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Abstract

Molecular property optimization (MPO) problems are inherently challenging since they
are formulated over discrete, unstructured spaces and the labeling process involves expen-
sive simulations or experiments, which fundamentally limits the amount of available data.
Bayesian optimization (BO), which is a powerful and popular framework for efficient op-
timization of noisy, black-box objective functions (e.g., measured property values), thus is
a potentially attractive framework for MPO. To apply BO to MPO problems, one must
select a structured molecular representation that enables construction of a probabilistic
surrogate model. Many molecular representations have been developed, however, they are
all high-dimensional, which introduces important challenges in the BO process — mainly
because the curse of dimensionality makes it difficult to define and perform inference over
a suitable class of surrogate models. This challenge has been recently addressed by learn-
ing a lower-dimensional encoding of a SMILE or graph representation of a molecule in an
unsupervised manner and then performing BO in the encoded space. In this work, we
show that such methods have a tendency to “get stuck,” which we hypothesize occurs since
the mapping from the encoded space to property values is not necessarily well-modeled
by a Gaussian process. We argue for an alternative approach that combines numerical
molecular descriptors with a sparse axis-aligned Gaussian process model, which is capable
of rapidly identifying sparse subspaces that are most relevant to modeling the unknown
property function. We demonstrate that our proposed method substantially outperforms
existing MPO methods on a variety of benchmark and real-world problems. Specifically,
we show that our method can routinely find near-optimal molecules out of a set of more
than > 100k alternatives within 100 or fewer expensive queries.

1. Introduction

Molecular property optimization (MPO) is the process of systematically improving the

structural and/or functional properties of molecules to meet specific objectives. MPO is a

critical step in a variety of scientific and engineering applications including chemistry, drug

discovery, and material science. One can generally formulate MPO problems as follows
m* € argmax F(m), (1)

meM
where m is a molecule from the discrete set M and F : M — R is an unknown objective
function that maps a molecule to a performance value. The goal is thus to find the “best”



molecule m* that has the best performance F(m*) > F(m) for all m € M where M is a set
with large but finite cardinality |M| < oo. This problem is easily solved if we could perfectly
measure the property for every molecule; however, in reality, (i) we often only get noisy
observations y = F'(m)+e¢ and (ii) the number of candidate molecules is very large (millions
or more) such that we can only observe a relatively small number of options. In recent years,
there has been a substantial amount of work on the use of machine learning as an effective
tool to address these challenges (Barték et al., 2017; von Lilienfeld and Burke, 2020). Most
work on machine learning for MPO can be divided into two categories: guided search and
translation (Hoffman et al., 2022). In guided search, the idea is to construct predictive
models over some type of molecular representation to sequentially select promising molecules
for testing. Translation, on the other hand, treats the molecule generation problem as a
sequence-to-sequence translation problem, which requires additional information that is not
always available. Thus, in this work, we focus on developing a guided search approach.

To develop a guided search strategy, one must first select an effective numerical repre-
sentation of the molecule. We can think of this representation as a function R : M — X
that maps from molecule space M to a numerical feature space X. As long as this
mapping is invertible, we can equivalently express (1) as finding m* = R™!(z*) where
r* € argmax,cy f(z) and f(z) = F o R™!(x) is the objective as a function of the struc-
tured numerical representation vector x. The space X could be continuous or discrete
and many different representations have been proposed in the literature including SMILES
strings (Anderson et al., 1987), molecular graphs (Wieder et al., 2020), molecular finger-
prints (Cereto-Massagué et al., 2015), and molecular descriptors (Moriwaki et al., 2018).
An important challenge with all of these representations is that they are naturally high-
dimensional, which complicates the optimization problem. A recent line of work has looked
to address this challenge by learning a lower-dimensional continuous latent representation
in which one can more easily execute efficient search strategies such as Bayesian optimiza-
tion (BO) (Frazier, 2018). One of the most common examples is the combined use of a
variational autoencoder and BO (Gémez-Bombarelli et al., 2018; Griffiths and Herndndez-
Lobato, 2020). Let z = E(x) denote an encoded latent representation of z. These methods
proceed by using BO to maximize g(z) = f(D(z)) over z (where a decoder transforms back
to x = D(z)). If E is learned using little-to-no property data, then there is no driving
force for ¢ to have smoothness or continuity properties that would allow one to efficiently
search over the latent space Z even if it has a smaller dimension than X. Furthermore, it
is possible that sparsity in the behavior of f(x) is lost when transforming to g(z).

In this paper, we propose the Molecular Descriptors and Actively Identified Subspaces
(MolDAIS) framework, which is a new strategy to approach MPO problems that work
directly in a numerical molecular feature space. In particular, we argue that molecular de-
scriptors (i.e., outcomes of mathematical procedures applied to the symbolic representation
of a molecule) (Todeschini and Consonni, 2000) combined with Gaussian process surrogate
models defined on sparse axis-aligned subspaces (SAAS) provide an effective framework
for MPO in the low-data regime. The motivation for our approach can be traced back to
ideas in interpretable machine learning, which often posit the existence of a relatively small
number of well-selected (understandable) features that can be used to accurately predict
the desired property of interest. Since these key descriptors may not be known a priori,
one can attempt to learn them with sparse regression methods such as SISSO (Ouyang



et al., 2018). These sparse regression methods, however, require that the target property
depend linearly on the important descriptors in the feature set. They also do not directly
capture uncertainty, which is crucial for navigating the exploration-exploitation tradeoff in
BO. It turns out that we can address these both of challenges by taking advantage of the
SAAS prior developed in (Eriksson and Jankowiak, 2021). Not only can SAAS sparsely
pick out features from z, the space is systematically updated as new information is col-
lected, enabling adaptive learning of sparse and interpretable subspaces. The latter point
significantly simplifies the inference task, which reduces the amount of data needed to make
useful property predictions. We demonstrate the advantages of MolDAIS on three unique
problems by comparing to existing MPO approaches. First, we consider a benchmark logP
problem for which we can consistently find the best molecule out of 250k candidates in
only 100 iterations (substantially outperforming state-of-the-art alternatives). Second, we
consider two real-world problems related to optimization over a class of organic molecules
whose properties are computed from an expensive density function theory simulation.

2. The MolDAIS Framework

2.1 Molecular Descriptors

Molecular descriptors are defined as the “final result of a logical and mathematical proce-
dure, which transforms chemical information encoded within a symbolic representation of
a molecule into a useful number or the result of some standardized experiment” (Tode-
schini and Consonni, 2000). Many types of molecular descriptors have been developed.
Here, we focus on a set of more than 1800 descriptors that can be efficiently computed
from the open-source Mordred software program (Moriwaki et al., 2018). Examples of the
descriptors include outcomes of rotationally and translationally invariant operations on a
molecular graph as well as quantities relevant in chemistry (such as atomic weights). Using
these descriptors, we can cast (1) as the following equivalent optimization problem

x* € argmax f(z), (2)

reX
where f(r) = F(R™!(x)) denotes the performance value as a function of the Mordred
representation x = R(m) and X = [0,1]P is the normalized numerical Mordred space

defined over a D-dimensional hypercube (D ~ 2000 in this work).

2.2 Bayesian Optimization with Sparse Axis-aligned Subspaces

The challenge with solving (2) directly is that X is a high-dimensional space so it is diffi-
cult to apply efficient optimization strategies, such as Bayesian optimization (BO), due to
the curse of dimensionality that manifests when attempting to build a surrogate model for
f(z) from initial data. In particular, Gaussian processes (GPs) are non-parametric function
priors that are commonly used in BO due to their flexibility and natural uncertainty quan-
tification abilities (Williams and Rasmussen, 2006). A GP over an input space X is fully
specified by a prior mean function pg : X — R and prior covariance (or kernel) function
k:X xX — R. As commonly done, we will assume po(z) = 0 for all x € X', which can
be achieved in practice by normalizing the input data. The kernel function encodes infor-
mation about the smoothness and rate of change of the unknown function, with a popular



choice being the squared exponential (SE) kernel given by
KV(x,2') = ofexp { ~3 2 pilas — 20)%} (3)

where ¥ = {p1,...,pD, Jz} are the hyperparameters of the kernel that consist of inverse
lengthscales {pi}lgl for each dimension and the output scale a,%. For fixed v, the posterior
distribution p(f(2+)|Dn) ~ N (pn(ws),02(z,)) at a test point x, given past observations
Dy, = {(xi,yi)}}_, can be analytically computed. Given this predictive distribution, stan-
dard BO proceeds by selecting the next evaluation point x,4; € argmax,cy an(z) that
maximizes an acquisition function «, : X — R, which should be chosen to provide a
good measure of the potential benefit of querying f at every x € X in the future. By
defining our utility function as the best observed sample u(D;,) = max(, y)ep, Yn, We can
derive the expected improvement (EI) acquisition function as the expected increase in utility
an(z) = Ely(z|n,v) = Ep{u(Dp+1) — u(Dy)} where n = max,, y, is the best observed value
so far. For a standard GP model, EI has a simple closed-form solution (Jones et al., 1998).

The main challenge with the standard BO strategy for (2) is that, when D is large, the
space of possible functions mapping X to R is too large to learn even assuming some degree of
smoothness imparted by the SE kernel (3). Without additional prior information, a natural
way to deal with this challenge is to assume a hierarchy of relevance in the dimensions such
that we can focus on the subset of features in x = {1, z9,...,zp} that are important for our
property of interest. We choose to exploit the sparse axis-aligned subspace (SAAS) prior to
accomplish this task. In short, SAAS is a prior over the kernel hyperparameters that induces
sparse structure in the inverse squared lengthscales p;. Small values of p; imply dimension ¢
is unimportant in the prediction, so a half-Cauchy prior is used to concentrate their values
near zero. Only once observations provide enough evidence that dimension ¢ is important
can p; escape zero. As more data is accumulated, the number of dimensions allowed to
escape increases, allowing more p; to be “activated”, leading to a richer class of functions.
Interested readers are referred to Eriksson and Jankowiak (2021) for details on the SAAS
prior as well as the training procedure that exploits an established Hamiltonian Monte
Carlo method to generate L approximate posterior samples for the kernel hyperparameters
{wl}f: ;- Therefore, given n previous property evaluations for different molecules, the next
molecule we want to sample is selected according to my,+1 = R~ (zy41)

Tnt1 € argg)l(ax %Zle EL,(z|n, ). (4)
x

These steps have been implemented in the BoTorch package (Balandat et al., 2020) for
which (4) can be tackled using efficient gradient-based optimization methods.

3. Experiments
3.1 Baseline Methods

We compare MolDAIS to several baselines that are a mixture of different choices of the
starting molecular feature space, the learned latent representation, and type of BO method.
All methods are provided with 10 randomly chosen initial samples and a budget of 90
additional samples and results are shown for 5 independent replications of each algorithm.



LADDER is a recently proposed MPO method that combines molecular fingerprints
(FP) with a junction-tree autoencoder (JTAE) to construct a latent representation of the
FP space (Deshwal and Doppa, 2021). A standard BO method is then used to actively
select new samples in the latent space. We use the default settings from the original paper

SAAS-FP-JTAE is a variant of LADDER that uses the same latent representation
(learned by applying a JTAE to molecular FPs) but now uses the SAASBO strategy de-
scribed in Section 2.2. This is meant to study the impact of the starting molecular descriptor
space, as we expect the SAAS prior to be less effective in the encoded latent space.

SBO refers to the standard BO method that optimizes directly over the high-dimensional
molecular descriptor X space using the EI acquisition function. This is meant to study the
importance of the SAAS prior for accelerating convergence.

SBO-PCA is a slight modification to SBO that replaces the high-dimensional & space
with a new lower-dimensional latent space constructed by applying principal component
analysis (PCA) to the unlabeled molecular descriptor data. The size of the latent space is
chosen such that 99% of the variance in the X’ data is captured.

SLR refers to sequential linear regression, which is a very naive version of MolDAIS that
uses sparse linear regression to identify a model with a small number of non-zero coefficients.
This linear surrogate model is then maximized directly to select the next sample.

Random refers to a standard random search strategy wherein the next sample is chosen
uniformly at random in X. This method, which does not exploit any past data, is meant
to provide a lower bound on performance.

3.2 Maximizing LogP over the Zinc Molecule Dataset

We first consider the problem of finding molecules with the best drug-like properties (Kusner
et al., 2017). In particular, the goal is to maximize the water-octanol partition coefficient
(logP) over the space of molecules. As done in previous work, we consider the Zinc molecule
data set that consists of 250,000 commercially-available molecules.

The results are shown in Figure 1 (Left), which shows that MolDAIS clearly outperforms
all other methods, as it is able to find the highest logP value by sampling less than 0.04% of
the candidates in all replicates. This represents a more than 30% improvement over the best
candidates found with all other methods under the same conditions. Even a reduced space
variant of MolDAIS, which removes any feature suspected to highly correlate to logP, still
outperforms all other tested methods. Interestingly, LADDER, performs relatively similar
to the other methods on average and actually results in a larger distribution of outcomes.

3.3 Maximizing Solvation Free Energy for Quinone Molecule Class

Next, we consider the problem of finding the best molecule from the quinone class (Tabor
et al., 2019) that has the largest Gibbs free energy of solvation AGy)y, which is an im-
portant property for battery materials and pharmaceuticals. Although one can compute
AGyly using density functional theory (DFT), it requires two separate simulations in dif-
ferent phases, which takes around 24 CPU hours per molecule on a supercomputing cluster.
We consider a space of > 100,000 quinone molecules and look to maximize AGgo,. The
results are shown in Figure 1 (Middle), which again outperform all considered alternatives.
MolDALIS finds the global solution within around 10 iterations. Since the latent space built
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Figure 1: Left: logP maximization. Middle: Solvation free energy maximization. Right:
Feature importance and test accuracy for solvation free energy GP model.
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with LADDER may not be compatible with the quinone class, we do not directly com-
pare against LADDER or SAAS-FP-JTAE in this example. To gain more insight into why
MolDALIS can achieve such strong results, we perform additional analysis on the SAAS-GP
model (Figure 1; Right). The top plot shows the p; values sorted in decreasing order; we see
a clear separation in terms of the top 4 values and the remaining values, indicating a small
number of Mordred descriptors are needed to predict AGg,),. Furthermore, the bottom plot
shows the root mean squared error (RMSE) on a held-out set of 100 test molecules based
on randomly sampled training sets of different sizes. We see that the RMSE values are
significantly smaller even when only 20 data points are known, indicating the SAAS prior
does enable learning a model structure with improved prediction accuracy. See Appendix
A for similar results achieved on a reduction potential maximization problem.

4. Conclusions

In this work, we propose a new molecular property optimization (MPO) method, MolDAIS,
that can efficiently identify high-performance molecules in the low-data regime. MolDAIS
combines molecular descriptors with a sparse axis-aligned subspace (SAAS) prior to adap-
tively learn sparse and interpretable subsets of the high-dimensional molecular feature space
that can be used within a Bayesian optimization (BO) framework to directly balance explo-
ration and exploitation of the search space. We empirically show that MolDAIS outperforms
existing MPO methods on benchmark and real-world problems. Furthermore, in some cases,
MolDALIS can find near globally optimal molecules with 100 or less queries out of more than
100k candidates without any prior information (i.e., in a fully black-box manner).
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Appendix A. Maximizing Reduction Potential

To further illustrate the flexibility of the proposed MolDAIS method, we consider another
variant of an MPO problem defined over the quinone molecule class considered in Section 3.3.
Specifically, we now consider the reduction (or redox) potential that are a measure of energy
required to reduce or oxide a molecule relative to the standard hydrogen electrode, which
can again be predicted using DFT. The results for maximizing redox potential E° are shown
in Figure 2. Even though this is a completely different property than AGg.y, MolDAIS
still outperforms all considered alternative methods, though the SBO-PCA method does
perform fairly close towards the final iterations. We again see a clear separation in terms
of the number of relevant dimensions (those with relatively large p; values), though the
overall values are higher than in the AGggy that is likely the source of slightly worse perfor-
mance. Similarly, from a prediction quality point-of-view, the SAAS-GP still outperforms
the traditional GP, though there is less of a gap than in the previous cases.
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Figure 2: Top Left: Convergence results for maximization of redox potential versus number
of iterations. Top Right: The distribution in the best maximum found at the final iteration
over the replicates. Bottom Left: Inverse squared lengthscale values sorted in descending
order for the SAAS-GP model at the final iteration. Bottom Right: Test RMSE values
for the standard GP and SAAS-GP models given random training sets of different sizes.
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