NAP: Neural 3D Articulated Object Prior

Jiahui Lei' Congyue Deng? Bokui Shen? Leonidas Guibas?> Kostas Daniilidis'>
! University of Pennsylvania 2 Stanford University 3 Archimedes, Athena RC
{leijh, kostas}@cis.upenn.edu, {congyue, willshen, guibas}@cs.stanford.edu

https://www.cis.upenn.edu/~leijh/projects/nap
Abstract

We propose Neural 3D Articulated object Prior (NAP), the first 3D deep generative
model to synthesize 3D articulated object models. Despite the extensive research
on generating 3D static objects, compositions, or scenes, there are hardly any ap-
proaches on capturing the distribution of articulated objects, a common object
category for human and robot interaction. To generate articulated objects, we first
design a novel articulation tree/graph parameterization and then apply a diffusion-
denoising probabilistic model over this representation where articulated objects
can be generated via denoising from random complete graphs. In order to capture
both the geometry and the motion structure whose distribution will affect each
other, we design a graph denoising network for learning the reverse diffusion pro-
cess. We propose a novel distance that adapts widely used 3D generation metrics
to our novel task to evaluate generation quality. Experiments demonstrate our high
performance in articulated object generation as well as its applications on condi-
tioned generation, including Part2Motion, PartNet-Imagination, Motion2Part, and
GAPart20bject.

~\ - - _L \ ' r -

A ol | Part T Static Object
A'! 1 . Condition
P
NAP . .
[N\ N \s‘* f ~ N N o= i\
- - Z - =
NAP can generate h NAP : GAPart NAP |

articulated objects Condition

Condition

Figure 1: NAP can unconditionally generate articulated objects (left). It can be conditioned on just parts or
joints (mid), a subset of parts plus joints, or over-segmented static objects (right).

1 Introduction

Articulated objects are prevalent in our daily life. As humans, we have strong prior knowledge of
both object part geometry and their kinematic structures. Such knowledge is most heavily leveraged
when a designer designs a cabinet from scratch, creating both its geometry and motion structure. For
learning systems, an interesting challenge is to capture such priors as a generative model that can
synthesize articulated objects from scratch. While there has been extensive research on generative
models for static 3D objects [I-I1], compositions [TT-T8], and scenes [T9—30], the study of priors
regarding closely linked 3D part geometry and 3D motion structures has been relatively neglected.
In this work, we study how to synthesize articulated objects, i.e., how to generate a full description

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://www.cis.upenn.edu/~leijh/projects/nap

of an articulated object, an actual URDF [BT], including how each part looks like, which pairs of
parts are connected, and with what kind of joint. In contrast to static 3D generation, generating
articulated objects involves modeling not only the distribution and composition of geometry but also
the motion structures that determine the possible relative movements between rigid parts. Our task
is also different than 3D human/hand synthesis [B2-35] where the articulation structure is given and
only the degrees of freedom are generated when predicting human poses/sequences. The generation
of articulation can further impact simulation and mechanism design and be useful for inference when
conditioned on either geometry or kinematic structure.

However, there are several challenges for articulated object generation. Existing datasets of articu-
lated objects contain highly irregular data since articulated objects have different numbers of parts,
diverse part connectivity topology, and different joint motion types. In order to enable efficient pro-
cessing of diverse geometry and structures by a neural architecture, we propose a novel unifying
articulation tree/graph parameterization (Sec. B) to represent articulated objects. We take advan-
tage of recent progress in diffusion models for 3D generation and develop a diffusion-denoising
probabilistic model over our parameterization to faithfully model the irregular distribution of artic-
ulated objects (Sec. B2). Since we are modeling the joint distribution of the part geometry and the
inter-part motion constraints, we design a graph denoising network (Sec. B3) to gradually exchange
and fuse information between the edge and nodes on our articulation graph.

To evaluate articulated object generation quantitatively, we adopt the widely used 3D shape genera-
tion metric for articulated objects by introducing a novel distance measure between two articulated
objects. Through extensive comparisons, we demonstrate high performance in articulated object
synthesis and further conduct several ablations to understand the effect of each system component.
Using the learned prior knowledge, we demonstrate conditioned generation applications, including
Part2Motion, PartNet-Imagination, Motion2Part, and GAPart2Object .

In summary, our main contributions are (1.) introducing the articulated object synthesis problem;
(2.) proposing a simple and effective articulation tree parameterization sufficiently efficient for a
diffusion denoising probabilistic model that can generate articulated objects; (3.) introducing a novel
distance for evaluating this new task; and (4.) demonstrating our high performance in articulated
object generation and presenting several conditioned generation applications.

2 Related Work

Articulated object modeling. Modeling articulated objects has been a prolific field with existing
works broadly classified into the categories of estimation, reconstruction, simulation, and finally,
our generation. Note that there is a wider literature on semi-nonrigid objects, for example, hu-
man body [36], hands [37], and animals [BR]. This paper focuses on everyday articulated objects,
like the ones in PartNet-Mobility [BY], which have more diverse and complex structures and are
strictly multi-body systems. Estimation focuses on predicting the articulation joint states (joint an-
gles and displacements) or joint parameters (type, axis and limits) from sensory observations, using
approaches ranging from probabilistic models [20-44], interactive perception [A5-51] and learning-
based inference [52-635]. Reconstruction of articulated objects focuses on reconstructing both artic-
ulation and geometry properties of the objects, using techniques ranging from structure from mo-
tion [bA], learning-based methods [67-69] and implicit neural representations [Z0—74]. While these
methods mainly focus on surface reconstruction and joint states/parameter accuracy or are limited
to pre-defined simple kinematic structures, we explicitly model the diverse and complex articulation
motion structures. One closely related work to ours is [62], which predicts the joint parameters of
articulated objects in PartNet [[75] by training on PartNet-Mobility [BY]. However, [67] is a single-
point regression that does not capture the generative distribution of joints or parts. A growing field
in robotics and embodied Al is building interactive environments that support physical interactions
between the robot and the scene consisting of articulated objects [[5, 39, [/6-87]. Differing from all
the above approaches, we build a generative prior of articulated objects, which extends beyond esti-
mation and reconstruction. Such learned prior hasential further to accelerate the creation of realistic
interactive 3D assets.

Generative models for structures. Generating structured articulated objects is closely related to
generative models for structured data [K3]. Part-based 3D object generation [TT-I&] has been widely
studied with the main modeling target being the hierarchy of static rigid parts with or without a se-
mantic label. Scene layout generation [9-30] utilizes compact scene parameterizations for indoor
scene synthesis, where diffusion models on scene graphs have been recently introduced in [21, 22].
The generative diffusion approach has also been applied widely to 2D floor plans [84], protein struc-

tures [R], and graphs [8f] .etc. Unlike all the existing works, our work focuses on modeling a new
type of target — articulation structure plus part shapes, which requires joint reasoning between 3D
geometry and kinematic structure.

Diffusion models in 3D. We mainly focus on the literature on diffusion models for 3D shape and
motion generation. Shape: Diffusion models show impressive results in generating point clouds [
B3], meshes [K7], implicit surfaces [4-1], neural radiance fields [K&-91], or 4D non-rigid shapes [97].
However, these methods mostly focus on the single object level shape quality and do not pay atten-
tion to the kinematic structure. Motion: Diffusion models have seen many recent applications in
motion generation given an articulation model. Such works generate text-conditioned human mo-
tion [B2-B31], and physically-viable [93], audio-driven [94, 95], scene-aware [96], multi-human [97]
or animation [U8] trajectories. Diffusion models for motion have also been applied to trajectory
planning [99], visuomotor control [[00], and rearrangement tasks [TOT]. Different from ours, exist-
ing works in motion diffusion rely on known geometries with known motion structures. We instead
jointly model geometry and motion structure priors to create articulation models.

3 Method

[Articulation Tree (Graph) Parameterization] o, >lndicator 1]

Dynamic Articulated) Ty DInitpose [6] |-
Object (URDF) I TN b
Y 5, >Shape code [128]

¢y PIndicator [1] Edge attr. ﬁ
€;i 6]

K x D Nodc attr.

Init pose

! Pad
=

Q@

ij Pap >Joint axis plucker [K(K 1)/2x D,
rqy P Pri&Rev Range [4]

Articulation T
rticulation Tree Complete Graph

Forward Diffusion: gradually adding random noise

——

Articulation Tree
Parameterization

-
5
Articulated

object
Eextraction

Sample

g Graph Denoiser = pe
random Iy Sec.3.3 ﬁ eee [P
noise Xt |1 q LT

Viz for middle steps

Figure 2: Method: Parameterization (Top): We parameterize the articulated object as a tree, whose nodes
are rigid parts and edges are joints; we then pad the tree to a complete graph of maximum node number and
store it in the articulation graph attribute list x. Forward Diffusion (Middle): The parameterized attribute list
x is gradually diffused to random noise. Generation (Bottom): A Graph Denoiser (Fig B, Sec. B3) samples
a random articulation graph xr, gradually removes noise, and finally predicts xo. An object extraction stage
(Sec. B2) including a minimum-spanning-tree algorithm is applied to the generated graph in the end to find the
kinematic tree structure and the output articulated object.

We learn the articulated object priors using a diffusion model. However, an articulated structure
must first be parameterized into a vector that can be the target of the diffusion. We introduce the
parameterization of the articulated object as a tree (graph) in Sec. B1; the diffusion model on such
parameterization in Sec. BJ; and the denoising network in Sec. B3. An overview of our method is
shown in Fig. 1.

3.1 Articulation Tree Parameterization

Graph-based representation. We follow the natural articulated object parameterization as in
URDF [B1] format where each object is defined by a graph with nodes being the parts and edges be-
ing the articulation joints. We make two assumptions: (1) Tree assumption: We assume no kinematic
motion loop (cycle) exists in the graph and that the graph is connected. (2) Screw joints: We assume

each edge is a screw [b0] with at most one prismatic translation and one revolute rotation. Most
real-world articulated objects [BY, [76, B2, T(7] satisfy the above assumptions and their limitations
are further discussed in Sec. B.

Nodes. As shown in Fig. D-top, we represent each rigid part as one node in the tree. A node captures
its rigid part shape by (1) a shape latent code s; € R (with F being channels, i being the part
index) that can decode the SDF [I03] of the part surface, and (2) the bounding box edge lengths
b; € R3 that can scale the decoded SDF properly into the part’s scale. We pre-train an SDF shape
Auto-Encoder [[04, TO3] for obtaining s;, further details are provided in our supplementary mate-
rial. Importantly, one should also specify how to assemble these parts into an object before further
modeling the articulation motion. We do so by adding to the node attributes a part initial rigid
transformation 7; € SFE(3) in the global object frame representing the part initial configuration. 7;
comprises an axis-angle rotation and a translation, which can be written as a 6-dimensional vector.
As articulated objects can be instantiated to different configurations so any of these configurations
can be used as T;, in practice, we consistently choose 7T; by exploiting the canonicalization in the
large annotated dataset: we use the part poses in their rest states (zero joint angles and displace-
ments) for 7;. Since we observe current datasets often align their rest states consistently to static
un-articulated objects, for example, PartNet-Mobility [39] aligns with static PartNet [[75]. To model
the varying number of parts across objects, we define a maximum number of K parts as well as a
per-part binary indicator o; € {0, 1} of part ¢ existence. In summary, a node ¢ has an attribute vector
v; = [o;, T}, b;, ;] with dimension D,, = 1 + 6 + 3 4+ F, and the overall node component of an
object graph is a feature of dimension K x D,,.

Edges. The edge in the graph represents the motion constraint of each articulation joint. A joint
possesses a 3D axis (a directed line), around which the revolute joint can rotate and along which the
prismatic joint can translate. Inspired by [b0], such a joint axis is represented by Pliicker coordinates
(I € S?2,m € R3). Here the 3D directional vector [is from a unit sphere S? and the momentum m
is perpendicular to [. Such representation avoids defining additional local joint coordinate frames
with ambiguity (e.g. translating the joint coordinate frame along a revolute axis leads to equivalent
joints). Such 6-dimensional Pliicker coordinates p(; jy = (I(; jy, ™M (;,)) for the joint from part 7 to
j are defined in the global object frame when parts are in their initial rest configuration 73, T};. To
fully define the joint motion constraint, we also incorporate two joint state ranges r(; ;) € R2x2
for both the prismatic translation and the revolute angle components (the left limit of the range can
be negative). A purely prismatic joint will have its revolute component range set to [0, 0] and vice
versa. Following the node padding, we also pad the edges to a complete graph and use an indicator
c(i,j) denoting the edge existence. Note that the above joint axis and range have a parent-child
direction from part ¢ to j. When the direction flips, a notable benefit of expressing p(; ;) in the
global object frame, rather than the local part frame, is the inherent relationship p(; jy = —p(;) and
T(ij) = T(ji)» Which motivates us to model the padded graph with only K (K —1)/2 edges for all
1 < j pairs. Since the nodes have no specific order, to avoid the sign ﬂlpplng inpg ;) = =P
when permuting the nodes and to help the network learn a more stable prior, we explicitly embed
the sign inside p(; ;) = —p(;,i) into the edge existence indicator c(; ;) € {—1,0,+1}. Here 0
indicates the non-existence of an edge and +1, —1 indicate the chiralities of existing edges, leading
t0 P(i,j) = D(j,:) (Where p denotes the actual prediction target). In essence, each edge is characterized
by an attribute vector e; jy = [c(j), P(i,j)» "(i,j)] With a dimension of D, = 1 + 6 + 4. The overall
edge parameterization of an object has shape K (K —1)/2 x D.. We will see later in Sec. B2 how to
extract an articulated object model from the diffusion model prediction via the Minimum Spanning
Tree.

3.2 Diffusion-Based Articulation Tree Generation

Our goal is to learn the distribution of articulated objects parameterized by the complete articulation
graphs x = ({v;}, {e)}) € REPHEE=1DD/2 We apply a diffusion denoising probabilistic
model [T05] directly over the distribution of x.

Forward diffusion. Given an articulation graph xo from an object distribution ¢(xg), we gradually
add Gaussian noise with variance schedule 5; < - -- < S and obtain a sequence x1, - - - , X ended
with a Gaussian distribution p(xr) = N (xr;0,I). The joint distribution of the forward process is:

T

q(x1:7|%0) : H q(x¢|xe-1), q(xe|xi—1) == N(V1 = Bixe—1, BeI). (1

A notable property is that x; at arbitrary timestep ¢ can be directly sampled from xq with
q(x¢[x0) = N(Vaixo, (1 — a)I) (2)
where oy := 1 — f3; and & := Hi:l .

Reverse process. Starting from a standard Gaussian distribution x7 ~ A(0,I), we aim to learn a
series of Gaussian transitions pg(x;—1|x;) parameterized by a neural network with learnable weight
0 that gradually removes the noise. The distribution of the reverse process is:

T
po(xor) = p(xr) [[po(xe-1/xt), po(xealxe) := N (po(xe, 1), So(xt,t)).)

t=1

Following [T03], we set Xy (x¢,t) = o} 2T and model this reverse process with Langevin dynamics

1 1-—
Xt—1 = \/7&7 <Xt — \/%EG(XDt)> + 042, Z ~ N(O7I) (4)

where €(x;, t) is a learnable network approximating the per-step noise on x;.

Training objective. We optimize the variational bound on the negative log-likelihood

(OT) } Pe Xt— 1|Xt)
L:=E log ————=| = Eq | —logp(x log > E[—-1o X
! { Q(X1 T|Xo) a gp T Z = [gpg(o)]

t>1 abxilxi1)
&)
With Eq. B, the objective simplifies to

2
Exo,e { b ||e co(v/arxo + VI —ae,)| ©6)

20' Olt(l — O[t
w.r.t. learnable network 5. We refer the readers to [I05] for more details.

Output Extraction. The above-described Euclidean space denoising intermediate steps as well
as the final output may not strictly lie on the manifold of articulated objects parameterized as in
Sec. B (e.g. the generated joint Pliicker coordinates may not be valid because ! and mm may not be
orthogonal). We found that utilizing the diffusion as in Euclidean space and projecting the generated
x back to a valid articulation graph in the final step already leads to practically good results. As
mentioned in Sec. B, once we have completed the denoising process, a post-processing step is
applied to obtain the final articulated object model from the generated x. First, we identify the
existing nodes by the generated nodes indicator o with a threshold and make sure there are at least
two foreground nodes. Then we use the predicted edge chirality |c| as the edge value to find the
minimum spanning tree in the generated graph as the output tree topology. As in Sec. BT, we model
half of the edges in the complete graph with node index ¢ < j and put the edge direction explicitly
to the chirality sign. During the object extraction stage, if ¢ < 0, we flip the predicted joint direction
on this edge and if ¢ > 0 we keep the joint direction, which is equivalent to flipping the parent and
child order of this edge when ¢ < 0. Finally, the predicted joint coordinates are projected from
RS to Pliicker coordinates by normalizing the predicted [to unit vector and subtracting the parallel
component of m on [to make predicted m orthogonal to [. We decode the part shape code to an
SDF and extract the part mesh via marching cubes. We alternatively can retrieve the nearest part in
the training set as most scene generation methods do [73, D7].

Conditioned Generation. A favorable property of diffusion models is that conditions can be di-
rectly added to the inference processes using Bayes’ rule without any modification to the training
process. Here we perform conditioned generation by fixing the known part of variable x as in the im-
age inpainting [T06] and shape completion works. For a variable x = m@®x %" 4 (1 —m)@x"nknown
(® means element-wise multiplication) with known entries x*""" fixed unknown entries x""k"°"" to
be completed which are separated by mask m, we can sample the known entries directly following
Eq. Dby adding Gaussian noise to the known input and generating the unknown entries using reverse
diffusion,

q(x{™"x0) = N (Vaxo, (1 — a)l), pa(x{2™"[xs) = N (pa(xt,1), So(x4,1)). (1)
Since our method directly diffuses in graph space, we can apply precise control of the parts and
joints condition, enabling, thus, a disentanglement. In Sec. B4, we will show applications with
different x*"°W" and xunknown,

Input Node
Features

V Tnput Heads e
V Input Heads

Shared

V Tnput Heads

I gy oy B
el =

Input Edge
Features

1

Figure 3: Network architecture. Left: input the node and edge list of a noisy articulation graph, a
stack of graph layers will fuse and exchange information on the graph and output the noise that has
to be removed. Right: details in the graph layer.

'

: | |))

' ’

h Layer

1

'

' 3 > / :
E Output Heads H !

} 'V Output Heads
ek E Shared
S

o ' h .
y oo S oy
H
ek - : O =)
\ s H update edge update node
esitional H O O feature O O feature

Embedding

3.3 Denoising Network

Network architecture. Since x represents both the part geometry and the joint motion constraints,
we utilize a graph denoising network as shown in Fig. B, which exchanges and fuses information
between parts and joints. The network inputs a noisy articulate graph x and outputs noise in the
same shape as x. The input attributes for every node are first encoded by input heads shared across
nodes to a list of node features { f;}. Similarly, edge attributes are encoded to a list of edge features
{9(i.;)}- Then the node and edge feature lists are updated via the graph layers (Fig. B right). Finally,
all hidden features, including the input attributes, are concatenated together and decoded to the
outputs via shared output heads. Note that the network is shared across all time steps through
denoising, and the time step is encoded and concatenated to the hidden features. Similar to recent
work on scene graph generation [27], we also append the positional encoding of the part instance id
to the node features to provide stronger guidance in the early denoising stages when the part pose
information is ambiguous. To learn with positional encoding, we randomly permute the nodes’ order
during training.

Graph layer. The key building block of the denoising network is the graph layer shown in Fig. B
right. The edge feature is first updated via an edge MLP by fusing the input edge feature g(; ;) and
neighboring nodes i, j’s features: gzi,j) = MLP(f;, f;, 9,;))- Then, we aggregate the updated edge
features to the nodes by attention weights. We compute the query Q(f;) and key K (f;) from the
input node features via two MLPs and use their inner product as the attention weights; the graph
attention update of the node i is: f] = Z]K:1 softmax; (Q(fi)T K (f;)) 9(i.j)- We additionally do a
PointNet [T07]-like global pooling over all the graph node features after the attention aggregation to
capture more global information.

4 Experiments

We examine 4 important questions with our experiments: (1) How can we evaluate articulated ob-
ject generation? (Sec. BET) (2) How well does NAP capture the distribution of articulated objects?
(Sec. E2) (3) How effective is each of NAP’s components? (Sec. E3) (4) What applications can
NAP enable? (Sec. E4)

4.1 Evaluation Metrics

Since we are the first to study articulated objects in a generative setting, we propose a new distance
metric between two articulated objects for adopting widely used shape generation metrics. Since a
generated object’s shape and motion structure are dependent, we can not evaluate them separately.
Such a challenge is poorly addressed in existing works. In articulated object modeling, existing
works either consider a fixed kinematic structure [[71, [70] or a given geometry [TOR]. In graph
generation works [[09-ITT], structures are examined by themselves without need to measure geom-
etry. Thus, we propose a new distance metric, Instantiation Distance (ID), to measure the distance
between two articulated objects considering both the part geometry and the overall motion structure.

We treat an articulated object O as a template that, given the joint states ¢ € Qo in object’s joint
range Qo, it returns the overall articulate mesh M(q) and the list of part poses 7 (q) = {Tpat €
SE(3)}. We compute the distance between two articulated objects in different joint states by

d(01,q1,02,¢2) = min {D(Ti1M1(CI1)7TJ‘1M2(CI2))}, (8)

T;€T1(q1),Tj€T2(q2)

Table 1: Articualted object synthesis comparison with Instantiation Distance

| Part SDF Shape | Part Retrieval Shape
Generative Paradigm/Method | MMD| COVt 1-NNA||MMD| COVt I1-NNA|
Auto-Decoding (StructNet) 0.0435 0.1871 0.8820 0.0390 0.2316 0.8675
Variational Auto-Encoding (StructNet) | 0.0311 0.3497 0.8085 0.0289 0.3363 0.7918
Autoregressive (ATISS-Tree) 0.0397 0.3808 0.6860 0.0333 0.4120 0.6782
Latent Diffusion (StructNet) 0.0314 0.4365 0.6269 0.0288 0.4477 0.6102

Articulation Graph Diffusion (Ours) 0.0268 0.4944 0.5690 0.0215 0.5234 0.5412

where Tfl/\/ll (¢1) means canonicalizing the mesh using its ith part pose, and D is a standard dis-
tance that measures the distance between two static meshes. Specifically, we sample N = 2048
points from two meshes and compute their Chamfer Distance. Intuitively, the above distance mea-
sures the minimum distance between two posed articulated objects by trying all possible canonical-
ization combinations. Then, we define the instantiation distance between O; and O; as:

ID(Ol,OQ) :EtnGM(Qol) [inf (d(Ol,ql,Og,QQ)):|

q2€Q0,

C))

+EQ2€Z/I(Q()2) |:q éanO <J(017QI7027(]2)>:| 5
1 1

where ¢ € U(Qo) means uniformly sample joint poses from the joint states range. The instantiation
distance measures the two-side expectation of minimum distance to the other object over all possible
joint configurations. However, the inf inside the expectation requires expensive registration between
two articulated objects so it is non-trackable in practice when computing all distance pairs between
the reference and sampled object sets. In practice, we approximate the above distance by uniformly
sampling M joint poses Q1 = {qr|qx € U(Qo,),k = 1,..., M} and the approximated distance is:

weo q2€Q2 q1€Q1
1€Q1

1 ~ 1 ~
ID(01,0z) = Vi Z {min <d(017quOZaQQ)):| 7 Z {min (d(017q17OQaQQ)>:| ;
q2€Q2

(10)
and we set M = 10 in our ID for all evaluations. This pairwise distance can be plugged into the
standard metrics for shape generation. Specifically, we adopt the following three metrics [I12] for
our evaluation: minimum matching distance (MMD) that measures the generation quality, cov-
erage (COV) that tests the fraction the reference set is covered, and 1-nearest neighbor accuracy

(1-NNA) that measures the distance between the two distributions by 1-nn classification accuracy.

4.2 Articulated Object Synthesis

Baselines. We adapt existing models in related tasks and compare our method with them. Specif-
ically, we adapt architecture designs from semantic-part-based shape generation [I1] and scene-
graph-based indoor scene synthesis [23], and equip them with different generative paradigms in-
cluding auto-decoding [T3], VAE [I1]], autoregressive models [3], and latent diffusion [4, §]. We
refer to our supplementary for adaptation and details of these baselines.

Setups. We train all the methods on PartNet-Mobility [BY] across all categories jointly, with a
maximum 8 rigid parts (X' = 8) and a train-val-test split ratio [0.7, 0.1, 0.2]. Since the dataset does
not include parts orientation and all initial part poses have rotation I, we ignore the rotation in the
parameterization (Sec. BTI) for all the methods. For a fair comparison, all the methods are controlled
to a similar number of learnable parameters. We evaluate the generated articulated object models
with both the reconstructed meshes from the generated shape code and the retrieved part meshes
from the training set.

Comparison. We report quantitative results in Tab. [, and qualitative comparisons in Fig. B. While
the Auto-Decoding baseline fits the training set, its generation performance is poor when sampling
in the latent space as shown in Fig. B-AD, which suggests a weak regularization in the latent space.
Using VAE to replace auto-decoding brings about better regularization of the latent space, result-
ing in an increase in all metrics. Sampling from the prior of VAE also leads to more meaningful
generations, as shown in Fig. B-VAE. For the autoregressive ATISS-Tree baseline, we see a relative

Topology Box Viz SDF Viz Retri Viz Topology Box Viz SDF Viz Retri Viz Retri Viz

Ef e °.\/*)1§<$ 8 N
TRFESNNY VB NY v
, Bve 0N v
20 B Bumuy B v

Topology Box Viz SDF Viz Topology Box Viz SDF Viz | Topology Box Viz Retri Viz Topology Box Viz Retri Viz

Retrieval

(AR)
Autoregressive
Gl
"ARQ

Retri Viz

1Viz
= -
=]
=
7]
=
~&
X
=
Q
-
=
Retrl Viz Topology Box Viz SDF Viz Retri Viz Topology Box Viz SDF Viz Retri Viz

A
“)
“ee
{ﬁ
SR
‘ .
\%«
))
%)E&a
&S a

4

4

Figure 4: Articulated object generation results. Each generated object is visualized with (1) graph
topology (top left), where the edge color means blue—prismatic, red-revolute, and orange—hybrid;
(2) the predicted part bounding boxes and joints under different joint states (second column), and the
overlay of multiple states reflecting the possible motion (bottom left); (3) reconstructed part meshes
from the generated shape code (third column); (4) retrieved part meshes (right column).

increase in a majority of metrics compared to VAE. Part shape retrieval leads to further improve-
ment in both motion structure and part shape since using retrieval at each autoregressive step can
decrease the deviation from the training distribution. Interestingly, as shown in Fig. B, we observe
that the autoregressive method also has a tendency to append too many nodes to the tree, resulting
in overlapping parts. Latent diffusion works the best among our baselines. We hypothesize that it
is due to the superiority of the diffusion model as a sampler in the latent space, mapping the prior
Gaussian to reliable regions where the trained decoder performs well near training samples. How-
ever, as the generation happens in the latent space and the generated latent code have to be decoded,
slight error or changes in the latent space may lead to unrealistic or wrong articulations, which is
shown in Fig. B-LD. Different from the latent diffusion, our method directly applies diffusion in the
articulation tree space, which can generate diverse and high-quality articulation models and achieves
a better performance comparing to baselines.

Table 2: Ablation studies with Instantiation Distance

| Part SDF Shape | Part Retrieval Shape
Ablation |MMD| COV{ I-NNA||MMD| COV{ I-NNA|
Full 0.0268 0.4944 0.5690 0.0215 0.5234 0.5412
No PE 0.0282 0.4766 0.5490 0.0227 0.5457 0.5557

No Attn. on Edge | 0.0286 0.4766 0.5668 0.0232 0.5234 0.5568
No Graph Conv 0.0331 0.4432 0.6570 0.0281 04722 0.6481

4.3 Ablation Studies

We verify our denoising network design by ablating components in our full network, and the compar-
ison is shown in Tab. . Specifically, we examine the effectiveness of positional encoding, attention
weights on edges, and graph convolutions. First, removing the positional encoding will slightly
worsen performance, since its presence can help to distinguish the nodes at the early stages of re-
verse diffusion [27]. Second, replacing attention weights with mean pooling when aggregating the
neighboring nodes’ information results in a drop in performance. Finally, we justify the importance
of node-edge information exchange in the graph convolution by removing the graph convolution
layer and replacing it with a PointNet [T07]-like global pooling layer, where the connectivity of the
graph is ignored and the information exchanges through a symmetric global pooling. We observe a
larger performance decrease, which justifies our graph-based processing.

4.4 Applications with Conditioned Generation

' b L A4
‘/iﬂ/‘ﬂ/Fl “?"'"l!!ﬂ:
o

WL ey
Wit kAW S
>1>1>T 1358880006

LIS
v
o . e

R r TW ' } ‘ Figure 6: PartNet Imagination: Input over-
2t ‘) L‘ segmented static PartNet shapes (top left) are grouped
into rigid parts (bottom left) and be hallucinated with

“

4

¢

|

<

i

i

0"

kP

Figure 5: Part2Motion: Known part con- articulations (right). Both training categories (encir-
dition on the left, diverse motion proposals cled by dashed lines) and out-of-distribution objects are
on the right. shown.

Once trained, our method can be used directly for conditioned generation. Following Sec. B2, we
demo applications conditioning on various known attributes in x.

Part2Motion. We first show that when knowing the static part attributes, how NAP can suggest
motion structures, i.e., with x*"*" = {v;} and x""™*" = {¢(; ;} in Eq. I. We use the unseen
object part attributes from the test set as conditions and the generated motion structure is in Fig. B.
We observe diverse and plausible motion suggestions that cover the ambiguity of the closed doors.
PartNet Imagination. NAP uses PartNet-Mobility [BY] for training, which is only a small subset of
the large-scale but static PartNet [[75]. We show that NAP can be used to imagine possible motion
structures in static PartNet [[/5]. Starting from the finest semantic part labeled in PartNet [[75] (as
an over-segmentation), we use a simple contrastive learned grouping encoder (see Suppl.)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>