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ABSTRACT. In 1996, H.-D. Cao constructed a U(n)-invariant steady gradient Kahler-Ricci
soliton on C™ and asked whether every steady gradient Kéahler-Ricci soliton of positive
curvature on C™ is necessarily U (n)-invariant (and hence unique up to scaling). Recently,
Apostolov-Cifarelli answered this question in the negative for n = 2. Here, we construct
a family of U(1) x U(n — 1)-invariant, but not U(n)-invariant, complete steady gradient
Kahler-Ricci solitons with strictly positive curvature operator on real (1, 1)-forms (in par-
ticular, with strictly positive sectional curvature) on C™ for n > 3, thereby answering
Cao’s question in the negative for n > 3. This family of steady Ricci solitons interpolates
between Cao’s U(n)-invariant steady Kéhler-Ricci soliton and the product of the cigar
soliton and Cao’s U(n — 1)-invariant steady Kéahler-Ricci soliton. This provides the K&hler
analog of the Riemannian flying wings construction of Lai. In the process of the proof,
we also demonstrate that the almost diameter rigidity of P endowed with the Fubini-
Study metric does not hold even if the curvature operator is bounded below by 2 on real
(1, 1)-forms.

1. INTRODUCTION

1.1. Overview. Ricci solitons are self-similar solutions of the Ricci flow that serve as gen-
eralizations of Einstein manifolds. They play an important role in the singularity analysis of
the Ricci flow. Specifically, a Ricci soliton is a triple (M, g, X), where M is a Riemannian
manifold endowed with a complete Riemannian metric g and a complete vector field X,
such that

1
(1.1) Ricg+§£xg:)\g

for some A € R. A Ricci soliton is called steady if A = 0, expanding if A < 0, and shrinking
if A > 0. If X = VI9f for some smooth real-valued function f on M, then we say that
(M, g, X) (or (M, g, f)) is a gradient Ricci soliton, and we call f the (soliton) potential
function. In this case, the soliton equation (1.1) becomes

Ric, + V2f = A g.
If the potential function moreover has a critical point p € M, then we denote the soliton by

(M7g7f7p)'

In (1.1), if g is Kéhler and X is real holomorphic, then we say that (M, g, X) is a Kdahler-
Ricci soliton. Let w denote the Kéhler form of ¢g. If (M, g, X) is in addition gradient, then
(1.1) may be rewritten as

Po + 100f = Aw,
where p,, is the Ricci form of w and f is the potential. In this article, we are concerned

with complete steady gradient Kahler-Ricci solitons.
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In real dimension 2, the only example of a non-flat steady gradient Ricci soliton is Hamil-
ton’s cigar soliton [51] which is rotationally symmetric. For real dimension n > 3, the only
n-dimensional non-flat rotationally symmetric (i.e., O(n)-symmetric) steady gradient Ricci
soliton is the Bryant soliton [12]. More recently, the third-named author constructed a fam-
ily of Zy x O(n — 1)-symmetric, non-rotationally symmetric, steady gradient Ricci solitons
on R™ for n > 3. These solitons are collapsed for n = 3 and are called “flying wings”, re-
flecting the fact that they are asymptotic to two-dimensional sectors at infinity. For n > 4,
they are non-collapsed. Moreover, in even dimensions n > 4 they are not Kahler, since the
curvature operator is strictly positive everywhere; cf. Section 2 or [43].

In the Kéhler world, for any complex dimension n > 1, Cao [16] constructed a U(n)-
invariant steady gradient Kéhler-Ricci soliton on C”, and on the canonical bundle Kpr
of complex projective space P", and in doing so generalized Hamilton’s cigar soliton to
higher dimensions. Further generalizations were subsequently obtained by Dancer-Wang
[41], Yang [89], Biquard-Macbeth [8], the second-named author and Deruelle [36], and
more recently by Schéfer [75, 76]. Cao-Hamilton [20] showed that the underlying complex
manifold of a complete steady gradient Kéahler-Ricci soliton with strictly positive Ricci
curvature admitting a critical point of the scalar curvature must be diffeomorphic to R?".
Bryant [13] and Chau-Tam [24] independently improved this result by showing that the
underlying complex manifold of such a steady gradient Kahler-Ricci soliton must in fact be
biholomorphic to C™. As it turns out, Cao’s steady gradient Kéhler-Ricci soliton on C™ has
strictly positive sectional curvature. In light of this fact, he conjectured the following.

Conjecture 1.1 (Cao’s Conjecture [16]). A complete steady gradient Kdhler-Ricci soliton
with positive curvature on C™ must be isometric (up to scaling) to Cao’s U(n)-invariant
steady gradient Kdhler-Ricci soliton on C™.

As pointed out by Cao [16], this conjecture is true when n = 1 as the real Killing vector
field JV f provides the U(1)-symmetry. In this case, the soliton is the cigar soliton. In
higher dimensions, it is natural to investigate the local version of this uniqueness problem,
namely whether or not Cao’s soliton can be perturbed to another steady gradient Kéhler-
Ricci soliton nearby. To this end, Chau-Schniirer [23] demonstrated that Cao’s soliton
on C" is dynamically stable under sufficiently small perturbations of the Kéahler potential
which have fast decay at infinity. Uniqueness of Cao’s soliton under suitable C'' asymptotic
conditions at spatial infinity was proved by Cui [39] via Brendle’s Killing vector field method
[10, 11] (see also [29, 36, 76]).

In the more rigid shrinking soliton case, Ni [69] showed that P" endowed with the U(n+1)-
invariant Fubini-Study metric is the unique shrinking gradient Kahler-Ricci soliton with
strictly positive bisectional curvature. This condition is strictly weaker than strictly pos-
itive sectional curvature and strictly positive curvature operator on real (1, 1)-forms. In
the more flexible expanding soliton case, there is a one-parameter family of U(n)-invariant
expanding gradient Kéhler-Ricci solitons with positive curvature on C" constructed by Cao
[17]. Furthermore, the second-named author and Deruelle [37] proved that there exist con-
tinuous families of asymptotically conical expanding gradient Kéahler-Ricci solitons with
positive curvature on C". Heuristically speaking, steady Kéahler-Ricci solitons exhibit be-
havior residing on the cusp of shrinking and expanding solitons. They are particularly
delicate due to volume collapsing phenomenon [43]. It is therefore tempting to understand
the general uniqueness of positively curved steady Ké&hler-Ricci solitons.



A FAMILY OF KAHLER FLYING WING STEADY SOLITONS 3

To this end, Apostolov-Cifarelli [2] recently constructed counterexamples to Conjecture
1.1 for n = 2. More precisely, they used Hamiltonian two-forms and toric geometry to
construct a one-parameter family of U(1) x U(1)-invariant positively curved steady gradient
Kihler-Ricci solitons on C2. They also constructed complete steady gradient Kihler-Ricci
solitons on C™ with more general symmetries for n > 3. However, it is unclear whether
or not their examples exhibit positive curvature in these dimensions, hence Conjecture 1.1
remains open for n > 3.

1.2. Main results.

1.2.1. Euxistence of steady Kdhler-Ricci solitons. In our first result, we construct complete
steady gradient Ké&hler-Ricci solitons on C™ with strictly positive curvature operator on
(1, 1)-forms that are not U(n)-invariant. The condition of Rm > 0 on real (1, 1)-forms in
particular implies strictly positive sectional curvature. Thus, these steady solitons provide
counterexamples to Conjecture 1.1 in any dimension n > 2.

Theorem A. Let n > 2 and set ¢, = m
U(1) x U(n — 1)-invariant complete steady gradient Kdhler-Ricci soliton (M, g, f,p) on C"
with strictly positive curvature operator on real (1, 1)-forms such that R(p) = 1 and the
lowest sectional curvature at p is equal to c.

Then for all o € [0,¢y], there exists a

The family of steady solitons in this theorem interpolates between the product of the
cigar soliton and Cao’s U(n — 1)-invariant steady Kahler-Ricci soliton (o = 0) and Cao’s
U(n)-invariant steady Kéhler-Ricci soliton (o = ¢,). These solitons serve as the Kéhler
analog of the Zy x O(n — 1)-symmetric n-dimensional Riemannian steady Ricci solitons
from [61, 60], and so we call them Kéhler flying wings. As demonstrated in Appendix
B (cf. Corollary B.6), by comparing the respective soliton vector fields, we show that the
steady solitons of Theorem A are not isometric to those of Apostolov-Cifarelli [2]. In light
of the results from [26, 43, 69], the steady gradient K&hler-Ricci solitons of Theorem A are
all collapsed, have zero asymptotic volume ratio, and have volume growth rate bounded
below by r", where n is the complex dimension of the underlying manifold.

More generally, constructing explicit examples of complete non-compact Kéhler manifolds
with strictly positive sectional curvature in higher dimensions has long been an important
problem in Kéahler geometry. Surprisingly, not much progress was made until the mid-90s.
In earlier work [55], Klembeck constructed U(n)-invariant complete non-compact Kéhler
manifolds on C™ with strictly positive bisectional curvature BK > 0. When n = 1, the
same example was also constructed by Hamilton [51] independently and is known as the cigar
soliton. However, for n > 2, these examples do not have nonnegative sectional curvature
[88, Example 1]. To the best of our knowledge, Cao’s U(n)-invariant expanding and steady
gradient Kéhler-Ricci solitons [16, 17] are the first examples of complete non-compact Kéhler
manifolds in higher dimensions with strictly positive sectional curvature in the literature
(see [88]). Wu-Zheng [88] systematically study U (n)-invariant Kéhler manifolds with strictly
positive sectional curvature and provided more non-trivial examples with U (n)-symmetry,
exotic volume growth, and scalar curvature decay. We refer the reader to [88, 90] for a more
detailed historical account in this direction. Since positive curvature is an open condition,
one may easily generate other Kéhler manifolds with strictly positive sectional curvature
via a small compact perturbation of the Kéhler potential of the aforementioned metrics.
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Theorem A generalizes previous examples in [2, 37] by giving positively curved sub-U(n)-
symmetric examples in higher dimensions that cannot be obtained by small perturbations
of the Kéahler potential of Cao’s examples.

1.2.2. Non-almost diameter rigidity of P™. In the course of the proof of Theorem A, we
obtain a non-almost diameter rigidity result for P™. The classical Myers theorem states
that a complete Riemannian manifold (M, g) with Ric > (n — 1)¢g must have diameter
diam(M, g) < m. Cheng [27] proved that diam(M, g) = = if and only if M is isometric
to the standard sphere of radius 1. It is natural to ask whether or not “almost diameter”
rigidity holds, meaning whether or not a Riemannian manifold (M, g) with Ric > (n — 1)g
having diameter close to 7 is also close to the standard sphere of radius 1 in a certain sense.
However, the almost diameter rigidity does not hold even topologically. Indeed, there are
metrics g with Ricy > (n — 1)g and diam(g) > 7 — ¢ for arbitrarily small € > 0 on P" for
n > 2 by Anderson [1], and S* x S"~* for any k > 2 and n—k > 3 by Otsu [70]. On the other
hand, the almost diameter rigidity does hold under additional conditions: With a suitable
negative sectional curvature lower bound, Perelman proved that it is homeomorphic to S™
[72]. Very recently, Ren-Rong [74] showed that the manifold must be é-bi-Hdlder close to the
standard sphere for any 0 > 0 if local universal covers are sufficiently close to the Euclidean
ball under a uniform scale; see also [25, 34, 66] for further discussion of the almost rigidity
assuming Ric, > (n — 1)g. Finally, the almost diameter rigidity does not hold under the
even stronger curvature condition Rm > 1. The third-named author constructed examples
with Rm > 1 that are arbitrarily close in the Gromov-Hausdorff sense to an interval of
length 7 [61].

In the Kéhler case, Li-Wang [63] proved that a complete K&hler manifold with bisectional
curvature BK > 2 must have diameter bounded above by that of half of the Fubini-
Study metric, that is, §. Recently, Datar-Seshadri [42] improved a rigidity result of Liu-
Yuan [64] (see also [84]) by showing that if the diameter is equal to 7, then the Kéhler
manifold is holomorphically isometric to P"®. The next natural step then is to investigate
the almost diameter rigidity in the Kahler case. In contrast to the Riemannian case, the
Kahler structure imposes extra restrictions on the geometry of the manifold. By the results
of Mori and Siu-Yau on the Frankel conjecture [68, 83], the positive bisectional curvature
assumption already guarantees that the closed Kéahler manifold is biholomorphic to P™. It
is therefore interesting to ask if closeness to maximal diameter implies closeness to P” in a
more restrictive way, say the Gromov-Hausdorff sense, under the curvature condition. As a
byproduct of our construction, we exhibit a degeneration of a family of Kahler metrics with
bisectional curvature BK > 2 to a one-dimensional interval with optimal diameter equal to
5. This demonstrates that the almost diameter rigidity of P" in the Kéhler case does not
hold in general without further assumptions. More precisely, we show that almost diameter
rigidity of P” does not hold under an even stronger curvature condition.

Theorem B. Let n > 1. Then for all ¢ > 0, there exists a U(n)-invariant Kdhler metric
g on P™ having curvature operator Rm bounded below by 2 on real (1,1)-forms everywhere
(in particular, the holomorphic bisectional curvature BK > 2) such that

doH ((Pn,dg), [0, %]) <e.

In Theorem B, it is clear by volume comparison that the volume of g goes to 0 as ¢ — 0.
One may wonder if the almost diameter rigidity holds under an additional uniform volume
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lower bound. Indeed as mentioned in [74], counterexamples in the Riemannian case with
uniform volume lower bound were provided by Anderson [1] and Otsu [70] independently.
In the Ké&hler case, we provide counterexamples in Corollary 4.3 by finding a sequence
of U(n)-invariant Ké&hler metrics on P"* with Rm > 2 on real (1,1)-forms with volumes
uniformly bounded from below, whose diameters converge to 5, but whose metrics are not
close to half of the Fubini-Study metric in the Gromov-Hausdorff sense.

The precise definition of curvature operator Rm > 2 on real (1, 1)-forms is given below in
Definition 2.22. In particular, we show that this curvature condition implies that the holo-
morphic bisectional curvature BK > 2. The curvature condition Rm > 0 on complex-valued
(1, 1)-forms is also known as strictly positive complex curvature operator and was studied
in [19, 26, 82, 88]. Here, we study the curvature condition Rm > 2 on real (1,1)-forms,
and show that it is equivalent to the condition that the Kéhler cone over the corresponding
Sasaki manifold has Rm > 0 on real (1, 1)-forms in the transverse directions. Moreover,
these Kéahler cones can be smoothed out by expanding Kéahler-Ricci solitons with Rm > 0
on real (1, 1)-forms by a result of the second-named author and Deruelle [37]. Theorem B
therefore implies

Corollary C. Let n > 2. Then for all € > 0, there exists a U(1) x U(n — 1)-invariant
expanding gradient Kdhler-Ricci soliton on C™ with Rm > 0 on real (1,1)-forms whose link
(S?"=1 h) satisfies

daH ((S2n_1,dh), [O, %]) <e.

1.3. Outline of proofs. We begin by recalling some classical methods that have been used
to construct Ricci solitons and explain their relevance to our construction.

ODE methods: If the metric is assumed to satisfy certain symmetries, then both the
Einstein and Ricci soliton equation reduce to a family of ODEs. In the Riemannian case,
assuming rotational symmetry, Hamilton constructed the two-dimensional cigar soliton [51]
and Bryant constructed the n-dimensional Bryant soliton for all n > 3. Appleton [3]
constructed four-dimensional U (2)-invariant, non-collapsed, non-Kéhler steady solitons on
the line bundles Op1 (k), k > 2, over P*.

In the Kéhler case, assuming U (n)-symmetry, Cao [16] and Koiso [57] found shrinking
Kihler-Ricci solitons on twisted projective line bundles over P"~! for n > 2. Cao [17] also
constructed a one-parameter family of complete expanding Kéahler-Ricci solitons on C™, and
steady Kéhler-Ricci solitons on C™ and on the blow-up of C"/Z,, at the origin. Feldman-
Ilmanen-Knopf [48] then constructed the corresponding blow-down shrinking Kéhler-Ricci
soliton; see [15, 18, 40, 41, 47, 50, 53, 71, 87] for more examples using ODEs.

Continuity methods: In [79], Siepmann used the continuity method to construct expand-
ing Kéhler-Ricci solitons coming out of Ricci-flat Kéhler cones. Deruelle [44] extended
the continuity method to the Riemannian case by constructing expanding gradient Ricci
solitons coming out of positively curved cones. In [37], the second-named author and Deru-
elle extended the aforesaid work of Siepmann by using the continuity method to construct
expanding Kahler-Ricci solitons emanating from Kéhler cones with Rm > 0 on real (1, 1)-
forms. The key ingredient in the continuity method is to show that a deformation of
the cone metric can be lifted to a deformation of the expanding gradient Ricci soliton.
This relies on the invertibility of the linearized operator of the expanding soliton equation,
which is true under the assumption of suitable positive curvature conditions. Recently,
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Bamler-Chen [6] developed a new continuity method using degree theory that only requires
nonnegative scalar curvature. In this situation, the linearized operator is not necessarily
invertible. We also refer the reader to the following related works for expanding solitons:
[21, 22, 28, 29, 38, 46, 62, 65, 77, 79].

Collapsing methods: In [61], the third-named author observed an intricate relationship
between expanding and steady gradient Ricci solitons. Namely, for any sequence of expand-
ing Ricci solitons with collapsing asymptotic volume ratio, zooming in on the points with
the highest curvature, a steady Ricci soliton can be observed. A major step is to find a
sequence of cone metrics with collapsing asymptotic volume ratios which themselves can be
lifted to expanding gradient Ricci solitons by the continuity method. Finding a collapsing
sequence of cone metrics is equivalent to finding a sequence of metrics on the link of the cone
with collapsing volumes. Depending on the curvature conditions of the expanding solitons,
the collapsing links should also satisfy certain curvature conditions.

In the Riemannian case [61], the links need to satisfy Rm > 1 for the cones over them
to be lifted to expanding Ricci solitons with Rm > 0 [44]. Here, we require the link to be
a Sasaki metric on S?"~! over a Kihler metric on P*~! with Rm > 2 on real (1, 1)-forms.
We show that this is equivalent to the corresponding cone having Rm > 0 on real (1, 1)-
forms. These cones can therefore be lifted to expanding gradient Kahler-Ricci solitons with
Rm > 0 on real (1, 1)-forms by work of the second-named author and Deruelle [36]. In the
following, we explain the construction of the desired metrics on P! and outline the proof.

In Section 2, we include some preliminaries on Kéhler and Sasaki geometry, as well as
the U(1) x U(n — 1)-invariant K&hler cone metric on C" induced by a U(n — 1)-invariant
metric on P!, The details of the curvature computations are contained in Appendix A.

In Section 3, we construct a sequence of smooth Kéhler metrics on P*~! with Rm > 2 on
real (1, 1)-forms that converge to the interval [0, 5] in the Gromov-Hausdorff sense. We do
this by first writing the Fubini-Study metric on P*~! as a doubly warped product over the
interval [0, %] Then, by scaling down the two warping functions, we obtain a sequence of
singular metrics collapsing to the interval [0, 7] with singularities at 0 and 7, and satisfying
Rm > 2 on real (1, 1)-forms on the smooth part. By cutting off the conical singularity at 0
on arbitrarily small scales and gluing back a portion of a suitable Cao’s expanding soliton,
we can approximate the singular metrics by smooth Kihler metrics on P*~! with Rm > 2
outside of an arbitrarily small neighborhood of 0, and with Rm > 0 everywhere.

In Section 4, we take a limit of Ricci flows starting from these approximating metrics, and
obtain a Ricci flow starting from each singular metric which smooths out the singularities.
We show that the Ricci flow satisfies Rm > 2 everywhere at all positive times. This yields
the almost non-rigidity result of Theorem B.

In Section 5, we lift the sequence of Kihler metrics on P*~! in Theorem B to a sequence
of expanding Kéahler-Ricci solitons with Rm > 0 on real (1, 1)-forms. We will show that
they converge to a steady soliton asymptotic to a two-dimensional sector of angle 7, and
the soliton splits off a cigar factor. Then, using the same interpolation construction of the
third-named author from [61], we obtain the family of solitons of Theorem A. In Appendix
B, we show that these solitons are not isometric to those of [2].
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2. PRELIMINARIES

2.1. Kahler cones and Sasaki metrics. In this subsection, we recall several useful no-
tions and definitions, in particular that of a K&hler cone and Sasaki metric. For basics
in Kéhler geometry, we refer the reader to Huybrechts [52]. For a more comprehensive
reference for Sasakian geometry, we refer the reader to Boyer-Galicki [9].

We begin with

Definition 2.1 (Riemannian cone). Let (S, g) be a compact connected Riemannian mani-
fold. The Riemannian cone Cy with link S is defined to be Ry x S with metric gy = dr?®r3g
up to isometry. The radius function r is then characterized intrinsically as the distance from
the tip in the metric completion. We normally identify S with the level set {r = 1}.

Then we have

Definition 2.2 (Ké&hler cone). A Kdhler cone is a Riemannian cone (Cp, go) such that go
is Kahler, together with a choice of go-parallel complex structure Jy. This will in fact often
be unique up to sign. We then have a Kéhler form wo(X,Y) = go(JoX,Y), and wy = %857‘2
with respect to Jy.

The vector field 70, on a Kéahler cone is real holomorphic and £ := Jyrd, is real holomor-
phic and Killing. This latter vector field is known as the Reeb field. The closure of its flow
in the isometry group of the link of the cone generates the holomorphic isometric action
of a real torus on Cj that fixes the tip of the cone. We call a Kéhler cone “quasiregular”
if this action is an S'-action (and, in particular, “regular” if this S'-action is free), and
“irregular” if the action generated is that of a real torus of rank > 1.

Given a Kéhler cone (Cy, wp = %857’2) with radius function r, it is true that

(2.1) wo =rdr An+ %rzdn,
where
(2.2) n=1i(0 — d)logr = d°log(r)

restricts to a contact form on the link {r = 1} of Cy and we define d° :=i(d — 9). Clearly,
any Kéhler cone metric on L*, the contraction of the zero section of a negative line bundle
L over a projective manifold, with some positive multiple of the radial vector field equal to
the Euler vector field on L \ {0}, is regular. In fact, as the following theorem states, this
property characterises all regular Kéahler cones.
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Theorem 2.3 ([9, Theorem 7.5.1]). Let (Co, wo) be a reqular Kdihler cone with Kdihler cone
metric wg = %887"2, radial function r, and radial vector field rd,.. Then:

(i) Cp is biholomorphic to the blowdown L* of the zero section of a negative line bundle
L over a projective manifold D, with a - r0, equal to the Euler field on L\ {0} for
some a > 0.

(ii) Let p : L — D denote the projection. Then, writing wy as in (2.1), we have that
$dn = p*w” for some Kdhler form w™ on D with [w"] = 2ra - ¢1(L*).

Evidently, the flow generated by the vector fields {rd,, £} produces the standard C*-action
on the fibres of L. We give the Kihler form w” a special name.

Definition 2.4. The Kihler form w’ on D from Theorem 2.3(ii) is called the transverse
Kiéhler form of wg on D, with the corresponding Kahler metric g7 called the transverse
Kahler metric.

In light of (2.1), the Kéhler cone metric gg associated to wy takes the form
(2.3) go = dr® +r*(n* + p*g").

As the next example demonstrates, Theorem 2.3 is reversible in that one can always
endow L* with the structure of a regular Kéhler cone metric.

Example 2.5 (]9, Theorem 7.5.2]). Let L be a negative line bundle over a projective
manifold D and let p : L — D denote the projection. Then L has a hermitian metric h
with negative curvature. Locally, h is defined by a smooth nonnegative real-valued function
which, by abuse of notation, we also write as h. This is just the norm with respect to h of
the unit section in a local trivialisation of L. The real (1, 1)-form i99log h then defines a
(global) Kéahler form on D.

Set r2 = (h|w[?)® > 0 for any a > 0, with w the coordinate on the fibre. Then %
defines the Kéahler potential of a Kahler cone metric on L*, the contraction of the zero
section of L, with Ké&hler form wy = %857’2 and radial vector field 70, a scaling of the Euler
vector field on L\ {0} by 1. Finally, writing wp as in (2.1), we have that $dn = p*w”, where

w? = a-i001log h is the tranverse Kihler form, a Kéhler form on D with [w’] = 27a-c; (L*).

As a specific example, we have

Example 2.6. In Example 2.5, one can consider the holomorphic line bundle
7 ¢ Opn-1(—1) — P"! endowed with the hermitian metric h whose curvature form is
—wrg, that is, negative the Fubini-Study metric on P*"~! [52, Example 4.3.12]. For any
a > 0, consider the Kihler cone metric defined by 72 = (h|w|?)?, with w the coordinate on
the fibre. The corresponding Kéahler cone via the usual identification of the blowdown of
the zero section of Opn-1(—1) with C" resulting from the construction is C" endowed with
the Kéhler cone metric wy = £00r? = £99(|z|**), with the Reeb vector field ¢ a scaling by
% of that whose flow rotates the Hopf fibres with period 2zx. In this case, the transverse
Kéhler form is given by § - wpg. Clearly, when a = 1, we obtain the flat metric on C".

One may deform a Kahler cone to generate more examples in the following way:.

Definition 2.7 (Type II deformation). Let (Cp, wy = 500r?) be a Kéhler cone with
complex structure Jy and let ¢ : Cp — R be a smooth real-valued function satisfying
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Lo, = Ly, = 0 with @g = 299(r?e*?) > 0. Then (Cj, @), a Kihler cone with radius
function 7 := re® and radial vector field 70; = rd,, is called a deformation of type II (of

(Co, wo))-
Let 77 = i(0 — 0)log#. Then by (2.1), @ may be written as

o = %aé(ﬂe%) R AT+ %f2dﬁ R A+ %#(dn 08y,
We refer the reader to [9, Section 7.5.1] or [49, Proposition 4.2] for more details.

The link of a Kahler cone is called a “Sasaki” manifold.

Definition 2.8 (Sasaki manifolds). A compact (odd real dimensional) Riemannian mani-
fold (S, g) is Sasaki if and only if the Riemannian cone over (5, g) is a Kéhler cone.

A Sasaski manifold (5, g) is naturally a contact manifold with contact form 7 and Reeb
vector field given by the restriction of (2.2) and £ to {r = 1} = S| respectively. We will only
consider regular Sasaki manifolds, i.e., those Sasaki manifolds for which the corresponding
Kéhler cone Cj is regular. Then via Theorem 2.3(ii), we have a map p : Cy — D onto a
compact Kéhler manifold (D, gT), where g7 is the transverse Kihler metric whose Kéhler
form wT satisfies %dn = p*w’. Moreover, restricting p to S = {r = 1}, we get a map
p: (S, g) = (D, g"") which is a Riemannian submersion, as g = 1> + p*g” thanks to (2.3).
This realizes S as the total space of an S'-bundle over D, the fibres of which are precisely
the orbits of the flow of &.

Example 2.9. In the Kéhler cone described in Example 2.6, the corresponding Sasaki
manifold (S, g) is the (2n — 1)-sphere S = S?"~! with g the round metric of curvature
L, p: (St g) — (P, ¢7) is the Hopf fibration, and g7 = %gpg is the Fubini-Study
metric on P"~! normalised so that Ric(grs) = ngrs. The contact form 7 in this case is the
restriction of the one-form d°logr to S?"~! c R?".

For more details on Sasaki manifolds, we refer the reader to [9].

2.2. Doubly warped product metrics. In this section, we introduce doubly warped
product metrics and highlight the key features of such metrics that we need.

For n > 2, let (M, g, n, £) be a (possibly irregular) (2n — 1)-dimensional Sasaki manifold
as defined in Definition 2.8, with Sasaki metric g, contact one-form 7, Reeb vector field £, and
tranverse Kihler metric g”. For a given connected open interval I = (0, L) C R, L > 0,

we define on the real 2n-dimensional manifold M := M x I a doubly-warped product
Riemannian metric § by
(2.4) §i=ds? + aX(s)n? + (s)g",

where s is the coordinate on (0, L). Without loss of generality, we assume that a(s), b(s) >
0. The archetypical example of this construction is the Kéahler cone itself.

Example 2.10. Set a(s) = b(s) = s and L = co. Then one obtains on M the Kéhler cone
over the Sasaki manifold (M, g).

We endow M with a complex structure in the following way. Since (M, g) is Sasaki, we
know that the cone Cyp = M xR over M is Kéhler, and is in particular a complex manifold
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with complex structure we denote by Jy. Let r denote the coordinate on the R, -factor of
Cy. We define a map ¢ : (0, L) — (0, co) as the unique solution to the ODE:

a(s)¢'(s) = (),
. Lo

s _du

This is given explicitly by ¢(s) = e % (W Then since @' (s) > 0 for s > 0, ¢ defines a
diffeomorphism onto its image. We define a map ® : M — Cy by O (z, s) = (x, ¢(s)). This
is also a diffeomorphism onto its image, and so we define a complex structure on M by
J := ®*Jy. By construction ®,(a(s)d;) = rd,, and so J(a(s)d;) = &.

It turns out that ¢ is hermitian with respect to J with fundamental form given by
& =9(J(), ) = a(s)ds An—+b(s)’w’.
We give necessary and sufficient conditions for when (]\/4\ , 0, J ) is Kéhler.

Lemma 2.11. (]\7, g, J) is Kdhler if and only if a(s) = b(s)b/(s). If this is the case, then
the Kdahler form @ of (M, g, Jy) is given by

e (1w
5= dd <2/%a(u)d>,

Proof. The fundamental form @ of § is given by

(2.6) & = a(s)ds A+ b(s)?w,

Clearly do = 0 if and only if a(s) = b(s)b/(s). Here we use the fact that dn = 2w? .
Regarding the last statement, it is clear that from (2.6) that

G=d <%b(s)2n> .
Now, in light of (2.5), we can write
P (PO o, s
n= Og(S) =d lOg(¢(S)) - Qb(S) d°s = a(s)'

The desired expression follows. O

where d¢ =1 (5 — 8).

This leads us on to our next examples. The first illustrates the fact that the Fubini-Study
metric on P" can be realized as a doubly warped product.

Example 2.12 ([73, p.17]). Let (M, g, n, &) be the round Sasaki structure on 277!, set
a(s) = sin(s)cos(s) = %sin(2s) and b(s) = sin(s), and let I = (0, ). Then the doubly
warped product metric closes up at 0 by adding a point and at § by adding a P"~!. The

resulting metric is one half of the Fubini-Study metric on M = P". In light of Lemma 2.11,
the Kéhler form wgg of the Fubini-Study metric may be written as

1 10 1 7
§wFs = dd <§/T tan(u) du) = §dd (Insec(s)) on M x (0, 5)

1

The next example yields complete doubly warped product Kéhler metrics on P".
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Example 2.13. Again working with the round Sasaki structure on the (2n — 1)-sphere
(8271, g), realized as an S'-bundle p : (S?"71, g) — (P" 1, g7) over P"~! via the Hopf
fibration, with transverse metric g7 = %ng, one half of the Fubini-Study metric gpg on
P! normalised so that Ric(grs) = ngrs (cf. Example 2.9), the doubly warped product
construction yields Kihler metrics on (0, L) x S?"~1 which close up at 0 by adding a point
and at L by adjoining a P*~! to give a complete Kihler metric on P” if and only if a and
b can be extended smoothly to 0 and L such that

(2.7) a®m™0) =0, dO0)=1, «“(IL)=0, d(L)=-1,
and
(2.8) peven) 0y =0,  V(0)=1, beM(@)y=0  bL)>0.

(The smoothness condition at s = L was also considered by Tran [86, Lemma 3.3].) One
can verify that one half of the Fubini-Study metric on P, considered in Example 2.12 where
L =12, a(s) = 3sin(2s), and b(s) = sin(s), satisfies these conditions. These conditions have
the following inferences for the functions a and b. Using [67, Lemma 2.1], we can write
them in the following way:

(2.9)
1

a(x) = xg1(x) for z € [0, L), g1(0) = a’(0) =1, and ¢} (0) = 5&”(0) =0,

(L —2x)g2(L — ) for z € (0, L], g2(0) = —a’(L) = 1, and g¢4(0) = %a"(L) =0,

=}
—~

8
~

I

b(x) = xgs(x) for z € [0, L), and g3(0) = ¥'(0) = 1, and g¢4(0) = 1b”(O) =0,

2
b(x) =b(L) + (L — x)gs(L — x) for z € (0, L], g4(0) = —b'(L) = 0,
1

and g3(0) = 5b"(L) =0,
where g;(x), i = 1,...,4, are smooth functions.
Assume that a and b are chosen so that [0, L] x $?"~! is smooth at 0. Let ¢; — 0 be a se-
quence of positive numbers converging to zero. Then the rescaled metrics

ds? + (t;'a(tis))>n @ n + (t;7'b(tis))2g" converge smoothly locally to the Euclidean metric
ds® + s*n ®n + s2g7 on C" (realized as a Riemannian cone over S?"~!; cf. (2.3)). The
smooth convergence immediately implies that a(0) = b(0) = 0 and a/(0) = /(0) = 1. In
fact, by rewriting the metric under the Cartesian product as in [73, Chapter 1, Sections 3.4
and 4.3], one can see that the pair of conditions (2.7) and (2.8) are necessary and sufficient
for smoothness at 0 and L.

2.3. U(1) x U(n — 1)-Kéahler cone metrics on C" coming from U(n — 1)-invariant
metrics on P"~!. In this section, we will demonstrate how to construct U(1) x U(n — 1)-
Kahler cone metrics on C" from the following data. The main result of this section is
Proposition 2.17.

Let n > 3 and recall Example 2.13 in the case of the round (2n — 3)-sphere (5?2773, g)
realized as an S'-bundle p : (S?"73, g) — (P"2, g7) over (P"2, g7) with 297 = gpg,
the Fubini-Study metric on P"~2 normalised so that Ric(grs) = (n — 1)grs. We consider
doubly warped product Kihler metrics on S?"~3 x (0, L), L > 0, of the form

(2.10) g =ds>+a(s)*n® +b(s)*g".
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Here s is the coordinate on the interval (0, L) and 7 is the contact form associated to the
round Sasaki structure on $2"~3 (see Example 2.9). Write w” for the Kéhler form associated
to g7. We have that a(s) = b(s)b'(s) by Lemma 2.11 because § is Kéhler, and in addition
that (2.7) and (2.8) hold true so that, as described in Example 2.13, g closes up smoothly
at the endpoints of (0, L) to give a warped product Kihler metric g on P"~!. Without loss
of generality, we can assume that a(s) > 0. Then, as written in Lemma 2.11, the K&hler
form @ of g can be written as

@ = a(s)ds An+b(s)*w’ = dd° <% /8 b(u)’ du) ,

L a(u)
and the corresponding volume form can be computed as
"t =(n—1)-a(s)-b(s)™ *ds An A (w2
In particular,

(2.11)

/]P\m 1

where ¢(n) > 0 is a dimensional constant and where we have used (2.8) and the fact that
a(s) = b(s)b/'(s).

We begin by proving some preliminary lemmas before stating and proving the main result.

c(n)b(L)?"—2
2n —2

€l

> 0,

L L
n=1 _ .(n als) - b(s)2" 4 ds = c(n b (s) b(s)*"3ds =
_()/0()b() d <>/0b<>b<> d

Lemma 2.14. The map ¢ : (0, L) — (0, co) defined by

1s invertible.

Proof. Since a(s) > 0 by assumption, we see directly that ¢/(s) > 0 for s € (0, L) so that
¢(s) is strictly increasing. In addition, in light of (2.9), with [go(L —2) — 1| < 3 for z in an
interval of the form (0, €) for some € > 0 sufficiently small, we see that for s € (L —¢, L),

/s du _/L_6 du +/s du >C+g/s du
ralw) Jrooalw)  Jpca(w) T 3Jp . L-u

which tends to +00 as s — L~. Similar behavior occurs as s — 0T, hence ¢(s) is indeed a
diffeomorphism. O

Let (w1, ...,wy) henceforth denote holomorphic coordinates on C”.

Lemma 2.15. Define a function §: C"\ {0} — [0, L] by

0 ifwe =...=w, =0 (and wy #0),
n 12
S(wi,...,wy) =8 ¢! (%ﬁ”) if wi # 0 and wj # 0 for some j > 2,
ifw1 =0.

Then § is continuous and invariant under the diagonal C*-action on C™.
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Proof. The function § is clearly invariant under the diagonal C*-action on C". As such,
it descends to a function that we denote by 5 : P"~! — [0, L] on P"~1. To complete the
proof of the lemma, it suffices to show that 5§ is continuous in the induced homogeneous
coordinates [wy : ... :wy] on P71,

To this end, since ¢ extends to a continuous function with ¢(0) = 0, § is clearly continuous
on the open subset {[wy : wa : ... : w,] € PP 1wy # 0}. Let 2 < j < n and consider the
chart {[wy : wg : ... wy] € PP w; # 0}. In this chart, we see that for w; # 0,

Since the quantity inside the parentheses tends to 400 as w; — 0, we see that § is continuous,
as required. O

Lemma 2.16. Define a function ¢ : C"\ {0} — R by

sy —a [ s 24
<,0(w):2/A W) du—0b(L) - In{1l4+e % ,

2

l

where § is the function defined in Lemma 2.15. Then @ is smooth and invariant under the
diagonal C*-action on C™.

Proof. Since ¢ is a function of § only, and § is invariant under the diagonal C*-action, @
has the same property. As such, it descends to a function ¢ = @(3) : P"~! — R, where 3 is
as in the proof of the previous lemma. To complete the proof of the lemma, it suffices to
show that ¢ is smooth in the induced homogeneous coordinates [wy : ... : w,] on P*~1,

To this end, with s still denoting the coordinate on the (0, L)-factor, let 7 : (0, L) —
(0, %) be the unique solution of the ODE

{ a<(3>r/<s> = 35(2r(s)),

Then

7(s) = arctan <ef% aﬁ)) = arctan(¢(s))

and hence is a diffeomorphism.

Next recall from Example 2.12 one half of the Fubini-Study metric on S?"~3 x (0, %),
the Kéhler form of which is given by

t
(2.12) %WFS = dd° (%/ tan(u) du) = %ald/c (Insec(t))
i

with ¢ the coordinate on the interval factor. 7(s) has the additional property that 7.(a(s)ds) =
$sin(2t)0; and so we have an induced biholomorphism

1
T:(S23 % (0, L), @) — <S2"—3 X (o, g) , §wF5> ,

T(x, s) = (x, 7(s)) = (z, arctan(4(s))),

(2.13)
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which extends over the endpoints in the obvious way to give an automorphism of P?~1:
T:((S* 3 % (0, L)) u{0}uU (P" % x {L}), @)

= (s (0. 3)) utor (22 x {3) . Jors )

Notice that T*t = 7(s) = arctan(¢(s)) and that

T (%Ws) — e (% / " an(u) du) _ %ddc (Insee(r(s)))

s

s du \ 2
- iddo <1n <1 + <e 3 ““")) )) = iddc (In [1+ (¢(s))%)] -

Now @ lies in a positive multiple of the Kahler class of T* (%ng), and so there exists
a smooth real-valued function ¢ : P*~! — R, defined up to addition of a constant, and
¢ > 0 such that @ — ¢TI (3wps) = i0dyp. In light of (2.11), we see that ¢ = b(L)%. On
S§?n=3 % (0, L), we can write

1 - _ 1
5dd°p = i00p = & — b(L)*T* <§wFs>

s 7 2 7 2 s _du_
zlddc /b_(L)du—Mln<1—l—62%“(“)> )
2 L a(u) 2

Using the expansions of (2.9), it is easy to show that the function inside the parentheses
on the right-hand side has a C?-continuation over s = 0, i.e., the function and its first and
second derivative with respect to s extend as continuous functions over s = 0. The function
also admits a C?-continuation over s = L. To see this, again use the expansions of (2.9)
and rewrite the function in the following way:

EI A 2 5 2 s _du
/ blu)” du — b{L)” In <1 + ek a“”)

L a(u) 2
$ (b(u)? — b(L)? b(L)? -2 [}
L[ (R g P (i)
L a(u) 2
In addition, its first derivative with respect to s vanishes when s = 0, L, and so the gradient
and Laplacian of this function both extend as continuous functions to the whole of P*~ 1.
With the Laplacian of this function vanishing, an integration by parts argument now implies
that

s B(u)2 _ 9 23 _du
(2.15) ©— 2/ —— du+ b(L)"In <1 +e 7 “(“)> is constant.
L a(u)

(2.14)

In particular,

s 7 2 s _du
2/ b(u) du — b(L)?*In <1 + ol “(“)>

L a(u)
is smooth on P"~! because ¢ is.

We next define a biholomorphism

U (52"—3>< (o, g))U{O}%{[wl St wn] € PP g # 0}



A FAMILY OF KAHLER FLYING WING STEADY SOLITONS 15

in the following way. Choose an automorphism of the round Sasaki structures
NS e = (21,00, 2001) €CVTH 2] = 1)

and set

{ v(0) :)[ '0],

U(x, [1: c2p_1] = [1: M) - tan(t)] for t > 0 and z € S?"3.

Note that ¢ : (0, ) — ¥ (t) := tan(t), is a diffeomorphism so that ¥ is one also.
Moreover, (t) is the unlque Solutlon of the ODE

{ Lsin(26)9/(s) = u(1),
bE) =1,

hence ¥ in addition satisfies W, (1 sin(2¢)0;) = r0,, where r(2)* = St zif? Thus, ¥ is
indeed a biholomorphism. Notice by construction that U*r = ot = tan(¢) and so in light
of (2.12), ¥ extends in the obvious way to a holomorphic isometry

. @2n-3 E n—2 . n—1
sz.(S ><(0,2>>U{0}U(]P’ {2})%{[ Cwp] € P
of P! with respect to the Fubini-Study metric.
Recall that ¥*r = tan(t) and that 7%t = 7(s) = arctan(¢(s)). Set

P:=0=UoT: (S x (0, L) U{0}U (P 2x{L}) = {[wr :wa:...:w,) €P" '}
Explicitly, ® is given by
®0)=[1:0:...:0],
(2.16) L3t

for s > 0 and x € §273,

O(x, s) = [1 cAz) - o(s)] =[1: A(z) ez
Since ®*r = ¢(s), we see directly that ®*§ = s. Thus, in light of (2.15), we find that
(2.17) 08 (5 — 8 3(3)) = 100 (9 — B(5)) = 0,

and so ¢ is smooth, as required. O

The main result of this subsection is the following.

Proposition 2.17. Let n > 3.

(1) Let g be a Kihler metric on P"~1 with Kdhler form @ invariant under the U(n — 1)-
action defined by matriz multiplication on the last (n — 1)-homogeneous coordinates on
P!, Then there exists L > 0, a smooth function s : P"~1 — [0, L], and smooth functions
a,b: [0, L] — [0,00) with a(s) = b(s)V'(s) satisfying (2.7) and (2.8) such that g can be
written as a doubly warped product

g=ds* +a(s)n* +b*(s)g"

on 8?3 % (0, L). Here, (S*"~3, g7, n) is the standard round Sasaki structure on S*"~3 as
described in Example 2.9.

(2) Let o : C"\ {0} — R be as in Lemma 2.16 and let g be Kdhler cone metric on C™\ {0}

defined by the radial function #(w) = |w|PE)*eP®@) (cf. Definition 2.7). Let &1 denote the
tranverse Kihler form on P"~1. Then:
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(a) g is invariant under the U(1) x U(n — 1)-action on C™ defined by
U1)xU(n—1)3 (a, A) - (2, w) €CxC" ' = (a2, Aw).

(b) The induced Sasaki metric h on {7 = 1} =2 S?"~! satisfies

(2.18) diam(P" 1, §7) < diam(S?"~ 1, h) < diam(P" 1, §7) + wb(L)>
and
(2.19) volp (S~ 1) < 2mb(L)? volyr (P"1).

(c) @ depends smoothly on § and there exists a biholomorphism ® such that &7 =
(@~ 1)*w.
Remark 2.18. Since ¢ is smooth and invariant under the diagonal C*-action on C™ \ {0}
by Lemma 2.16, it descends to a well-defined smooth real-valued function ¢ on projective

space. The fact that 7 does indeed define the radial function of a Kéahler cone metric on
C™\ {0} then follows from item (2c) of the proposition.

Remark 2.19. A version of Proposition 2.17 also holds when n = 2. In this case, the
Kihler metric g is a warped product on (0, L) x S* of the form

Jg= ds® + d2(s)n2

and a(s) satisfies (2.7). We define another function b(s) := /2 [, a(7) dr. Then an induc-
tion argument shows that b(s) satisfies (2.8). With this, the proof of Lemmas 2.11, 2.14,

2.15, and 2.16, as well as that of Proposition 2.17, can be carried through. We leave the
details to the interested reader.

Proof. (1) We begin by showing that g takes the form of a doubly warped product as stated.
Many of the ideas we use come from [16].

First recall from Example 2.9 the round Sasaki structure on S27~3

with contact one form
n and transverse Kéhler form w’ = %wFS, one half of the Fubini-Study metric gpg on P"~2
normalised so that Ric(grs) = (n — 1)grs. Let z = [21 : ... : z,_1] denote homogeneous
coordinates on P?~1. The fact that g is invariant under the stipulated action means that the
restriction of g to the open set {29 # 0} C P"~! is invariant under the standard U(n — 1)-
action on the holomorphic coordinates (z1, ..., 2z,—1) induced from the standard coordinate
chart covering the aforesaid open set. Let |z| =: r: C"~! — R and write r? = e!. Being
U(n — 1)-invariant, we know that @ = £00®(t) for ® : R — R a given smooth function.
Thus, recalling that d := (9 — 9) and n = d°log(r) = 3d°t, we can write

dt d°t dt

—_i 3 _1 c - Y 1 c " i “r T ! W
© = S00®(t) = dd°®(t) = /() 7dd°t + O"(t) - A — = p(t)w” + /()5 A,

where u(t) := ®'(t) is a smooth function on (—oo, 00).

In defining a metric, we clearly have that both u(t), p/(t) > 0. We claim that @ is a
doubly warped product Kéhler metric of the desired form with L = diam(P"~!, g). To see
this, set

1 t
s(t) = 5/ Vi (T)dr for all t € R.
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Then since w is in particular rotationally symmetric, the Euclidean radial line emerging
from the origin is also a minimizing geodesic. Hence s(t) is well-defined as it is the distance
from the origin to any given z € C"~! with ¢t = 21In |2|.

Next observe that s'(t) = é(t) > 0 and so t can be written as a function of s. Let
= i t =i t).
S1 t_}gloos( ) and s2 = lim s(t)

Then g is a warped product metric over the interval (s1, s9) with

a(s) == /p/(t(s))  and  Bb(s) == /pu(t(s)).

We claim that it is of the desired form. Indeed, for all s € (s1, s2), we have that

W) At ) 2

b(s)b/(s) = — = =a(s

(W s) = G = P =)
and

GJ:u(t)wT—F,u/(t)%An:5(3)2wT+EL(s)dsAn.

By the completeness of the metric, we see that

s;= lim s(t)=0 and sy = lim s(t) = diam(P""!, §) = L,

t——o00 t—o00

and by the arguments as laid out in Example 2.13 that (2.7) and (2.8) hold true, as required.
We now prove the remaining items of the proposition.

(2a) Recall the definition of § from Lemma 2.14. Since ¢ depends only on § which, by
its very definition, is invariant under the action prescribed, it is clear that @, and hence 7,
is also.

(2b) There exists a Riemannian submersion p : (S?*~1 k) — (P*~1 §7) which is an S!-
bundle with S'-fiber parametrised by the flow of the Reeb vector field ﬁ. Moreover, the
Sasaki metric h on {r = 1} is given by

h=(b(L)*n +i(0 — 0)p) ® (b(L)*n +1i(d - 9)@) + p*g",

where 1 and £ are the standard contact form and Reeb vector field of the flat Kéhler cone
C™\ {0}. Using the fact that

[((0 = 0)@)(¢§) = d°B(&) = L —d(§- §) =0

because @ is invariant under the diagonal C*-action generated by £ and J¢, we see that the
length of the S'-fiber of p is bounded above by 27b(L)?. (2.18) thus follows. We next apply
the coarea formula to p to see that (2.19) holds.

(2c) We know that in homogeneous coordinates [wy : ... : w,] on P*~! induced from
holomorphic coordinates (ws,...,w,) on the ambient C", T is given by

2

1 b(L ~
(2.20) of = 5dd*log 7 = wrs + 100,
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where ¢ is as in the proof of Lemma 2.16. As a holomorphic isometry, we then see that

e’ = E(?prs +i00(V*p)
= @y (8T (Jors) +i00(w o 7))
= (T7') (b(L)QT* (%m) + ia@s@) = (T,

where we have used (2.17) followed by (2.14) in the last two equalities. Hence @ = (®~1)*,
where ® = ¥ o T as in (2.16).

Finally, note that by (2.11), b(L) is determined by, and hence depends smoothly upon,
volg(P"~1). Hence in light of (2.20), showing that &7 depends smoothly on § comes down to
showing that ¢, or equivalently ¥*@, depends smoothly on g (as a function on the interval
[0, §]). To this end, observe from (2.14) that

b(L)?
2

Contracting this equation with grg, the Fubini-Study metric, we see that, after imposing
that ¢ (%) =0, ¥*¢ is the unique solution of the following elliptic PDE:

TL_ 2
(2.21) { By = trgpg ((T71)0) - 22,
u(3)=0.

100 (U*) = 108 (T7)0) = (I @ -

WESs.

Now, from (2.13), we read that the map 7! is determined by the map
r1=¢totan: (0, g) —R

and from its very definition we see that ¢ is defined in terms of data that is determined
by g, namely L which is equal to diam(P"~!, §), s which is the distance from the point
[1:0:...:0] € P! and a(s)? which is the norm [g(¢, £)](s) of the Reeb vector field ¢
of the round Sasaki structure on S?"~3. Thus, we deduce that ¢~! depends smoothly on
g. It is now clear that the right-hand side of (2.21), and as a result its unique solution w,
depends smoothly on g. This concludes the proof of item (2c). d

2.4. Positive curvature conditions. In this subsection, we introduce several notions
of positive curvature and their relation on Kéahler manifolds. Throughout, we adopt the
following convention of the curvature tensor (see also (A.1)):

R(X,Y)Z = Vx (VvZ) = Vy (VxZ) = Vix v 2
Let us recall the notion of the curvature operator and its lower bound on (1, 1)-forms on a

Kéhler manifold (see [19, 26, 82]).

Definition 2.20. Fix any p € M, we say that a Kéhler manifold has curvature operator
Rm strictly greater than (or bounded below by) 2\ € R on (1,1)-forms at p if for any

nonzero (1,1)-form i§,5dz* A dz? at p,

(2.22) _Raﬁwggaﬁﬁ > (> resp.) 2M\(Go 30,5 + Qagﬁ,yg)faﬁ@w,
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where €29 = g2 gP¢, .

Note that the negative sign before R in (2.22) (as well as (2.23) below) is due to the
convention we adopt in (A.1). We may reformulate the condition above in a simpler manner
in terms of curvature operator on real (1, 1)-forms.

Definition 2.21 (Real (1, 1)-form). Let (M, J) be a complex manifold of dimension n
with complex structure J. A real (1, 1)-form o on M is a real two-form o on M satisfying
either one of the following two equivalent conditions:

(D) a(J(), J() = ol );

(2) In local holomorphic coordinates (z1,...,z2,) on M, the complex bilinear extension
oc of o to (TM @ C)®? takes the form o¢ = iu,zdz* A dz”, where (Uqj3)ap is hermitian,
Le., U,5 = ups for all a and .

By the symmetry of the curvature tensor, it induces a symmetric linear operator
Rm : A%2(M), — A%(M),, such that for any u € A%(M),,

Rm(u)ij = Rijrig™ ¢ vap,

where A2(M), is the space of real 2-forms at p. We denote the space of real (1, 1)-
forms at p by A]El(M )p € A%2(M),. It can be seen from the Kihlerity of the metric that
Rm (A%(M),) C A%Q’I(M)p and Rm = 0 on the orthogonal complement of A]E’l(M)p in
A2(M), (see [19, 26]). In particular, Rm has non-trivial kernel in complex dimension n > 2.

Definition 2.22. A complex n-dimensional Kéhler manifold is said to have curvature op-
erator Rm strictly greater than (or bounded below by) 2\ € R on real (1, 1)-forms at p if for
any nonzero real (1,1)-form iu,zdz® A dzP at p,

(2.23) —Raﬁ}/g’uaﬁuﬁﬂs > (> resp.) 2/\(@0{3@/5 + gagg,yﬁ*)uaﬁuws,
where u®? = go¢ g’ Ups.

It is not difficult to see that Condition (2.22) implies Condition (2.23). Moreover, by
considering the following decomposition of (1, 1)-forms
§aj

€a5+€/37a Esa

§ap = 7+

g = Q,j +ibaB,

where a5 == %(5(15 +&3a) and b5 := %(faﬁf — &3a), we have @5 = aga, byj = bga, and so
Condition 2.23 also implies Condition 2.22, i.e., these two conditions are equivalent.

By abuse of notation, we still denote the optimal A in (2.23) by A, namely

—\n R A @By
(2.24) Ap) = inf >0, 8vm=1 Tladvy

105 A AdPENL (MNOY Yo 5. 1 20zl + Gandnp)utPurm

As Rm (A%(M),) C A]E’l(M)p and Rm = 0 on the orthogonal complement of A%él(M)p,
nonnegative curvature operator on (1, 1)-forms implies nonnegative curvature operator. It
is also well known that strictly positive curvature operator on (1, 1)-forms implies strictly
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positive sectional curvature [26, 82]. Indeed, let X, Y be two linearly independent real
vectors in T, M and let v and w be the corresponding complex vectors in TI} 00 given by

vzi(X—iJoX) and wzi(Y—z’JOY).

Then the sectional curvature K (o) of the 2-plane o generated by X and Y is equal to
(cf. [16, 82])
K(o) =
i (4 ) (o)

T st [ (o5 ) (w7 707) (o — ) (77 )|

Hence by taking uf =i (’UQW — wav_ﬁ> and A = 0 in (2.23), strictly positive curvature
operator on (1,1)-forms implies strictly positive sectional curvature and in turn strictly
positive bisectional curvature. In the special case that M is U(n)-invariant with fixed
point p, then for any orthonormal pair X and Y in 7,,M, the sectional curvature of ¢ =
span{X,Y} is given by
(2.25) K(o)=X(1+3g(X,JY)?),
where ) is as in (2.24). Recall from [63, 64, 84] that the bisectional curvature BK > 2\ at
p € M if for all holomorphic vectors v, w € T, pl Onr ,

—Ramgv%—ﬁwym > QA(QQBQ,YS + gaggwg)vav_ﬁwvﬁ.
It is not difficult to see that Rm > 2\ on (1, 1)-forms implies that BK > 2\. More precisely:

Lemma 2.23. Let M be a Kdhler manifold and let p € M. Suppose that Rm > 2\ on
(1, 1)-forms at p, where X\ € R. Then the holomorphic bisectional curvature is bounded
below by 2\ at p.

Remark 2.24. The converse of this lemma is not true in general [88, Theorem 4], i.e., a
bisectional curvature lower bound is a weaker condition than a lower bound on the curvature
operator on (1, 1)-forms.

Proof of Lemma 2.23. For any v,w € Tpl’OM, let u®® = i (vaﬁ — wav_ﬁ). Then by (2.23),

we have that
—2R(v, W, w,?) + R(v,@,v, W) + R(T,w,7,w) >

—2XM(90p95 + gaggvg)(vaﬁwﬁ + wvBuw v — v wBw v — wvBuTwd).
Similarly, replacing w by iw, substituting uB = <vo‘iw—5 — iwav_ﬁ> into (2.23), and adding
the resulting expression to the inequality above, we derive that
—4R(v,7,w,W) = —4R(v,W,w0,T) > 8\§059,5 + Jusd,5)v vPw w’.

Here, we have used the symmetry RaSyB = RocB'yS of a Kéhler curvature operator (see for
instance [30, Lemma 2.10]). O
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Henceforth, we consider a complex (n — 1)-dimensional Kéhler manifold of the form
(2.10) and fix a special real orthonormal frame {éj}3" ? such that és,—3 = 0, and for

all kK = 1,...,n — 1, Jy(égk_1) = égx. We also let {Ea — and {E S 1 denote the
corresponding holomorphic and anti-holomorphic frames, namely

Eo=3(é20-1— i),  Ea=3(ésa1+iés), a=1,...,n—1L

We extend the curvature tensor complex linearly. Lengthy computations using Cartan’s
formulas (see (A.2) in Appendix A) give us that
: Ropos , 1 (V) a(r)’

5y = 20 Sas6 ) G0, i 1< §<n—2
o oo i <<r>> ot + (g ) s 15087000

e
R 1 b// 2 )
Raﬁfyg = ) |:< b((:))> (576 - 5ﬁ/,n—156,n—1) + <;LCL—E:'§> 5%n—156,n—1:| ifa=n—-1,8=n-1,

where R is the curvature tensor of the tranverse metric g7. With the above formulas, we
study the curvature lower bound of §.

Lemma 2.25. In the above situation, for any nonnegative real number A > 0 and r € (0, L),
G has curvature operator strictly greater than 2\ on (1,1)-forms at (r,wg) €
(0, L) x S?"=3 if and only if all of the following conditions are satisfied:

(1) (1= X0*(r) = (V'(r))?) > 0,
(2) —a”(r) > 4Xa(r),
) =

(3) V() > Nb(r),
2n — 11— N2) — H()?) [ a'(r) NOBRY
@) TR < 1a(r) A>>< br) A)'

Proof. Let (r,wg) € (0,L) x §?"=3. By Lemma A.2, we have curvature operator strictly
greater than 2\ on (1, 1)-forms if and only if for any nonzero hermitian matrix u®?,

2(1 — Ab? — (V)2 2
0 < HA <2u> iy

a,f=1

b// n—2 _1 2 b// 1_1 n—2 B
+<—€—>\>Zu | +<—€—A> S

a=1

_12
u®?

Thus, by choosing u suitably, we see that the curvature lower bound 1mphes Conditions (1)-

2 an—

n—la _ ,«
n_2,u UB

(3). Furthermore, setting u to be the diagonal matrix u®® = =0=u

for o, 3 =1,...,n— 2 with a # 5, and

v (51
)

! NG

I

gives us Condition (4).
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Conversely, if Conditions (1)-(4) hold, then by the Cauchy-Schwarz inequality and com-
pleting the square, for any nonzero hermitian u, we have that

/! 2
a2 — ) (EE M) =2 Y
0 S - 77 »

(n — 2)b2 (-2 -2 |4

_b”(r) — n—2 12 n—2

a” ( B(r )\) B by’ 9
)\ n—1ln—1 N 9/ ad 2y an—

+< 1a > U +2(_a_;,_/\) azz:lu —i—( b >a:1‘u ‘

n— 2 n—2 \
21— N2 — (1)?) (1 (2. 1 52 a’ i
< - ad - [e] - n—1n
< 72 1 ;u + 405:1 u + 1 A ‘

n—2

n—2
<_b_” _ /\> Z ‘ an— 1‘2 <_%” _ >\> un—lmzuo{a‘
a=1

The expression on the right-hand side of this inequality is positive unless u is equal to 0.
This completes the proof of the lemma. O

We will only consider asymptotically conical expanding gradient Kahler-Ricci solitons
[37, 44, 45] satisfying Rm > 0 in this article. This latter condition is equivalent to the
link of the asymptotic cone satisfying Rm > 1. In this case, the potential function is a
strictly convex function with quadratic growth, the underlying manifold is diffeomorphic to
R", and the level sets of the soliton potential function are diffeomorphic to S™~t. We will
consider asymptotically conical expanding gradient Kahler-Ricci solitons resulting from the
following existence result by the second-named author and Deruelle.

Theorem 2.26 ([37, Theorems A & EJ). Let gy be a Kdhler cone metric on C™ with radial
function v such that a - r0, is the Euler vector field, where a € (0,1). Then there exists a
unique expanding gradient Kdhler-Ricci soliton g with soliton vector field r0, such that

IVE (9= 90)lge = O(r™>7F)  for all k > 0.

Moreover, if the induced metric on the complex space P"~! has curvature operator on (1, 1)-
forms strictly greater than 2, then g has strictly positive curvature operator on (1, 1)-forms.

Remark 2.27. The lower bound of the induced metric on the base space P"~! should have
curvature operator on (1, 1)-forms strictly greater than 2 in the statement of [37, Theorem
E] as written here. To account for this change, the constant a in [37, p.38, Proof of Theorem
E] should be a function of ¢ as in the proof of Theorem A.

Remark 2.28. In the standard complex coordinates z; = xp + iy on C", the expanding
gradient Kéhler-Ricci soliton from of Theorem 2.26 has soliton vector field given by X =
cxa% + cya% for some ¢ < 0. This has a unique critical point at 0 € C™. Moreover at
0, the Ricci curvature Ric, of g has only one distinct eigenvalue, i.e., Ric, = pug for some
u € R. To see this, we compute the Lie derivative Lxg. Indeed, for o, = 1,2,...,n, we
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have that

=29 (1)
when evaluated at 0, and so Lxg = 2cg. Thus, by (1.1), we find that
Ricg:—%ﬁxg—)\g:—(c—k)\)g at 0.

3. DEFORMATION OF COMPLEX PROJECTIVE SPACE

The main goal of this section is to prove Proposition 3.3 which produces for each n > 3 a
sequence of smooth U(n — 1)-invariant Kihler metrics on P*~! with Rm > 0 on real (1, 1)-
forms everywhere, and Rm > 2 on (1, 1)-forms outside of arbitrarily small subsets, which
collapse to [O, %] in the Gromov-Hausdorff sense. In the next section, we will improve this
result to obtain a sequence of metrics that everywhere satisfy Rm > 2 on real (1, 1)-forms.
The existence of these metrics will imply the almost non-rigidity of diameter in Theorem
B and serve in the proof of Theorem A as the complex base of the asymptotic cone of the
expanding gradient Kahler-Ricci solitons that degenerate to our desired steady Kéahler-Ricci

solitons.

To motivate and sketch the ideas of the construction in Proposition 3.3, we demonstrate
a singular example; a variation of the Fubini-Study metric. Upon substituting L = 7,

a(r) = %, b(r) = % into (2.4) to obtain the metric

2 s 2
(31) hy = dr? + %U@T}—l— Slnk:('r')gT on (0’ g) « S2n—3’
where g7 is the transverse metric as in Example 2.13 with n replaced by (n—1), it is clear
that hy collapses to [0, 5] as k — oo in the Gromov-Hausdorff sense and satisfies Rm > 2
on real (1, 1)-forms except for 7 = 0 and r = 7, where a and b don’t fulfill the smooth
boundary conditions for any k£ > 1 (see Example 2.13). However, we will build our desired
metrics by gluing these singular metrics with suitable expanding solitons near r = 0 to

smooth out the conical singularities.

In preparation for the gluing construction, we recall some basic facts about expanding
gradient Kéhler-Ricci solitons, and in particular Cao’s examples of such solitons. To this
end, let (M™, g, f,p) be an expanding gradient Ricci soliton with p a critical point of f.
Then (M", g, f,p) satisfies

Ric + A g = V2f
for some A > 0 and generates a canonical Ricci flow of expanding Ricci solitons defined by
g(t) == @A)} 1 g, fi =& 1 f, t € (0,00), where {¢S}s€(—%\ ) is the one-parameter
~ax “ax 2
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family of diffeomorphisms generated by the time-dependent vector field ﬁv f with ¢
the identity, and

Ric(g(t)) + g0(t) = Vi

For any a > 1, Cao proved that there exists a unique smooth U(n—1)-invariant expanding
gradient Kahler-Ricci soliton (C"™!, gq, fa,Pa) With positive curvature operator on real
(1, 1)-forms and with R(p,) = max R = 1 that is asymptotic to the following cone metric
[16, 26]:

2 2
r r
(3'2) Ycone, a0 = dT2 + ? n & n + E gT-

Under the radial coordinates, we can write the expanding soliton metric g, as
(3.3) go = dr® + a3 (r)n @0+ b3 (r)g".

Let go(t) be the canonical Ricci flow associated to go. Since the expanding Ricci soliton
is asymptotically conical, we know that the flow g, (t) converges smoothly locally to the
cone metric geone,o away from the tip * of the cone as ¢t — 0 [79, c.f. Theorem 4.3.1]. In
the following lemma, we show that this local convergence is uniform for all o in a compact
subset I C (1,00).

Lemma 3.1 (Uniform convergence to asymptotic cones). For any compact subset I C
(1,00), k € N, € > 0, and D > 1, there exists tg > 0 such that for all 0 < t < tg and all
ael,

||Vk(ga(t) - gcono,a)” <e
on B(x,D)\ B(x,D™Y), where the derivatives, norms, and metric balls are measured with
respect to the cone metric geone,a-

Proof. Suppose that this was not the case. Then there exist g > 0, Dy > 0, kg € N, and se-
quences t; — 0 and a; € I such that for the expanding Kihler-Ricci soliton (C" ™1, g,., fi, i)
and the canonical Ricci flow gq, (t), we have that

(3'4) Hvko (gcw (tl) - gcone,ozi)” 2 €0
on B(x,Dy) \ B(*,Dy'). Recall that Ry, (p;) = 1.

Assume that go, = ga,(C;) for some positive constant C; > 0. We claim that there exists
a positive constant C' such that C; < C' and for all ¢ > 0,

C
Ry, ] < -

To prove this, we assume the contrary. Then there is a sequence C; — oo such that
[Rmy,, @] < % and R(p;,C;) = 1. By the same limiting argument as in the proof of [61,
Lemma 2.3], we can take a smooth sequential limit pointed at p; of the flows g, (t + C;),
t € (—Cj,00), to obtain a smooth Ricci flow for ¢ € (—o00,00) which is associated to
a smooth steady Kihler-Ricci soliton (C" !, goo, foo, Poo). Since I C (0,00) is compact,
these solitons are uniformly non-collapsed in the sense that there is some x > 0 such that
By, (pi,7) > rr™ for all 7 > 0, hence the limit steady Ricci soliton and the asymptotic cone
are also k-non-collapsed, and R(pso,0) = 1. By Perelman’s curvature estimate for Ricci
flows with nonnegative curvature operator (see for example [54, Corollary 45.1(b)] and also
[69, Theorem 2| for the K&hler case), this implies that the steady Ricci soliton is flat. But
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this contradicts the fact that R(p.,0) = 1 and so we have the claim. By Shi’s estimates
[78], it follows that

(3.5) |Vkngai(t)| < tk?

for some C} > 0 depending k& and uniform for all 4.

By the curvature bounds (3.5), we may assume, after taking a subsequence if necessary,
that a; — as € I and g,,(t) converges smoothly locally on (0, co) to a flow goo(t) on
(0, 00). Moreover, if a; — a as i — 00, then by the same argument as in [61, Lemma 2.3],
one can show that goo(t) = ga., (t) is the canonical Ricci flow of the expanding Ricci soliton
Ja.., asymptotic to the cone metric geone, an, - Since I is compact in (1, 00), for each k € N,
we can find A > 0, uniform over all 1 = 1,..., 00, such that on each smooth Riemannian
cone Jeone, o;, We have that
(3.6) sup 24k (2)|[VFRm|(z) =  sup  |[V*Rm|(z) = 4} < oo,

rzeCn-1 cone o x €9B(x,1)

where Tcone, a; (¥) = dgeone, o, (¥, ¥) and the curvature and derivatives are with respect to
Jeone, aee - Since the Ricci flows gq,(t) all converge smoothly locally to their asymptotic
cones geone,a; a8 t — 0 on C"1\ {x}, go,(t) can be extended smoothly to ¢ = 0 on
C~ 1\ {*}. Moreover, by (3.5), (3.6), and Shi’s local derivative estimates [31], we can
deduce the following uniform curvature estimates for all ¢ = 1,...,00: for all £ € N and
D > 0, there exists Ax(D) > 0 such that |Vkngai(t)| < Aj on B(x,D)\ B(x,D™ 1) for
all £ > 0. Therefore, after passing to a subsequence if necessary, we may assume the Ricci
flows ga, (t) converge smoothly to g, (t) on any compact subset of C"~1\ {*}, uniformly
on any [0,00). Thus, we have that

”vk(gaz‘ (tl) - gcone,ai)” < Hvk(gai (tl) ~ Yoo (tl))” + Hvk(gcone,ao@ ~ Yoo (tl))”

+ ”vk(gcone,aoo - gcone,oai)”
<%

for all sufficiently large i on B(x, D)\ B(x, D~!), where the norms and derivatives are taken
with respect to geone, a.,- Choosing D > Dy, this contradicts (3.4) and we are done. ]

In the next lemma, we show that for any singular metric from (3.1), there exists a
expanding Ricci soliton from Cao’s family such that we can glue a compact U(n — 1)-
invariant subset of it with a U(n — 1)-invariant subset of the singular metric to obtain a
metric on P! which is C'-smooth near r = 0.

Lemma 3.2. For all large k € N, there exists a sequence {(C"71, g;, ri, 8:)}32,, where r;,
s; — 0 as i — oo, and (C"71,g;) is a U(n — 1)-invariant expanding gradient Kihler-Ricci
soliton which takes the form

gi = dr® + ai(r)n @n + b7 (r)g"

for some positive smooth functions a;, b; : (0,00) — (0,00) satisfying

in(™) (.
(3.7) b-m)(si) = % form=0,1,2.
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Proof. Let 100 < k € N. By Lemma 3.1, for each i € N we can find a large R; > 0 such
that the rescaled expanding soliton R; 2g, (where g, is from (3.3)) is m#iz—close to the cone
metric geone, o on near radius 1 for all a € [k — 1,k + 1]. In particular, this implies that

R2b"(R;) 1
— e Y (R — A« =
ba(Ri) +‘ a(R) \/a’— i ’
noting that these two quantities vanish on geone, . In particular, we see that
bl (R;) 1 1 1
0< )\La == < 55 and b;(RZ) S s .
ba(Ri) — Rii \/oz—l—% \/Oz—%

Furthermore, by the smoothness conditions b, (0) = 0, b/, (0) = 1, and the concavity of b,
we know that b, (R;) < R;. Consider the further rescaled expanding soliton hy := Ai aga
which has the form

ho = ds® + g (s)n @ 1+ b (s)g" -
Then we have .

b (Si a) -

——— =1, ba ia) < Sia < -,
ba(si,a) (87 ) = Sha =

where s; o = /i, ol < %, and

| =

~

(38) B;(Si,a) =

1 1
b (R;) € \/a—i—%’\/a—% :

We can assume i > k is sufficiently large. Then there is a unique r; € (0, §) such that
- - sin(r; 1
(39 Bisi0) = Balsia) = ) < 2,

N.é

< =< and also

2 2
and we have 7; o < 7

1 cos (74, ) 1

\/k:+1/2< Vk <\/k‘— /2

In particular, (3.9) implies that the assertion (3.7) holds for m = 0,2 with our choice of r; 4,
si o and the expanding soliton h,, for any a € [k—1, k+1]. We will further determine a value

of a so that (3.7) also holds for m = 1. To do this, we first observe that by combining (3.8)
and (3.10), that b.,(s; o) > COSE;%“) for = k—1 and b, (si.0) < % fora=k+1. Itis
easy to see that r; o and s; o are both continuous in o € [k—1, k+1], so by the intermediate
value theorem there exists an o = a(i, k) € (k—1,k+1) such that b/, (si o) = %\é“) This
implies that (3.7) also holds for m = 1. O

(3.10)

sin?(2r) sin?(r)

For each singular metric hy, = dr? + T @ n + =0T r € [0,Z] from (3.1), by
gluing hg with the expanding solitons obtained in Lemma 3.2 at arbitrarily small scales near
r = 0, we can obtain a sequence of metrics that are C''-smooth near » = 0 and converge
to hy. In the next proposition, we will further modify these metrics to obtain a sequence
of smooth Kéhler metrics which converge to hy, and satisfy Rm > 0 on real (1, 1)-forms
everywhere, and Rm > 2 on (1, 1)-forms outside of arbitrarily small subsets.
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Proposition 3.3 (Smoothing out cone points by gluing expanding solitons). Let n > 3 and
let k € N be any fixed large number. Then there exists a sequence of positive numbers §; — 0
as i — 00, and a sequence of smooth U(n — 1)-invariant Kdhler manifolds (P"~t, g;) which
can be written as g; = dr? + a2(r)n @ n + b?(r)g’, r € [0, 5 — 0], satisfying the following:

(a) Rmg, > 0 on real (1, 1)-forms everywhere;
(b) Rmg, > 2 on real (1, 1)-forms on v~ ([6;, 5 — &]);
(c) For every e > 0, g; smoothly converges to hy, on r~([e, 5 —€]) asi — oo.

Proof. Fix k large, for each i let r;, s; > 0 be the sequences from Lemma 3.2 converging
to zero, and let b; : [0,00) — [0,00) be the warping function of the corresponding ex-
panding Ricci soliton, where we omit the dependence of b; (and all the following functions
ai,az,a3,aq and b, by, b3, by) in 3. Let b: [0, 5 4 s, — ;] — [0,00) be defined by

b(r) = by (1) for r € [0, s;],
(r) = ba(r) := ﬁ sin(r — s; + 1) for v € [s;, 5 4 55 — 4],
Then b is C? by Lemma 3.2. We also write ap := babh = 5 sin(2(r — s; + 1;)).

Let ¢ : (—00,00) — [0,00) be a non-decreasing smooth function such that ¢(r) = 0 on
(—00,0] and ¢(r) =1 on [t,00), where ¢ € (0, min{s;,r;}) is some sufficiently small number
whose value we will choose later. Define

Bi(r) == ¢(s; — )b (r) + (1 — @(s; — 1))V (1) for r € [0, 5 + s, — 7).
Then B; is smooth. Let b3 : [0, % + s; — ;] = R be the unique smooth function solving
b3(0) =0, b5(0)=1, b5(0)=0,
3.11
(311 Lo~ b

Because B; = b}’ on [0,s; — t] and B; = by’ on [s;, 5 + s; — ri], we know that b3 = by on
[0, s; —t] and that b3 satisfies the smoothness condition (2.8) at 0. Henceforth, for fixed r;, s;,
we shall write o(1) to denote all constants that go to zero as t — 0. By the C?-regularity
of b, it is then clear that

(3'12) ”b3 - b”CZ[O,%—i—si—m} < 0(1)’
Moreover, since by’ = by’ on [s;, 5 4 s; — 1], by letting ag = bz, we also see that
(3.13) l|las — (12HC2[81.%+81._”] <o(1).

For o > 0 to be chosen later, define a smooth function 4;, : R — R by

"

Aiva(r):90(%_7"i_7“)_a—?+(1—90(%—ri—r))a2

and let a4 : [0,00) — R be the unique smooth function, omitting its dependence on «, with
as = a3z on [0, 5 — r; — t] and solving

{loald =20 = (5 =200, (5 2n) = k(5 -20).

aj = —ayg- Aiq.
Set by(r) := 4/ [y 2a4(7) dr. Then ay = byblj, and (3.13) implies
(3.14) ”CL4 - a2”c2[sz‘,%—7‘i—ﬂ S 0(1).
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In the following we will show that there exists some a = a4 such that a4 and by satisfy
the smoothness conditions (2.7) and (2.8), where ay = 0. Let v;(a), ¢;(or) > 0 be two
smooth functions such that a4 > 0 on [0, § — r; + v;(a)] and
(3.15) ay(5 —ri +vi(a)) =0, ag(% —ri +vi(a)) = —c¢i(a).

Then it suffices to find ay such that ¢;(ay) = 1. To do this, we consider the function

Wi (1) == coi(a) - at sin(a(g — 7 + vo,i(a) — 1)),

where ¢ (), vo,i(c) > 0 are two smooth functions in a such that w; o, > 0 on [§ — 7y, § —
ri + voi(a)] and w; o solves the following IVP:

wE-r)=e(E-r), W (Eon)=d(Eon),

w’ = —w-a?.

In particular, for

g — \/4]{:2 (1- 1%2 cos?(2s;)) arccos (£ (cos(2s;)))

) U = 7
Sin2 (QSi) 0 Q)
direct computation shows that cp;(ap) = 1, and so

Wiao (5 — i +10) =0, w;ao(% — 1 +v) = —coi(ag) = —1.

It is also easy to see that cp;(ap — 1) < 1 and c¢pi(ao + 1) > 1. By (3.13), in letting
t — 0, a4 converges in the C'-sense to as on (s, 5 — 1i] and to w;q on [§ — 14, 5 — 75 +
max{vg;(c),vi()}]. In particular, this implies that

ci(a) = cpi(a) +o(1) and vi(a) = voi(a) + o(1).

Thus, for ¢ sufficiently small, we have that ¢;(ap—1) < 1 and ¢;(cp+1) > 1. Continuity and
the intermediate value theorem now give us an oy € (ap — 1, a9 + 1) such that ¢;(oy) = 1.

Henceforth fixing this oy, denote the corresponding v;(a) by v;. Then g; = dr? +
a2(ryn@n +b3(r)g" is a U(n — 1)-invariant smooth Kihler metric on P*~1. It is moreover
clear from (3.12) and (3.13) that

[[ba = bollc2(2r,, 7 —2r,) + s — azllc22r,, z —2r,) < (1)
So g; clearly satisfies assertion (c) of the proposition.

It now suffices to show g; satisfies Rm > 0 on real (1, 1)-forms on [0, s;], and Rm > 240(1)
on real (1, 1)-forms on [s;, § — r; +v;]. If this is true, then there exists a sequence &; — 0,
such that the rescaled metrics (1 — ;)g; satisfy all assertions of the proposition. This is
equivalent to checking that a4, by satisfy inequalities (1)—(4) of Lemma 2.25 with A > 0 on
[0,s;] and A =1+ o(1) on [s;, § — r; +v;] (see (4.1) for the geometric meaning of \).

First, we verify a4, by satisfy inequalities (1) and (3) with A > 0 on [0, s;] and A = 140(1)
on [s;, T —r; — t]. Since the expanding Ricci soliton dr? + af(r)n @ n + b3(r)g” satisfies
Rm > 0 on all (1, 1)-forms, there exists d; > 0 which tends to 0 as i — oo, such that aj, b;
satisfy inequalities (1)—(4) of Lemma 2.25 on [0, s;]. In particular, inequalities (1) and (3)
only involve at most second order derivatives of by = bs, so by (3.12), we see that b4 satisfies
(1) and (3) with A = §; on [0, s;]. Similarly, since hy = dr? + a3(r)n ® n + b3(r)g” satisfies
Rm > 2 on (1, 1)-forms except at 7 = 0 and r = 7, it follows that ap, bo satisfy (1)—(4) with
A= 1. So by (3.12) we see that a4, by satisfy (1) and (3) with A = 1+o0(1) on [s;, § —r; —t].
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Next, we show (2) and (4) on [0, 5 —7; —t]. Since b} is decreasing and b5(5 —r;+5;) = 0,
for sufficiently small ¢, it follows from (3.12) that b; > 1b4(% —r;) > 0 on [0, — r;]. By
(3.11) and (3.12), we therefore find that
" /! /11 /!
B DA R M A RPN 0, T —r —t].
Tus ~ dby ay, 1y ay oW om0 oo
On [s; — t, 5], as B; takes values between b’ (s;) + o(1) and b3 (s;) + o(1) on [s; — t, s;], we

see that —% is also bounded between —%(si) +o(1) > % and —%(Si) +o(1) > 1+40(1),
a_ill
4aq
22 =1 and by (3.14), we have —fL > 1+ o(1), which implies (2) with A = 1 + o(1).

" day . =
Similarly, we can verify inequality (4).

and hence —7% > %, which implies (2) with A\ = % on [0, s;]. On [s;, § —r; — t], because

"

Secondly, we verify (1)-(4) on [§ —r; — ¢, 5 — ;] with A = 14 o(1). Since _:;3 <
14+0(1) < oy and oy € (ag — 1,0 + 1), we see that

(316) ||a4 — achl[%_”_t%_”] = 0(1),
and also
a! a//(g _ Ti)
1 T AV IS 1).
(3.17) day —  daz(§ —1ry) +o(1)
(3.16) together with (3.13) implies
(3.18) las — a2||cl[g_”_t%_”] + [|bs — b2HCQ[%—n—t%—n} = o(1),

which immediately implies (1) and (3) hold with A = 14-0(1) on [§ —r; —t, § —7;]. Moreover,
together with (3.17), this implies (2) and (4).

Lastly, we verify (1)-(4) on [§ — 74, § — r; +v;]. First, (2) follows from
" _1)2 2 2
_ Y > M > i > k_ >1
4ay 4 8 167’2-2

Let w; > 0 denote all constants with w; — 0 as r; — 0. Then we have

(3.19)

as(r) _ ag(§ —ri—1t)
3.20 by(r) = < < w;.
(3:20) () ba(r) = ba(Z—ri—t) —
It is also easy to see that |b] —b3(5 —r; —t)| = w;, and so the bound [b3(5 —r; —t) — %\ < w;
implies that [b3 — | < w;. Using in addition (3.20), we derive inequality (1) by

2
I TAY 1— (%
(3.21) ! (264) = <2b4> >k—w; >k—12>1.
b4 b4

Next, by using the fact that —a/j is increasing, (3.18), and b5 (r) < w;, (3) follows from
B —dht O —ab(3 - )+ ()5 )

by b2 = b3(E —r —t)
Finally, by using the inequalities a} > a}(% —r; +v;) = —1, [b] — %| < w;, and 0 < b} < w;,
we derive that

—wizl—wi.

1" R /\2
(3.22) U e () <k+w <k+1
by b
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In conclusion, (3.21), (3.19), and (3.22) together give us that

2n — 1)(1— M) — ()Y [ dr) wn-1), (K
(n —28(r) <4a4<r> A) = Tnp Tl ”(16@ A)

> (k+1-A)72> (—ZEE:; —A)z,

which implies (4) for all large k. This completes the proof. O

4. RICCI FLOWS EMANATING FROM THE SINGULAR METRIC

Let n > 3. The goal of this section is to show that there is a Ricci flow that smooths out
the singular metric (3.1), namely

;2 (2
9 sin®(2r) sin®(r) o
where r(-) : P"~! — [0, Z] is the radial function, r~*(0) = {p}, and (%) is biholomorphic

to P"~2. We construct this Ricci flow by taking limits of the Ricci flows coming out of the
metrics {gi}5°, from Proposition 3.3 that converge to hy. These Ricci flows are smooth,
have uniform existence time, and satisfy a uniform curvature decay |Rm| < % We will
show that these smooth Ricci flows satisfy Rm > 0 everywhere, and Rm > 2 outside of
arbitrarily small subsets, so eventually the Ricci flows converge to a limit flow that satisfies
Rm > 2 on real (1, 1)-forms everywhere.

The curvature condition of Rm > 2 on real (1, 1)-forms is equivalent to A > 1, where
A € R is half of the infimum of Rm on real (1, 1)-forms given by (2.24) in complex (n — 1)-
dimensions, namely

Rm(u, u)

1
4.1 A= — in
(4.1 2 ueltnfoy  Jul?

where for u = iu,zdz® A dzP | the norm |ul, is defined by
n—1 ~
[l = Y. Gapln + Gandyz)uu,
.Byy,m=1

and we have Rm(u, 1) = — ZZE%nzl I%ag,muaﬁ_uw. Using the fact that u®? = g°¢ g"ﬁ_une—

and u,5 = ugg for any a and 3, we have
2
n—1 B o o
[uff = | D 950" | + 119" 9" T > g™ g 7 > 0
a,f=1
with equality if and only if v = 0.

We first observe that A is a supersolution of the heat equation.

Lemma 4.1. Let (M,g(t)), t € [0,T], be a smooth Kdihler-Ricci flow (not necessarily
complete) with nonnegative curvature operator. Then

OA > AN
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holds in the following barrier sense: for any (q,7) € M x (0,T), there exists a neighborhood
UcCMx(0,T) of (g,7) and a C* (upper barrier) function ¢ : U — R such that ¢ > X\ on
U, with equality at (q,7) and

oo > A¢p at (q,7).

Proof. Fix (po, to) and suppose that the infimum in (4.1) is attained at a nonzero (1, 1)-
form wg € Allyg)l. We may assume by scaling that [wol,g,, = 1. We first extend wp to a
spacetime neighborhood V' x (tg —e,ty +¢€) of (po, to) in the following way. Let {ek}?:lz be
an orthonormal basis of (1), M, gt0|Tp0 M) such that J(esq—1) = €24. By abusing notation
and shrinking the neighborhood V of pg if necessary, we extend {ek}z’;_f to a smooth local
orthonormal frame near pg via parallel translation. Then J(egq—1) = €2, on V and we have
at (zo,to) that

(4.2) Veep =0 and VxVxe; =0 forany X € T),M at po.

Let V; denote the natural space-time extension of the Levi-Civita connection V9®) so
that it is compatible with the metric; that is to say, 0;|X |§(t) = 2(Vi X, X) 4 for any time-
dependent vector field X. We extend {ej,}?"? to a time-dependent local frame {e(t)}"?

so that eg(z,tg) = eg(z) for all x € V| and
(4.3) Vier(x,t) = O(ex(z,t)) — Ric(ex(z,t)) = 0.

By ODE theory, after choosing a smaller V if necessary, we can solve the system on
(to — &,tp + €) for some small € > 0 with eg(x,t) smooth in (x, t) € V X (tg — &,t0 + ). It
also follows from the fact that J o Ric = Ric o J and the uniqueness of solutions of ODEs
that J(eza—1(7,t)) = e2a(x,t). Let {0;x(t)}7",* denote the dual frame. We introduce the
corresponding holomorphic and antiholomorphic frames:

Ea(:n,t):%(ega_l(:n,t)—iega(x,t)) and Ed(:n,t):%(ega_1($,t)+iega(x,t));

and their dual frames

On(x,t) = O20-1(x,t) + i 09q(x, t) and Oa(z,t) = Oan—1(x,t) — i (z,1).
Thanks to (4.2) and (4.3), at (po,to) we have that
(4.4) ViOy =VO, =V0O; = AB4 = 0.

Since wy is a real (1, 1)-form, we may assume wo = iw,304(po,t0) A O5(po,to) for some
complex numbers W, 3 = wga, o, 8 =1,...,n. Let w; be the 2-form given by

wy = 1w,z Ou(z,t) N Og(7,t)

on V x (tg — e,t9 + ). Then by the Kéhlerity of the metric, w; is J-invariant, i.e.,
we(J(+), J(-)) = we(-, -), and so it is of type (1, 1). Moreover, by (4.4) at (po,to), we
have that

(4.5) Viw; =0, Vw,=0 and Aw,=0.

Next we define the smooth function ¢ by

1 Rmlwe, @) _ lRm(wt, W),

)= o T
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where the curvature and norms are all with respect to g(t), and we use that |w|, = 1. It
can be seen from the definition that ¢ > A on V' x (tg — &,t9 + €) and equality holds at
(po, to)- Recall that

V:Rm = ARm + Q(Rm) = ARm + Rm? + Rm?,

and both Rm? and Rm" are nonnegative operators when the curvature operator Rm is
nonnegative. Hence by (4.5), when evaluated at (po,to), we have that

(O —A)p = %(@ —A) (Rm(wt,wr)) = (Ve — A)Rm)(we, wy)

= Rm2(wt,wt) + Rmﬁ(wt,wt) > 0.

This proves the lemma. O

From Lemma 4.1, using the maximum principle, it is easy to see that the lower bound
A > 11is preserved along any smooth Ricci flow. In Lemma 4.2 below, we will show this also
holds for the Ricci flow coming out of the singular metric hy, where A > 1 only holds on
the smooth part. This is achieved by a heat kernel estimate on the smooth Ricci flows that
converge at positive times to the limit flow that smooths out hi. The heat kernel estimate
guarantees that the heat comes evenly from everywhere at ¢ = 0 to positive times, and
hence one can ignore the lack of enough curvature from the arbitrarily small regions. We
first recall some basic facts about heat kernels.

Suppose that (M, g(t)) is a smooth complete Ricci flow for ¢ € [a, b] with bounded
curvature. Let G(z,t;y,s) be the heat kernel of the heat equation dyu = Au, i.e.,

(0 — Az 4)G(-,;y,8) =0 and lim+ G(-,t;y,s) = 0y(),
t—s
(=0s — Ay s+ R)G(x,t;-,-) =0 and lim G(z,t;-,5) = 04(-).
s—t—
In particular, we have [,, G(x,t;y,s)dsy = 1 for all s < t; see [32, Chapter 26] for more

discussion of the heat kernel. We also recall the heat kernel upper bound given in terms of
the lower bound on the pointed Nash entropy by Bamler in [4, Theorem 7.1]:

C
(4.6) G(x,t;y,5) < ——— exp(—Ngp(t — 5)),

(t—s)2

where C' > 0 is a constant depending on Ryin(t — s), and also the lower bound on the Nash
entropy Nz 4 (-) in terms of the lower bound on the volume ratio in [4, Theorem 8.1]:

volyy (Byr)(z,7))

TTL

(4.7) < Cexp(Nig,1)(r?)) exp(Co),

where Cy > 0 is a dimensional constant and C' > 0 is some constant depending on Rypint>.

Now we prove the main result of this section.

Lemma 4.2. Let n > 3. Then for each fized k € N, there exist Cy, T}, > 0 and a Ricci flow
(P, gi(1)), t € [0, T3], such that

™

(1) |JRm| < % and gi(t) — hy smoothly on any compact subset of r=1((0,%)) ast — 0;
(2) The metrics dg, ;) converge to dp, ast — 0;
(3) Mz, t) > 1 for all (x,t) € P"~1 x (0,T}].
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Proof. For each fixed k € N, let {(P"~ 1 g,@) ¢, be the sequence of metrics from Proposition
3.3. Then (P 1, gi) converge smoothly to the singular metric (P"~!, h;) on any compact
subset in r~1((0, %)) as i — co. Let (P"1, gi(t))te[O’Té) be the Ricci flow starting from g,
where T,i > 0 is the maximal existence time. It is clear that there exists v; > 0 such that
volp, (B, (z,1)) > vy for all x € P"~1, so that VOlgz(Bgz (x,1)) > vy everywhere for all large
i. Since ¢! (0) in addition satisfies Rm > 0, it follows from [5, 59], the existence theorem for
Ricci flows under almost nonnegative curvature and non-collapsing conditions, that there
exist 0 < Ty < 1 and Cy > 0 such that T} > T} for all i, and |Rm| < % for all ¢ € (0, Tk].
Moreover, using the initial volume bound bound and the curvature bound |Rm| < %, we
can argue exactly as in [80, Corollary 6.2] to get

(48) VOlglic(t) (Bglzc(t) (IE, 1)) 2 514;

for some v > 0 depending on vy, Cy.

After passing to a subsequence, these flows converge smoothly to a Ricci flow (P*~1, g (¢)),
t € (0, Tk, satisfying |[Rm| < % for some Ty, Cy > 0. By Proposition 3.3(c), the curvature
of the metrics g, on any compact subset of 7~1((0,%)) has a uniform bound for all large
i. By Perelman’s pseudolocality theorem and Shi’s derivative estimates (see for example
[54]), this implies that the Ricci flows {g¢ (¢)} uniformly smoothly converge on any compact
subset of 771((0,%)) as t — 0. The limit Ricci flow gi(t) therefore smoothly converges to
hi on any compact subset of r~1((0, 5)) as t — 0. Finally, convergence of metric spaces
(Pt dg, 1)) to (P"~1,dp,) as t — 0 follows from standard distance distortion estimates;
see for example [5, 59, 81].

Fix (z,t) € P"7! x (0,T}]. It remains to verify that A(z,t) > 1 for any z € P*~! and
t € (0,T]. To being with, to estimate the heat kernel G(z,t;vy, s), by using (4.8) in (4.7)
we obtain N, (t —s) > C~! for all s € [0,%], where here and below C' > 0 denotes a
generic constant that only depends on the point (z, t). It follows from (4.6) that for all
(y,s) € P71 x (0, 5],

(4.9) G(z,t;y,s) < C.

Next, since A > 1 on 7~*((0, %)) x {0} and X is continuous on r~1((0, §)) x [0, Tj;], for any & >
0 we can find 6 € (0, %) with § — 0 as € — 0 such that for all (y,s) € r~*((6, F —¢)) x [0, 4],

we have
(4.10) AMy,s) >1—e.

By Lemma 4.1, X is a super-solution to the heat equation, and so we have the lower bound
Motz [ N0 Glatid) doy
prn—1

2 (1—5)/ Gz, ty,0) dsy
7‘71(575—5)

> (1—e) (1= C-vols (r" ((0,0]U [5—6,3])))

where in the second inequality we have used (4.10), and in the last inequality we have used
Jpn1 G, t5y,8)dsy = 1 for all s < t, as well as (4.9). Since the Hausdorff measure is
weakly continuous under the Gromov-Hausdorff convergence of (P"~1, dg,. () tO (Pt dp,)
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as t — 0 (cf. [14]), we deduce that vols (r~* ([0,0]U [ —4,5])) — 0 as § — 0. Letting
€ — 0, this implies that A(z,t) > 1. O

We conclude this section with the following corollary which implies Theorem B.

Corollary 4.3. Let n > 2. Then there exists a sequence of U(n — 1)-invariant metrics
{gk}32, on P! satisfying A > 1 such that (P"~1,d,, ) converges in the Gromov-Hausdorff
sense to the interval [0, T].

Proof. For n = 2, we have that U(1) = SO(2), and so the sequence of SO(2)-invariant
metrics is constructed in [61]. We may therefore assume that n > 3. Let gi(t) be the Ricci
flow constructed in Lemma 4.2 that smooths out the singular metric hy. Since hj converges
to [0, 5] and gx(t) converges to hy as t — 0 in the Gromov-Hausdorff sense, we can find a
sequence t; — 0 so that g (tx) satisfies the assertion of the corollary. ]

5. CONSTRUCTION OF THE STEADY RICCI SOLITONS

In this section, we complete the construction of the family of U(1) x U(n — 1)-invariant
steady Kahler-Ricci solitons for n > 2 and prove Theorem A. We present the proof in higher
dimensions and point out the essential differences for complex dimension 2. In the proof,
we use some standard notions and facts from Alexandrov geometry and metric comparison.
We refer the reader to [58, Section 2.4] for a more detailed exposition.

Proof of Theorem A. By Corollary 4.3, we have a sequence of U(n — 1)-invariant smooth
Kihler metrics (P"~!, h;) satisfying the following conditions:

(1) diam(P" !, h;) = % as i — oo;
(2) Rm(h;) > 2 on real (1, 1)-forms (or equivalently, sectional curvature > 4 if n = 2);
(3) lim;_yoo volp, (P~ 1) = 0.

In particular, by (2), h; has positive holomorphic bisectional curvature for all i. For each
i, we run a normalized Kihler-Ricci flow h;(t) on each (P"~! h;). Then by the results of
Collins-Székelyhidi [35] and Tian-Zhang-Zhang-Zhang [85], the normalized flow exists for
all time and converges smoothly to a Kihler-Einstein metric on P!, which is a positive
multiple of the Fubini-Study metric gpg giving the same volume as h;, by the uniqueness
of Kéhler-Einstein metrics up to biholomorphism [7]. Since there is a positive lower bound
for Rm on real (1, 1)-forms for all times along the Kéahler-Ricci flow, and Rm > 2 for
t = 0, reparametrizing the flow h;(t) and rescaling it by a suitable time-dependent positive
function yields a smooth family of U(n — 1)-invariant Kéhler metrics (hi, ) ep0, 1) on P!
with

(1) hj1 = hi and h; o = cigrs for some ¢; > 0;

(2) diam(P"™!, hy 1) = diam(P" !, h;) — Z as i — oo;

(3) Rm(h;, ) > 2 on real (1, 1)-forms (or equivalently, sectional curvature > 4 if n = 2)
for all p € [0,1];

(4) volp, ,(P"~') — 0 as i — oo uniformly for all 1 € [0,1].

For each fixed ¢, since the metrics h; , on P"~! are U(n — 1)-invariant and vary smoothly
in p, we see from Proposition 2.17 that there is a U(1) x U(n — 1)-invariant path of Kéhler
cone metrics C; , on C™\ {0} varying smoothly in p. The links of these cones are Sasaki
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metrics on 52"~ over h; . The above conditions (2) and (4) satisfied by h;, ,,, together with
(2.18) and (2.19) in Proposition 2.17, then imply that the length of the orbit of the flow
of the Reeb vector field tends to 0 as ¢ — oo, and the Sasaki metrics over h; , also satisfy
conditions (2) and (4). Moreover, by condition (3) and Theorem A.1, the Kéhler cones C; ,,
have positive curvature operator on real (1, 1)-forms in the transverse direction. Therefore,
by the local uniqueness theorem [37, Theorem 5.3], there exists a unique deformation of
gi,0 on C™ by a smooth path of U(1) x U(n — 1)-invariant expanding gradient Kéhler-Ricci
solitons (M;, 1, Gi, ju, s, u) With positive curvature operator on real (1, 1)-forms asymptotic
to the Kahler cone over h; ,. Here, p; , denotes the critical points of the soliton potential
function and R(p;, ,) = 1.

Since the Sasaki metrics over h; ,, satisfy (4), it follows that the asymptotic volume ratio of
the expanding solitons g; , decreases to zero uniformly for all y as ¢ — oo, and so by the same
argument as in [61, Lemma 2.3], we can show that for any sequence y; € [0, 1], the U(1) x
U(n — 1)-invariant expanding gradient Kéhler-Ricci solitons (M;, i, i, u;» Pi, ;) converge
smoothly in the Cheeger-Gromov sense to a U(1) x U(n — 1)-invariant steady gradient
Kéhler-Ricci soliton. In particular, on one hand, for p; = 0, since the Kéhler cone is U(n)-
invariant, the expanding solitons g; ¢ are also U(n)-symmetric by the uniqueness theorem
in [29], therefore subsequentially converge to a limit steady soliton (Mo 0, goo,0, Poc,0). By
Cao’s uniqueness result [16, Proposition 2.1], this limit has to be Cao’s positively curved
U(n)-invariant steady soliton constructed in [16]. On the other hand, for u; = 1, we
may assume that the expanding solitons (M;, 1,¢; 1,pi,1) converge to the steady soliton
(M1, 9oo,15Poo,1)- Moreover by Remark 2.28, Ric has only one positive distinct eigenvalue
at the critical point of the steady soliton. Since the sequence of Sasaki metrics over h; 1 also
converge to the interval [0, Z] in the Gromov-Hausdorff sense, it follows that the asymptotic
Kahler cones of the expanding solitons converge to the positive quadrant in the Euclidean
plane R2.

We now show that the steady Kéhler-Ricci soliton (Mso 1, G001, Poo,1) must split as a
product of a (2n — 2)-dimensional U(n — 1)-invariant steady Kéahler-Ricci soliton, and a
two-dimensional U (1)-invariant steady Kéahler-Ricci soliton. To this end, first note that
since it exhibits U(1) x U(n — 1) symmetry, there exists a (2n — 2)-dimensional totally
geodesic submanifold N; fixed by the U(1)-isometry, and a two-dimensional totally geo-
desic submanifold N, fixed by the U(n — 1)-isometry. Similarly, we write NNy ;, No; for the
fixed point sets in the expanding soliton (M; 1, ¢; 1,pi 1) of the U(1)- and U(n — 1)-action,
respectively. Note that we can find a U(1)-invariant point and a U(n — 1)-invariant point
in the Sasaki metric over h;1 such that their distance is greater than § — e;, where here
and below ¢; denotes a general sequence such that ¢; — 0 as ¢ — co. So arguing as [61,
Lemma 4.2], for any x; € N1, y; € Noj; with dg, | (i, pi, 1) = dg; , (i, i, 1), the comparison
angle satisfies £x;p; 1y; > 5 — ;. In particular, let {C}}72, be a sequence of positive
numbers going to infinity as & — oo. Then for any points xy; € N1, yrs € Na; with
dgi,l(iﬂk,i,pi,ﬁ = dgi,l(yk‘,iapi,l) = Ck, we have

-~ s
(5.1) Axy iDi 1Yk, > 5 i

On (Mo 1, 9o0,1,Pso), On the one hand, for any points zj oo € N1, Yk € No with

dgooJ ($k,ooypoo,1) = dgoo,1 (yk,ooypoo,l) = C},
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let v1 1, V2. ¢ [0, Cx] = Mo 1, be the unit speed minimizing geodesics connecting peo 1, k.00
and Poo 1, Yk,co, and let 1,72 1 [0,00) = Mo 1, be two unit speed geodesic rays starting
from poo; obtained as any subsequential limit of 7 j,v2%. Then (5.1) implies that the
asymptotic angle between 1, v satisfies

(52) £y172 = lim ka,oopoo,lyk,oo > %
k—o0

On the other hand, since the U(1) x U(n — 1)-action induces an isometric action on the
tangent space at the unique fixed point p. 1 and induces an orthogonal decomposition
Tpoor Mooy = Vi L Va, where Vi,V5 are the (2n — 2)-dimensional and 2-dimensional
subspaces fixed by the U(1)- and U(n — 1)-actions respectively, and U(n — 1) acts on
V1 transitively and U(1) acts transitively on Va, suppose that ’yLk(O) = v + v2 and
757,{(0) = Wy}, + wa i, where vy g, wi € Vi and vy g, wa y € Vo. Then

(5.3) (1.£00),7,£(0)) = (V1 g, w1 k) + (Vo1 W2 k).

By replacing v; , with its image under a suitable isometry in U(n — 1), we can keep in-
variant vg and replace vy, by any vector of the same norm in Vi, and thus assume that
(1, w1 k) > 0 and equality is achieved if and only if v; , = 0 or wy; = 0. Similarly, by
replacing 72, with its image under a suitable isometry in U(1) we can keep invariant wy g
and replace wg by any vector in V5, and thus assume that (vgx,ws ;) > 0 and equality is
achieved if and only if vg;, = 0 or wy;, = 0.

We claim that, after replacing =, o0, Yk,00 With their images under suitable U(n — 1)- and
U (1)-actions respectively, we can assume that (v; 5, w; ) > 0 for i = 1,2, and thus the angle
formed by 1k, V2,k at poo,1 satisfies

(5.4) £(71£(0),72,.(0)) < 5.

Indeed, by replacing 7, with its image under the U(n — 1)-action mapping vy to —vq
if necessary, we have that (vqx, w1 ) > 0. Then by replacing 72 5 with its image under the
U(1)-action mapping wy ; to —wy j if necessary, we have that (vy i, ws ;) > 0, so we obtain
(5.4). The monotonicity of comparison angles then gives us that

[MIE]

(5.5) £y1y2 = lim £y, ooPoo 1Yo < limsup £(71 £(0),75,4(0)) <
k—o0 k—o0

Combining (5.2) and (5.5), we find that £v192 = §, and so by (5.4) and the monotonicity

of comparison angles again, we arrive at the fact that

A1 (8)prya(s) = z for all s > 0.

We claim that the sectional curvature of the 2-plane o spanned by 1 (0) and 75(0) at pec 1
vanishes. Suppose the contrary. Then the positivity of the sectional curvature of ¢ implies
that there is a small neighborhood in the two-dimensional submanifold ¥ := exp, (o) in
which the Gauss curvature is positive with respect to restricted metric g»,. However, this
would imply that for some small s > 0, the gy-minimizing geodesic in ¥ connecting ~; (s)
and 72(s) has length strictly smaller than v/2s, which implies that Z’yl(s)poqlfyg(s) < 3.
This is a contradiction. The vanishing of the sectional curvature of ¢ implies that (5.3)
vanishes, and

(5.6) (U1, w1 k) = (Vo k, wak) = 0.
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Consequently, we have wy = v = 0 or way = v1 = 0. This implies that 71(0) €
N1,74(0) € No or 74(0) € N1,74(0) € Ny. In each case, we obtain

(5.7) Rm(vy,vg,v,v1) =0 for any v; € V4 and vy € V5.

Since Rm > 0 is a symmetric linear operator acting on /\2 Ty 1 Mxo,1, this implies that

oo, 1

(5.8) Rm(v; Avg,-) =0 for any v; € V4 and vy € V5.

Now we show that the steady Ricci soliton splits isometrically as My, 1 = My x My for
some submanifolds M7, Ms of nonzero dimension. Indeed, note that, as a smooth limit of
manifolds diffeomorphic to C", My, ; is diffeomorphic to C" and by the strong maximum
principle we may assume that Ric > 0 on My ;1. The results of Bryant [13] and Chau-Tam
[24] subsequently infer that My ; is in fact biholomorphic to C". We may then argue as
in [26, Lemma 4.1] or [33, Theorem 7.34] to deduce that if My ; is irreducible, then My 1
has either positive curvature operator on real (1, 1)-forms or is symmetric or is Einstein.
The latter two cases are impossible as they would imply constant scalar curvature on My 1,
contradicting the fact that AR + (Vf, VR) = —2|Ric|? and Ric > 0. M, ; must therefore
have positive curvature operator on real (1, 1)-forms and positive sectional curvature (see
Section 2.3), which is again absurd due to the fact that the sectional curvature vanishes
on a certain 2-plane. Thus, we conclude that My ; is indeed reducible and that by the
de Rham decomposition theorem, splits isometrically and holomorphically as a product of
lower dimensional steady gradient Kéhler-Ricci solitons [56].

We now show that the decomposition of the tangent space Tpoo1 Moy = Vi L V3 induces
a splitting of the manifold as My, 1 = Ny X Np. First, we claim that the sectional curvature
is positive on each N; at po 1 for i = 1,2. Otherwise, suppose a 2-plane of V; has zero
sectional curvature. Then we would have that the sectional curvature is zero for all 2-planes
of Vi. Indeed, the curvature of the induced Kahler metric on Ny at the fixed point ps 1 of
U(n — 1) has the form

_Ragwg = ’%(gaﬁgyg + gaggfyB)

for some constant k > 0. For x > 0, the ratio between the smallest sectional curvature
and the scalar curvature of the induced Kéhler metric on N at po1 is a strictly positive
dimensional constant (see (2.25)), hence zero sectional curvature at a 2-plane implies zero
curvature operator and thus zero sectional curvature for all 2-plane in 7}, , N7. This implies
that Ric(v;,+) = 0 for some non-zero v; € Vi, contradicting Remark 2.28. Next, since
Myo,1 = My x Ms, it follows that for any arbitrary non-zero vectors vy + vo € M; and
wy + we € My, where v, w1 € Vi and vo, wy € Vo, we have that

(5.9) R(v1 + v, w1 + wa, w1 + wa,v1 + v2) = 0.

By (5.8) and the first Bianchi identity we deduce that R(vy,ws,ws,ve) = 0, which together
with (5.8) and (5.9) implies that

(5.10) R(vl,wl,wl,vl) = R(’Ug,wg,wg,vg) =0.

Since the sectional curvatures are positive on V7, Va, this implies that vq1 A w1 = va Awg = 0.
If v1,v9 # 0, then this implies that wy = avy, ws = bvs and wy + we = avy + bvy for some
a,b € R. Hence T}, My C Span(vi,v2). Since the dimension of M is at least 2, we have
that T}, , M = Span(vy,v2), and in particular vy + vo € Tp Mo N Ty, My, which is a
contradiction. So we have that vo = 0 or v; = 0, which implies that T, M; C V; or

Tpoo . M1 C V. Without loss of generality we may assume that T, My C V;. Similarly, we
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can deduce either wy or wy vanishes and thus 7, , My C Vo or T, My C Vi. The latter
case cannot happen and so we must have Tj, _, Ma C V. Therefore, we obtain T}, , M; = V;
for both ¢ = 1,2. Since Ny, Ny are the totally geodesic subspaces, it follows that M; = N;
fori=1,2, and M; (resp. M>) is a U(n—1)-invariant (resp. U(1)-invariant) steady gradient
Kahler Ricci soliton. In particular, they are scalings of Cao’s steady gradient Kahler Ricci
solitons.

For a 2-plane of T},, M; , spanned by a vector in the U(1)-fixed subspace and another
vector in the U(n — 1)-fixed subspace, we can identify it with the 2-plane o of T}, _ , Moo 1.
Then the sectional curvature K;, := Ky, (o) varies smoothly in u for each fixed i. We
have just demonstrated that K 1 = 0. It is also clear that K ¢ > 0 in the non-flat U(n)-
invariant steady Ricci soliton (Mso 0, 9s0,0, Pso,0)- Therefore, for any given a € (0, K ),
we have that K; o < a < K; 1 for all sufficiently large 7, and hence by the intermediate value
theorem there exists y; € (0,1) such that K; ,, = a. A subsequence of the expanding gra-
dient Ricci solitons (M;, u;, Gi, s+ Di, ;) therefore converges to a steady Kéhler-Ricci soliton
(Moo, oo Poo) With Ky (0) = a and R(pss) = 1. This proves Theorem A.

O

APPENDIX A. CURVATURE OF DOUBLY-WARPED PRODUCT KAHLER METRICS

In this appendix, we present the curvature computations for the Riemannian curvature
tensor of a doubly-warped product Kéahler metric g on M = M x I of the form

g:= ds® + a2(s)77 ®n+ b2(s)gT,

where M is a Sasaki manifold of real dimension (2n — 1) with n > 2 with contact one-
form 7 and transverse metric g7 as described in Subsection 2.2, I C R is an interval, and
a,b: I — [0, c0) are smooth functions. We assume that a(s) = b(s)b'(s) so that (J\/4\, J)
does indeed defines a Kéhler manifold (cf. Lemma 2.11) and we write J for the complex

structure of M (see Subsection 2.2 for more details) . We compute using Cartan’s structure
equations for the connection one-forms and corresponding curvature two-forms.

A.1. Connection one-forms. We denote the Levi-Civita connection of § by V. We com-
pute in this subsection the connection one-forms of V. Recall that a differential form o on
a Sasaki manifold is basic if {10 = 0 and L¢o = 0, where £ is the Reeb vector field.

To this end, let 01, . .., 02,_2 be a local basic orthonormal coframe of ¢ satisfying Hioj =
—0;41 for i odd so that dn = 2w’ =2 E;:ll 0251 Ao, and let (w;j)1<i,j<2n—2 denote the
matrix of connection one-forms of g7. Then (w;;) solves the Cartan structure equations

{ do; = 3277 wii A G,

Wij + Wi = 0.

0; == b(s)b; fori=1,...,2n — 2, O 1 := ds, and (- a(s)n.
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Then the matrix of connection one-forms (@W;;)1 <, j <2n of § with respect to this coframe is
given by

Wij = wij — 5j,z+1b(()) Oy 1<i<2n—20dd, 1<j<2n-2

—~ als) s . .
wij:wij+5',i 1L92n 1 <1< 2n —2 even, 1<7<2n—2.

b(s)?

Gor s — l?((ss)2 Oip1 = %ei—i—l, 1<4¢<2n—2odd,
" = 1<i<2n—2even.

This translates to the following for i =1,2,...,n — 1:

. 2n . 2n—2 CL(S) . . b’(s) . .
Vg1 = kz_:lwk%—l ® 0 = Z <Wk2i—1 + Ok 2i (W) 92n> ® O — W%i—l ® Oap—1

k=1
a( ) 5
b(S) 622 X 92n7
2n —
~ 4 R A a(s)\ » . b'(s) A
Vi = > @roi ® 0 = Z Wi 2i = Ok,2i—1 (#) 92n> ® O — %922' @ O2n—1
k=1 k=1
a(s) 4 5
- Wezi—l ® Oop,,
. 2n—2 CL,(S)
V92n I—Zwk2n 1®9k—z b (8)02n®02n7

~ A a
V02n—zwk2n®9k Z b(i Oap @ Oop— 1+Zb 5021 ® O

/
- g ( )02n & 02n—1-
a(s)

~

A.2. Curvature two-forms. Recall that a(s) = b(s)b/(s) so that (]\/4\, g, J) is Kéhler. We
define the curvature tensor R(-, -)(-) of g by

R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z for X,Y, Z € T(TM).
With this, we realize R as a (0, 4)-tensor via

R(X,Y, Z, W)= (R(X, Y)W, Z),  for X,Y, Z, W € I(TM),
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and write
é = R(él, éj, €k, él) AZ’ ® é] ® 0, ® 0
= (R(é:, &)e1, éx)g 0: @ 0, @ 0y, @ )
= Rzgkl 0; ® Aj ® 01, @ 0,
where
(A1) Riji = (R(é:, €)é1, éx)g

We define the curvature two-forms Qij, 1<, 5 <2n,of R by

~ A~

R = éz ®0; @ ﬁij

so that
A S A N 1. A A
Qij = Rijklek ®0, = §Rijk19k A 0.

Then

N

Riji = (R(&i, €))é, éx)y = Qij(ér, é1)
and Qij satisfies the Cartan structure equations
Qij = d@ij + Wik A (,Adkj.

By the symmetries of the curvature tensor, we also see that the two-forms &;; are real

~

(1, 1)-forms. In this subsection, we compute the curvature two-forms (£2)1<; j<n of g.

Let Q;;, 1 <4, j < 2n — 2, denote the curvature two-forms of g, These satisfy

2n—2
Qij:dwij—FZwik/\wkj for 1 <4, j<2n-—2.
k=1

We have the freedom to choose the local basic orthonormal coframe {02}2221_2 of g to
be parallel at a point so that (w;;)i<;, j<an—2 = 0 at this point. This we do. With this
simplification, a computation shows that at this point, the two-forms €;;, 1 <4, j < 2n—2,
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are given by

~ V(s)2 rn -~ 4 - o
Qij = QU — b(8)2 (92 A j + 9i+1 A 9j+1) s 1 < 1, ] < 2n — 2 Odd,
~ V()2 /s o~ 4 5 .
- _ ) . ) : < < _
Q5 = Qyj o(s)? (HZ NO;+ 0,1 A 9]_1) , 1 <14, 5 <2n— 2 even,
5 V() (5 a4 5 a'(s) a(s)t'(s)\ 4 5
Q= Q5 — TBE (9i NOj =01 A 9j—1) — 20,11 [<6(3)2 RRYAE AN
a(s)®>\ 1 . ‘
+ w', 1<i<2n—-20dd,1<j<2n—2even,
b(s)?

~ b"(s)\ /A A A - . .
Qz, m—1 = < b(s) > (egn_l ANO; — 011 /\9271) , i=1,...,2n — 2,4 odd,
. B! . S .
QZ‘, Im—1 = < b((ss))> (egn_l ANO; +6;,_1 N 92n> , t1=1,...,2n — 2,1 even,
~ a(s) a(s)b'(s)\ /a - PR . .
QQn’Z = <b(8)2 — b(8)3 <02n—1 N6iiq —1—92/\92”) , 1=1,...,2n — 2,7 odd,
~ a(s) a(s)t/(s)\ /a4 - ~oA . .
Qop,i = — b(s)2 — BE (92n_1 ANBOi_1—0; \ 92n) , 1=1,...,2n — 2,i even,
5 b'(s) a’(s) 5 5
Qonon1=2(d QLICADE, B2 1 A oy

2n, 2n—1 <a (s) b(s) w' + a(s) on—1 N\ 02
Henceforth working at thie point at which the basis {6; 2221_2 of g7 is parallel, we have

that Jégp_1 = éop because ék is dual to é,. We now define for k = 1,...,n,

O = Oop_1 + 1 Oy, @;; = Oop_1 — i 6y,

- 1, . - . .
Ey = 3 (Eop—1 — i €2p), Er = 3 (Eok_1+iéop).
Similarly, for k =1,...,n — 1, we define the corresponding frame for ¢”:
1 , 1 .
By =5 (eak—1 —iean),  Bp =g (ean—1 +ie).

In particular, observe that E, = % (& —1 (%)) because by definition, Jy0, = % We

extend the (0, 4)-tensor R by complex multi-linearity and write the corresponding compo-
nents as

Then

where the complex-valued (1, 1)-forms ﬁaﬁ-, 1 < a, B < n, satisfy
QaB(E’Yv ES) = RaEwS?
and are related to the real (1, 1)-forms ﬁij, 1<, j<2n,by

. 1 /~ P
Qag =5 (Qza—1,25—1 + ZQ2a—1,25> .
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For 1 <a, 8 <n—1, we have

N 1 /V(s)\? 1A A . .
Doa—1,28-1=D20-128-1— 5 ( ( )> [@a INCERRCERA @5}

and

~ i (B (s)\2 1A A
Doa—128 = Doa—128 — 3 < ( )> {@a AOj— O A @5]

oG nres (35) Sonel]

It therefore follows that

~ Q.3 / 2 A

o8 7 p(s)2 2 \ b(s)

forl<a, B<n-—1.
Next, for 1 < a <n—1, 8 =n, we have

N v'(s) (- A . .
Q a—12n—1 — n a n «
2a—1,2n—1 Qb(S) (@ ANBgz+ 605z AN0O >

and
N i (b'(s) R A R A
Qo 19n = —= (60105~ 6710,
w2 =5 () )
Hence in this case we see that
~ 1/~ ~ b"(s) A .
Qaﬁ:_<Q a—1,2n— X9 a—1,2n | = n a
5 (M2a-12 1+189 1,2) 2b(s)® AO
Finally, for « = n, 8 = n, we have that
~ 1/~ P
Qpp = 3 <Q2n—1,2n—1 + Zan—1,2n>
i~
= §Q2n—1,2n
LI (V) \ g va, @)y o
=— || — O; N O; O, NOx]| .
2 (z)(s)); AT Bas)

ot~ 3 (55) 02165+ %5 [(17) 00 1 O+ (i57) i O0n 6] 1< p .

(Zi(ii)éméa 1<a<n-1,8=n,
3 (bu(s)> SO O+ LG, A é)-] a=f=n
2 b(s) =1 ¥l [T 2a(s) On n =B =n.
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In particular, this yields that

R, 5.5 /(s 2 a(s)?
b?sg + % <l;,((s))> 5@6567 + <25((S))4) 5@5576 1<a, Ba s d<n-— 1,
(A.2) R.5.5 = <gb§z)) dyndsa 1<a<n-—1,8=n,
b// s CL” s
3 (58) G5 = dvndon) + (55 ) Gvndon| a=n. 8=n,
where R is the curvature tensor of g7 and Ijlag,yg =R (Ea, Ejz, E,, Eg).

A.3. Curvature of a Kihler cone. Recalling the construction of the n-dimensional
Kéhler cone from Example 2.10, we have that a(s) = b(s) = s, and so from the above
we determine that for this example,
A AL % 14 . a)
., - 5 (25— 365705+ 2 Y1 00 0;) i 1<a, B<n-1,
@ 0 ifl<a<n,B=n.

It is well-known that a Riemannian cone has Rm > 0 if and only if the link has Rm > 1.
The Kéhler version of this fact is the following.

Theorem A.1 ([9]). A Kahler cone has strictly positive curvature operator on real (1, 1)-
forms in the transverse directions if and only if the link is a Sasaki link whose base satisfies
(2.23) with A = 1.

Proof. It suffices to show that for all nonzero real (1, 1)-forms involving only transverse
components, namely those of the form 22_6121 1,300 N Oj, we have that

] (—R—f—l(a Sy + B ))
A o _ aByn — 2\YaBlyn an9By
0 < —R,z,;u Py = 2

u®s ",

where 13 = g}an”Bun,—y. Since g7 (Ea, EB) = ggﬁ— = 50‘75, this happens precisely when the
curvature tensor of the transverse metric satisfies

. 2 1 3 -
_Raﬁ_vﬁuaﬁuw = 92 (Gapdyn + dandsy) uPu

T T T T 3 n

Thus, the transverse metric has curvature operator strictly greater than 2 on real (1,1)-
forms. This proves Theorem A.1. O

In the next lemma, we consider a slightly more general situation than that of the Kahler
cone.

Lemma A.2. Let A € R and let § be a doubly-warped product Kihler metric on (0, L)xS*~1,
L >0, of the form

§=ds* +a*(s)” + 0 (s)g",
where a, b : (0, L) — [0, 00) are smooth functions and (S*"~%, n, g7) is the round Sasaki
structure on S*"~ 1 as described in Example 2.9 with gT = %gpg, where grs s the Fubini-
Study metric on P! normalized so that Ric(grs) = ngrs.
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Let p = (s, wo) € (0, L) x S?"~L. Then § has curvature operator strictly greater than 2\
on (1,1)-forms at p if and only if for any nonzero hermitian matriz u™®,

B )2 % 2 n-l . a’(s nn
o < MDOONS VR (4 () ] $ ) o () e
I n—1 //
(Bt (e

a=1

Proof. From the formulas in (A.2), it suffices to express the difference
_Raﬁ_“/ﬁ —2A (Qaﬁ‘ﬁwﬁ + gaﬁg’yﬁ_)
in terms of the warping functions a and b. To this end, let p = (s, wp) € (0, L) x 527=1 and

for any nonzero real (1, 1)-form 2375:1 iuagé)a A @B at p, let u®® = g}o‘égnﬁung = 4dugg.
Then

(A.3)

a,f=1

A n—1 n—1 2 n—1
- §l2|u""‘2+2u""2u‘m+ <§:1u°‘°‘> + )
a=

a=1 a,f=1

u®B

9 n—1
+2 Z ‘uo‘"f] )
a=1

in the last equality. By the symmetries of the

Here we have used the fact that uo® = y"@

curvature tensor, we moreover have that

n n—1
Z Raﬁ’vﬁ“aﬁuw = Z _ﬁaﬁfyﬁuaﬁ " — Ry ™
CV,B,’Y,T]II a,ﬁ,’*{,’l’]zl
n—1 n—1
-2 Z uaﬁunﬁ Eaﬁnﬁ —9 Z unaunﬁ ﬁnanﬁ
a=1 a=1
n—1 n—1
-9 Z uaﬁ nnRaEnn 2 Z uaﬁunﬁRaﬁnB
CV,B::L CV,B::L
n—1 n—1
o Z unaunﬁﬁn&ng_ Z uaﬁuﬁﬁRaﬁﬁﬁ
ayﬁzl a,ﬁ:l
n—1 n—1
_ afB vR - _ — aB, Y mp
2 > wuRygs -2 Y uu R
a7577:1 a,ﬁ,“{zl

This expression can be simplified using the fact that
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Since the the curvature tensor of % grs is given by

— 28086y + andsy), We see that

f —Raﬁ-ﬁ/ﬁuaﬁ_u“fﬁ = 7§ [(5055“/71;1)‘25&175%) _ (b/)2(5aﬁ5;;)72+ San0s) wOBy
a,B,v,n=1 a,B,7v,m=1
1-0)? | [ ’
5
o,f=1

By the curvature formulas given in (A.2), we find that

—Rymn

"
nn, nn
auty"t = ——

4a

712
[u™|

n—1

n-1 - _ b b
—9 Z uaﬁunn?béaﬁ __urm Z uaa

a,B=1 a,B=1
n—1 B b, b n—1 9
—2 Z uomunBRarmB Z uu A aﬁ = _? ‘ Om‘
a,f=1 a,f=1 a=1
and so
n A 3 1— (b,)2 n—1 B 2 n—1 3 a o
_ e — ol « nn
= > Rapu = e D]+ X | 2o [«
a,B,y,n=1 = a,f=1
b// 771—1 B b// n—1 9
A4 _ 2 . nn a7 an
(A.4) " "5 e

a=1

The lemma now follows by combining (A.3) and (A.4), together with the fact that u®? is
an arbitrary nonzero real (1, 1)-vector. O

APPENDIX B. COMPARISON WITH THE STEADY SOLITONS OF APOSTOLOV-CIFARELLI

Let (21, ..., 2,) denote coordinates on C" with z, = x4+ iy and suppose that (C", g, X)
is a steady Kéhler-Ricci soliton with Ric, = %ﬁ x¢g, where

X =2Re (i aaza82a>
a=1

n
= Z o (£00z, + Ya Oy, ) with a, € R.

a=1

(B.1)

We begin with a general lemma.

Lemma B.1. IfRic, >0 at 0 € C", then aq >0 for alla=1,...,n
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Proof. Without loss of generality, suppose that a; < 0 at 0 € C". Let V denote the
Levi-Civita connection of g. Then

1
0< Ricg(&pl, aml) = §£Xg(am1y 8901)

=g (Vo., X, )

= Zn: aag (Vaz1 (a0z, + YaOy,) 8961)
a=1

= Zn: aag (5018% + 2aVa,, Oz, axl) + Zn: aag (yavazlayw 3:(:1)
a=1

a=1

= a19(0y,, Oz,) at 0 € C™.

This is a contradiction. O

Next, we show that there exist holomorphic coordinates that linearise the soliton vector
field of the Kahler flying wing steady solitons.

Lemma B.2. For (C", g, X) the Kdihler flying wing steady solitons, holomorphic coordi-
nates exist so that X takes the form given in (B.1).

Proof. The expanding Kéahler-Ricci solitons in [37] are asymptotically conical, hence the
scalar curvature has a maximum value in the interior of the manifold. Since these expand-
ing solitons have positive Ricci curvature, it follows from the soliton identities that the
maximum value of the scalar curvature is achieved at a zero of the soliton vector field. By
construction, this is a single point. We denote this point by 0 € C™.

Now, the Kéhler flying wing steady solitons are obtained as the pointed Cheeger-Gromov
limits of the aforementioned expanding solitons based at the point 0, after rescaling the
scalar curvature at 0 to be equal to 1. It follows that the scalar curvature of the limiting
steady soliton g also has a maximum value of 1 at its base point. Since Ric, > 0, by the
soliton identities X vanishes at this point. The fact that the limiting soliton potential is
convex because Ricy, > 0 then implies that this zero of X is unique.

Finally, by [13, Proposition 6], we can choose local holomorphic coordinates on C™ centred
at the zero of X so that X takes the form (B.1). Since the zero of X is unique, these coor-
dinates can be extended globally by [38, Proposition 2.28] on C™ so that the representation
(B.1) of X is global. O

Finally, we show that the soliton vector field of our Kéhler flying wing steady solitons is
a multiple of the Euler vector field on C".

Proposition B.3. For (C", g, X) the Kdhler flying wing steady solitons in Theorem A, we
have a1 = ... =a, >0 in (B.1).

Proof. By Remark 2.27, the Ricci tensor of the expanding Kahler-Ricci solitons constructed
in [37] is diagonal at 0 € C™, the unique critical point of the soliton vector field. It follows
that Ricy = pug for some p € R at 0 € C" for the Kahler flying wing steady solitons. Since
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Ricy > 0, we see from Lemma B.1 above that > 0. For any index o = 1,...,n, we then
have that

. 1
Mg(8$a7 afﬂa) = Rlcg(8$a7 8%&) = §£Xg(ama7 852&)
=9 (Va,, X, 0z,)

= Zagg (Vam (mg@mﬁ + ygﬁyﬁ) ) ama)

A=1
n n
= 439 (60pOsy + 25V, 0ryr Ou) + > apg (ysVa,, Oys, Or,)
B=1 B=1

= 4090z, Ox,) at 0 € C™,

ie,a,=pu>0forall a=1,...,n. O

Next recall the steady solitons from [2, Theorem 1.2]. We consider this theorem with
¢ =2,d; =0, and do = n — 2. In this case, this theorem yields complete U(1) x U(n — 1)-
invariant steady solitons on C". By [2, Lemma 5.1], the soliton vector field X is given
by

_a q(oa) q(or2)
X = (a2 — o) < 5t 2(n—1)X2>’

where X7 is the Euler vector field on the first C-factor and X5 is the Euler vector field on the
second C"~!-factor of C", where ¢(t) is a polynomial of degree one, and —oo < a1 < ag < 00
(cf. [2, Section 5.1]). Write ¢(t) = qo + 1t and note that we can always normalise by
translation and scaling so that a; = 0 and as = 1. Then it is clear that

Lemma B.4. X coincides with a multiple of the Fuler vector field on C" if and only if
q1 = —nqgo-

The next proposition shows that this can never be the case.

Proposition B.5. The vector field X of the steady solitons of [2, Theorem 1.2] with U (1) x
U(n — 1)-symmetry can never be a multiple of the Euler vector field on C™.

Proof. In this case we have that p.(t) = (t — 1)"~2 (cf. [2, p.14]). Suppose that the propo-
sition is false. Then by Lemma B.4 we have that ¢(t) = 1 — nt up to a non-zero scalar
multiple. By construction, the solution F' of the ODE satisfies [2, equation (5.1)]:

1
0=F(1) =2 /0 2 q(2)pe(x) do,

which by definition of p.(t) and ¢(t) equates to

1
0= / (1 —nz)(z — 1)" da.
0
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Here a > 0 is a real constant. Then
1
0= / (m(a; — 1)"_162“50)/ dx
0

1 1 1
= / (z —1)"1e?™ dx + (n — 1)/ z(z — 1)V 2% dy + 2a/ z(x — 1) e dy
0 0 0
1

1
= / (z — 1)+ (n — )z) (x — 1)" 229 dz + 2a/ z(x — 1) e dy
0 0

1 1
=— / (1 —nx)(z —1)"2e2% dg +2a/ z(x — 1) e dy.
0 0

=0

This is a contradiction because z(z — 1)"~'e?%® has a sign on (0, 1). O

Finally, the steady solitons from [2, Theorem 1.4]. can never have a soliton vector field
a scalar multiple of the Euler vector field on C"; cf. [2, Section 5.3]. As a result of these
observations, we obtain

Corollary B.6. The solitons of Theorem A are non-isometric to those of [2].

Proof. 1If a steady soliton of [2] doesn’t have positive sectional curvature or is not U(1) x
U(n — 1)-invariant, then the result is clear. So suppose that it has both of these properties.
Then any isometry will map a critical point of the scalar curvature to a critical point of
the scalar curvature. By the soliton identities, the fact that the Ricci curvature is positive
implies that for each steady soliton, the critical points of the scalar curvature and the
zero set of the soliton vector field coincide. Each soliton vector field has one zero at the
origin and positive Ricci curvature implies that this zero is unique, hence any isometry will
map the origin to the origin. At every point, the steady soliton equation implies that the
eigenvalues of the Ricci tensor coincide with those of the Hessian of the potential function.
In particular, at the origin, being a zero of the soliton vector field, the Hessian of the soliton
potential is independent of the choice of metric. This yields a contradiction. Indeed, at the
origin, Proposition B.3 implies that the Ricci tensor of the steady solitons of Theorem A is
a multiple of the identity, whereas the other observations above imply that this is not the
case for those steady solitons of [2] admitting U(1) x U(n — 1)-symmetry. O
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