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A FAMILY OF KÄHLER FLYING WING STEADY RICCI SOLITONS

PAK-YEUNG CHAN, RONAN J. CONLON, AND YI LAI

Abstract. In 1996, H.-D. Cao constructed a U(n)-invariant steady gradient Kähler-Ricci
soliton on C

n and asked whether every steady gradient Kähler-Ricci soliton of positive
curvature on C

n is necessarily U(n)-invariant (and hence unique up to scaling). Recently,
Apostolov-Cifarelli answered this question in the negative for n = 2. Here, we construct
a family of U(1) × U(n − 1)-invariant, but not U(n)-invariant, complete steady gradient
Kähler-Ricci solitons with strictly positive curvature operator on real (1, 1)-forms (in par-
ticular, with strictly positive sectional curvature) on C

n for n ≥ 3, thereby answering
Cao’s question in the negative for n ≥ 3. This family of steady Ricci solitons interpolates
between Cao’s U(n)-invariant steady Kähler-Ricci soliton and the product of the cigar
soliton and Cao’s U(n−1)-invariant steady Kähler-Ricci soliton. This provides the Kähler
analog of the Riemannian flying wings construction of Lai. In the process of the proof,
we also demonstrate that the almost diameter rigidity of P

n endowed with the Fubini-
Study metric does not hold even if the curvature operator is bounded below by 2 on real
(1, 1)-forms.

1. Introduction

1.1. Overview. Ricci solitons are self-similar solutions of the Ricci flow that serve as gen-
eralizations of Einstein manifolds. They play an important role in the singularity analysis of
the Ricci flow. Specifically, a Ricci soliton is a triple (M, g, X), where M is a Riemannian
manifold endowed with a complete Riemannian metric g and a complete vector field X,
such that

(1.1) Ricg +
1

2
LXg = λ g

for some λ ∈ R. A Ricci soliton is called steady if λ = 0, expanding if λ < 0, and shrinking
if λ > 0. If X = ∇gf for some smooth real-valued function f on M , then we say that
(M, g, X) (or (M, g, f)) is a gradient Ricci soliton, and we call f the (soliton) potential
function. In this case, the soliton equation (1.1) becomes

Ricg +∇2f = λ g.

If the potential function moreover has a critical point p ∈ M , then we denote the soliton by
(M,g, f, p).

In (1.1), if g is Kähler and X is real holomorphic, then we say that (M, g, X) is a Kähler-
Ricci soliton. Let ω denote the Kähler form of g. If (M, g, X) is in addition gradient, then
(1.1) may be rewritten as

ρω + i∂∂̄f = λω,

where ρω is the Ricci form of ω and f is the potential. In this article, we are concerned
with complete steady gradient Kähler-Ricci solitons.
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In real dimension 2, the only example of a non-flat steady gradient Ricci soliton is Hamil-
ton’s cigar soliton [51] which is rotationally symmetric. For real dimension n ≥ 3, the only
n-dimensional non-flat rotationally symmetric (i.e., O(n)-symmetric) steady gradient Ricci
soliton is the Bryant soliton [12]. More recently, the third-named author constructed a fam-
ily of Z2 ×O(n− 1)-symmetric, non-rotationally symmetric, steady gradient Ricci solitons
on R

n for n ≥ 3. These solitons are collapsed for n = 3 and are called “flying wings”, re-
flecting the fact that they are asymptotic to two-dimensional sectors at infinity. For n ≥ 4,
they are non-collapsed. Moreover, in even dimensions n ≥ 4 they are not Kähler, since the
curvature operator is strictly positive everywhere; cf. Section 2 or [43].

In the Kähler world, for any complex dimension n ≥ 1, Cao [16] constructed a U(n)-
invariant steady gradient Kähler-Ricci soliton on C

n, and on the canonical bundle KPn

of complex projective space P
n, and in doing so generalized Hamilton’s cigar soliton to

higher dimensions. Further generalizations were subsequently obtained by Dancer-Wang
[41], Yang [89], Biquard-Macbeth [8], the second-named author and Deruelle [36], and
more recently by Schäfer [75, 76]. Cao-Hamilton [20] showed that the underlying complex
manifold of a complete steady gradient Kähler-Ricci soliton with strictly positive Ricci
curvature admitting a critical point of the scalar curvature must be diffeomorphic to R

2n.
Bryant [13] and Chau–Tam [24] independently improved this result by showing that the
underlying complex manifold of such a steady gradient Kähler-Ricci soliton must in fact be
biholomorphic to C

n. As it turns out, Cao’s steady gradient Kähler-Ricci soliton on C
n has

strictly positive sectional curvature. In light of this fact, he conjectured the following.

Conjecture 1.1 (Cao’s Conjecture [16]). A complete steady gradient Kähler-Ricci soliton
with positive curvature on C

n must be isometric (up to scaling) to Cao’s U(n)-invariant
steady gradient Kähler-Ricci soliton on C

n.

As pointed out by Cao [16], this conjecture is true when n = 1 as the real Killing vector
field J∇f provides the U(1)-symmetry. In this case, the soliton is the cigar soliton. In
higher dimensions, it is natural to investigate the local version of this uniqueness problem,
namely whether or not Cao’s soliton can be perturbed to another steady gradient Kähler-
Ricci soliton nearby. To this end, Chau-Schnürer [23] demonstrated that Cao’s soliton
on C

n is dynamically stable under sufficiently small perturbations of the Kähler potential
which have fast decay at infinity. Uniqueness of Cao’s soliton under suitable C1 asymptotic
conditions at spatial infinity was proved by Cui [39] via Brendle’s Killing vector field method
[10, 11] (see also [29, 36, 76]).

In the more rigid shrinking soliton case, Ni [69] showed that Pn endowed with the U(n+1)-
invariant Fubini-Study metric is the unique shrinking gradient Kähler-Ricci soliton with
strictly positive bisectional curvature. This condition is strictly weaker than strictly pos-
itive sectional curvature and strictly positive curvature operator on real (1, 1)-forms. In
the more flexible expanding soliton case, there is a one-parameter family of U(n)-invariant
expanding gradient Kähler-Ricci solitons with positive curvature on C

n constructed by Cao
[17]. Furthermore, the second-named author and Deruelle [37] proved that there exist con-
tinuous families of asymptotically conical expanding gradient Kähler-Ricci solitons with
positive curvature on C

n. Heuristically speaking, steady Kähler-Ricci solitons exhibit be-
havior residing on the cusp of shrinking and expanding solitons. They are particularly
delicate due to volume collapsing phenomenon [43]. It is therefore tempting to understand
the general uniqueness of positively curved steady Kähler-Ricci solitons.
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To this end, Apostolov-Cifarelli [2] recently constructed counterexamples to Conjecture
1.1 for n = 2. More precisely, they used Hamiltonian two-forms and toric geometry to
construct a one-parameter family of U(1)×U(1)-invariant positively curved steady gradient
Kähler-Ricci solitons on C

2. They also constructed complete steady gradient Kähler-Ricci
solitons on C

n with more general symmetries for n ≥ 3. However, it is unclear whether
or not their examples exhibit positive curvature in these dimensions, hence Conjecture 1.1
remains open for n ≥ 3.

1.2. Main results.

1.2.1. Existence of steady Kähler-Ricci solitons. In our first result, we construct complete
steady gradient Kähler-Ricci solitons on C

n with strictly positive curvature operator on
(1, 1)-forms that are not U(n)-invariant. The condition of Rm > 0 on real (1, 1)-forms in
particular implies strictly positive sectional curvature. Thus, these steady solitons provide
counterexamples to Conjecture 1.1 in any dimension n ≥ 2.

Theorem A. Let n ≥ 2 and set cn = 1
2n(n+1) . Then for all α ∈ [0, cn], there exists a

U(1)× U(n− 1)-invariant complete steady gradient Kähler-Ricci soliton (M,g, f, p) on C
n

with strictly positive curvature operator on real (1, 1)-forms such that R(p) = 1 and the
lowest sectional curvature at p is equal to α.

The family of steady solitons in this theorem interpolates between the product of the
cigar soliton and Cao’s U(n − 1)-invariant steady Kähler-Ricci soliton (α = 0) and Cao’s
U(n)-invariant steady Kähler-Ricci soliton (α = cn). These solitons serve as the Kähler
analog of the Z2 × O(n − 1)-symmetric n-dimensional Riemannian steady Ricci solitons
from [61, 60], and so we call them Kähler flying wings. As demonstrated in Appendix
B (cf. Corollary B.6), by comparing the respective soliton vector fields, we show that the
steady solitons of Theorem A are not isometric to those of Apostolov-Cifarelli [2]. In light
of the results from [26, 43, 69], the steady gradient Kähler-Ricci solitons of Theorem A are
all collapsed, have zero asymptotic volume ratio, and have volume growth rate bounded
below by rn, where n is the complex dimension of the underlying manifold.

More generally, constructing explicit examples of complete non-compact Kähler manifolds
with strictly positive sectional curvature in higher dimensions has long been an important
problem in Kähler geometry. Surprisingly, not much progress was made until the mid-90s.
In earlier work [55], Klembeck constructed U(n)-invariant complete non-compact Kähler
manifolds on C

n with strictly positive bisectional curvature BK > 0. When n = 1, the
same example was also constructed by Hamilton [51] independently and is known as the cigar
soliton. However, for n ≥ 2, these examples do not have nonnegative sectional curvature
[88, Example 1]. To the best of our knowledge, Cao’s U(n)-invariant expanding and steady
gradient Kähler-Ricci solitons [16, 17] are the first examples of complete non-compact Kähler
manifolds in higher dimensions with strictly positive sectional curvature in the literature
(see [88]). Wu-Zheng [88] systematically study U(n)-invariant Kähler manifolds with strictly
positive sectional curvature and provided more non-trivial examples with U(n)-symmetry,
exotic volume growth, and scalar curvature decay. We refer the reader to [88, 90] for a more
detailed historical account in this direction. Since positive curvature is an open condition,
one may easily generate other Kähler manifolds with strictly positive sectional curvature
via a small compact perturbation of the Kähler potential of the aforementioned metrics.
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Theorem A generalizes previous examples in [2, 37] by giving positively curved sub-U(n)-
symmetric examples in higher dimensions that cannot be obtained by small perturbations
of the Kähler potential of Cao’s examples.

1.2.2. Non-almost diameter rigidity of P
n. In the course of the proof of Theorem A, we

obtain a non-almost diameter rigidity result for P
n. The classical Myers theorem states

that a complete Riemannian manifold (M, g) with Ric ≥ (n − 1)g must have diameter
diam(M, g) ≤ π. Cheng [27] proved that diam(M, g) = π if and only if M is isometric
to the standard sphere of radius 1. It is natural to ask whether or not “almost diameter”
rigidity holds, meaning whether or not a Riemannian manifold (M, g) with Ric ≥ (n− 1)g
having diameter close to π is also close to the standard sphere of radius 1 in a certain sense.
However, the almost diameter rigidity does not hold even topologically. Indeed, there are
metrics g with Ricg ≥ (n − 1)g and diam(g) ≥ π − ε for arbitrarily small ε > 0 on P

n for

n ≥ 2 by Anderson [1], and Sk×Sn−k for any k ≥ 2 and n−k ≥ 3 by Otsu [70]. On the other
hand, the almost diameter rigidity does hold under additional conditions: With a suitable
negative sectional curvature lower bound, Perelman proved that it is homeomorphic to Sn

[72]. Very recently, Ren-Rong [74] showed that the manifold must be δ-bi-Hölder close to the
standard sphere for any δ > 0 if local universal covers are sufficiently close to the Euclidean
ball under a uniform scale; see also [25, 34, 66] for further discussion of the almost rigidity
assuming Ricg ≥ (n − 1)g. Finally, the almost diameter rigidity does not hold under the
even stronger curvature condition Rm ≥ 1. The third-named author constructed examples
with Rm ≥ 1 that are arbitrarily close in the Gromov-Hausdorff sense to an interval of
length π [61].

In the Kähler case, Li-Wang [63] proved that a complete Kähler manifold with bisectional
curvature BK ≥ 2 must have diameter bounded above by that of half of the Fubini-
Study metric, that is, π

2 . Recently, Datar-Seshadri [42] improved a rigidity result of Liu-
Yuan [64] (see also [84]) by showing that if the diameter is equal to π

2 , then the Kähler
manifold is holomorphically isometric to P

n. The next natural step then is to investigate
the almost diameter rigidity in the Kähler case. In contrast to the Riemannian case, the
Kähler structure imposes extra restrictions on the geometry of the manifold. By the results
of Mori and Siu-Yau on the Frankel conjecture [68, 83], the positive bisectional curvature
assumption already guarantees that the closed Kähler manifold is biholomorphic to P

n. It
is therefore interesting to ask if closeness to maximal diameter implies closeness to P

n in a
more restrictive way, say the Gromov-Hausdorff sense, under the curvature condition. As a
byproduct of our construction, we exhibit a degeneration of a family of Kähler metrics with
bisectional curvature BK ≥ 2 to a one-dimensional interval with optimal diameter equal to
π
2 . This demonstrates that the almost diameter rigidity of Pn in the Kähler case does not
hold in general without further assumptions. More precisely, we show that almost diameter
rigidity of Pn does not hold under an even stronger curvature condition.

Theorem B. Let n ≥ 1. Then for all ε > 0, there exists a U(n)-invariant Kähler metric
g on P

n having curvature operator Rm bounded below by 2 on real (1, 1)-forms everywhere
(in particular, the holomorphic bisectional curvature BK ≥ 2) such that

dGH

(
(Pn, dg), [0,

π
2 ]
)
≤ ε.

In Theorem B, it is clear by volume comparison that the volume of g goes to 0 as ε → 0.
One may wonder if the almost diameter rigidity holds under an additional uniform volume
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lower bound. Indeed as mentioned in [74], counterexamples in the Riemannian case with
uniform volume lower bound were provided by Anderson [1] and Otsu [70] independently.
In the Kähler case, we provide counterexamples in Corollary 4.3 by finding a sequence
of U(n)-invariant Kähler metrics on P

n with Rm ≥ 2 on real (1, 1)-forms with volumes
uniformly bounded from below, whose diameters converge to π

2 , but whose metrics are not
close to half of the Fubini-Study metric in the Gromov-Hausdorff sense.

The precise definition of curvature operator Rm ≥ 2 on real (1, 1)-forms is given below in
Definition 2.22. In particular, we show that this curvature condition implies that the holo-
morphic bisectional curvature BK ≥ 2. The curvature condition Rm > 0 on complex-valued
(1, 1)-forms is also known as strictly positive complex curvature operator and was studied
in [19, 26, 82, 88]. Here, we study the curvature condition Rm > 2 on real (1, 1)-forms,
and show that it is equivalent to the condition that the Kähler cone over the corresponding
Sasaki manifold has Rm > 0 on real (1, 1)-forms in the transverse directions. Moreover,
these Kähler cones can be smoothed out by expanding Kähler-Ricci solitons with Rm > 0
on real (1, 1)-forms by a result of the second-named author and Deruelle [37]. Theorem B
therefore implies

Corollary C. Let n ≥ 2. Then for all ε > 0, there exists a U(1) × U(n − 1)-invariant
expanding gradient Kähler-Ricci soliton on C

n with Rm > 0 on real (1, 1)-forms whose link
(S2n−1, h) satisfies

dGH

(
(S2n−1, dh), [0,

π
2 ]
)
≤ ε.

1.3. Outline of proofs. We begin by recalling some classical methods that have been used
to construct Ricci solitons and explain their relevance to our construction.

ODE methods: If the metric is assumed to satisfy certain symmetries, then both the
Einstein and Ricci soliton equation reduce to a family of ODEs. In the Riemannian case,
assuming rotational symmetry, Hamilton constructed the two-dimensional cigar soliton [51]
and Bryant constructed the n-dimensional Bryant soliton for all n ≥ 3. Appleton [3]
constructed four-dimensional U(2)-invariant, non-collapsed, non-Kähler steady solitons on
the line bundles OP1(k), k > 2, over P1.

In the Kähler case, assuming U(n)-symmetry, Cao [16] and Koiso [57] found shrinking
Kähler-Ricci solitons on twisted projective line bundles over Pn−1 for n ≥ 2. Cao [17] also
constructed a one-parameter family of complete expanding Kähler-Ricci solitons on C

n, and
steady Kähler-Ricci solitons on C

n and on the blow-up of Cn/Zn at the origin. Feldman-
Ilmanen-Knopf [48] then constructed the corresponding blow-down shrinking Kähler-Ricci
soliton; see [15, 18, 40, 41, 47, 50, 53, 71, 87] for more examples using ODEs.

Continuity methods: In [79], Siepmann used the continuity method to construct expand-
ing Kähler-Ricci solitons coming out of Ricci-flat Kähler cones. Deruelle [44] extended
the continuity method to the Riemannian case by constructing expanding gradient Ricci
solitons coming out of positively curved cones. In [37], the second-named author and Deru-
elle extended the aforesaid work of Siepmann by using the continuity method to construct
expanding Kähler-Ricci solitons emanating from Kähler cones with Rm > 0 on real (1, 1)-
forms. The key ingredient in the continuity method is to show that a deformation of
the cone metric can be lifted to a deformation of the expanding gradient Ricci soliton.
This relies on the invertibility of the linearized operator of the expanding soliton equation,
which is true under the assumption of suitable positive curvature conditions. Recently,
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Bamler-Chen [6] developed a new continuity method using degree theory that only requires
nonnegative scalar curvature. In this situation, the linearized operator is not necessarily
invertible. We also refer the reader to the following related works for expanding solitons:
[21, 22, 28, 29, 38, 46, 62, 65, 77, 79].

Collapsing methods: In [61], the third-named author observed an intricate relationship
between expanding and steady gradient Ricci solitons. Namely, for any sequence of expand-
ing Ricci solitons with collapsing asymptotic volume ratio, zooming in on the points with
the highest curvature, a steady Ricci soliton can be observed. A major step is to find a
sequence of cone metrics with collapsing asymptotic volume ratios which themselves can be
lifted to expanding gradient Ricci solitons by the continuity method. Finding a collapsing
sequence of cone metrics is equivalent to finding a sequence of metrics on the link of the cone
with collapsing volumes. Depending on the curvature conditions of the expanding solitons,
the collapsing links should also satisfy certain curvature conditions.

In the Riemannian case [61], the links need to satisfy Rm > 1 for the cones over them
to be lifted to expanding Ricci solitons with Rm > 0 [44]. Here, we require the link to be
a Sasaki metric on S2n−1 over a Kähler metric on P

n−1 with Rm > 2 on real (1, 1)-forms.
We show that this is equivalent to the corresponding cone having Rm > 0 on real (1, 1)-
forms. These cones can therefore be lifted to expanding gradient Kähler-Ricci solitons with
Rm > 0 on real (1, 1)-forms by work of the second-named author and Deruelle [36]. In the
following, we explain the construction of the desired metrics on P

n−1 and outline the proof.

In Section 2, we include some preliminaries on Kähler and Sasaki geometry, as well as
the U(1) × U(n − 1)-invariant Kähler cone metric on C

n induced by a U(n − 1)-invariant
metric on P

n−1. The details of the curvature computations are contained in Appendix A.

In Section 3, we construct a sequence of smooth Kähler metrics on P
n−1 with Rm ≥ 2 on

real (1, 1)-forms that converge to the interval [0, π2 ] in the Gromov-Hausdorff sense. We do

this by first writing the Fubini-Study metric on P
n−1 as a doubly warped product over the

interval [0, π2 ]. Then, by scaling down the two warping functions, we obtain a sequence of
singular metrics collapsing to the interval [0, π2 ] with singularities at 0 and π

2 , and satisfying
Rm ≥ 2 on real (1, 1)-forms on the smooth part. By cutting off the conical singularity at 0
on arbitrarily small scales and gluing back a portion of a suitable Cao’s expanding soliton,
we can approximate the singular metrics by smooth Kähler metrics on P

n−1 with Rm ≥ 2
outside of an arbitrarily small neighborhood of 0, and with Rm > 0 everywhere.

In Section 4, we take a limit of Ricci flows starting from these approximating metrics, and
obtain a Ricci flow starting from each singular metric which smooths out the singularities.
We show that the Ricci flow satisfies Rm ≥ 2 everywhere at all positive times. This yields
the almost non-rigidity result of Theorem B.

In Section 5, we lift the sequence of Kähler metrics on P
n−1 in Theorem B to a sequence

of expanding Kähler-Ricci solitons with Rm > 0 on real (1, 1)-forms. We will show that
they converge to a steady soliton asymptotic to a two-dimensional sector of angle π

2 , and
the soliton splits off a cigar factor. Then, using the same interpolation construction of the
third-named author from [61], we obtain the family of solitons of Theorem A. In Appendix
B, we show that these solitons are not isometric to those of [2].
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2. Preliminaries

2.1. Kähler cones and Sasaki metrics. In this subsection, we recall several useful no-
tions and definitions, in particular that of a Kähler cone and Sasaki metric. For basics
in Kähler geometry, we refer the reader to Huybrechts [52]. For a more comprehensive
reference for Sasakian geometry, we refer the reader to Boyer-Galicki [9].

We begin with

Definition 2.1 (Riemannian cone). Let (S, g) be a compact connected Riemannian mani-
fold. The Riemannian cone C0 with link S is defined to be R+×S with metric g0 = dr2⊕r2g
up to isometry. The radius function r is then characterized intrinsically as the distance from
the tip in the metric completion. We normally identify S with the level set {r = 1}.

Then we have

Definition 2.2 (Kähler cone). A Kähler cone is a Riemannian cone (C0, g0) such that g0
is Kähler, together with a choice of g0-parallel complex structure J0. This will in fact often
be unique up to sign. We then have a Kähler form ω0(X,Y ) = g0(J0X,Y ), and ω0 =

i
2∂∂̄r

2

with respect to J0.

The vector field r∂r on a Kähler cone is real holomorphic and ξ := J0r∂r is real holomor-
phic and Killing. This latter vector field is known as the Reeb field. The closure of its flow
in the isometry group of the link of the cone generates the holomorphic isometric action
of a real torus on C0 that fixes the tip of the cone. We call a Kähler cone “quasiregular”
if this action is an S1-action (and, in particular, “regular” if this S1-action is free), and
“irregular” if the action generated is that of a real torus of rank > 1.

Given a Kähler cone (C0, ω0 =
i
2∂∂̄r

2) with radius function r, it is true that

(2.1) ω0 = rdr ∧ η +
1

2
r2dη,

where

(2.2) η = i(∂̄ − ∂) log r = dc log(r)

restricts to a contact form on the link {r = 1} of C0 and we define dc := i(∂̄ − ∂). Clearly,
any Kähler cone metric on L×, the contraction of the zero section of a negative line bundle
L over a projective manifold, with some positive multiple of the radial vector field equal to
the Euler vector field on L \ {0}, is regular. In fact, as the following theorem states, this
property characterises all regular Kähler cones.



8 P.-Y. CHAN, R. J. CONLON, AND Y. LAI

Theorem 2.3 ([9, Theorem 7.5.1]). Let (C0, ω0) be a regular Kähler cone with Kähler cone
metric ω0 =

i
2∂∂̄r

2, radial function r, and radial vector field r∂r. Then:

(i) C0 is biholomorphic to the blowdown L× of the zero section of a negative line bundle
L over a projective manifold D, with a · r∂r equal to the Euler field on L \ {0} for
some a > 0.

(ii) Let p : L → D denote the projection. Then, writing ω0 as in (2.1), we have that
1
2dη = p∗ωT for some Kähler form ωT on D with [ωT ] = 2πa · c1(L∗).

Evidently, the flow generated by the vector fields {r∂r, ξ} produces the standard C
∗-action

on the fibres of L. We give the Kähler form ωT a special name.

Definition 2.4. The Kähler form ωT on D from Theorem 2.3(ii) is called the transverse
Kähler form of ω0 on D, with the corresponding Kähler metric gT called the transverse
Kähler metric.

In light of (2.1), the Kähler cone metric g0 associated to ω0 takes the form

(2.3) g0 = dr2 + r2(η2 + p∗gT ).

As the next example demonstrates, Theorem 2.3 is reversible in that one can always
endow L× with the structure of a regular Kähler cone metric.

Example 2.5 ([9, Theorem 7.5.2]). Let L be a negative line bundle over a projective
manifold D and let p : L → D denote the projection. Then L has a hermitian metric h
with negative curvature. Locally, h is defined by a smooth nonnegative real-valued function
which, by abuse of notation, we also write as h. This is just the norm with respect to h of
the unit section in a local trivialisation of L. The real (1, 1)-form i∂∂̄ log h then defines a
(global) Kähler form on D.

Set r2 = (h|w|2)a > 0 for any a > 0, with w the coordinate on the fibre. Then r2

2
defines the Kähler potential of a Kähler cone metric on L×, the contraction of the zero
section of L, with Kähler form ω0 =

i
2∂∂̄r

2 and radial vector field r∂r a scaling of the Euler

vector field on L\{0} by 1
a
. Finally, writing ω0 as in (2.1), we have that 1

2dη = p∗ωT , where

ωT = a · i∂∂̄ log h is the tranverse Kähler form, a Kähler form on D with [ωT ] = 2πa ·c1(L∗).

As a specific example, we have

Example 2.6. In Example 2.5, one can consider the holomorphic line bundle
π : OPn−1(−1) → P

n−1 endowed with the hermitian metric h whose curvature form is
−ωFS, that is, negative the Fubini-Study metric on P

n−1 [52, Example 4.3.12]. For any
a > 0, consider the Kähler cone metric defined by r2 = (h|w|2)a, with w the coordinate on
the fibre. The corresponding Kähler cone via the usual identification of the blowdown of
the zero section of OPn−1(−1) with C

n resulting from the construction is Cn endowed with
the Kähler cone metric ω0 =

i
2∂∂̄r

2 = i
2∂∂̄(|z|2a), with the Reeb vector field ξ a scaling by

1
a
of that whose flow rotates the Hopf fibres with period 2π. In this case, the transverse

Kähler form is given by a
2 · ωFS. Clearly, when a = 1, we obtain the flat metric on C

n.

One may deform a Kähler cone to generate more examples in the following way.

Definition 2.7 (Type II deformation). Let (C0, ω0 = i
2∂∂̄r

2) be a Kähler cone with
complex structure J0 and let ϕ : C0 → R be a smooth real-valued function satisfying
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Lr∂rϕ = LJ0r∂rϕ = 0 with ω̃0 =
i
2∂∂̄(r

2e2ϕ) > 0. Then (C0, ω̃0), a Kähler cone with radius
function r̃ := reϕ and radial vector field r̃∂r̃ = r∂r, is called a deformation of type II (of
(C0, ω0)).

Let η̃ = i(∂̄ − ∂) log r̃. Then by (2.1), ω̃0 may be written as

ω̃0 =
i

2
∂∂̄(r2e2ϕ) = r̃dr̃ ∧ η̃ +

1

2
r̃2dη̃ = r̃dr̃ ∧ η̃ +

1

2
r̃2(dη + i∂∂̄ϕ).

We refer the reader to [9, Section 7.5.1] or [49, Proposition 4.2] for more details.

The link of a Kähler cone is called a “Sasaki” manifold.

Definition 2.8 (Sasaki manifolds). A compact (odd real dimensional) Riemannian mani-
fold (S, g) is Sasaki if and only if the Riemannian cone over (S, g) is a Kähler cone.

A Sasaski manifold (S, g) is naturally a contact manifold with contact form η and Reeb
vector field given by the restriction of (2.2) and ξ to {r = 1} ∼= S, respectively. We will only
consider regular Sasaki manifolds, i.e., those Sasaki manifolds for which the corresponding
Kähler cone C0 is regular. Then via Theorem 2.3(ii), we have a map p : C0 → D onto a
compact Kähler manifold (D, gT ), where gT is the transverse Kähler metric whose Kähler
form ωT satisfies 1

2dη = p∗ωT . Moreover, restricting p to S ∼= {r = 1}, we get a map

p : (S, g) → (D, gT ) which is a Riemannian submersion, as g = η2 + p∗gT thanks to (2.3).
This realizes S as the total space of an S1-bundle over D, the fibres of which are precisely
the orbits of the flow of ξ.

Example 2.9. In the Kähler cone described in Example 2.6, the corresponding Sasaki
manifold (S, g) is the (2n − 1)-sphere S = S2n−1 with g the round metric of curvature
1, p : (S2n−1, g) → (Pn−1, gT ) is the Hopf fibration, and gT = 1

2gFS is the Fubini-Study

metric on P
n−1 normalised so that Ric(gFS) = ngFS. The contact form η in this case is the

restriction of the one-form dc log r to S2n−1 ⊂ R
2n.

For more details on Sasaki manifolds, we refer the reader to [9].

2.2. Doubly warped product metrics. In this section, we introduce doubly warped
product metrics and highlight the key features of such metrics that we need.

For n ≥ 2, let (M, g, η, ξ) be a (possibly irregular) (2n− 1)-dimensional Sasaki manifold
as defined in Definition 2.8, with Sasaki metric g, contact one-form η, Reeb vector field ξ, and
tranverse Kähler metric gT . For a given connected open interval I = (0, L) ⊂ R, L > 0,

we define on the real 2n-dimensional manifold M̂ := M × I a doubly-warped product
Riemannian metric ĝ by

(2.4) ĝ := ds2 + a2(s)η2 + b2(s)gT ,

where s is the coordinate on (0, L). Without loss of generality, we assume that a(s), b(s) >
0. The archetypical example of this construction is the Kähler cone itself.

Example 2.10. Set a(s) = b(s) = s and L = ∞. Then one obtains on M̂ the Kähler cone
over the Sasaki manifold (M, g).

We endow M̂ with a complex structure in the following way. Since (M, g) is Sasaki, we
know that the cone C0 = M×R+ over M is Kähler, and is in particular a complex manifold
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with complex structure we denote by J0. Let r denote the coordinate on the R+-factor of
C0. We define a map φ : (0, L) → (0, ∞) as the unique solution to the ODE:

(2.5)

{
a(s)φ′(s) = φ(s),

φ
(
L
2

)
= 1.

This is given explicitly by φ(s) = e

∫ s
L
2

du
a(u) . Then since φ′(s) > 0 for s > 0, φ defines a

diffeomorphism onto its image. We define a map Φ : M̂ → C0 by Φ(x, s) = (x, φ(s)). This

is also a diffeomorphism onto its image, and so we define a complex structure on M̂ by

Ĵ := Φ∗J0. By construction Φ∗(a(s)∂s) = r∂r, and so Ĵ(a(s)∂s) = ξ.

It turns out that ĝ is hermitian with respect to Ĵ with fundamental form given by

ω̂ = ĝ(Ĵ(·), ·) = a(s)ds ∧ η + b(s)2ωT .

We give necessary and sufficient conditions for when (M̂ , ĝ, Ĵ) is Kähler.

Lemma 2.11. (M̂, ĝ, Ĵ) is Kähler if and only if a(s) = b(s)b′(s). If this is the case, then

the Kähler form ω̂ of (M̂, ĝ, J0) is given by

ω̂ = ddc

(
1

2

∫ s

L
2

b(u)2

a(u)
du

)
,

where dc = i
(
∂̄ − ∂

)
.

Proof. The fundamental form ω̂ of ĝ is given by

(2.6) ω̂ = a(s)ds ∧ η + b(s)2ωT .

Clearly dω̂ = 0 if and only if a(s) = b(s)b′(s). Here we use the fact that dη = 2ωT .

Regarding the last statement, it is clear that from (2.6) that

ω̂ = d

(
1

2
b(s)2η

)
.

Now, in light of (2.5), we can write

η = dc log(s) = dc log(φ(s)) =

(
φ′(s)
φ(s)

)
dcs =

dcs

a(s)
.

The desired expression follows. �

This leads us on to our next examples. The first illustrates the fact that the Fubini-Study
metric on P

n can be realized as a doubly warped product.

Example 2.12 ([73, p.17]). Let (M, g, η, ξ) be the round Sasaki structure on S2n−1, set
a(s) = sin(s) cos(s) = 1

2 sin(2s) and b(s) = sin(s), and let I =
(
0, π

2

)
. Then the doubly

warped product metric closes up at 0 by adding a point and at π
2 by adding a P

n−1. The

resulting metric is one half of the Fubini-Study metric on M̂ = P
n. In light of Lemma 2.11,

the Kähler form ωFS of the Fubini-Study metric may be written as

1

2
ωFS = ddc

(
1

2

∫ s

π
4

tan(u) du

)
=

1

2
ddc (ln sec(s)) on M ×

(
0,

π

2

)
.

The next example yields complete doubly warped product Kähler metrics on P
n.
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Example 2.13. Again working with the round Sasaki structure on the (2n − 1)-sphere
(S2n−1, g), realized as an S1-bundle p : (S2n−1, g) → (Pn−1, gT ) over P

n−1 via the Hopf
fibration, with transverse metric gT = 1

2gFS , one half of the Fubini-Study metric gFS on

Pn−1 normalised so that Ric(gFS) = ngFS (cf. Example 2.9), the doubly warped product
construction yields Kähler metrics on (0, L)×S2n−1 which close up at 0 by adding a point
and at L by adjoining a P

n−1 to give a complete Kähler metric on P
n if and only if a and

b can be extended smoothly to 0 and L such that

(2.7) a(even)(0) = 0, a′(0) = 1, a(even)(L) = 0, a′(L) = −1,

and

(2.8) b(even)(0) = 0, b′(0) = 1, b(odd)(L) = 0, b(L) > 0.

(The smoothness condition at s = L was also considered by Tran [86, Lemma 3.3].) One
can verify that one half of the Fubini-Study metric on P

n, considered in Example 2.12 where
L = π

2 , a(s) =
1
2 sin(2s), and b(s) = sin(s), satisfies these conditions. These conditions have

the following inferences for the functions a and b. Using [67, Lemma 2.1], we can write
them in the following way:

a(x) = xg1(x) for x ∈ [0, L), g1(0) = a′(0) = 1, and g′1(0) =
1

2
a′′(0) = 0,

a(x) = (L− x)g2(L− x) for x ∈ (0, L], g2(0) = −a′(L) = 1, and g′2(0) =
1

2
a′′(L) = 0,

b(x) = xg3(x) for x ∈ [0, L), and g3(0) = b′(0) = 1, and g′3(0) =
1

2
b′′(0) = 0,

b(x) = b(L) + (L− x)g4(L− x) for x ∈ (0, L], g4(0) = −b′(L) = 0,

and g′4(0) =
1

2
b′′(L) = 0,

(2.9)

where gi(x), i = 1, . . . , 4, are smooth functions.

Assume that a and b are chosen so that [0, L]×S2n−1 is smooth at 0. Let ti → 0 be a se-
quence of positive numbers converging to zero. Then the rescaled metrics
ds2 + (t−1

i a(tis))
2η ⊗ η + (t−1

i b(tis))
2gT converge smoothly locally to the Euclidean metric

ds2 + s2η ⊗ η + s2gT on C
n (realized as a Riemannian cone over S2n−1; cf. (2.3)). The

smooth convergence immediately implies that a(0) = b(0) = 0 and a′(0) = b′(0) = 1. In
fact, by rewriting the metric under the Cartesian product as in [73, Chapter 1, Sections 3.4
and 4.3], one can see that the pair of conditions (2.7) and (2.8) are necessary and sufficient
for smoothness at 0 and L.

2.3. U(1) × U(n − 1)-Kähler cone metrics on C
n coming from U(n − 1)-invariant

metrics on P
n−1. In this section, we will demonstrate how to construct U(1)× U(n− 1)-

Kähler cone metrics on C
n from the following data. The main result of this section is

Proposition 2.17.

Let n ≥ 3 and recall Example 2.13 in the case of the round (2n − 3)-sphere (S2n−3, g)
realized as an S1-bundle p : (S2n−3, g) → (Pn−2, gT ) over (Pn−2, gT ) with 2gT = gFS ,
the Fubini-Study metric on P

n−2 normalised so that Ric(gFS) = (n − 1)gFS . We consider
doubly warped product Kähler metrics on S2n−3 × (0, L), L > 0, of the form

(2.10) ḡ = ds2 + ā(s)2η2 + b̄(s)2gT .
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Here s is the coordinate on the interval (0, L) and η is the contact form associated to the
round Sasaki structure on S2n−3 (see Example 2.9). Write ωT for the Kähler form associated
to gT . We have that ā(s) = b̄(s)b̄′(s) by Lemma 2.11 because ḡ is Kähler, and in addition
that (2.7) and (2.8) hold true so that, as described in Example 2.13, ḡ closes up smoothly
at the endpoints of (0, L) to give a warped product Kähler metric ḡ on P

n−1. Without loss
of generality, we can assume that ā(s) > 0. Then, as written in Lemma 2.11, the Kähler
form ω̄ of ḡ can be written as

ω̄ = ā(s)ds ∧ η + b̄(s)2ωT = ddc

(
1

2

∫ s

L
2

b̄(u)2

ā(u)
du

)
,

and the corresponding volume form can be computed as

ω̄n−1 = (n− 1) · ā(s) · b̄(s)2n−4ds ∧ η ∧ (ωT )n−2.

In particular,

∫

Pn−1

ω̄n−1 = c(n)

∫ L

0
ā(s) · b̄(s)2n−4 ds = c(n)

∫ L

0
b̄′(s) · b̄(s)2n−3 ds =

c(n)b̄(L)2n−2

2n− 2
> 0,

(2.11)

where c(n) > 0 is a dimensional constant and where we have used (2.8) and the fact that
ā(s) = b̄(s)b̄′(s).

We begin by proving some preliminary lemmas before stating and proving the main result.

Lemma 2.14. The map φ : (0, L) → (0, ∞) defined by

φ(s) = e

∫ s
L
2

du
ā(u)

is invertible.

Proof. Since ā(s) > 0 by assumption, we see directly that φ′(s) > 0 for s ∈ (0, L) so that
φ(s) is strictly increasing. In addition, in light of (2.9), with |g2(L−x)− 1| ≤ 1

2 for x in an
interval of the form (0, ε) for some ε > 0 sufficiently small, we see that for s ∈ (L− ε, L),

∫ s

L
2

du

ā(u)
=

∫ L−ε

L
2

du

ā(u)
+

∫ s

L−ε

du

ā(u)
≥ C +

2

3

∫ s

L−ε

du

L− u

which tends to +∞ as s → L−. Similar behavior occurs as s → 0+, hence φ(s) is indeed a
diffeomorphism. �

Let (w1, . . . , wn) henceforth denote holomorphic coordinates on C
n.

Lemma 2.15. Define a function ŝ : Cn \ {0} → [0, L] by

ŝ(w1, . . . , wn) =





0 if w2 = . . . = wn = 0 (and w1 6= 0),

φ−1

(√∑n
j=2 |wj |2
|w1|

)
if w1 6= 0 and wj 6= 0 for some j ≥ 2,

L if w1 = 0.

Then ŝ is continuous and invariant under the diagonal C∗-action on C
n.
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Proof. The function ŝ is clearly invariant under the diagonal C∗-action on C
n. As such,

it descends to a function that we denote by s̃ : Pn−1 → [0, L] on P
n−1. To complete the

proof of the lemma, it suffices to show that s̃ is continuous in the induced homogeneous
coordinates [w1 : . . . : wn] on P

n−1.

To this end, since φ extends to a continuous function with φ(0) = 0, s̃ is clearly continuous
on the open subset {[w1 : w2 : . . . : wn] ∈ P

n−1 |w1 6= 0}. Let 2 ≤ j ≤ n and consider the
chart {[w1 : w2 : . . . : wn] ∈ P

n−1 |wj 6= 0}. In this chart, we see that for w1 6= 0,

s̃([w1 : . . . : wn]) = φ−1



∣∣∣∣
wj

w1

∣∣∣∣

√√√√√1 +

n∑

k=2
k 6=j

|wk|2


 .

Since the quantity inside the parentheses tends to +∞ as w1 → 0, we see that s̃ is continuous,
as required. �

Lemma 2.16. Define a function ϕ̂ : Cn \ {0} → R by

ϕ̂(w) = 2

∫ ŝ(w)

L
2

b̄(u)2

ā(u)
du− b̄(L)2 · ln

(
1 + e

2
∫ ŝ(w)
L
2

du
ā(u)

)
,

where ŝ is the function defined in Lemma 2.15. Then ϕ̂ is smooth and invariant under the
diagonal C∗-action on C

n.

Proof. Since ϕ̂ is a function of ŝ only, and ŝ is invariant under the diagonal C∗-action, ϕ̂
has the same property. As such, it descends to a function ϕ̃ = ϕ̃(s̃) : Pn−1 → R, where s̃ is
as in the proof of the previous lemma. To complete the proof of the lemma, it suffices to
show that ϕ̃ is smooth in the induced homogeneous coordinates [w1 : . . . : wn] on P

n−1.

To this end, with s still denoting the coordinate on the (0, L)-factor, let τ : (0, L) →(
0, π

2

)
be the unique solution of the ODE

{
ā(s)τ ′(s) = 1

2 sin(2τ(s)),

τ
(
L
2

)
= π

4 .

Then

τ(s) = arctan

(
e

∫ s
L
2

du
ā(u)

)
= arctan(φ(s))

and hence is a diffeomorphism.

Next recall from Example 2.12 one half of the Fubini-Study metric on S2n−3 ×
(
0, π

2

)
,

the Kähler form of which is given by

(2.12)
1

2
ωFS = ddc

(
1

2

∫ t

π
4

tan(u) du

)
=

1

2
ddc (ln sec(t))

with t the coordinate on the interval factor. τ(s) has the additional property that τ∗(ā(s)∂s) =
1
2 sin(2t)∂t and so we have an induced biholomorphism

T : (S2n−3 × (0, L) , ω̄) →
(
S2n−3 ×

(
0,

π

2

)
,
1

2
ωFS

)
,

T (x, s) = (x, τ(s)) = (x, arctan(φ(s))),

(2.13)
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which extends over the endpoints in the obvious way to give an automorphism of Pn−1:

T :
((
S2n−3 × (0, L)

)
∪ {0} ∪

(
P
n−2 × {L}

)
, ω̄

)

→
((

S2n−3 ×
(
0,

π

2

))
∪ {0} ∪

(
P
n−2 ×

{π

2

})
,
1

2
ωFS

)
.

Notice that T ∗t = τ(s) = arctan(φ(s)) and that

T ∗
(
1

2
ωFS

)
= ddc

(
1

2

∫ τ(s)

π
4

tan(u) du

)
=

1

2
ddc (ln sec(τ(s)))

=
1

4
ddc

(
ln

(
1 +

(
e

∫ s
L
2

du
ā(u)

)2
))

=
1

4
ddc

(
ln

[
1 + (φ(s))2

)]
.

Now ω̄ lies in a positive multiple of the Kähler class of T ∗ (1
2ωFS

)
, and so there exists

a smooth real-valued function ϕ : Pn−1 → R, defined up to addition of a constant, and
c > 0 such that ω̄ − cT ∗ (1

2ωFS

)
= i∂∂̄ϕ. In light of (2.11), we see that c = b̄(L)2. On

S2n−3 × (0, L), we can write

1

2
ddcϕ = i∂∂̄ϕ = ω̄ − b̄(L)2T ∗

(
1

2
ωFS

)

=
1

2
ddc

(∫ s

L
2

b̄(u)2

ā(u)
du− b̄(L)2

2
ln

(
1 + e

2
∫ s
L
2

du
ā(u)

))
.

(2.14)

Using the expansions of (2.9), it is easy to show that the function inside the parentheses
on the right-hand side has a C2-continuation over s = 0, i.e., the function and its first and
second derivative with respect to s extend as continuous functions over s = 0. The function
also admits a C2-continuation over s = L. To see this, again use the expansions of (2.9)
and rewrite the function in the following way:
∫ s

L
2

b̄(u)2

ā(u)
du− b̄(L)2

2
ln

(
1 + e

2
∫ s
L
2

du
ā(u)

)

=

∫ s

L
2

(
b̄(u)2 − b(L)2

ā(u)

)
du− b̄(L)2

2
ln

(
1 + e

−2
∫ s
L
2

du
ā(u)

)
.

In addition, its first derivative with respect to s vanishes when s = 0, L, and so the gradient
and Laplacian of this function both extend as continuous functions to the whole of Pn−1.
With the Laplacian of this function vanishing, an integration by parts argument now implies
that

(2.15) ϕ− 2

∫ s

L
2

b̄(u)2

ā(u)
du+ b̄(L)2 ln

(
1 + e

2
∫ s
L
2

du
ā(u)

)
is constant.

In particular,

2

∫ s

L
2

b̄(u)2

ā(u)
du− b̄(L)2 ln

(
1 + e

2
∫ s
L
2

du
ā(u)

)

is smooth on P
n−1 because ϕ is.

We next define a biholomorphism

Ψ :
(
S2n−3 ×

(
0,

π

2

))
∪ {0} → {[w1 : w2 : . . . : wn] ∈ P

n−1 |w1 6= 0}
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in the following way. Choose an automorphism of the round Sasaki structures

λ : S2n−3 → {z = (z1, . . . , zn−1) ∈ C
n−1 | |z| = 1}

and set{
Ψ(0) = [1 : 0 : . . . : 0],
Ψ(x, t) = [1 : z1 : . . . : zn−1] = [1 : λ(x) · tan(t)] for t > 0 and x ∈ S2n−3.

Note that ψ :
(
0, π

2

)
→ (0, ∞), ψ(t) := tan(t), is a diffeomorphism so that Ψ is one also.

Moreover, ψ(t) is the unique solution of the ODE
{

1
2 sin(2t)ψ

′(s) = ψ(t),
ψ(π4 ) = 1,

hence Ψ in addition satisfies Ψ∗
(
1
2 sin(2t)∂t

)
= r∂r, where r(z)2 =

∑n−1
i=1 |zi|2. Thus, Ψ is

indeed a biholomorphism. Notice by construction that Ψ∗r = ψ ◦ t = tan(t) and so in light
of (2.12), Ψ extends in the obvious way to a holomorphic isometry

Ψ :
(
S2n−3 ×

(
0,

π

2

))
∪ {0} ∪

(
P
n−2 ×

{π

2

})
→ {[w1 : . . . : wn] ∈ P

n−1}

of Pn−1 with respect to the Fubini-Study metric.

Recall that Ψ∗r = tan(t) and that T ∗t = τ(s) = arctan(φ(s)). Set

Φ := Φ = Ψ ◦ T :
(
S2n−3 × (0, L)

)
∪ {0} ∪

(
P
n−2 × {L}

)
→ {[w1 : w2 : . . . : wn] ∈ P

n−1}.
Explicitly, Φ is given by

(2.16)





Φ(0) = [1 : 0 : . . . : 0],

Φ(x, s) =

[
1 : λ(x) · φ(s)] = [1 : λ(x) · e

∫ s
L
2

du
ā(u)

]
for s > 0 and x ∈ S2n−3.

Since Φ∗r = φ(s), we see directly that Φ∗s̃ = s. Thus, in light of (2.15), we find that

i∂∂̄ (ϕ− Φ∗ϕ̃(s̃)) = i∂∂̄ (ϕ− ϕ̃(s)) = 0,(2.17)

and so ϕ̃ is smooth, as required. �

The main result of this subsection is the following.

Proposition 2.17. Let n ≥ 3.

(1) Let ḡ be a Kähler metric on P
n−1 with Kähler form ω̄ invariant under the U(n− 1)-

action defined by matrix multiplication on the last (n − 1)-homogeneous coordinates on
P
n−1. Then there exists L > 0, a smooth function s : Pn−1 → [0, L], and smooth functions

ā, b̄ : [0, L] → [0,∞) with ā(s) = b̄(s)b̄′(s) satisfying (2.7) and (2.8) such that ḡ can be
written as a doubly warped product

ḡ = ds2 + ā2(s)η2 + b̄2(s)gT

on S2n−3× (0, L). Here, (S2n−3, gT , η) is the standard round Sasaki structure on S2n−3 as
described in Example 2.9.

(2) Let ϕ̂ : Cn\{0} → R be as in Lemma 2.16 and let ĝ be Kähler cone metric on C
n\{0}

defined by the radial function r̂(w) = |w|b̄(L)2eϕ̂(w) (cf. Definition 2.7). Let ω̂T denote the
tranverse Kähler form on P

n−1. Then:
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(a) ĝ is invariant under the U(1)× U(n− 1)-action on C
n defined by

U(1)× U(n− 1) ∋ (α, A) · (z, w) ∈ C×C
n−1 7→ (α · z, Aw).

(b) The induced Sasaki metric h on {r̂ = 1} ∼= S2n−1 satisfies

(2.18) diam(Pn−1, ĝT ) ≤ diam(S2n−1, h) ≤ diam(Pn−1, ĝT ) + πb̄(L)2

and

(2.19) volh(S
2n−1) ≤ 2πb̄(L)2 volĝT (P

n−1).

(c) ω̂T depends smoothly on ḡ and there exists a biholomorphism Φ such that ω̂T =
(Φ−1)∗ω̄.

Remark 2.18. Since ϕ̂ is smooth and invariant under the diagonal C∗-action on C
n \ {0}

by Lemma 2.16, it descends to a well-defined smooth real-valued function ϕ on projective
space. The fact that r̂ does indeed define the radial function of a Kähler cone metric on
C
n \ {0} then follows from item (2c) of the proposition.

Remark 2.19. A version of Proposition 2.17 also holds when n = 2. In this case, the
Kähler metric ḡ is a warped product on (0, L)× S1 of the form

ḡ = ds2 + ā2(s)η2

and ā(s) satisfies (2.7). We define another function b̄(s) :=
√

2
∫ s

0 a(τ) dτ . Then an induc-

tion argument shows that b̄(s) satisfies (2.8). With this, the proof of Lemmas 2.11, 2.14,
2.15, and 2.16, as well as that of Proposition 2.17, can be carried through. We leave the
details to the interested reader.

Proof. (1) We begin by showing that ḡ takes the form of a doubly warped product as stated.
Many of the ideas we use come from [16].

First recall from Example 2.9 the round Sasaki structure on S2n−3 with contact one form
η and transverse Kähler form ωT = 1

2ωFS, one half of the Fubini-Study metric gFS on P
n−2

normalised so that Ric(gFS) = (n − 1)gFS . Let z = [z1 : . . . : zn−1] denote homogeneous
coordinates on P

n−1. The fact that ḡ is invariant under the stipulated action means that the
restriction of ḡ to the open set {z0 6= 0} ⊆ P

n−1 is invariant under the standard U(n− 1)-
action on the holomorphic coordinates (z1, . . . , zn−1) induced from the standard coordinate
chart covering the aforesaid open set. Let |z| =: r : Cn−1 → R and write r2 = et. Being
U(n − 1)-invariant, we know that ω̄ = i

2∂∂̄Φ(t) for Φ : R → R a given smooth function.

Thus, recalling that dc := i(∂̄ − ∂) and η = dc log(r) = 1
2d

ct, we can write

ω̄ =
i

2
∂∂̄Φ(t) =

1

4
ddcΦ(t) = Φ′(t)

1

4
ddct+Φ′′(t)

dt

2
∧ dct

2
= µ(t)ωT + µ′(t)

dt

2
∧ η,

where µ(t) := Φ′(t) is a smooth function on (−∞, ∞).

In defining a metric, we clearly have that both µ(t), µ′(t) > 0. We claim that ω̄ is a
doubly warped product Kähler metric of the desired form with L = diam(Pn−1, ḡ). To see
this, set

s(t) :=
1

2

∫ t

−∞

√
µ′(τ) dτ for all t ∈ R.
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Then since ω is in particular rotationally symmetric, the Euclidean radial line emerging
from the origin is also a minimizing geodesic. Hence s(t) is well-defined as it is the distance
from the origin to any given z ∈ C

n−1 with t = 2 ln |z|.

Next observe that s′(t) =
√

µ′(t)

2 > 0 and so t can be written as a function of s. Let

s1 := lim
t→−∞

s(t) and s2 := lim
t→∞

s(t).

Then ḡ is a warped product metric over the interval (s1, s2) with

ā(s) :=
√

µ′(t(s)) and b̄(s) :=
√

µ(t(s)).

We claim that it is of the desired form. Indeed, for all s ∈ (s1, s2), we have that

b̄(s)b̄′(s) =
µ′(t(s))

2

dt

ds
=

µ′(t(s))
2

2√
µ′(t(s))

= ā(s)

and

ω̄ = µ(t)ωT + µ′(t)
dt

2
∧ η = b̄(s)2ωT + ā(s)ds ∧ η.

By the completeness of the metric, we see that

s1 = lim
t→−∞

s(t) = 0 and s2 = lim
t→∞

s(t) = diam(Pn−1, ḡ) = L,

and by the arguments as laid out in Example 2.13 that (2.7) and (2.8) hold true, as required.

We now prove the remaining items of the proposition.

(2a) Recall the definition of ŝ from Lemma 2.14. Since ϕ̂ depends only on ŝ which, by
its very definition, is invariant under the action prescribed, it is clear that ϕ̂, and hence r̂,
is also.

(2b) There exists a Riemannian submersion p : (S2n−1, h) 7→ (Pn−1, ĝT ) which is an S1-

bundle with S1-fiber parametrised by the flow of the Reeb vector field ξ

b̄(L)2
. Moreover, the

Sasaki metric h on {r̂ = 1} is given by

h = (b̄(L)2η + i(∂̄ − ∂)ϕ̂)⊗ (b̄(L)2η + i(∂̄ − ∂)ϕ̂) + p∗ĝT ,

where η and ξ are the standard contact form and Reeb vector field of the flat Kähler cone
C
n \ {0}. Using the fact that

[i(∂̄ − ∂)ϕ̂](ξ) = dcϕ̂(ξ) = −LJξϕ̂− dc(ξ · ϕ̂) = 0

because ϕ̂ is invariant under the diagonal C∗-action generated by ξ and Jξ, we see that the
length of the S1-fiber of p is bounded above by 2πb̄(L)2. (2.18) thus follows. We next apply
the coarea formula to p to see that (2.19) holds.

(2c) We know that in homogeneous coordinates [w1 : . . . : wn] on P
n−1 induced from

holomorphic coordinates (w1, . . . , wn) on the ambient Cn, ω̂T is given by

(2.20) ω̂T =
1

2
ddc log r̂ =

b̄(L)2

2
ωFS + i∂∂̄ϕ̃,
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where ϕ̃ is as in the proof of Lemma 2.16. As a holomorphic isometry, we then see that

Ψ∗ω̂T =
b̄(L)2

2
ωFS + i∂∂̄(Ψ∗ϕ̃)

= (T−1)∗
(
b̄(L)2T ∗

(
1

2
ωFS

)
+ i∂∂̄[(Ψ ◦ T )∗ϕ̃]

)

= (T−1)∗
(
b̄(L)2T ∗

(
1

2
ωFS

)
+ i∂∂̄ϕ

)
= (T−1)∗ω̄,

where we have used (2.17) followed by (2.14) in the last two equalities. Hence ω̂T = (Φ−1)∗ω̄,
where Φ = Ψ ◦ T as in (2.16).

Finally, note that by (2.11), b̄(L) is determined by, and hence depends smoothly upon,
volḡ(P

n−1). Hence in light of (2.20), showing that ω̂T depends smoothly on ĝ comes down to
showing that ϕ̃, or equivalently Ψ∗ϕ̃, depends smoothly on ḡ (as a function on the interval
[0, π

2 ]). To this end, observe from (2.14) that

i∂∂̄ (Ψ∗ϕ̃) = i∂∂̄
(
(T−1)∗ϕ

)
= (T−1)∗ω̄ − b̄(L)2

2
ωFS.

Contracting this equation with gFS, the Fubini-Study metric, we see that, after imposing
that ϕ

(
L
2

)
= 0, Ψ∗ϕ̃ is the unique solution of the following elliptic PDE:

(2.21)

{
∆gFS

u = trgFS

(
(T−1)∗ω̄

)
− nb̄(L)2

2 ,
u
(
π
4

)
= 0.

Now, from (2.13), we read that the map T−1 is determined by the map

τ−1 = φ−1 ◦ tan :
(
0,

π

2

)
→ R

and from its very definition we see that φ is defined in terms of data that is determined
by ḡ, namely L which is equal to diam(Pn−1, ḡ), s which is the distance from the point
[1 : 0 : . . . : 0] ∈ P

n−1, and ā(s)2 which is the norm [ḡ(ξ, ξ)](s) of the Reeb vector field ξ
of the round Sasaki structure on S2n−3. Thus, we deduce that φ−1 depends smoothly on
ḡ. It is now clear that the right-hand side of (2.21), and as a result its unique solution u,
depends smoothly on ḡ. This concludes the proof of item (2c). �

2.4. Positive curvature conditions. In this subsection, we introduce several notions
of positive curvature and their relation on Kähler manifolds. Throughout, we adopt the
following convention of the curvature tensor (see also (A.1)):

R̂(X,Y )Z = ∇̂X

(
∇̂Y Z

)
− ∇̂Y

(
∇̂XZ

)
− ∇̂[X,Y ]Z.

Let us recall the notion of the curvature operator and its lower bound on (1, 1)-forms on a
Kähler manifold (see [19, 26, 82]).

Definition 2.20. Fix any p ∈ M , we say that a Kähler manifold has curvature operator
Rm strictly greater than (or bounded below by) 2λ ∈ R on (1, 1)-forms at p if for any

nonzero (1, 1)-form i ξαβ̄ dz
α ∧ dzβ̄ at p,

(2.22) −R̂αβ̄γδ̄ξ
αβ̄ξδγ̄ > (≥ resp.) 2λ(ĝαβ̄ ĝγδ̄ + ĝαδ̄ ĝγβ̄)ξ

αβ̄ξδγ̄ ,
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where ξαβ̄ = gαε̄gηβ̄ξηε̄.

Note that the negative sign before R̂ in (2.22) (as well as (2.23) below) is due to the
convention we adopt in (A.1). We may reformulate the condition above in a simpler manner
in terms of curvature operator on real (1, 1)-forms.

Definition 2.21 (Real (1, 1)-form). Let (M, J) be a complex manifold of dimension n
with complex structure J . A real (1, 1)-form σ on M is a real two-form σ on M satisfying
either one of the following two equivalent conditions:

(1) σ(J(·), J(·)) = σ(· , ·);
(2) In local holomorphic coordinates (z1, . . . , zn) on M , the complex bilinear extension

σC of σ to (TM ⊗ C)⊗2 takes the form σC = i uαβ̄ dz
α ∧ dzβ̄ , where (uαβ̄)αβ is hermitian,

i.e., uαβ̄ = uβᾱ for all α and β.

By the symmetry of the curvature tensor, it induces a symmetric linear operator
Rm : Λ2(M)p → Λ2(M)p such that for any u ∈ Λ2(M)p,

Rm(u)ij = R̂ijklg
kaglbuab,

where Λ2(M)p is the space of real 2-forms at p. We denote the space of real (1, 1)-

forms at p by Λ1,1
R

(M)p ⊆ Λ2(M)p. It can be seen from the Kählerity of the metric that

Rm
(
Λ2(M)p

)
⊆ Λ1,1

R
(M)p and Rm ≡ 0 on the orthogonal complement of Λ1,1

R
(M)p in

Λ2(M)p (see [19, 26]). In particular, Rm has non-trivial kernel in complex dimension n ≥ 2.

Definition 2.22. A complex n-dimensional Kähler manifold is said to have curvature op-
erator Rm strictly greater than (or bounded below by) 2λ ∈ R on real (1, 1)-forms at p if for

any nonzero real (1, 1)-form i uαβ̄ dz
α ∧ dzβ̄ at p,

(2.23) −R̂αβ̄γδ̄u
αβ̄uγδ̄ > (≥ resp.) 2λ(ĝαβ̄ ĝγδ̄ + ĝαδ̄ ĝγβ̄)u

αβ̄uγδ̄,

where uαβ̄ = gαε̄gηβ̄uηε̄.

It is not difficult to see that Condition (2.22) implies Condition (2.23). Moreover, by
considering the following decomposition of (1, 1)-forms

ξαβ̄ =
ξαβ̄+ξβᾱ

2 +
ξαβ̄−ξβᾱ

2 = aαβ̄ + i bαβ̄ ,

where aαβ̄ := 1
2(ξαβ̄ + ξβᾱ) and bαβ̄ := 1

2i (ξαβ̄ − ξβᾱ), we have aαβ̄ = aβᾱ, bαβ̄ = bβᾱ, and so
Condition 2.23 also implies Condition 2.22, i.e., these two conditions are equivalent.

By abuse of notation, we still denote the optimal λ in (2.23) by λ, namely

(2.24) λ(p) := inf
i uαβ̄ dzα∧dzβ̄∈Λ1,1

R
(M)p\{0}

−∑n
α,β,γ,η=1 R̂αβ̄γη̄u

αβ̄uγη̄
∑n

α,β,γ,η=1 2(ĝαβ̄ ĝγη̄ + ĝαη̄ ĝγβ̄)u
αβ̄uγη̄

.

As Rm
(
Λ2(M)p

)
⊆ Λ1,1

R
(M)p and Rm ≡ 0 on the orthogonal complement of Λ1,1

R
(M)p,

nonnegative curvature operator on (1, 1)-forms implies nonnegative curvature operator. It
is also well known that strictly positive curvature operator on (1, 1)-forms implies strictly
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positive sectional curvature [26, 82]. Indeed, let X, Y be two linearly independent real

vectors in TpM and let v and w be the corresponding complex vectors in T 1,0
p M given by

v =
1

2
(X − i J0X) and w =

1

2
(Y − i J0Y ) .

Then the sectional curvature K(σ) of the 2-plane σ generated by X and Y is equal to
(cf. [16, 82])

K(σ) =

−∑n
α,β,γ,δ=1 R̂αβ̄γδ̄

(
vαwβ − wαvβ

)(
wγvδ − vγwδ

)

∑n
α,β,γ,δ=1 gαδ̄gγβ̄

[(
vαwβ − wαvβ

)(
wγvδ − vγwδ

)
− (vαwγ − wαvγ)

(
vβwδ − wβvδ

)] .

Hence by taking uαβ̄ = i
(
vαwβ − wαvβ

)
and λ = 0 in (2.23), strictly positive curvature

operator on (1, 1)-forms implies strictly positive sectional curvature and in turn strictly
positive bisectional curvature. In the special case that M is U(n)-invariant with fixed
point p, then for any orthonormal pair X and Y in TpM , the sectional curvature of σ =
span{X,Y } is given by

(2.25) K(σ) = λ
(
1 + 3g(X,JY )2

)
,

where λ is as in (2.24). Recall from [63, 64, 84] that the bisectional curvature BK ≥ 2λ at

p ∈ M if for all holomorphic vectors v,w ∈ T 1,0
p M ,

−R̂αβ̄γδ̄v
αvβwγwδ ≥ 2λ(ĝαβ̄ ĝγδ̄ + ĝαδ̄ ĝγβ̄)v

αvβwγwδ.

It is not difficult to see that Rm ≥ 2λ on (1, 1)-forms implies that BK ≥ 2λ. More precisely:

Lemma 2.23. Let M be a Kähler manifold and let p ∈ M . Suppose that Rm ≥ 2λ on
(1, 1)-forms at p, where λ ∈ R. Then the holomorphic bisectional curvature is bounded
below by 2λ at p.

Remark 2.24. The converse of this lemma is not true in general [88, Theorem 4], i.e., a
bisectional curvature lower bound is a weaker condition than a lower bound on the curvature
operator on (1, 1)-forms.

Proof of Lemma 2.23. For any v,w ∈ T 1,0
p M , let uαβ̄ = i

(
vαwβ − wαvβ

)
. Then by (2.23),

we have that

−2R̂(v,w,w, v) + R̂(v,w, v, w) + R̂(v,w, v, w) ≥
−2λ(ĝαβ̄ ĝγδ̄ + ĝαδ̄ ĝγβ̄)(v

αwβvγwδ +wαvβwγvδ − vαwβwγvδ − wαvβvγwδ).

Similarly, replacing w by iw, substituting uαβ̄ = i
(
vαiwβ − iwαvβ

)
into (2.23), and adding

the resulting expression to the inequality above, we derive that

−4R̂(v, v, w,w) = −4R̂(v,w,w, v) ≥ 8λ(ĝαβ̄ ĝγδ̄ + ĝαδ̄ ĝγβ̄)v
αvβwγwδ.

Here, we have used the symmetry R̂αδ̄γβ̄ = R̂αβ̄γδ̄ of a Kähler curvature operator (see for

instance [30, Lemma 2.10]). �
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Henceforth, we consider a complex (n − 1)-dimensional Kähler manifold of the form
(2.10) and fix a special real orthonormal frame {êk}2n−2

k=1 such that ê2n−3 = ∂r and for

all k = 1, . . . , n − 1, J0 (ê2k−1) = ê2k. We also let {Êα}n−1
α=1 and {Êᾱ}n−1

α=1 denote the
corresponding holomorphic and anti-holomorphic frames, namely

Êα = 1
2(ê2α−1 − i ê2α), Êᾱ = 1

2(ê2α−1 + i ê2α), α = 1, . . . , n− 1.

We extend the curvature tensor complex linearly. Lengthy computations using Cartan’s
formulas (see (A.2) in Appendix A) give us that

R̂αβ̄γδ̄ =
R̃αβ̄γδ̄

b(r)2
+

1

2

(
b′(r)
b(r)

)2

δαδδβγ +

(
a(r)2

2b(r)4

)
δαβδγδ if 1 ≤ α, β, γ, δ ≤ n− 2,

R̂αβ̄γδ̄ =

(
b′′(r)
2b(r)

)
δγ, n−1δδα if 1 ≤ α ≤ n− 2, β = n− 1,

R̂αβ̄γδ̄ =
1

2

[(
b′′(r)
b(r)

)
(δγδ − δγ, n−1δδ, n−1) +

(
a′′(r)
2a(r)

)
δγ, n−1δδ, n−1

]
if α = n− 1, β = n− 1,

where R̃ is the curvature tensor of the tranverse metric gT . With the above formulas, we
study the curvature lower bound of ĝ.

Lemma 2.25. In the above situation, for any nonnegative real number λ ≥ 0 and r ∈ (0, L),
ĝ has curvature operator strictly greater than 2λ on (1, 1)-forms at (r, w0) ∈
(0, L) × S2n−3 if and only if all of the following conditions are satisfied:

(1) (1− λb2(r)− (b′(r))2) > 0,

(2) −a′′(r) > 4λa(r),

(3) −b′′(r) > λb(r),

(4)
2(n − 1)(1 − λb2(r)− (b′(r))2)

(n− 2)b2(r)

(
−a′′(r)
4a(r)

− λ

)
>

(
−b′′(r)

b(r)
− λ

)2

.

Proof. Let (r , w0) ∈ (0, L) × S2n−3. By Lemma A.2, we have curvature operator strictly

greater than 2λ on (1, 1)-forms if and only if for any nonzero hermitian matrix uαβ̄,

0 <
2(1− λb2 − (b′)2)

b2


1

4

(
n−2∑

α=1

uαᾱ

)2

+
1

4

n−2∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2


+

(
−a′′

4a
− λ

) ∣∣∣un−1n−1
∣∣∣
2

+

(
−b′′

b
− λ

) n−2∑

α=1

∣∣∣uαn−1
∣∣∣
2
+

(
−b′′

b
− λ

)
un−1n−1

n−2∑

α=1

uαᾱ.

Thus, by choosing u suitably, we see that the curvature lower bound implies Conditions (1)-

(3). Furthermore, setting u to be the diagonal matrix uαᾱ = 2
n−2 , u

αn−1 = 0 = un−1α = uαβ̄

for α, β = 1, . . . , n− 2 with α 6= β, and

un−1n−1 = −

(
b′′

b
+ λ

)

(
a′′

4a + λ
) ,

gives us Condition (4).
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Conversely, if Conditions (1)–(4) hold, then by the Cauchy-Schwarz inequality and com-
pleting the square, for any nonzero hermitian u, we have that

0 ≤


2(n− 1)(1 − λb2 − (b′)2)

(n− 2)b2
−

(
− b′′(r)

b(r) − λ
)2

(
−a′′

4a − λ
)


 1

4

(
n−2∑

α=1

uαᾱ

)2

+

(
−a′′

4a
− λ

)
un−1n−1 +

(
− b′′(r)

b(r) − λ
)

2
(
−a′′

4a − λ
)

n−2∑

α=1

uαᾱ



2

+

(
−b′′

b
− λ

) n−2∑

α=1

∣∣∣uαn−1
∣∣∣
2

≤ 2(1 − λb2 − (b′)2)
b2


1

4

(
n−2∑

α=1

uαᾱ

)2

+
1

4

n−2∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2


+

(
−a′′

4a
− λ

) ∣∣∣un−1n−1
∣∣∣
2

+

(
−b′′

b
− λ

) n−2∑

α=1

∣∣∣uαn−1
∣∣∣
2
+

(
−b′′

b
− λ

)
un−1n−1

n−2∑

α=1

uαᾱ.

The expression on the right-hand side of this inequality is positive unless u is equal to 0.
This completes the proof of the lemma. �

We will only consider asymptotically conical expanding gradient Kähler-Ricci solitons
[37, 44, 45] satisfying Rm ≥ 0 in this article. This latter condition is equivalent to the
link of the asymptotic cone satisfying Rm ≥ 1. In this case, the potential function is a
strictly convex function with quadratic growth, the underlying manifold is diffeomorphic to
R
n, and the level sets of the soliton potential function are diffeomorphic to Sn−1. We will

consider asymptotically conical expanding gradient Kähler-Ricci solitons resulting from the
following existence result by the second-named author and Deruelle.

Theorem 2.26 ([37, Theorems A & E]). Let g0 be a Kähler cone metric on C
n with radial

function r such that a · r∂r is the Euler vector field, where a ∈ (0, 1). Then there exists a
unique expanding gradient Kähler-Ricci soliton g with soliton vector field r∂r such that

|∇k
g0
(g − g0)|g0 = O(r−2−k) for all k ≥ 0.

Moreover, if the induced metric on the complex space P
n−1 has curvature operator on (1, 1)-

forms strictly greater than 2, then g has strictly positive curvature operator on (1, 1)-forms.

Remark 2.27. The lower bound of the induced metric on the base space Pn−1 should have
curvature operator on (1, 1)-forms strictly greater than 2 in the statement of [37, Theorem
E] as written here. To account for this change, the constant a in [37, p.38, Proof of Theorem
E] should be a function of t as in the proof of Theorem A.

Remark 2.28. In the standard complex coordinates zk = xk + iyk on C
n, the expanding

gradient Kähler-Ricci soliton from of Theorem 2.26 has soliton vector field given by X =
cxα

∂
∂xα

+ cyα
∂

∂yα
for some c < 0. This has a unique critical point at 0 ∈ C

n. Moreover at

0, the Ricci curvature Ricg of g has only one distinct eigenvalue, i.e., Ricg = µg for some
µ ∈ R. To see this, we compute the Lie derivative LXg. Indeed, for α, β = 1, 2, . . . , n, we
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have that

LXg
(

∂
∂xα

, ∂
∂xβ

)
= g

(
∇ ∂

∂xα

X, ∂
∂xβ

)
+ g

(
∂

∂xα
,∇ ∂

∂xβ

X

)

= cg

(
δαγ

∂
∂xγ

+ xγ∇ ∂
∂xα

∂
∂xγ

+ yγ∇ ∂
∂xα

∂
∂yγ

, ∂
∂xβ

)

+ cg

(
∂

∂xα
, δβγ

∂
∂xγ

+ xγ∇ ∂
∂xβ

∂
∂xγ

+ yγ∇ ∂
∂xβ

∂
∂yγ

)

= 2cg
(

∂
∂xα

, ∂
∂xβ

)

when evaluated at 0, and so LXg = 2cg. Thus, by (1.1), we find that

Ricg = −1
2LXg − λg = − (c+ λ) g at 0.

3. Deformation of complex projective space

The main goal of this section is to prove Proposition 3.3 which produces for each n ≥ 3 a
sequence of smooth U(n− 1)-invariant Kähler metrics on P

n−1 with Rm ≥ 0 on real (1, 1)-
forms everywhere, and Rm ≥ 2 on (1, 1)-forms outside of arbitrarily small subsets, which
collapse to

[
0, π2

]
in the Gromov-Hausdorff sense. In the next section, we will improve this

result to obtain a sequence of metrics that everywhere satisfy Rm ≥ 2 on real (1, 1)-forms.
The existence of these metrics will imply the almost non-rigidity of diameter in Theorem
B and serve in the proof of Theorem A as the complex base of the asymptotic cone of the
expanding gradient Kähler-Ricci solitons that degenerate to our desired steady Kähler-Ricci
solitons.

To motivate and sketch the ideas of the construction in Proposition 3.3, we demonstrate
a singular example; a variation of the Fubini-Study metric. Upon substituting L = π

2 ,

a(r) = sin(2r)
2k , b(r) = sin(r)√

k
into (2.4) to obtain the metric

(3.1) hk := dr2 +
sin2(2r)

4k2
η ⊗ η +

sin2(r)

k
gT on

(
0,

π

2

)
× S2n−3,

where gT is the transverse metric as in Example 2.13 with n replaced by (n− 1), it is clear
that hk collapses to [0, π2 ] as k → ∞ in the Gromov-Hausdorff sense and satisfies Rm ≥ 2
on real (1, 1)-forms except for r = 0 and r = π

2 , where a and b don’t fulfill the smooth
boundary conditions for any k > 1 (see Example 2.13). However, we will build our desired
metrics by gluing these singular metrics with suitable expanding solitons near r = 0 to
smooth out the conical singularities.

In preparation for the gluing construction, we recall some basic facts about expanding
gradient Kähler-Ricci solitons, and in particular Cao’s examples of such solitons. To this
end, let (Mn, g, f, p) be an expanding gradient Ricci soliton with p a critical point of f .
Then (Mn, g, f, p) satisfies

Ric + λ g = ∇2f

for some λ > 0 and generates a canonical Ricci flow of expanding Ricci solitons defined by
g(t) := (2λt)φ∗

t− 1
2λ

g, ft = φ∗
t− 1

2λ

f , t ∈ (0,∞), where {φs}s∈(− 1
2λ

,∞) is the one-parameter
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family of diffeomorphisms generated by the time-dependent vector field −1
1+2λs∇f with φ0

the identity, and

Ric(g(t)) +
1

2t
g(t) = ∇2ft.

For any α > 1, Cao proved that there exists a unique smooth U(n−1)-invariant expanding
gradient Kähler-Ricci soliton (Cn−1, gα, fα, pα) with positive curvature operator on real
(1, 1)-forms and with R(pα) = maxR = 1 that is asymptotic to the following cone metric
[16, 26]:

(3.2) gcone, α = dr2 +
r2

α2
η ⊗ η +

r2

α
gT .

Under the radial coordinates, we can write the expanding soliton metric gα as

(3.3) gα = dr2 + a2α(r) η ⊗ η + b2α(r) g
T .

Let gα(t) be the canonical Ricci flow associated to gα. Since the expanding Ricci soliton
is asymptotically conical, we know that the flow gα(t) converges smoothly locally to the
cone metric gcone, α away from the tip ∗ of the cone as t → 0 [79, c.f. Theorem 4.3.1]. In
the following lemma, we show that this local convergence is uniform for all α in a compact
subset I ⊂ (1,∞).

Lemma 3.1 (Uniform convergence to asymptotic cones). For any compact subset I ⊂
(1,∞), k ∈ N, ε > 0, and D > 1, there exists t0 > 0 such that for all 0 < t < t0 and all
α ∈ I,

‖∇k(gα(t)− gcone, α)‖ ≤ ε

on B(∗,D) \ B(∗,D−1), where the derivatives, norms, and metric balls are measured with
respect to the cone metric gcone, α.

Proof. Suppose that this was not the case. Then there exist ε0 > 0, D0 > 0, k0 ∈ N, and se-
quences ti → 0 and αi ∈ I such that for the expanding Kähler-Ricci soliton (Cn−1, gαi

, fi, pi)
and the canonical Ricci flow gαi

(t), we have that

(3.4) ‖∇k0(gαi
(ti)− gcone, αi

)‖ ≥ ε0

on B(∗,D0) \B(∗,D−1
0 ). Recall that Rgαi

(pi) = 1.

Assume that gαi
= gαi

(Ci) for some positive constant Ci > 0. We claim that there exists
a positive constant C such that Ci < C and for all t > 0,

|Rmgαi
(t)| ≤

C

t
.

To prove this, we assume the contrary. Then there is a sequence Ci → ∞ such that
|Rmgαi

(t)| ≤ Ci

t
and R(pi, Ci) = 1. By the same limiting argument as in the proof of [61,

Lemma 2.3], we can take a smooth sequential limit pointed at pi of the flows gαi
(t + Ci),

t ∈ (−Ci,∞), to obtain a smooth Ricci flow for t ∈ (−∞,∞) which is associated to
a smooth steady Kähler-Ricci soliton (Cn−1, g∞, f∞, p∞). Since I ⊂ (0,∞) is compact,
these solitons are uniformly non-collapsed in the sense that there is some κ > 0 such that
Bgαi

(pi, r) ≥ κrn for all r > 0, hence the limit steady Ricci soliton and the asymptotic cone

are also κ-non-collapsed, and R(p∞, 0) = 1. By Perelman’s curvature estimate for Ricci
flows with nonnegative curvature operator (see for example [54, Corollary 45.1(b)] and also
[69, Theorem 2] for the Kähler case), this implies that the steady Ricci soliton is flat. But
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this contradicts the fact that R(p∞, 0) = 1 and so we have the claim. By Shi’s estimates
[78], it follows that

(3.5) |∇kRmgαi
(t)| ≤

Ck

t
k+2
2

for some Ck > 0 depending k and uniform for all i.

By the curvature bounds (3.5), we may assume, after taking a subsequence if necessary,
that αi → α∞ ∈ I and gαi

(t) converges smoothly locally on (0, ∞) to a flow g∞(t) on
(0, ∞). Moreover, if αi → α∞ as i → ∞, then by the same argument as in [61, Lemma 2.3],
one can show that g∞(t) = gα∞

(t) is the canonical Ricci flow of the expanding Ricci soliton
gα∞

asymptotic to the cone metric gcone, α∞
. Since I is compact in (1,∞), for each k ∈ N,

we can find Ak > 0, uniform over all i = 1, ...,∞, such that on each smooth Riemannian
cone gcone, αi

, we have that

(3.6) sup
x∈Cn−1

r2+k
cone, αi

(x)|∇kRm|(x) = sup
x∈∂B(∗, 1)

|∇kRm|(x) = Ak < ∞,

where rcone, αi
(x) = dgcone, αi

(x, ∗) and the curvature and derivatives are with respect to

gcone, α∞
. Since the Ricci flows gαi

(t) all converge smoothly locally to their asymptotic
cones gcone, αi

as t → 0 on C
n−1 \ {∗}, gαi

(t) can be extended smoothly to t = 0 on
C
n−1 \ {∗}. Moreover, by (3.5), (3.6), and Shi’s local derivative estimates [31], we can

deduce the following uniform curvature estimates for all i = 1, ...,∞: for all k ∈ N and
D > 0, there exists Ak(D) > 0 such that |∇kRmgαi

(t)| ≤ Ak on B(∗,D) \ B(∗,D−1) for

all t > 0. Therefore, after passing to a subsequence if necessary, we may assume the Ricci
flows gαi

(t) converge smoothly to gα∞
(t) on any compact subset of Cn−1 \ {∗}, uniformly

on any [0,∞). Thus, we have that

‖∇k(gαi
(ti)− gcone, αi

)‖ ≤ ‖∇k(gαi
(ti)− gα∞

(ti))‖+ ‖∇k(gcone, α∞
− gα∞

(ti))‖
+ ‖∇k(gcone, α∞

− gcone, αi
)‖

< ε0
2

for all sufficiently large i on B(∗,D)\B(∗,D−1), where the norms and derivatives are taken
with respect to gcone, α∞

. Choosing D > D0, this contradicts (3.4) and we are done. �

In the next lemma, we show that for any singular metric from (3.1), there exists a
expanding Ricci soliton from Cao’s family such that we can glue a compact U(n − 1)-
invariant subset of it with a U(n − 1)-invariant subset of the singular metric to obtain a
metric on P

n−1 which is C1-smooth near r = 0.

Lemma 3.2. For all large k ∈ N, there exists a sequence {(Cn−1, gi, ri, si)}∞i=1, where ri,
si → 0 as i → ∞, and (Cn−1, gi) is a U(n − 1)-invariant expanding gradient Kähler-Ricci
soliton which takes the form

gi = dr2 + a2i (r)η ⊗ η + b2i (r)g
T

for some positive smooth functions ai, bi : (0,∞) → (0,∞) satisfying

(3.7) b
(m)
i (si) =

sin(m)(ri)√
k

for m = 0, 1, 2.
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Proof. Let 100 ≤ k ∈ N. By Lemma 3.1, for each i ∈ N we can find a large Ri > 0 such
that the rescaled expanding soliton R−2

i gα (where gα is from (3.3)) is 1
100 i2

-close to the cone
metric gcone, α on near radius 1 for all α ∈ [k − 1, k + 1]. In particular, this implies that

−R2
i b

′′
α(Ri)

bα(Ri)
+ |b′α(Ri)− 1√

α
| ≤ 1

i2
,

noting that these two quantities vanish on gcone, α. In particular, we see that

0 < λi, α := −b′′α(Ri)

bα(Ri)
≤ 1

R2
i i

2
and b′α(Ri) ∈


 1√

α+ 1
2

,
1√
α− 1

2


 .

Furthermore, by the smoothness conditions bα(0) = 0, b′α(0) = 1, and the concavity of bα,
we know that bα(Ri) ≤ Ri. Consider the further rescaled expanding soliton hα := λi, αgα
which has the form

hα = ds2 + ā2α(s)η ⊗ η + b̄2α(s)g
T .

Then we have

− b̄′′α(si, α)

b̄α(si, α)
= 1, b̄α(si, α) ≤ si, α ≤ 1

i
,

where si, α =
√
λi, αRi ≤ 1

i
, and

(3.8) b̄′α(si, α) = b′α(Ri) ∈


 1√

α+ 1
2

,
1√
α− 1

2


 .

We can assume i > k is sufficiently large. Then there is a unique ri, α ∈ (0, π2 ) such that

(3.9) −b̄′′α(si, α) = b̄α(si, α) =
sin(ri, α)√

k
≤ 1

i
,

and we have ri, α ≤ 2
√
k

i
≤ 2√

i
and also

(3.10)
1√

k + 1/2
<

cos(ri, α)√
k

<
1√

k − 1/2
.

In particular, (3.9) implies that the assertion (3.7) holds for m = 0, 2 with our choice of ri, α,
si, α and the expanding soliton hα for any α ∈ [k−1, k+1]. We will further determine a value
of α so that (3.7) also holds for m = 1. To do this, we first observe that by combining (3.8)

and (3.10), that b̄′α(si, α) >
cos(ri, α)√

k
for α = k− 1 and b̄′α(si, α) <

cos(ri, α)√
k

for α = k+1. It is

easy to see that ri, α and si, α are both continuous in α ∈ [k−1, k+1], so by the intermediate

value theorem there exists an α = α(i, k) ∈ (k−1, k+1) such that b′α(si, α) =
cos(ri, α)√

k
. This

implies that (3.7) also holds for m = 1. �

For each singular metric hk = dr2 + sin2(2r)
4k2

η ⊗ η + sin2(r)
k

gT , r ∈ [0, π2 ] from (3.1), by
gluing hk with the expanding solitons obtained in Lemma 3.2 at arbitrarily small scales near
r = 0, we can obtain a sequence of metrics that are C1-smooth near r = 0 and converge
to hk. In the next proposition, we will further modify these metrics to obtain a sequence
of smooth Kähler metrics which converge to hk, and satisfy Rm ≥ 0 on real (1, 1)-forms
everywhere, and Rm ≥ 2 on (1, 1)-forms outside of arbitrarily small subsets.
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Proposition 3.3 (Smoothing out cone points by gluing expanding solitons). Let n ≥ 3 and
let k ∈ N be any fixed large number. Then there exists a sequence of positive numbers δi → 0
as i → ∞, and a sequence of smooth U(n− 1)-invariant Kähler manifolds (Pn−1, gi) which
can be written as gi = dr2 + a2i (r)η ⊗ η + b2i (r)g

T , r ∈ [0, π2 − δi], satisfying the following:

(a) Rmgi > 0 on real (1, 1)-forms everywhere;
(b) Rmgi ≥ 2 on real (1, 1)-forms on r−1([δi,

π
2 − δi]);

(c) For every ε > 0, gi smoothly converges to hk on r−1([ε, π2 − ε]) as i → ∞.

Proof. Fix k large, for each i let ri, si > 0 be the sequences from Lemma 3.2 converging
to zero, and let b1 : [0,∞) → [0,∞) be the warping function of the corresponding ex-
panding Ricci soliton, where we omit the dependence of b1 (and all the following functions
a1, a2, a3, a4 and b, b2, b3, b4) in i. Let b : [0, π2 + si − ri] → [0,∞) be defined by

b(r) =

{
b1(r) for r ∈ [0, si],
b2(r) :=

1√
k
sin(r − si + ri) for r ∈ [si,

π
2 + si − ri].

Then b is C2 by Lemma 3.2. We also write a2 := b2b
′
2 =

1
2k sin(2(r − si + ri)).

Let ϕ : (−∞,∞) → [0,∞) be a non-decreasing smooth function such that ϕ(r) = 0 on
(−∞, 0] and ϕ(r) = 1 on [t,∞), where t ∈ (0,min{si, ri}) is some sufficiently small number
whose value we will choose later. Define

Bi(r) := ϕ(si − r)b′′′1 (r) + (1− ϕ(si − r))b′′′2 (r) for r ∈ [0, π2 + si − ri].

Then Bi is smooth. Let b3 : [0,
π
2 + si − ri] → R be the unique smooth function solving

(3.11)

{
b3(0) = 0, b′3(0) = 1, b′′3(0) = 0,
b′′′3 (r) = Bi(r).

Because Bi ≡ b′′′1 on [0, si − t] and Bi ≡ b′′′2 on [si,
π
2 + si − ri], we know that b3 ≡ b1 on

[0, si−t] and that b3 satisfies the smoothness condition (2.8) at 0. Henceforth, for fixed ri, si,
we shall write o(1) to denote all constants that go to zero as t → 0. By the C2-regularity
of b, it is then clear that

(3.12) ‖b3 − b‖
C2[0,

π
2+si−ri]

≤ o(1).

Moreover, since b′′′3 ≡ b′′′2 on [si,
π
2 + si − ri], by letting a3 = b3b

′
3, we also see that

(3.13) ‖a3 − a2‖C2[si,
π
2+si−ri]

≤ o(1).

For α > 0 to be chosen later, define a smooth function Ai,α : R → R by

Ai,α(r) = ϕ
(
π
2 − ri − r

) −a′′3
a3

+
(
1− ϕ

(
π
2 − ri − r

))
α2

and let a4 : [0,∞) → R be the unique smooth function, omitting its dependence on α, with
a4 = a3 on [0, π2 − ri − t] and solving

{
a4

(
π
2 − 2ri

)
= a3

(
π
2 − 2ri

)
, a′4

(
π
2 − 2ri

)
= a′3

(
π
2 − 2ri

)
,

a′′4 = −a4 ·Ai,α.

Set b4(r) :=
√∫ r

0 2a4(τ) dτ . Then a4 = b4b
′
4, and (3.13) implies

(3.14) ‖a4 − a2‖C2[si,
π
2−ri−t] ≤ o(1).
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In the following we will show that there exists some α = α# such that a4 and b4 satisfy
the smoothness conditions (2.7) and (2.8), where a4 = 0. Let vi(α), ci(α) > 0 be two
smooth functions such that a4 ≥ 0 on [0, π2 − ri + vi(α)] and

(3.15) a4(
π
2 − ri + vi(α)) = 0, a′4(

π
2 − ri + vi(α)) = −ci(α).

Then it suffices to find α# such that ci(α#) = 1. To do this, we consider the function

wi,α(r) := c0,i(α) · α−1 sin(α(π2 − ri + v0,i(α) − r)),

where c0,i(α), v0,i(α) > 0 are two smooth functions in α such that wi,α ≥ 0 on [π2 − ri,
π
2 −

ri + v0,i(α)] and wi,α solves the following IVP:
{

w
(
π
2 − ri

)
= a2

(
π
2 − ri

)
, w′ (π

2 − ri
)
= a′2

(
π
2 − ri

)
,

w′′ = −w · α2.

In particular, for

α0 =

√
4k2

(
1− 1

k2
cos2(2si)

)

sin2 (2si)
, v0 =

arccos( 1
k
(cos(2si)))

α0
,

direct computation shows that c0,i(α0) = 1, and so

wi,α0(
π
2 − ri + v0) = 0, w′

i,α0
(π2 − ri + v0) = −c0,i(α0) = −1.

It is also easy to see that c0,i(α0 − 1) < 1 and c0,i(α0 + 1) > 1. By (3.13), in letting
t → 0, a4 converges in the C1-sense to a2 on [si,

π
2 − ri] and to wi,α on [π2 − ri,

π
2 − ri +

max{v0,i(α), vi(α)}]. In particular, this implies that

ci(α) = c0,i(α) + o(1) and vi(α) = v0,i(α) + o(1).

Thus, for t sufficiently small, we have that ci(α0−1) < 1 and ci(α0+1) > 1. Continuity and
the intermediate value theorem now give us an α# ∈ (α0 − 1, α0 +1) such that ci(α#) = 1.

Henceforth fixing this α#, denote the corresponding vi(α#) by vi. Then gi := dr2 +

a24(r)η ⊗ η + b24(r)g
T is a U(n− 1)-invariant smooth Kähler metric on P

n−1. It is moreover
clear from (3.12) and (3.13) that

‖b4 − b2‖C2[2ri,
π
2
−2ri] + ‖a4 − a2‖C2[2ri,

π
2
−2ri] ≤ o(1).

So gi clearly satisfies assertion (c) of the proposition.

It now suffices to show gi satisfies Rm > 0 on real (1, 1)-forms on [0, si], and Rm ≥ 2+o(1)
on real (1, 1)-forms on [si,

π
2 − ri + vi]. If this is true, then there exists a sequence εi → 0,

such that the rescaled metrics (1 − εi)gi satisfy all assertions of the proposition. This is
equivalent to checking that a4, b4 satisfy inequalities (1)–(4) of Lemma 2.25 with λ > 0 on
[0, si] and λ = 1 + o(1) on [si,

π
2 − ri + vi] (see (4.1) for the geometric meaning of λ).

First, we verify a4, b4 satisfy inequalities (1) and (3) with λ > 0 on [0, si] and λ = 1+o(1)
on [si,

π
2 − ri − t]. Since the expanding Ricci soliton dr2 + a21(r)η ⊗ η + b21(r)g

T satisfies
Rm > 0 on all (1, 1)-forms, there exists δi > 0 which tends to 0 as i → ∞, such that a1, b1
satisfy inequalities (1)–(4) of Lemma 2.25 on [0, si]. In particular, inequalities (1) and (3)
only involve at most second order derivatives of b4 = b3, so by (3.12), we see that b4 satisfies
(1) and (3) with λ = δi on [0, si]. Similarly, since hk = dr2 + a22(r)η ⊗ η + b22(r)g

T satisfies
Rm ≥ 2 on (1, 1)-forms except at r = 0 and r = π

2 , it follows that a2, b2 satisfy (1)–(4) with
λ = 1. So by (3.12) we see that a4, b4 satisfy (1) and (3) with λ = 1+o(1) on [si,

π
2 − ri− t].
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Next, we show (2) and (4) on [0, π2 − ri− t]. Since b′2 is decreasing and b′2(
π
2 − ri+si) = 0,

for sufficiently small t, it follows from (3.12) that b′3 ≥ 1
2b

′
2(

π
2 − ri) > 0 on [0, π2 − ri]. By

(3.11) and (3.12), we therefore find that

− a′′3
4a3

= −3

4

b′′3
b3

− 1

4

b′′′3
b′3

= −3

4

b′′

b
− 1

4

Bi

b′
+ o(1) on

[
0, π

2 − ri − t
]
.

On [si − t, si], as Bi takes values between b′′′1 (si) + o(1) and b′′′2 (si) + o(1) on [si − t, si], we

see that − a′′4
4a4

is also bounded between − a′′1
4a1

(si)+ o(1) ≥ δi
2 and − a′′2

4a2
(si)+ o(1) ≥ 1+ o(1),

and hence − a′′4
4a4

≥ δi
4 , which implies (2) with λ = δi

2 on [0, si]. On [si,
π
2 − ri − t], because

− a′′2
4a2

= 1 and by (3.14), we have − a′′4
4a4

≥ 1 + o(1), which implies (2) with λ = 1 + o(1).

Similarly, we can verify inequality (4).

Secondly, we verify (1)–(4) on [π2 − ri − t, π2 − ri] with λ = 1 + o(1). Since − a′′3
4a3

≤
1 + o(1) < α# and α# ∈ (α0 − 1, α0 + 1), we see that

(3.16) ‖a4 − a3‖C1[
π
2−ri−t,

π
2−ri]

= o(1),

and also

(3.17) − a′′4
4a4

≥ − a′′3(
π
2 − ri)

4a3(
π
2 − ri)

+ o(1).

(3.16) together with (3.13) implies

(3.18) ‖a4 − a2‖C1[
π
2−ri−t,

π
2−ri]

+ ‖b4 − b2‖C2[
π
2−ri−t,

π
2−ri]

= o(1),

which immediately implies (1) and (3) hold with λ = 1+o(1) on [π2−ri−t, π2 −ri]. Moreover,
together with (3.17), this implies (2) and (4).

Lastly, we verify (1)–(4) on [π2 − ri,
π
2 − ri + vi]. First, (2) follows from

(3.19) − a′′4
4a4

≥ (α0 − 1)2

4
≥ α2

0

8
≥ k2

16r2i
≥ 1.

Let wi > 0 denote all constants with wi → 0 as ri → 0. Then we have

(3.20) b′4(r) =
a4(r)

b4(r)
≤ a4(

π
2 − ri − t)

b4(
π
2 − ri − t)

≤ wi.

It is also easy to see that |b24−b24(
π
2 −ri− t)| = wi, and so the bound |b24(π2 −ri− t)− 1

k
| ≤ wi

implies that |b24 − 1
k
| ≤ wi. Using in addition (3.20), we derive inequality (1) by

(3.21)
1− (b′4)

2

b24
=

1−
(
a4
b4

)2

b24
≥ k − wi ≥ k − 1 ≥ 1.

Next, by using the fact that −a′4 is increasing, (3.18), and b′2(r) ≤ wi, (3) follows from

−b′′4
b4

=
−a′4 + (b′4)

2

b24
≥ −a′2(

π
2 − ri − t) + (b′2)

2(π2 − ri − t)

b22(
π
2 − ri − t)

− wi = 1− wi.

Finally, by using the inequalities a′4 ≥ a′4(
π
2 − ri + vi) = −1, |b24 − 1

k
| ≤ wi, and 0 ≤ b′4 ≤ wi,

we derive that

−b′′4
b4

=
−a′4 + (b′4)

2

b24
≤ k + wi ≤ k + 1.(3.22)
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In conclusion, (3.21), (3.19), and (3.22) together give us that

2(n− 1)(1 − λb24(r)− (b′4(r))
2)

(n − 2)b24(r)

(
− a′′4(r)
4a4(r)

− λ

)
≥ 2(n − 1)

(n− 2)
(k − 1− λ)

(
k2

16r2i
− λ

)

> (k + 1− λ)2 ≥
(
−b′′4(r)
b4(r)

− λ

)2

,

which implies (4) for all large k. This completes the proof. �

4. Ricci flows emanating from the singular metric

Let n ≥ 3. The goal of this section is to show that there is a Ricci flow that smooths out
the singular metric (3.1), namely

hk = dr2 +
sin2(2r)

4k2
η ⊗ η +

sin2(r)

k
gT ,

where r(·) : Pn−1 → [0, π2 ] is the radial function, r
−1(0) = {p}, and r−1(π2 ) is biholomorphic

to P
n−2. We construct this Ricci flow by taking limits of the Ricci flows coming out of the

metrics {gik}∞i=1 from Proposition 3.3 that converge to hk. These Ricci flows are smooth,

have uniform existence time, and satisfy a uniform curvature decay |Rm| ≤ C
t
. We will

show that these smooth Ricci flows satisfy Rm ≥ 0 everywhere, and Rm ≥ 2 outside of
arbitrarily small subsets, so eventually the Ricci flows converge to a limit flow that satisfies
Rm ≥ 2 on real (1, 1)-forms everywhere.

The curvature condition of Rm ≥ 2 on real (1, 1)-forms is equivalent to λ ≥ 1, where
λ ∈ R is half of the infimum of Rm on real (1, 1)-forms given by (2.24) in complex (n− 1)-
dimensions, namely

(4.1) λ :=
1

2
inf

u∈Λ1,1
R

(M)\{0}

Rm(u, ū)

|u|2∗
,

where for u = i uαβ̄ dz
α ∧ dzβ̄, the norm |u|∗ is defined by

|u|2∗ =

n−1∑

α,β,γ,η=1

(ĝαβ̄ ĝγη̄ + ĝαη̄ ĝγβ̄)u
αβ̄uγη̄,

and we have Rm(u, ū) = −∑n−1
α,β,γ,η=1 R̂αβ̄γη̄u

αβ̄uγη̄. Using the fact that uαβ̄ = gαε̄gηβ̄uηε̄
and uαβ̄ = uβᾱ for any α and β, we have

|u|2∗ =

∣∣∣∣∣∣

n−1∑

α,β=1

gαβ̄u
αβ̄

∣∣∣∣∣∣

2

+ uαβ̄g
αγ̄gηβ̄uγη̄ ≥ uαβ̄g

αγ̄gηβ̄uγη̄ ≥ 0

with equality if and only if u = 0.

We first observe that λ is a supersolution of the heat equation.

Lemma 4.1. Let (M,g(t)), t ∈ [0, T ], be a smooth Kähler-Ricci flow (not necessarily
complete) with nonnegative curvature operator. Then

∂tλ ≥ ∆λ
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holds in the following barrier sense: for any (q, τ) ∈ M × (0, T ), there exists a neighborhood
U ⊂ M × (0, T ) of (q, τ) and a C∞ (upper barrier) function φ : U → R such that φ ≥ λ on
U , with equality at (q, τ) and

∂tφ ≥ ∆φ at (q, τ).

Proof. Fix (p0, t0) and suppose that the infimum in (4.1) is attained at a nonzero (1, 1)-

form w0 ∈ Λ1,1
p0 . We may assume by scaling that |w0|∗, gt0 = 1. We first extend w0 to a

spacetime neighborhood V × (t0− ε, t0 + ε) of (p0, t0) in the following way. Let {ek}2n−2
k=1 be

an orthonormal basis of (Tp0M,gt0 |Tp0M
) such that J(e2α−1) = e2α. By abusing notation

and shrinking the neighborhood V of p0 if necessary, we extend {ek}2n−2
k=1 to a smooth local

orthonormal frame near p0 via parallel translation. Then J(e2α−1) = e2α on V and we have
at (x0, t0) that

(4.2) ∇ejek = 0 and ∇X∇Xei = 0 for any X ∈ Tp0M at p0.

Let ∇t denote the natural space-time extension of the Levi-Civita connection ∇g(t) so
that it is compatible with the metric; that is to say, ∂t|X|2

g(t) = 2〈∇tX,X〉g(t) for any time-

dependent vector field X. We extend {ek}2n−2
k=1 to a time-dependent local frame {ek(t)}2n−2

k=1
so that ek(x, t0) = ek(x) for all x ∈ V , and

∇tek(x, t) = ∂t(ek(x, t))− Ric(ek(x, t)) = 0.(4.3)

By ODE theory, after choosing a smaller V if necessary, we can solve the system on
(t0 − ε, t0 + ε) for some small ε > 0 with ek(x, t) smooth in (x, t) ∈ V × (t0 − ε, t0 + ε). It
also follows from the fact that J ◦ Ric = Ric ◦ J and the uniqueness of solutions of ODEs
that J(e2α−1(x, t)) = e2α(x, t). Let {θk(t)}2n−2

k=1 denote the dual frame. We introduce the
corresponding holomorphic and antiholomorphic frames:

Eα(x, t) =
1

2
(e2α−1(x, t)− i e2α(x, t)) and Eᾱ(x, t) =

1

2
(e2α−1(x, t) + i e2α(x, t)) ;

and their dual frames

Θα(x, t) = θ2α−1(x, t) + i θ2α(x, t) and Θᾱ(x, t) = θ2α−1(x, t)− i θ2α(x, t).

Thanks to (4.2) and (4.3), at (p0, t0) we have that

(4.4) ∇tΘα = ∇Θα = ∇Θᾱ = ∆Θᾱ = 0.

Since w0 is a real (1, 1)-form, we may assume w0 = i wαβ̄Θα(p0, t0) ∧ Θβ̄(p0, t0) for some
complex numbers wαβ̄ = wβᾱ, α, β = 1, . . . , n. Let wt be the 2-form given by

wt = i wαβ̄ Θα(x, t) ∧Θβ̄(x, t)

on V × (t0 − ε, t0 + ε). Then by the Kählerity of the metric, wt is J-invariant, i.e.,
wt(J(·), J(·)) = wt(· , ·), and so it is of type (1, 1). Moreover, by (4.4) at (p0, t0), we
have that

(4.5) ∇twt = 0, ∇wt = 0 and ∆wt = 0.

Next we define the smooth function ϕ by

ϕ(x, t) :=
1

2

Rm(wt, wt)

|wt|2∗
=

1

2
Rm(wt, wt),
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where the curvature and norms are all with respect to g(t), and we use that |wt|∗ ≡ 1. It
can be seen from the definition that ϕ ≥ λ on V × (t0 − ε, t0 + ε) and equality holds at
(p0, t0). Recall that

∇tRm = ∆Rm+Q(Rm) = ∆Rm+Rm2 +Rm♯,

and both Rm2 and Rm♯ are nonnegative operators when the curvature operator Rm is
nonnegative. Hence by (4.5), when evaluated at (p0, t0), we have that

(∂t −∆)ϕ =
1

2
(∂t −∆) (Rm(wt, wt)) = ((∇t −∆)Rm)(wt, wt)

= Rm2(wt, wt) + Rm♯(wt, wt) ≥ 0.

This proves the lemma. �

From Lemma 4.1, using the maximum principle, it is easy to see that the lower bound
λ ≥ 1 is preserved along any smooth Ricci flow. In Lemma 4.2 below, we will show this also
holds for the Ricci flow coming out of the singular metric hk, where λ ≥ 1 only holds on
the smooth part. This is achieved by a heat kernel estimate on the smooth Ricci flows that
converge at positive times to the limit flow that smooths out hk. The heat kernel estimate
guarantees that the heat comes evenly from everywhere at t = 0 to positive times, and
hence one can ignore the lack of enough curvature from the arbitrarily small regions. We
first recall some basic facts about heat kernels.

Suppose that (M, g(t)) is a smooth complete Ricci flow for t ∈ [a, b] with bounded
curvature. Let G(x, t; y, s) be the heat kernel of the heat equation ∂tu = ∆u, i.e.,

(∂t −∆x,t)G(·, ·; y, s) = 0 and lim
t→s+

G(·, t; y, s) = δy(·),

(−∂s −∆y,s +R)G(x, t; ·, ·) = 0 and lim
s→t−

G(x, t; ·, s) = δx(·).

In particular, we have
∫
M

G(x, t; y, s) dsy = 1 for all s < t; see [32, Chapter 26] for more
discussion of the heat kernel. We also recall the heat kernel upper bound given in terms of
the lower bound on the pointed Nash entropy by Bamler in [4, Theorem 7.1]:

(4.6) G(x, t; y, s) ≤ C

(t− s)
n
2

exp(−N(x,t)(t− s)),

where C > 0 is a constant depending on Rmin(t− s), and also the lower bound on the Nash
entropy N(x,t)(·) in terms of the lower bound on the volume ratio in [4, Theorem 8.1]:

(4.7)
volg(t)(Bg(t)(x, r))

rn
≤ C exp(N(x,t)(r

2)) exp(C0),

where C0 > 0 is a dimensional constant and C > 0 is some constant depending on Rminr
2.

Now we prove the main result of this section.

Lemma 4.2. Let n ≥ 3. Then for each fixed k ∈ N, there exist Ck, Tk > 0 and a Ricci flow
(Pn−1, gk(t)), t ∈ [0, Tk], such that

(1) |Rm| ≤ Ck

t
and gk(t) → hk smoothly on any compact subset of r−1((0, π2 )) as t → 0;

(2) The metrics dgk(t) converge to dhk
as t → 0;

(3) λ(x, t) ≥ 1 for all (x, t) ∈ P
n−1 × (0, Tk].
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Proof. For each fixed k ∈ N, let {(Pn−1, gik)}∞i=1 be the sequence of metrics from Proposition
3.3. Then (Pn−1, gik) converge smoothly to the singular metric (Pn−1, hk) on any compact
subset in r−1((0, π2 )) as i → ∞. Let (Pn−1, gik(t))t∈[0,T i

k
) be the Ricci flow starting from gik,

where T i
k > 0 is the maximal existence time. It is clear that there exists vk > 0 such that

volhk
(Bhk

(x, 1)) ≥ vk for all x ∈ P
n−1, so that volgik

(Bgik
(x, 1)) ≥ vk everywhere for all large

i. Since gik(0) in addition satisfies Rm ≥ 0, it follows from [5, 59], the existence theorem for
Ricci flows under almost nonnegative curvature and non-collapsing conditions, that there
exist 0 < Tk < 1 and Ck > 0 such that T i

k ≥ Tk for all i, and |Rm| ≤ Ck

t
for all t ∈ (0, Tk].

Moreover, using the initial volume bound bound and the curvature bound |Rm| ≤ Ck

t
, we

can argue exactly as in [80, Corollary 6.2] to get

(4.8) volgi
k
(t)(Bgi

k
(t)(x, 1)) ≥ ṽk

for some ṽk > 0 depending on vk, Ck.

After passing to a subsequence, these flows converge smoothly to a Ricci flow (Pn−1, gk(t)),

t ∈ (0, Tk], satisfying |Rm| ≤ Ck

t
for some Tk, Ck > 0. By Proposition 3.3(c), the curvature

of the metrics gik on any compact subset of r−1((0, π2 )) has a uniform bound for all large
i. By Perelman’s pseudolocality theorem and Shi’s derivative estimates (see for example
[54]), this implies that the Ricci flows {gik(t)} uniformly smoothly converge on any compact
subset of r−1((0, π2 )) as t → 0. The limit Ricci flow gk(t) therefore smoothly converges to

hk on any compact subset of r−1((0, π2 )) as t → 0. Finally, convergence of metric spaces

(Pn−1, dgk(t)) to (Pn−1, dhk
) as t → 0 follows from standard distance distortion estimates;

see for example [5, 59, 81].

Fix (x, t) ∈ P
n−1 × (0, Tk]. It remains to verify that λ(x, t) ≥ 1 for any x ∈ P

n−1 and
t ∈ (0, Tk]. To being with, to estimate the heat kernel G(x, t; y, s), by using (4.8) in (4.7)
we obtain N(x,t)(t − s) ≥ C−1 for all s ∈ [0, t

2 ], where here and below C > 0 denotes a
generic constant that only depends on the point (x, t). It follows from (4.6) that for all
(y, s) ∈ P

n−1 × (0, t
2 ],

(4.9) G(x, t; y, s) ≤ C.

Next, since λ ≥ 1 on r−1((0, π2 ))×{0} and λ is continuous on r−1((0, π2 ))×[0, Tk], for any ε >

0 we can find δ ∈ (0, t
2 ) with δ → 0 as ε → 0 such that for all (y, s) ∈ r−1((δ, π2 − δ))× [0, δ],

we have

(4.10) λ(y, s) ≥ 1− ε.

By Lemma 4.1, λ is a super-solution to the heat equation, and so we have the lower bound

λ(x, t) ≥
∫

Pn−1

λ(y, δ)G(x, t; y, δ) dδy

≥ (1− ε)

∫

r−1(δ,
π
2−δ)

G(x, t; y, δ) dδy

≥ (1− ε)
(
1− C · volδ

(
r−1

(
[0, δ] ∪

[
π
2 − δ, π2

])))
,

where in the second inequality we have used (4.10), and in the last inequality we have used∫
Pn−1 G(x, t; y, s) dsy = 1 for all s < t, as well as (4.9). Since the Hausdorff measure is

weakly continuous under the Gromov-Hausdorff convergence of (Pn−1, dgk(t)) to (Pn−1, dhk
)
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as t → 0 (cf. [14]), we deduce that volδ
(
r−1

(
[0, δ] ∪

[
π
2 − δ, π2

]))
→ 0 as δ → 0. Letting

ε → 0, this implies that λ(x, t) ≥ 1. �

We conclude this section with the following corollary which implies Theorem B.

Corollary 4.3. Let n ≥ 2. Then there exists a sequence of U(n − 1)-invariant metrics
{gk}∞k=1 on P

n−1 satisfying λ ≥ 1 such that (Pn−1, dgk) converges in the Gromov-Hausdorff
sense to the interval [0, π2 ].

Proof. For n = 2, we have that U(1) = SO(2), and so the sequence of SO(2)-invariant
metrics is constructed in [61]. We may therefore assume that n ≥ 3. Let gk(t) be the Ricci
flow constructed in Lemma 4.2 that smooths out the singular metric hk. Since hk converges
to [0, π2 ] and gk(t) converges to hk as t → 0 in the Gromov-Hausdorff sense, we can find a
sequence tk → 0 so that gk(tk) satisfies the assertion of the corollary. �

5. Construction of the steady Ricci solitons

In this section, we complete the construction of the family of U(1)× U(n− 1)-invariant
steady Kähler-Ricci solitons for n ≥ 2 and prove Theorem A. We present the proof in higher
dimensions and point out the essential differences for complex dimension 2. In the proof,
we use some standard notions and facts from Alexandrov geometry and metric comparison.
We refer the reader to [58, Section 2.4] for a more detailed exposition.

Proof of Theorem A. By Corollary 4.3, we have a sequence of U(n − 1)-invariant smooth
Kähler metrics (Pn−1, hi) satisfying the following conditions:

(1) diam(Pn−1, hi) → π
2 as i → ∞;

(2) Rm(hi) > 2 on real (1, 1)-forms (or equivalently, sectional curvature > 4 if n = 2);
(3) limi→∞ volhi

(Pn−1) = 0.

In particular, by (2), hi has positive holomorphic bisectional curvature for all i. For each
i, we run a normalized Kähler-Ricci flow hi(t) on each (Pn−1, hi). Then by the results of
Collins-Székelyhidi [35] and Tian-Zhang-Zhang-Zhang [85], the normalized flow exists for
all time and converges smoothly to a Kähler-Einstein metric on P

n−1, which is a positive
multiple of the Fubini-Study metric gFS giving the same volume as hi, by the uniqueness
of Kähler-Einstein metrics up to biholomorphism [7]. Since there is a positive lower bound
for Rm on real (1, 1)-forms for all times along the Kähler-Ricci flow, and Rm > 2 for
t = 0, reparametrizing the flow hi(t) and rescaling it by a suitable time-dependent positive
function yields a smooth family of U(n − 1)-invariant Kähler metrics (hi, µ)µ∈[0, 1] on P

n−1

with

(1) hi, 1 = hi and hi, 0 = cigFS for some ci > 0;
(2) diam(Pn−1, hi, 1) = diam(Pn−1, hi) → π

2 as i → ∞;
(3) Rm(hi, µ) > 2 on real (1, 1)-forms (or equivalently, sectional curvature > 4 if n = 2)

for all µ ∈ [0, 1];
(4) volhi, µ

(Pn−1) → 0 as i → ∞ uniformly for all µ ∈ [0, 1].

For each fixed i, since the metrics hi, µ on P
n−1 are U(n−1)-invariant and vary smoothly

in µ, we see from Proposition 2.17 that there is a U(1)×U(n− 1)-invariant path of Kähler
cone metrics Ci, µ on C

n \ {0} varying smoothly in µ. The links of these cones are Sasaki
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metrics on S2n−1 over hi, µ. The above conditions (2) and (4) satisfied by hi, µ, together with
(2.18) and (2.19) in Proposition 2.17, then imply that the length of the orbit of the flow
of the Reeb vector field tends to 0 as i → ∞, and the Sasaki metrics over hi, µ also satisfy
conditions (2) and (4). Moreover, by condition (3) and Theorem A.1, the Kähler cones Ci, µ

have positive curvature operator on real (1, 1)-forms in the transverse direction. Therefore,
by the local uniqueness theorem [37, Theorem 5.3], there exists a unique deformation of
gi, 0 on C

n by a smooth path of U(1)×U(n− 1)-invariant expanding gradient Kähler-Ricci
solitons (Mi, µ, gi, µ, pi, µ) with positive curvature operator on real (1, 1)-forms asymptotic
to the Kähler cone over hi, µ. Here, pi, µ denotes the critical points of the soliton potential
function and R(pi, µ) = 1.

Since the Sasaki metrics over hi, µ satisfy (4), it follows that the asymptotic volume ratio of
the expanding solitons gi, µ decreases to zero uniformly for all µ as i → ∞, and so by the same
argument as in [61, Lemma 2.3], we can show that for any sequence µi ∈ [0, 1], the U(1)×
U(n − 1)-invariant expanding gradient Kähler-Ricci solitons (Mi, µi

, gi, µi
, pi, µi

) converge
smoothly in the Cheeger-Gromov sense to a U(1) × U(n − 1)-invariant steady gradient
Kähler-Ricci soliton. In particular, on one hand, for µi ≡ 0, since the Kähler cone is U(n)-
invariant, the expanding solitons gi, 0 are also U(n)-symmetric by the uniqueness theorem
in [29], therefore subsequentially converge to a limit steady soliton (M∞,0, g∞,0, p∞,0). By
Cao’s uniqueness result [16, Proposition 2.1], this limit has to be Cao’s positively curved
U(n)-invariant steady soliton constructed in [16]. On the other hand, for µi ≡ 1, we
may assume that the expanding solitons (Mi, 1, gi, 1, pi, 1) converge to the steady soliton
(M∞,1, g∞,1, p∞,1). Moreover by Remark 2.28, Ric has only one positive distinct eigenvalue
at the critical point of the steady soliton. Since the sequence of Sasaki metrics over hi, 1 also
converge to the interval [0, π2 ] in the Gromov-Hausdorff sense, it follows that the asymptotic
Kähler cones of the expanding solitons converge to the positive quadrant in the Euclidean
plane R

2.

We now show that the steady Kähler-Ricci soliton (M∞,1, g∞,1, p∞,1) must split as a
product of a (2n − 2)-dimensional U(n − 1)-invariant steady Kähler-Ricci soliton, and a
two-dimensional U(1)-invariant steady Kähler-Ricci soliton. To this end, first note that
since it exhibits U(1) × U(n − 1) symmetry, there exists a (2n − 2)-dimensional totally
geodesic submanifold N1 fixed by the U(1)-isometry, and a two-dimensional totally geo-
desic submanifold N2 fixed by the U(n − 1)-isometry. Similarly, we write N1,i, N2,i for the
fixed point sets in the expanding soliton (Mi, 1, gi, 1, pi, 1) of the U(1)- and U(n− 1)-action,
respectively. Note that we can find a U(1)-invariant point and a U(n − 1)-invariant point
in the Sasaki metric over hi,1 such that their distance is greater than π

2 − εi, where here
and below εi denotes a general sequence such that εi → 0 as i → ∞. So arguing as [61,
Lemma 4.2], for any xi ∈ N1,i, yi ∈ N2,i with dgi, 1(xi, pi, 1) = dgi, 1(yi, pi, 1), the comparison

angle satisfies ∡̃xipi, 1yi ≥ π
2 − εi. In particular, let {Ck}∞k=0 be a sequence of positive

numbers going to infinity as k → ∞. Then for any points xk,i ∈ N1,i, yk,i ∈ N2,i with
dgi, 1(xk,i, pi, 1) = dgi, 1(yk,i, pi, 1) = Ck, we have

(5.1) ∡̃xk,ipi, 1yk,i ≥
π

2
− εi.

On (M∞,1, g∞,1, p∞), on the one hand, for any points xk,∞ ∈ N1, yk,∞ ∈ N2 with

dg∞,1(xk,∞, p∞,1) = dg∞,1(yk,∞, p∞,1) = Ck,
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let γ1,k, γ2,k : [0, Ck] → M∞,1, be the unit speed minimizing geodesics connecting p∞,1, xk,∞
and p∞,1, yk,∞, and let γ1, γ2 : [0,∞) → M∞,1, be two unit speed geodesic rays starting
from p∞,1 obtained as any subsequential limit of γ1,k, γ2,k. Then (5.1) implies that the
asymptotic angle between γ1, γ2 satisfies

(5.2) ∡γ1γ2 = lim
k→∞

∡̃xk,∞p∞,1yk,∞ ≥ π
2 .

On the other hand, since the U(1) × U(n − 1)-action induces an isometric action on the
tangent space at the unique fixed point p∞,1 and induces an orthogonal decomposition
Tp∞,1M∞,1 = V1 ⊥ V2, where V1, V2 are the (2n − 2)-dimensional and 2-dimensional
subspaces fixed by the U(1)- and U(n − 1)-actions respectively, and U(n − 1) acts on
V1 transitively and U(1) acts transitively on V2, suppose that γ′1,k(0) = v1,k + v2,k and

γ′2,k(0) = w1,k + w2,k, where v1,k, w1,k ∈ V1 and v2,k, w2,k ∈ V2. Then

(5.3) 〈γ′1,k(0), γ′2,k(0)〉 = 〈v1,k, w1,k〉+ 〈v2,k, w2,k〉.
By replacing γ1,k with its image under a suitable isometry in U(n − 1), we can keep in-
variant v2,k and replace v1,k by any vector of the same norm in V1, and thus assume that
〈v1,k, w1,k〉 ≥ 0 and equality is achieved if and only if v1,k = 0 or w1,k = 0. Similarly, by
replacing γ2,k with its image under a suitable isometry in U(1) we can keep invariant w1,k

and replace w2,k by any vector in V2, and thus assume that 〈v2,k, w2,k〉 ≥ 0 and equality is
achieved if and only if v2,k = 0 or w2,k = 0.

We claim that, after replacing xk,∞, yk,∞ with their images under suitable U(n−1)- and
U(1)-actions respectively, we can assume that 〈vi,k, wi,k〉 ≥ 0 for i = 1, 2, and thus the angle
formed by γ1,k, γ2,k at p∞,1 satisfies

(5.4) ∡(γ′1,k(0), γ
′
2,k(0)) ≤ π

2 .

Indeed, by replacing γ1,k with its image under the U(n − 1)-action mapping v1,k to −v1,k
if necessary, we have that 〈v1,k, w1,k〉 ≥ 0. Then by replacing γ2,k with its image under the
U(1)-action mapping w2,k to −w2,k if necessary, we have that 〈v2,k, w2,k〉 ≥ 0, so we obtain
(5.4). The monotonicity of comparison angles then gives us that

(5.5) ∡γ1γ2 = lim
k→∞

∡̃xk,∞p∞,1yk,∞ ≤ lim sup
k→∞

∡(γ′1,k(0), γ
′
2,k(0)) ≤ π

2 .

Combining (5.2) and (5.5), we find that ∡γ1γ2 = π
2 , and so by (5.4) and the monotonicity

of comparison angles again, we arrive at the fact that

∡̃γ1(s)pγ2(s) ≡ π
2 for all s ≥ 0.

We claim that the sectional curvature of the 2-plane σ spanned by γ′1(0) and γ′2(0) at p∞,1

vanishes. Suppose the contrary. Then the positivity of the sectional curvature of σ implies
that there is a small neighborhood in the two-dimensional submanifold Σ := expp∞,1

(σ) in
which the Gauss curvature is positive with respect to restricted metric gΣ. However, this
would imply that for some small s > 0, the gΣ-minimizing geodesic in Σ connecting γ1(s)

and γ2(s) has length strictly smaller than
√
2s, which implies that ∡̃γ1(s)p∞,1γ2(s) < π

2 .
This is a contradiction. The vanishing of the sectional curvature of σ implies that (5.3)
vanishes, and

(5.6) 〈v1,k, w1,k〉 = 〈v2,k, w2,k〉 = 0.
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Consequently, we have w1,k = v2,k = 0 or w2,k = v1,k = 0. This implies that γ′1(0) ∈
N1, γ

′
2(0) ∈ N2 or γ′2(0) ∈ N1, γ

′
1(0) ∈ N2. In each case, we obtain

(5.7) Rm(v1, v2, v2, v1) = 0 for any v1 ∈ V1 and v2 ∈ V2.

Since Rm ≥ 0 is a symmetric linear operator acting on
∧2 Tp∞,1M∞,1, this implies that

(5.8) Rm(v1 ∧ v2, ·) = 0 for any v1 ∈ V1 and v2 ∈ V2.

Now we show that the steady Ricci soliton splits isometrically as M∞,1 = M1 ×M2 for
some submanifolds M1,M2 of nonzero dimension. Indeed, note that, as a smooth limit of
manifolds diffeomorphic to C

n, M∞,1 is diffeomorphic to C
n and by the strong maximum

principle we may assume that Ric > 0 on M∞,1. The results of Bryant [13] and Chau-Tam
[24] subsequently infer that M∞,1 is in fact biholomorphic to C

n. We may then argue as
in [26, Lemma 4.1] or [33, Theorem 7.34] to deduce that if M∞,1 is irreducible, then M∞,1

has either positive curvature operator on real (1, 1)-forms or is symmetric or is Einstein.
The latter two cases are impossible as they would imply constant scalar curvature on M∞,1,
contradicting the fact that ∆R+ 〈∇f,∇R〉 = −2|Ric|2 and Ric > 0. M∞,1 must therefore
have positive curvature operator on real (1, 1)-forms and positive sectional curvature (see
Section 2.3), which is again absurd due to the fact that the sectional curvature vanishes
on a certain 2-plane. Thus, we conclude that M∞,1 is indeed reducible and that by the
de Rham decomposition theorem, splits isometrically and holomorphically as a product of
lower dimensional steady gradient Kähler-Ricci solitons [56].

We now show that the decomposition of the tangent space Tp∞,1M∞,1 = V1 ⊥ V2 induces
a splitting of the manifold as M∞,1 = N1×N2. First, we claim that the sectional curvature
is positive on each Ni at p∞,1 for i = 1, 2. Otherwise, suppose a 2-plane of V1 has zero
sectional curvature. Then we would have that the sectional curvature is zero for all 2-planes
of V1. Indeed, the curvature of the induced Kähler metric on N1 at the fixed point p∞,1 of
U(n− 1) has the form

−Rαβ̄γδ̄ = κ(gαβ̄gγδ̄ + gαδ̄gγβ̄)

for some constant κ ≥ 0. For κ > 0, the ratio between the smallest sectional curvature
and the scalar curvature of the induced Kähler metric on N1 at p∞,1 is a strictly positive
dimensional constant (see (2.25)), hence zero sectional curvature at a 2-plane implies zero
curvature operator and thus zero sectional curvature for all 2-plane in Tp∞,1N1. This implies
that Ric(vi, ·) = 0 for some non-zero vi ∈ V1, contradicting Remark 2.28. Next, since
M∞,1 = M1 × M2, it follows that for any arbitrary non-zero vectors v1 + v2 ∈ M1 and
w1 + w2 ∈ M2, where v1, w1 ∈ V1 and v2, w2 ∈ V2, we have that

(5.9) R(v1 + v2, w1 + w2, w1 + w2, v1 + v2) = 0.

By (5.8) and the first Bianchi identity we deduce that R(v1, w1, w2, v2) = 0, which together
with (5.8) and (5.9) implies that

(5.10) R(v1, w1, w1, v1) = R(v2, w2, w2, v2) = 0.

Since the sectional curvatures are positive on V1, V2, this implies that v1∧w1 = v2∧w2 = 0.
If v1, v2 6= 0, then this implies that w1 = av1, w2 = bv2 and w1 + w2 = av1 + bv2 for some
a, b ∈ R. Hence Tp∞,1M2 ⊂ Span(v1, v2). Since the dimension of M2 is at least 2, we have
that Tp∞,1M2 = Span(v1, v2), and in particular v1 + v2 ∈ Tp∞,1M2 ∩ Tp∞,1M1, which is a
contradiction. So we have that v2 = 0 or v1 = 0, which implies that Tp∞,1M1 ⊂ V1 or
Tp∞,1M1 ⊂ V2. Without loss of generality we may assume that Tp∞,1M1 ⊂ V1. Similarly, we
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can deduce either w1 or w2 vanishes and thus Tp∞,1M2 ⊂ V2 or Tp∞,1M2 ⊂ V1. The latter
case cannot happen and so we must have Tp∞,1M2 ⊂ V2. Therefore, we obtain Tp∞,1Mi = Vi

for both i = 1, 2. Since N1, N2 are the totally geodesic subspaces, it follows that Mi = Ni

for i = 1, 2, and M1 (resp. M2) is a U(n−1)-invariant (resp. U(1)-invariant) steady gradient
Kähler Ricci soliton. In particular, they are scalings of Cao’s steady gradient Kähler Ricci
solitons.

For a 2-plane of Tpi,µMi,µ spanned by a vector in the U(1)-fixed subspace and another
vector in the U(n − 1)-fixed subspace, we can identify it with the 2-plane σ of Tp∞,1M∞,1.
Then the sectional curvature Ki,µ := Kgi,µ(σ) varies smoothly in µ for each fixed i. We
have just demonstrated that K∞,1 = 0. It is also clear that K∞,0 > 0 in the non-flat U(n)-
invariant steady Ricci soliton (M∞,0, g∞,0, p∞,0). Therefore, for any given α ∈ (0,K∞,0),
we have that Ki,0 < α < Ki,1 for all sufficiently large i, and hence by the intermediate value
theorem there exists µi ∈ (0, 1) such that Ki, µi

= α. A subsequence of the expanding gra-
dient Ricci solitons (Mi, µi

, gi, µi
, pi, µi

) therefore converges to a steady Kähler-Ricci soliton
(M∞, g∞, p∞) with Kg∞(σ) = α and R(p∞) = 1. This proves Theorem A.

�

Appendix A. Curvature of doubly-warped product Kähler metrics

In this appendix, we present the curvature computations for the Riemannian curvature

tensor of a doubly-warped product Kähler metric ĝ on M̂ = M × I of the form

ĝ := ds2 + a2(s)η ⊗ η + b2(s)gT ,

where M is a Sasaki manifold of real dimension (2n − 1) with n ≥ 2 with contact one-
form η and transverse metric gT as described in Subsection 2.2, I ⊆ R is an interval, and

a, b : I → [0, ∞) are smooth functions. We assume that a(s) = b(s)b′(s) so that (M̂, ĝ)

does indeed defines a Kähler manifold (cf. Lemma 2.11) and we write Ĵ for the complex

structure of M̂ (see Subsection 2.2 for more details) . We compute using Cartan’s structure
equations for the connection one-forms and corresponding curvature two-forms.

A.1. Connection one-forms. We denote the Levi-Civita connection of ĝ by ∇̂. We com-

pute in this subsection the connection one-forms of ∇̂. Recall that a differential form σ on
a Sasaki manifold is basic if ξyσ = 0 and Lξσ = 0, where ξ is the Reeb vector field.

To this end, let θ1, . . . , θ2n−2 be a local basic orthonormal coframe of gT satisfying θi◦Ĵ =
−θi+1 for i odd so that dη = 2ωT = 2

∑n−1
j=1 θ2j−1 ∧ θ2j, and let (ωij)1≤ i, j ≤ 2n−2 denote the

matrix of connection one-forms of gT . Then (ωij) solves the Cartan structure equations

{
dθi =

∑2n−2
j=1 ωji ∧ θj ,

ωij + ωji = 0.

Next set

θ̂i := b(s)θi for i = 1, . . . , 2n− 2, θ̂2n−1 := ds, and θ̂2n := a(s)η.
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Then the matrix of connection one-forms (ω̂ij)1≤ i, j≤ 2n of ĝ with respect to this coframe is
given by

ω̂ij = ωij − δj, i+1
a(s)

b(s)2
θ̂2n 1 ≤ i ≤ 2n− 2 odd, 1 ≤ j ≤ 2n− 2.

ω̂ij = ωij + δj, i−1
a(s)

b(s)2
θ̂2n 1 ≤ i ≤ 2n− 2 even, 1 ≤ j ≤ 2n− 2.

ω̂2n−1, i =

(
−b′(s)

b(s)

)
θ̂i = −b′(s)θi, 1 ≤ i ≤ 2n− 2,

ω̂2n−1, 2n =

(
−a′(s)

a(s)

)
θ̂2n = −a′(s)η,

ω̂2n, i =

{
a(s)
b(s)2 θ̂i+1 =

a(s)
b(s) θi+1, 1 ≤ i ≤ 2n− 2 odd,

− a(s)
b(s)2 θ̂i−1 = −a(s)

b(s)θi−1, 1 ≤ i ≤ 2n− 2 even.

This translates to the following for i = 1, 2, . . . , n− 1:

∇̂θ̂2i−1 =
2n∑

k=1

ω̂k 2i−1 ⊗ θ̂k =
2n−2∑

k=1

(
ωk 2i−1 + δk,2i

(
a(s)

b(s)2

)
θ̂2n

)
⊗ θ̂k −

b′(s)
b(s)

θ̂2i−1 ⊗ θ̂2n−1

+
a(s)

b(s)2
θ̂2i ⊗ θ̂2n,

∇̂θ̂2i =

2n∑

k=1

ω̂k 2i ⊗ θ̂k =

2n−2∑

k=1

(
ωk 2i − δk,2i−1

(
a(s)

b(s)2

)
θ̂2n

)
⊗ θ̂k −

b′(s)
b(s)

θ̂2i ⊗ θ̂2n−1

− a(s)

b(s)2
θ̂2i−1 ⊗ θ̂2n,

∇̂θ̂2n−1 =

2n∑

k=1

ω̂k,2n−1 ⊗ θ̂k =

2n−2∑

k=1

b′(s)
b(s)

θ̂k ⊗ θ̂k +
a′(s)
a(s)

θ̂2n ⊗ θ̂2n,

∇̂θ̂2n =
2n∑

k=1

ω̂k,2n ⊗ θ̂k =
n−1∑

k=1

− a(s)

b(s)2
θ̂2k ⊗ θ̂2k−1 +

n−1∑

k=1

a(s)

b(s)2
θ̂2k−1 ⊗ θ̂2k

− a′(s)
a(s)

θ̂2n ⊗ θ̂2n−1.

A.2. Curvature two-forms. Recall that a(s) = b(s)b′(s) so that (M̂, ĝ, Ĵ) is Kähler. We

define the curvature tensor R̂(· , ·)(·) of ĝ by

R̂(X, Y )Z = ∇̂X∇̂Y Z − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z for X, Y, Z ∈ Γ(TM̂).

With this, we realize R̂ as a (0, 4)-tensor via

R̂(X, Y, Z, W ) = 〈R̂(X, Y )W, Z〉ĝ for X, Y, Z, W ∈ Γ(TM̂),
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and write

R̂ = R̂(êi, êj , êk, êl) θ̂i ⊗ θ̂j ⊗ θ̂k ⊗ θ̂l

= 〈R̂(êi, êj)êl, êk〉ĝ θ̂i ⊗ θ̂j ⊗ θ̂k ⊗ θ̂l

= R̂ijkl θ̂i ⊗ θ̂j ⊗ θ̂k ⊗ θ̂l,

where

(A.1) R̂ijkl = 〈R̂(êi, êj)êl, êk〉ĝ.

We define the curvature two-forms Ω̂ij , 1 ≤ i, j ≤ 2n, of R̂ by

R̂ = θ̂i ⊗ θ̂j ⊗ Ω̂ij

so that

Ω̂ij = R̂ijklθ̂k ⊗ θ̂l =
1

2
R̂ijklθ̂k ∧ θ̂l.

Then

R̂ijkl = 〈R̂(êi, êj)êl, êk〉ĝ = Ω̂ij(êk, êl)

and Ω̂ij satisfies the Cartan structure equations

Ω̂ij = dω̂ij + ω̂ik ∧ ω̂kj.

By the symmetries of the curvature tensor, we also see that the two-forms ω̂ij are real

(1, 1)-forms. In this subsection, we compute the curvature two-forms (Ω̂)1≤i, j≤n of ĝ.

Let Ωij, 1 ≤ i, j ≤ 2n− 2, denote the curvature two-forms of gT . These satisfy

Ωij = dωij +

2n−2∑

k=1

ωik ∧ ωkj for 1 ≤ i, j ≤ 2n− 2.

We have the freedom to choose the local basic orthonormal coframe {θi}2n−2
i=1 of gT to

be parallel at a point so that (ωij)1≤i, j≤2n−2 = 0 at this point. This we do. With this
simplification, a computation shows that at this point, the two-forms Ωij, 1 ≤ i, j ≤ 2n−2,
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are given by

Ω̂ij = Ωij −
b′(s)2

b(s)2

(
θ̂i ∧ θ̂j + θ̂i+1 ∧ θ̂j+1

)
, 1 ≤ i, j ≤ 2n − 2 odd,

Ω̂ij = Ωij −
b′(s)2

b(s)2

(
θ̂i ∧ θ̂j + θ̂i−1 ∧ θ̂j−1

)
, 1 ≤ i, j ≤ 2n − 2 even,

Ω̂ij = Ωij −
b′(s)2

b(s)2

(
θ̂i ∧ θ̂j − θ̂i+1 ∧ θ̂j−1

)
− 2δj, i+1

[(
a′(s)
b(s)2

− a(s)b′(s)
b(s)3

)
θ̂2n−1 ∧ θ̂2n

+

(
a(s)2

b(s)2

)
ωT

]
, 1 ≤ i ≤ 2n− 2 odd, 1 ≤ j ≤ 2n− 2 even,

Ω̂i, 2n−1 =

(
b′′(s)
b(s)

)(
θ̂2n−1 ∧ θ̂i − θ̂i+1 ∧ θ̂2n

)
, i = 1, . . . , 2n − 2, i odd,

Ω̂i, 2n−1 =

(
b′′(s)
b(s)

)(
θ̂2n−1 ∧ θ̂i + θ̂i−1 ∧ θ̂2n

)
, i = 1, . . . , 2n − 2, i even,

Ω̂2n, i =

(
a′(s)
b(s)2

− a(s)b′(s)
b(s)3

)(
θ̂2n−1 ∧ θ̂i+1 + θ̂i ∧ θ̂2n

)
, i = 1, . . . , 2n − 2, i odd,

Ω̂2n, i = −
(
a′(s)
b(s)2

− a(s)b′(s)
b(s)3

)(
θ̂2n−1 ∧ θ̂i−1 − θ̂i ∧ θ̂2n

)
, i = 1, . . . , 2n − 2, i even,

Ω̂2n, 2n−1 = 2

(
a′(s)− a(s)b′(s)

b(s)

)
ωT +

a′′(s)
a(s)

θ̂2n−1 ∧ θ̂2n.

Henceforth working at thie point at which the basis {θi}2n−2
i=1 of gT is parallel, we have

that Ĵ ê2k−1 = ê2k because θ̂k is dual to êk. We now define for k = 1, . . . , n,

Θ̂k = θ̂2k−1 + i θ̂2k, Θ̂k̄ = θ̂2k−1 − i θ̂2k,

Êk =
1

2
(ê2k−1 − i ê2k) , Êk̄ =

1

2
(ê2k−1 + i ê2k) .

Similarly, for k = 1, . . . , n− 1, we define the corresponding frame for gT :

Ek =
1

2
(e2k−1 − i e2k) , Ek̄ =

1

2
(e2k−1 + i e2k) .

In particular, observe that Ên = 1
2

(
∂r − i

(
ξ

a(s)

))
because by definition, J0∂r = ξ

a(s) . We

extend the (0, 4)-tensor R̂ by complex multi-linearity and write the corresponding compo-
nents as

R̂αβ̄γδ̄ = R̂(Êα, Êβ̄, Êγ , Êδ̄).

Then

R̂ =
(
Θ̂α ∧ Θ̂β̄

)
⊗ Ω̂αβ̄,

where the complex-valued (1, 1)-forms Ω̂αβ̄, 1 ≤ α, β ≤ n, satisfy

Ω̂αβ̄(Êγ , Êδ̄) = R̂αβ̄γδ̄,

and are related to the real (1, 1)-forms Ω̂ij, 1 ≤ i, j ≤ 2n, by

Ω̂αβ̄ =
1

2

(
Ω̂2α−1, 2β−1 + i Ω̂2α−1, 2β

)
.
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For 1 ≤ α, β ≤ n− 1, we have

Ω̂2α−1,2β−1 = Ω2α−1,2β−1 −
1

2

(
b′(s)
b(s)

)2 [
Θ̂α ∧ Θ̂β̄ + Θ̂ᾱ ∧ Θ̂β

]

and

Ω̂2α−1,2β = Ω2α−1,2β − i

2

(
b′(s)
b(s)

)2 [
Θ̂α ∧ Θ̂β̄ − Θ̂ᾱ ∧ Θ̂β

]

− δαβ

[
i

(
b′′(s)
b(s)

)
Θ̂n ∧ Θ̂n̄ + i

(
a(s)2

b(s)4

) n−1∑

l=1

Θ̂l ∧ Θ̂l̄

]
.

It therefore follows that

Ω̂αβ̄ =
Ωαβ̄

b(s)2
− 1

2

(
b′(s)
b(s)

)2

Θ̂ᾱ ∧ Θ̂β +
δαβ
2

[(
b′′(s)
b(s)

)
Θ̂n ∧ Θ̂n̄ +

(
a(s)2

b(s)4

) n−1∑

l=1

Θ̂l ∧ Θ̂l̄

]

for 1 ≤ α, β ≤ n− 1.

Next, for 1 ≤ α ≤ n− 1, β = n, we have

Ω̂2α−1,2n−1 =
b′′(s)
2b(s)

(
Θ̂n ∧ Θ̂ᾱ + Θ̂n̄ ∧ Θ̂α

)

and

Ω̂2α−1,2n = − i

2

(
b′′(s)
b(s)

)(
Θ̂n ∧ Θ̂ᾱ − Θ̂n̄ ∧ Θ̂α

)
.

Hence in this case we see that

Ω̂αn̄ =
1

2

(
Ω̂2α−1, 2n−1 + i Ω̂2α−1, 2n

)
=

b′′(s)
2b(s)

Θ̂n ∧ Θ̂ᾱ.

Finally, for α = n, β = n, we have that

Ω̂nn̄ =
1

2

(
Ω̂2n−1, 2n−1 + i Ω̂2n−1, 2n

)

=
i

2
Ω̂2n−1, 2n

=
1

2

[(
b′′(s)
b(s)

) n−1∑

l=1

Θ̂l ∧ Θ̂l̄ +
a′′(s)
2a(s)

Θ̂n ∧ Θ̂n̄

]
.

In summary, Ω̂αβ̄ is equal to





Ωαβ̄

b(s)2
− 1

2

(
b′(s)
b(s)

)2
Θ̂ᾱ ∧ Θ̂β +

δαβ

2

[(
b′′(s)
b(s)

)
Θ̂n ∧ Θ̂n̄ +

(
a(s)2

b(s)4

)∑n−1
l=1 Θ̂l ∧ Θ̂l̄

]
1 ≤ α, β ≤ n− 1,(

b′′(s)
2b(s)

)
Θ̂n ∧ Θ̂ᾱ 1 ≤ α ≤ n− 1, β = n,

1
2

[(
b′′(s)
b(s)

)∑n−1
l=1 Θ̂l ∧ Θ̂l̄ +

a′′(s)
2a(s) Θ̂n ∧ Θ̂n̄

]
α = β = n.
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In particular, this yields that

(A.2) R̂αβ̄γδ̄ =





R̃αβ̄γδ̄

b(s)2
+ 1

2

(
b′(s)
b(s)

)2
δαδδβγ +

(
a(s)2

2b(s)4

)
δαβδγδ 1 ≤ α, β, γ, δ ≤ n− 1,(

b′′(s)
2b(s)

)
δγnδδα 1 ≤ α ≤ n− 1, β = n,

1
2

[(
b′′(s)
b(s)

)
(δγδ − δγnδδn) +

(
a′′(s)
2a(s)

)
δγnδδn

]
α = n, β = n,

where R̃ is the curvature tensor of gT and R̃αβ̄γδ̄ = R̃
(
Eα, Eβ̄, Eγ , Eδ̄

)
.

A.3. Curvature of a Kähler cone. Recalling the construction of the n-dimensional
Kähler cone from Example 2.10, we have that a(s) = b(s) = s, and so from the above
we determine that for this example,

Ω̂αβ̄ =

{
1
s2

(
Ωαβ̄ − 1

2Θ̂ᾱ ∧ Θ̂β +
δαβ

2

∑n−1
l=1 Θ̂l ∧ Θ̂l̄

)
if 1 ≤ α, β ≤ n− 1,

0 if 1 ≤ α ≤ n, β = n.

It is well-known that a Riemannian cone has Rm ≥ 0 if and only if the link has Rm ≥ 1.
The Kähler version of this fact is the following.

Theorem A.1 ([9]). A Kähler cone has strictly positive curvature operator on real (1, 1)-
forms in the transverse directions if and only if the link is a Sasaki link whose base satisfies
(2.23) with λ = 1.

Proof. It suffices to show that for all nonzero real (1, 1)-forms involving only transverse

components, namely those of the form
∑n−1

α, β=1 i uαβ̄Θ̂α ∧ Θ̂β̄, we have that

0 < −R̂αβ̄γη̄u
αβ̄uγη̄ =

(
−R̃αβ̄γη̄ − 1

2(δαβδγη + δαηδβγ)
)

s2
uαβ̄uγη̄,

where uαβ̄ = ĝαγ̄ ĝηβ̄uηγ̄ . Since gT
(
Eα, Eβ̄

)
= gT

αβ̄
=

δαβ

2 , this happens precisely when the

curvature tensor of the transverse metric satisfies

−R̃αβ̄γη̄u
αβ̄uγη̄ >

1

2
(δαβδγη + δαηδβγ)u

αβ̄uγη̄

= 2
(
gT
αβ̄

gTγη̄ + gTαη̄g
T
γβ̄

)
uαβ̄uγη̄.

Thus, the transverse metric has curvature operator strictly greater than 2 on real (1, 1)-
forms. This proves Theorem A.1. �

In the next lemma, we consider a slightly more general situation than that of the Kähler
cone.

Lemma A.2. Let λ ∈ R and let ĝ be a doubly-warped product Kähler metric on (0, L)×S2n−1,
L > 0, of the form

ĝ = ds2 + a2(s)η2 + b2(s)gT ,

where a, b : (0, L) → [0, ∞) are smooth functions and (S2n−1, η, gT ) is the round Sasaki
structure on S2n−1 as described in Example 2.9 with gT = 1

2gFS, where gFS is the Fubini-

Study metric on P
n−1 normalized so that Ric(gFS) = ngFS.
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Let p = (s, w0) ∈ (0, L)× S2n−1. Then ĝ has curvature operator strictly greater than 2λ

on (1, 1)-forms at p if and only if for any nonzero hermitian matrix uαβ̄ ,

0 <
2(1 − λ(b(s))2 − (b′(s))2)

(b(s))2


1

4

(
n−1∑

α=1

uαᾱ

)2

+
1

4

n−1∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2


+

(
−a′′(s)
4a(s)

− λ

) ∣∣unn
∣∣2

+

(
−b′′(s)

b(s)
− λ

) n−1∑

α=1

∣∣uαn
∣∣2 +

(
−b′′(s)

b(s)
− λ

)
unn

n−1∑

α=1

uαᾱ.

Proof. From the formulas in (A.2), it suffices to express the difference

−R̂αβ̄γη̄ − 2λ
(
ĝαβ̄ ĝγη̄ + ĝαη̄ ĝγβ̄

)

in terms of the warping functions a and b. To this end, let p = (s, w0) ∈ (0, L)×S2n−1 and

for any nonzero real (1, 1)-form
∑n

α,β=1 i uαβ̄Θ̂α ∧ Θ̂β̄ at p, let uαβ̄ = ĝαε̄ĝηβ̄uηε̄ = 4uβᾱ.
Then

2λ(ĝαβ̄ ĝγη̄ + ĝαη̄ ĝγβ̄)u
αβ̄uγη̄ =

λ

2
(δαβδγη + δαηδβγ)u

αβ̄uγη̄

=
λ

2



(
unn +

n−1∑

α=1

uαᾱ

)2

+

n∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2




=
λ

2

[
2
∣∣unn

∣∣2 + 2unn
n−1∑

α=1

uαᾱ +

(
n−1∑

α=1

uαᾱ

)2

+

n−1∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2
+ 2

n−1∑

α=1

∣∣uαn
∣∣2
]
.

(A.3)

Here we have used the fact that uαn = unα in the last equality. By the symmetries of the
curvature tensor, we moreover have that

−
n∑

α,β,γ,η=1

R̂αβ̄γη̄u
αβ̄uγη̄ =

n−1∑

α,β,γ,η=1

−R̂αβ̄γη̄u
αβ̄uγη̄ − R̂nnnnu

nnunn

−2

n−1∑

α=1

uαnunnR̂αnnn − 2

n−1∑

α=1

unαunnR̂nαnn

−2

n−1∑

α,β=1

uαβunnR̂αβnn − 2

n−1∑

α,β=1

uαnunβR̂αnnβ

−
n−1∑

α,β=1

unαunβR̂nαnβ −
n−1∑

α,β=1

uαnuβnR̂αnβn

−2

n−1∑

α,β,γ=1

uαβunγR̂αβnγ − 2

n−1∑

α,β,γ=1

uαβuγnR̂αβγn.

This expression can be simplified using the fact that

R̂αβnγ = R̂αβγn = R̂αnnn = R̂nαnn = R̂αnβn = R̂nαnβ = 0.
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Since the the curvature tensor of 1
2gFS is given by −1

2(δαβδγη + δαηδβγ), we see that

n−1∑

α,β,γ,η=1

−R̂αβ̄γη̄u
αβ̄uγη̄ =

n−1∑

α,β,γ,η=1

[
(δαβδγη + δαηδβγ)

2b2
− (b′)2(δαβδγη + δαηδβγ)

2b2

]
uαβ̄uγη̄

=
1− (b′)2

2b2



(

n−1∑

α=1

uαᾱ

)2

+
n−1∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2


 .

By the curvature formulas given in (A.2), we find that

−R̂nnnnu
nnunn = −a′′

4a

∣∣unn
∣∣2 ,

−2
n−1∑

α,β=1

uαβunnR̂αβnn = −2
n−1∑

α,β=1

uαβunn
b′′

2b
δαβ = −b′′

b
unn

n−1∑

α=1

uαᾱ,

−2

n−1∑

α,β=1

uαnunβR̂αnnβ = −
n−1∑

α,β=1

uαnunβ
b′′

b
δαβ = −b′′

b

n−1∑

α=1

∣∣uαn
∣∣2 ,

and so

−
n∑

α,β,γ,η=1

R̂αβ̄γη̄u
αβ̄uγη̄ =

1− (b′)2

2b2



(

n−1∑

α=1

uαᾱ

)2

+

n−1∑

α,β=1

∣∣∣uαβ̄
∣∣∣
2


− a′′

4a

∣∣unn
∣∣2

−b′′

b
unn

n−1∑

α=1

uαᾱ − b′′

b

n−1∑

α=1

∣∣uαn
∣∣2 .(A.4)

The lemma now follows by combining (A.3) and (A.4), together with the fact that uαβ̄ is
an arbitrary nonzero real (1, 1)-vector. �

Appendix B. Comparison with the steady solitons of Apostolov-Cifarelli

Let (z1, . . . , zn) denote coordinates on C
n with zk = xk+iyk and suppose that (Cn, g, X)

is a steady Kähler-Ricci soliton with Ricg =
1
2LXg, where

(B.1) X = 2Re

(
n∑

α=1

aαzα∂zα

)
=

n∑

α=1

aα (xα∂xα + yα∂yα) with aα ∈ R.

We begin with a general lemma.

Lemma B.1. If Ricg > 0 at 0 ∈ C
n, then aα > 0 for all α = 1, . . . , n.
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Proof. Without loss of generality, suppose that a1 ≤ 0 at 0 ∈ C
n. Let ∇ denote the

Levi-Civita connection of g. Then

0 < Ricg(∂x1 , ∂x1) =
1

2
LXg(∂x1 , ∂x1)

= g
(
∇∂x1

X, ∂x1

)

=
n∑

α=1

aαg
(
∇∂x1

(xα∂xα + yα∂yα) , ∂x1

)

=

n∑

α=1

aαg
(
δα1∂xα + xα∇∂x1

∂xα , ∂x1

)
+

n∑

α=1

aαg
(
yα∇∂x1

∂yα , ∂x1

)

= a1g(∂x1 , ∂x1) at 0 ∈ C
n.

This is a contradiction. �

Next, we show that there exist holomorphic coordinates that linearise the soliton vector
field of the Kähler flying wing steady solitons.

Lemma B.2. For (Cn, g, X) the Kähler flying wing steady solitons, holomorphic coordi-
nates exist so that X takes the form given in (B.1).

Proof. The expanding Kähler-Ricci solitons in [37] are asymptotically conical, hence the
scalar curvature has a maximum value in the interior of the manifold. Since these expand-
ing solitons have positive Ricci curvature, it follows from the soliton identities that the
maximum value of the scalar curvature is achieved at a zero of the soliton vector field. By
construction, this is a single point. We denote this point by 0 ∈ C

n.

Now, the Kähler flying wing steady solitons are obtained as the pointed Cheeger-Gromov
limits of the aforementioned expanding solitons based at the point 0, after rescaling the
scalar curvature at 0 to be equal to 1. It follows that the scalar curvature of the limiting
steady soliton g also has a maximum value of 1 at its base point. Since Ricg > 0, by the
soliton identities X vanishes at this point. The fact that the limiting soliton potential is
convex because Ricg > 0 then implies that this zero of X is unique.

Finally, by [13, Proposition 6], we can choose local holomorphic coordinates on C
n centred

at the zero of X so that X takes the form (B.1). Since the zero of X is unique, these coor-
dinates can be extended globally by [38, Proposition 2.28] on C

n so that the representation
(B.1) of X is global. �

Finally, we show that the soliton vector field of our Kähler flying wing steady solitons is
a multiple of the Euler vector field on C

n.

Proposition B.3. For (Cn, g, X) the Kähler flying wing steady solitons in Theorem A, we
have a1 = . . . = an > 0 in (B.1).

Proof. By Remark 2.27, the Ricci tensor of the expanding Kähler-Ricci solitons constructed
in [37] is diagonal at 0 ∈ C

n, the unique critical point of the soliton vector field. It follows
that Ricg = µg for some µ ∈ R at 0 ∈ C

n for the Kähler flying wing steady solitons. Since
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Ricg > 0, we see from Lemma B.1 above that µ > 0. For any index α = 1, . . . , n, we then
have that

µg(∂xα , ∂xα) = Ricg(∂xα , ∂xα) =
1

2
LXg(∂xα , ∂xα)

= g
(
∇∂xα

X, ∂xα

)

=

n∑

β=1

aβg
(
∇∂xα

(
xβ∂xβ

+ yβ∂yβ
)
, ∂xα

)

=

n∑

β=1

aβg
(
δαβ∂xβ

+ xβ∇∂xα
∂xβ

, ∂xα

)
+

n∑

β=1

aβg
(
yβ∇∂xα

∂yβ , ∂xα

)

= aαg(∂xα , ∂xα) at 0 ∈ C
n,

i.e., aα = µ > 0 for all α = 1, . . . , n. �

Next recall the steady solitons from [2, Theorem 1.2]. We consider this theorem with
ℓ = 2, d1 = 0, and d2 = n− 2. In this case, this theorem yields complete U(1)× U(n− 1)-
invariant steady solitons on C

n. By [2, Lemma 5.1], the soliton vector field X is given
by

X = − a

(α2 − α1)

(
−q(α1)

2
X1 +

q(α2)

2(n − 1)
X2

)
,

where X1 is the Euler vector field on the first C-factor andX2 is the Euler vector field on the
second C

n−1-factor of Cn, where q(t) is a polynomial of degree one, and −∞ < α1 < α2 < ∞
(cf. [2, Section 5.1]). Write q(t) = q0 + q1t and note that we can always normalise by
translation and scaling so that α1 = 0 and α2 = 1. Then it is clear that

Lemma B.4. X coincides with a multiple of the Euler vector field on C
n if and only if

q1 = −nq0.

The next proposition shows that this can never be the case.

Proposition B.5. The vector field X of the steady solitons of [2, Theorem 1.2] with U(1)×
U(n− 1)-symmetry can never be a multiple of the Euler vector field on C

n.

Proof. In this case we have that pc(t) = (t− 1)n−2 (cf. [2, p.14]). Suppose that the propo-
sition is false. Then by Lemma B.4 we have that q(t) = 1 − nt up to a non-zero scalar
multiple. By construction, the solution F of the ODE satisfies [2, equation (5.1)]:

0 = F (1) = e−2a

∫ 1

0
e2axq(x)pc(x) dx,

which by definition of pc(t) and q(t) equates to

0 =

∫ 1

0
e2ax(1− nx)(x− 1)n dx.



48 P.-Y. CHAN, R. J. CONLON, AND Y. LAI

Here a > 0 is a real constant. Then

0 =

∫ 1

0

(
x(x− 1)n−1e2ax

)′
dx

=

∫ 1

0
(x− 1)n−1e2ax dx+ (n− 1)

∫ 1

0
x(x− 1)n−2e2ax dx+ 2a

∫ 1

0
x(x− 1)n−1e2ax dx

=

∫ 1

0
((x− 1) + (n− 1)x) (x− 1)n−2e2ax dx+ 2a

∫ 1

0
x(x− 1)n−1e2ax dx

= −
∫ 1

0
(1− nx)(x− 1)n−2e2ax dx

︸ ︷︷ ︸
=0

+2a

∫ 1

0
x(x− 1)n−1e2ax dx.

This is a contradiction because x(x− 1)n−1e2ax has a sign on (0, 1). �

Finally, the steady solitons from [2, Theorem 1.4]. can never have a soliton vector field
a scalar multiple of the Euler vector field on C

n; cf. [2, Section 5.3]. As a result of these
observations, we obtain

Corollary B.6. The solitons of Theorem A are non-isometric to those of [2].

Proof. If a steady soliton of [2] doesn’t have positive sectional curvature or is not U(1) ×
U(n− 1)-invariant, then the result is clear. So suppose that it has both of these properties.
Then any isometry will map a critical point of the scalar curvature to a critical point of
the scalar curvature. By the soliton identities, the fact that the Ricci curvature is positive
implies that for each steady soliton, the critical points of the scalar curvature and the
zero set of the soliton vector field coincide. Each soliton vector field has one zero at the
origin and positive Ricci curvature implies that this zero is unique, hence any isometry will
map the origin to the origin. At every point, the steady soliton equation implies that the
eigenvalues of the Ricci tensor coincide with those of the Hessian of the potential function.
In particular, at the origin, being a zero of the soliton vector field, the Hessian of the soliton
potential is independent of the choice of metric. This yields a contradiction. Indeed, at the
origin, Proposition B.3 implies that the Ricci tensor of the steady solitons of Theorem A is
a multiple of the identity, whereas the other observations above imply that this is not the
case for those steady solitons of [2] admitting U(1)× U(n− 1)-symmetry. �
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2004.

[51] R. Hamilton. The Ricci flow on surfaces. In Mathematics and general relativity (Santa Cruz, CA, 1986),
volume 71 of Contemp. Math., pages 237–262. Amer. Math. Soc., Providence, RI, 1988.

[52] D. Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.
[53] T. Ivey. New examples of complete Ricci solitons. Proc. Amer. Math. Soc., 122(1):241–245, 1994.
[54] B. Kleiner and J. Lott. Notes on Perelman’s papers. Geom. Topol., 12(5):2587–2855, 2008.
[55] P. Klembeck. A complete Kähler metric of positive curvature on Cn. Proc. Amer. Math. Soc., 64(2):313–

316, 1977.
[56] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II, volume Vol. II of Interscience

Tracts in Pure and Applied Mathematics, No. 15. Interscience Publishers John Wiley & Sons, Inc., New
York-London-Sydney, 1969.

[57] N. Koiso. On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics. In Recent topics
in differential and analytic geometry, volume 18-I of Adv. Stud. Pure Math., pages 327–337. Academic
Press, Boston, MA, 1990.

[58] Y. Lai. O(2)-symmetry of 3D steady gradient Ricci solitons. arXiv:2205.01146, to appear in
Geom. Topol.

[59] Y. Lai. Ricci flow under local almost non-negative curvature conditions. Adv. Math., 343:353–392, 2019.
[60] Y. Lai. 3D flying wings for any asymptotic cones. arXiv:2207.02714, 2022.
[61] Y. Lai. A family of 3d steady gradient solitons that are flying wings. J. Differential Geom., 126(1):297–

328, 2024.
[62] M.-C. Lee and P. Topping. Three-manifolds with non-negatively pinched Ricci curvature.

arXiv:2204.00504, 2022.
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