, setting r = 0 prevents increases in φ. However, as ‖∇φ(xk)‖
decreases, the gradient estimate and the decrease in function value f (xk)− f (xk +sk)
become more dominated by noise. Without any relaxation in the step acceptance
criterion, the noisemay causemany successive rejected steps, whichwould also shrink
the trust-region. As a result, as δk decreases, function evaluation noise becomes more
dominated in f (xk) − f (xk + sk), while the predicted decrease ‖gk‖δk becomes
smaller. The resulting effect is that it becomes easier for the adversarial noise to be set
so that steps for whichφ actually increases get accepted, which explains themonotonic
increase of φ (and ‖∇φ‖) in the later stage of the experiment. As r increases, this effect
becomes less prominent and did not appear in the case where r = ε f .

In the second set of experiments, we examine how the relaxation r affects a practical
derivative-free algorithm known as DFO-TR [1], which does not always abide by the
theory in this paper. As a practical algorithm, DFO-TR is different from Algorithms 1
and 2 and contains many small practical enhancements to improve the numerical
performance, but in its essence, employs quadratic interpolation approximation and
trust-region method. Most importantly, it calculates ρk just like Algorithms 1 and 2
except without the relaxation. We add r to the numerator of ρk and see how DFO-TR
performs with different values for r .

The experiment is conducted on the Moré &Wild benchmarking problem set [15].
We first give DFO-TR infinite budget to solve all the problems and record the best
solution for each problem as φ̂. Then the output of the 53 problems are scaled linearly
so that φ(x0) = 100 and φ̂ = 0 for every problem. We replicate each problem 4 times
(leading to a total of 53×5 = 265 problems) and then artificially inject noise uniformly
distributed on the interval [−ε f ,+ε f ] with ε f = 0.2 to function evaluations. With
the function outputs scaled and the noise added, the problems are solved by DFO-
TR subsequently with r = 0, ε f , 2ε f , 4ε f , and 8ε f . Each variant of the algorithm
is given a 2000 function evaluation budget for each problem. The hyperparameters
were tuned to make sure the best of the solutions found by all variants of DFO-TR
has a scaled function value close enough to 0. The results are compared and presented
in performance and data profiles with the (relative) accuracy level τ set to 10−3 and
10−5 (see [15] for the detail on how these profiles are created). As Fig. 4 shows, DFO-
TR encounters difficulty if r < 2ε f , especially when trying to solve the problems to
higher accuracy. Having an r too large also affects the performance adversely. The
best performance comes from the variant with r = 4ε f . Considering that DFO-TR
uses Hessian approximation and thus resembles Algorithm 2, whose theory suggests
that the optimal r needs to be larger than 2ε f , this result is consistent with our theory.
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Fig. 3 Performance of Algorithm 1 with linear approximation models on φ(x) = L1‖x‖2/2 under adver-
sarial noise when r is set to various values and (ε f , εg) = (0.2, 4)

Finally, we repeated the experiment with the uniformly distributed noise replaced
by unbounded subexponential noise (Oracle 0.2). Specifically, each time an objective
function is evaluated, two random variables are generated—one uniformly distributed
on [0, ε f ] and the other exponentially distributed with parameter a. The sum of the
two random variables is then multiplied by −1 with probability 0.5 and then added to
the true function value.We chose ε f = 0.1 and a = 20 so that the expected magnitude
of the noise is 0.1. We test five levels for r = 0, 0.2, 0.5, 1.25, and 3.125. The results
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Fig. 4 Performance of DFO-TR with different relaxed step acceptance criteria (r = 0, ε f , 2ε f , 4ε f and
8ε f ) on the Moré & Wild problem set with uniformly distributed function evaluation noise

are presented in Fig. 5. We see that in this case setting r to 0.5 or 1.25 is advantageous
for the algorithm, which is also consistent with our theory.

8 Conclusions

We have proposed first- and second-order modified trust-region algorithms for solving
noisy (possibly stochastic) unconstrained nonconvex continuous optimization prob-
lems. The algorithmsutilize estimates of function andderivative information computed
via noisy probabilistic zeroth-, first- and second-order oracles. The noise in these ora-
cles is not assumed to be smaller than constants ε f , εg and εH , respectively. We show
that the first-order method (Algorithm 1) can find an ε-first-order stationary point with
high probability after O(ε−2) iterations for any ε ≥ [O(

√
ε f ) + O(εg)], and that the

second-order method (Algorithm 2) can find an ε-second-order critical point for any
ε ≥ [O( 3

√
ε f )+O(

√
εg)+O(εH )] afterO(ε−3) iterations. Numerical experiments on

standard derivative-free optimization problems and problems with adversarial noise
illustrate the performance of the modified trust-region algorithms.
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Fig. 5 Performance of DFO-TR with different relaxed step acceptance criteria (r = 0, 0.2, 0.5, 1.25, and
3.125) on the Moré & Wild problem set with subexponential function evaluation noise

Acknowledgements The authors are grateful to the Associate Editor and two anonymous referees for their
valuable comments and suggestions.

A Proofs

Proof to Proposition 2.7

Proof It was shown in [16] that under Assumption 2.2 for any (x, y) ∈ R
n × R

n

∣
∣
∣
∣φ(y) − φ(x) − 〈∇φ(x), y − x〉 − 1

2
〈∇2φ(x)(y − x), y − x〉

∣
∣
∣
∣ ≤ L2

6
‖y − x‖3.

It implies the following four inequalities hold for any (i, j) ∈ {1, 2, . . . , n}2:

φ(x + σui + σu j ) ≤ φ(x) + 〈∇φ(x), σui + σu j 〉
+1

2
〈∇2φ(x)(σui + σu j ), σui + σu j 〉 + L2

6
(
√
2σ)3
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−φ(x + σui ) ≤ −φ(x) − 〈∇φ(x), σui 〉 − 1

2
〈∇2φ(x)σui , σui 〉 + L2

6
σ 3

−φ(x + σu j ) ≤ −φ(x) − 〈∇φ(x), σu j 〉 − 1

2
〈∇2φ(x)σu j , σu j 〉 + L2

6
σ 3

φ(x) ≤ φ(x),

which can be added together as

φ(x + σui + σu j ) − φ(x + σui ) − φ(x + σu j ) + φ(x)

≤ 〈∇2φ(x)ui , u j 〉 + (
√
2 + 1)L2

3
σ 3.

With bounded noise, we have

f (x + σui + σu j ) − f (x + σui ) − f (x + σu j ) + f (x)

≤ 〈∇2φ(x)σui , σu j 〉 + (
√
2 + 1)L2

3
σ 3 + 4ε̂ f .

Using the same argument as above, it can also be shown that

− f (x + σui + σu j ) + f (x + σui ) + f (x + σu j ) − f (x)

≤ −〈∇2φ(x)σui , σu j 〉 + (
√
2 + 1)L2

3
σ 3 + 4ε̂ f .

Combining the last two inequalities, we obtain

|〈H(x)ui , u j 〉 − 〈∇2φ(x)ui , u j 〉| ≤ (
√
2 + 1)L2

3
σ + 4ε̂ f

σ 2 .

Then

‖H(x) − ∇2φ(x)‖ ≤ ‖H(x) − ∇2φ(x)‖F ≤
√
√
√
√n2

(
(
√
2 + 1)L2

3
σ + 4ε̂ f

σ 2

)2

= (
√
2 + 1)nL2

3
σ + 4nε̂ f

σ 2 .

��

Proof to Proposition 4.15

Proof By the Taylor series of the exponential functions, it follows that

E exp(λ|X |) = E

∞∑

p=0

1

p! (λ|X |)p = 1 +
∞∑

p=1

1

p!λ
p
E|X |p
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for any real λ. Applying the integral identity [22, Lemma 1.2.1]),

E|X |p =
∫ ∞

0
P{|X |p ≥ u}du =

∫ ∞

0
P{|X |p ≥ t p}dt p

≤
∫ ∞

0
min{1, exp(a(b − t))}dt p,

which is valid for all p > 0. Since 1 ≤ exp(a(b − t)) when t ≤ b, the above result
can be written as

E|X |p ≤
∫ b

0
pt p−1dt +

∫ ∞

b
pt p−1 exp(a(b − t))dt .

Thus, for all λ ∈ [0, a) it follows that

E exp(λ|X |) ≤ 1 +
∞∑

p=1

1

p!λ
p
[∫ b

0
pt p−1dt +

∫ ∞

b
pt p−1 exp(a(b − t))dt

]

= 1 + λ

∫ b

0

∞∑

p=1

1

(p − 1)! (λt)
p−1dt

+λeab
∫ ∞

b

∞∑

p=1

1

(p − 1)! (λt)
p−1e−atdt

= 1 + λ

∫ b

0
exp(λt)dt + λeab

∫ ∞

b
exp((λ − a)t)dt

= 1 + [
exp(λb) − 1

]+ λeab
1

a − λ
exp((λ − a)b)

= a

a − λ
exp(λb).

��

B Details on the adversarial gradient estimate

When Ik = 1, problem (6.6) can be written as

min
y1,y2

y1 Maximize the loss.

s.t. y1 ≥ η1y2
L1

+ δk

2
− 2ε f + r

L1δk
Step is accepted.

y1 ≥ y2
2L1

+ (L1‖xk‖)2 − (κegδk + εg)
2

2L1y2
Gradient is sufficiently accurate.

−‖xk‖ ≤ y1 ≤ ‖xk‖ Ensure |〈xk , gk/‖gk‖〉| ≤ ‖xk‖.
y2 ≥ min{10−6, 10−2‖L1xk‖} Ensure ‖gk‖ > 0. (B.1)
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If L1‖xk‖ ≤ κegδk+εg , all three lower bounds on y1 aremonotonically non-decreasing
with respect to y2, so we set y2 to min{10−6, 10−2‖L1xk‖} and y1 to the largest of
the three lower bounds. Then if y1 ≤ ‖xk‖ holds, the problem is solved; otherwise
the problem is infeasible. Alternatively, if L1‖xk‖ > κegδk + εg , the second lower
bound of y1 becomes a positive convex function of y2. We set y2 to the minimizer

of this convex function
√

(L1‖xk‖)2 − (κegδk + εg)2, and y1 to its minimum value
√

‖xk‖2 − (κegδk + εg)2/L2
1. Now if y1 ≥ δk/2, the algorithm cannot be tricked into

taking a bad step and wemove on to problems (6.8) and (6.9); otherwise all constraints
are satisfied except maybe the first one, so we check it. If it is satisfied, the problem is
solved; if not, y2 needs to be reduced until the first and second lower bounds of y1 are
equal, which requires solving a quadratic equation. We set y2 to the root between 0

and
√

(L1‖xk‖)2 − (κegδk + εg)2 and y1 to the resulting lower bound. If this solution
satisfies y1 ≤ ‖xk‖, the problem is solved, otherwise it is infeasible.

For problems (6.8) and (6.9), where we try to find a value for gk that would lead
to a step being rejected, if L1‖xk‖ ≤ κegδk + εg , we can simply set gk = 0. Now we
assume L1‖xk‖ > κegδk + εg . With the additional substitution y3 = η1y2 − L1y1,
problem (6.8) is formulated as

max
y2,y3

y3 Try to get the step rejected.

s.t. y3 ≤ 2η1 − 1

2
y2 − (L1‖xk‖)2 − (κegδk + εg)

2

2y2
Gradient is sufficiently accurate.

y3 ≥ η1y2 − L1‖xk‖ Ensure |〈xk , gk/‖gk‖〉| ≤ ‖xk‖.
y2 ≥ min{10−6, 10−2‖L1xk‖} Ensure ‖gk‖ > 0.

y3 > η1y2 − L1δk/2 Step leads to loss of progress. (B.2)

Note the constraint y3 ≤ η1y2 + L1‖xk‖, which ensures y1 = 〈xk, gk/‖gk‖〉 ≥
−‖xk‖, is not present because it is covered by the first constraint in (B.2). If
2η1 < 1, the upper bound on y3 is a concave function of y2. We set y2 to its

maximizer
√

[(L1‖xk‖)2 − (κegδk + εg)2]/(1 − 2η1) and y3 to the optimal value

−
√

[(L1‖xk‖)2 − (κegδk + εg)2](1 − 2η1). If this solution is feasible, the problem
is solved; otherwise the upper bound is lower than at least one of the lower bounds, in
which case we reduce y2 until the upper and lower bounds of y3 are equal. If 2η1 ≥ 1,
the upper bound on y3 increases as y2 increases. When y2 is sufficiently large, the two
lower bounds on y3 increase faster with y2 than the upper bound, so y2 can only be
increased until the bounds meet. Thus, in either case, we need to solve the quadratic
equation

2η1 − 1

2
y2 − (L1‖xk‖)2 − (κegδk + εg)

2

2y2
= η1y2 − L1 min{‖xk‖, δk/2 − 10−7}

y22 − 2L1 min{‖xk‖, δk/2 − 10−7}y2 + (L1‖xk‖)2 − (κegδk + εg)
2 = 0,
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where the 10−7 is there to deal with the strict inequality. The optimal value for y2
should be its larger root, and y3 is the corresponding bound. If there is no real root,
the problem is infeasible.

With the substitutions, problem (6.9) is formulated as

max
y2,y3

y3 Try to get the step rejected.

s.t. y3 ≤ 2η1 − 1

2
y2 − (L1‖xk‖)2 − (κegδk + εg)

2

2y2
The gradient is sufficiently accurate.

y3 ≥ η1y2 − L1‖xk‖ To ensure |〈xk , gk/‖gk‖〉| ≤ ‖xk‖.
y2 > 0 To ensure ‖gk‖ > 0.

y3 ≤ η1y2 − L1δk/2 The step leads to a gain of progress. (B.3)

Assume ‖xk‖ ≥ δk/2 for feasibility. If 2η1 < 1, we first set y2, y3 to the maximizer
and maximum value of the concave right-hand side of the first constraint. Then if this
solution violates the last constraint, we set y2, y3 to the larger one of the two points
where the two upper bounds of y3 meet. If this solution instead violates the second
constraint or 2η1 ≥ 1, we set y2, y3 to the larger one of the two points where the
right-hand sides of the first two constaints are equal.

Problem (6.10) can be reformulated as (B.1) but without the acceptance constraint.
Since we have explained how to analytically solve (B.1), it should be clear how to
solve the simpler (6.10). Same goes for problem (6.6) without the sufficiently accurate
gradient constraint.

The optimal gk needs to be recovered from y1, y2. We let gk = α1xk + α2v, where
α1, α2 are real variables, and v ∈ R

n is a unit vector with a random direction. By
solving the system of equations

〈xk, α1xk + α2v〉 = y1y2
‖α1xk + α2v‖ = y2, (B.4)

we obtain the values for α1, α2, and hence can recover gk .
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