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Abstract

Diffusion models achieve state-of-the-art perfor-

mance in various generation tasks. However, their

theoretical foundations fall far behind. This paper

studies score approximation, estimation, and dis-

tribution recovery of diffusion models, when data

are supported on an unknown low-dimensional

linear subspace. Our result provides sample com-

plexity bounds for distribution estimation using

diffusion models. We show that with a prop-

erly chosen neural network architecture, the score

function can be both accurately approximated and

efficiently estimated. Further, the generated distri-

bution based on the estimated score function cap-

tures the data geometric structures and converges

to a close vicinity of the data distribution. The

convergence rate depends on subspace dimension,

implying that diffusion models can circumvent

the curse of data ambient dimensionality.

1. Introduction

Diffusion models achieve state-of-the-art performance in

image and audio generating tasks (Song & Ermon, 2019;

Dathathri et al., 2019; Song et al., 2020b; Ho et al., 2020)

and are one of the fundamental building blocks of the more

advanced image synthesis system, e.g., DALL-E-2 (Ramesh

et al., 2022) and stable diffusion (Rombach et al., 2022).

A standard diffusion model (Sohl-Dickstein et al., 2015; Ho

et al., 2020) consists of a forward process and a backward

process: In the forward process, a data point is sequentially

corrupted by Gaussian random noises and in the limit the

data distribution is transformed into white noise; In the

backward process, a denoising neural network is trained to

sequentially remove the added noise in the data and restore
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the clean data point. Using the trained denoising network for

the backward process, one can generate diverse and high fi-

delity samples by first sampling from the standard Gaussian

distribution and then progressively removing noises.

The distinctive denoising objective separates diffusion mod-

els from other deep generative models such as GANs (Good-

fellow et al., 2014), and Normalizing Flows (Rezende &

Mohamed, 2015). As shown by Vincent (2011), the training

of denoising network essentially learns the so-called “score

function”, i.e., the gradient of log probability density func-

tion. Therefore, diffusion models fall into the category of

Score-based Generative Models (SGMs).

Despite the empirical success of diffusion models, the theory

is still in its embryo. Here we are interested in answering

two fundamental questions:

Q1. Can neural networks well approximate and learn score

functions, especially when data have intrinsic geometric

structures? If so, how should one choose the neural net-

work architectures, and what is the sample complexity of

learning?

Q2. Can diffusion models estimate the data distribution

using the learned score functions? If so, how are the data

intrinsic geometric structures being captured and how do

they affect the sample complexity?

Both Q1 and Q2 raise a practical concern about the real

world data, such as high resolution images. These data,

though having high ambient dimensions, often exhibit low-

dimensional structures (Pope et al., 2021), due to symme-

tries, repetitive patterns, and local regularities (Tenenbaum

et al., 2000; Roweis & Saul, 2000). Deep neural networks

have been known for capturing certain low-dimensional data

geometric structures (Schmidt-Hieber, 2017; Suzuki, 2018;

Nakada & Imaizumi, 2020; Shen et al., 2022). However,

whether such abilities hold for diffusion models remains

unclear.

Some recent works skipped Q1 and attempted to study Q2,

by directly assuming that the score function is accurately

learned up to a small error under certain metric, e.g., L2/L∞

norm (De Bortoli, 2022; Lee et al., 2022a; Chen et al.,

2022b; Lee et al., 2022b). De Bortoli (2022) in particular

studied low-dimensional manifold data. These progresses
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unveil important theoretical insights about the sampling

properties of the backward process of diffusion models,

however, leaving Q1 largely untouched. As a result, a full

theoretical picture of diffusion models is lacking.

To bridge the gap between theory and practice, we make

a first step towards an integrated analysis to answer both

Q1 and Q2 for diffusion models. The combined result pro-

vides sample complexity bounds of diffusion models for

learning data distributions supported on low-dimensional

data. Specifically, we consider data point x satisfying

Ψ−1(x) = Az, where Ψ is a known invertible data transfor-

mation, e.g., Fourier transform, z is referred to as the latent

variable, columns of A ∈ R
D×d form an orthonormal basis

of Rd for d ≤ D. We remark that the data transformation

Ψ allows a flexible data modeling for even functional data.

Applying diffusion to the transformed data Ψ−1(x) corre-

sponds to diffusion models in the latent space (Vahdat et al.,

2021; Kim et al., 2022). To simplify the theory, we take Ψ
as the identity mapping throughout the paper. Therefore,

data point x = Az assumes a linear representation. We

refer to d as the intrinsic dimension and D as the ambient

dimension.

Based on such a low-dimensional linear subspace assump-

tion, we can decompose the score function of the linear

subspace data into on-support and orthogonal components

(Lemma 1). We then characterize their distinct behaviors of

the two components, where on-support component carries

latent distribution information and orthogonal component

forces the subspace recovery.

Our main contributions are summarized as follows:

• We specify an encoder-decoder neural architecture with

skip-layer connections and establish its approximation guar-

antees with respect to the score functions under the L2 norm

(Theorem 1). Specifically, given an approximation error

ϵ, we show that the network size needs to be exponential

in 1/ϵ with the exponent depending on the data intrinsic

dimension d.

• We establish statistical guarantees of score estimation us-

ing our properly chosen encoder-decoder neural network.

We show that such a neural score estimator converges to

the ground truth score under the L2 norm at a rate of

Õ( 1√
t0
n−

1
d+5 ), where n is the sample size and t0 is an

early stopping time (Theorem 2). This result indicates that

the neural score estimator does not suffer from the curse of

the data ambient dimensionality in score estimation, when

the data exhibit intrinsic geometric structures.

• We establish distribution estimation guarantees using the

learned neural score estimator. By simulating a discretized

backward process, the generated data distribution of diffu-

sion models converges to a close vicinity of the data distribu-

tion (Theorem 3). Specifically, for the on-support direction,

generated distribution enjoys a Õ(n−
1

2(d+5) ) rate of con-

vergence in total variation distance. For the orthogonal

direction, the generated distribution vanishes in magnitude,

and the support of the data is approximated recovered. Our

analysis demonstrates that diffusion models are free of the

curse of data ambient dimensionality.

1.1. Related Work

Several recent works study diffusion models from the sam-

pling perspective. De Bortoli et al. (2021) study the con-

vergence of diffusion Schrödinger bridges by assuming

the score estimator is accurate under the L∞ norm. Lee

et al. (2022a) provide polynomial convergence guarantees

of SGMs, under the assumption that the score estimator is

accurate under the L2 norm. In addition, Lee et al. (2022a)

require the data distribution satisfying a log-Sobolev in-

equality. Concurrent works Chen et al. (2022b) and Lee

et al. (2022b) improve previous results by extending to

distributions with bounded moments. Their analyses still

assume access to an accurate score estimator under the L2

norm. It is worth mentioning that Lee et al. (2022b) allow

the error of the score estimator under the L2 norm to scale

with time.

Moreover, De Bortoli (2022) made an interesting attempt

to analyze diffusion models for learning low-dimensional

manifold data. Assuming the score estimator is accurate

under the L∞ norm, De Bortoli (2022) provide distribution

estimation guarantees of diffusion models in terms of the

Wasserstein distance. The obtained convergence rate has an

exponential dependence on the diameter of manifold.

As stated, aforementioned works hardly touch Q1 and pro-

vide partial understandings of diffusion models. To the best

of our knowledge, Block et al. (2020) is the only work in

existing literature, which provides score estimation guaran-

tees under the L2 norm. Yet the error bound depends on

some unknown Rademacher complexity of certain concept

class. In comparison, our work is explicit on the choice of

a neural network concept class and score estimation error

bound. Note that Block et al. (2020) also provide sampling

convergence guarantees under the assumption of access to

an accurate score estimator under the L2 norm. We are also

aware of Song et al. (2020a) and Liu et al. (2022) studying

score estimation and distribution estimation from an asymp-

totic statistics point of view. During the review period, a

concurrent work (Oko et al., 2023) proves minimax opti-

mal statistical gaurantees of diffusion models. They focus

on learning high-dimensional compactly supported distri-

butions with Besov density functions. They also extend to

low-dimensional linear subspace data, with the subspace

known a priori.

Notations: We use bold lower case letters to denote vec-

tors, e.g., x ∈ R
D. For a vector x, ∥x∥2 and ∥x∥∞
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denote its Euclidean norm and maximum magnitude of

entries, respectively. Normal upper case letters denote

matrices, e.g., A ∈ R
D×d. For a matrix A, ∥A∥op and

∥A∥F denote its operator norm and Frobenius norm, respec-

tively. Given a mapping f and a distribution P , we denote

∥f∥L2(P ) = E
1/2
P [∥f∥22] as the L2(P ) norm. We also de-

note f♯P as a pushforward measure, i.e., for any measurable

Ω, (f♯P )(Ω) = P (f−1(Ω)), We reserve ϕ for (conditional)

Gaussian density functions.

2. Preliminaries

We briefly review diffusion models and score matching

using neural networks.

Forward and Backward SDEs The forward process in

diffusion models progressively adds noise to original data.

Here we consider the Ornstein-Ulhenbeck process, which is

described by the following SDE,

dXt = −1

2
g(t)Xt dt+

√
g(t) dWt for g(t) > 0, (1)

where initial X0 ∼ Pdata follows the data distribution,

(Wt)t≥0 is a standard Wiener process, and g(t) is a non-

decreasing weighting function. We denote the marginal

distribution of Xt at time t as Pt. Roughly speaking, af-

ter an infinitesimal time, (1) shrinks the magnitude of data

and corrupts data by Gaussian white noise. More precisely,

given X0, the conditional distribution of Xt|X0 is Gaussian

N(α(t)X0, h(t)ID), whereα(t) = exp(−
∫ t

0
1
2g(s)ds) and

h(t) = 1 − α2(t). Consequently, under mild conditions,

(1) transforms initial distribution Pdata to P∞ = N(0, ID).
Therefore, (1) is also known as the variance preserving for-

ward SDE (Song et al., 2020b).

In practice, the forward process (1) will terminate at a suf-

ficiently large time horizon T > 0, where the corrupted

marginal distribution PT is expected to be close to the stan-

dard Gaussian distribution.

Diffusion models generate fake data by reversing the time

of (1), which leads to the following backward SDE,

dX←t =

[
1

2
g(T − t)X←t + g(T − t)∇ log pT−t(X

←
t )

]
dt

+
√
g(T − t) dWt, (2)

where ∇ log pt(·) is the score function, i.e., the gradient of

log probability density function of Pt, and Wt is a reversed

Wiener process. Under mild conditions, when initialized

at X←0 ∼ PT , the backward process (X←t )0≤t≤T has the

same distribution as the time-reversed version of the for-

ward process (XT−t)0≤t≤T (Anderson, 1982; Haussmann

& Pardoux, 1986).

Working with (2), however, leads to difficulties, as both the

score function ∇ log pt and initial distribution PT are un-

known. In practice, several surrogates are deployed. Firstly,

we replace PT by the standard Gaussian distribution. Sec-

ondly, we use a score estimator ŝ instead of ground truth

score ∇ log pt. The estimated score ŝ is often parameterized

by a neural network. With these substitutions, we obtain the

following practical backward SDE,

dX̃←t =

[
1

2
g(T − t)X̃←t + g(T − t)ŝ(X̃←t , T − t)

]
dt

+
√
g(T − t) dWt, X̃←0 ∼ N(0, ID). (3)

Diffusion models then generate data by simulating a dis-

cretization of (3) with η > 0 being the discretization step

size:

dX̃⇐t =

[
1

2
g(T − t)X̃⇐kη + g(T − t)ŝ(X̃⇐kη, T − kη)

]
dt

+
√
g(T − t) dWt, for t ∈ [kη, (k + 1)η], (4)

Throughout the paper, we take g(t) = 1 for simplicity.

Score Matching To estimate the score function, a concep-

tual way is to minimize a weighted quadratic loss:

min
s∈S

∫ T

0

w(t)EXt∼Pt

[
∥∇ log pt(Xt)− s(Xt, t)∥22

]
dt,

where w(t) is a weighting function and S is a concept class

(often neural networks). However, such an objective func-

tion is intractable, as ∇ log pt is unknown. As shown by

Hyvärinen & Dayan (2005); Vincent (2011), rather than min-

imizing the integral above, we can minimize an equivalent

objective,

min
s∈S

∫ T

0

w(t)EX0∼Pdata

[
EXt|X0

[∥∥∇Xt
log ϕt(Xt|X0)

− s(Xt, t)
∥∥2
2

]]
dt. (5)

Here ϕt(Xt|X0) denotes the transition kernel of the forward

process, which is Gaussian. Hence, we have an analytical

form

∇Xt
log ϕt(Xt|X0) = −Xt − α(t)X0

h(t)
.

Note that ∇Xt
log ϕt(Xt|X0) is the noise added to X0 at

time t. Therefore, (5) is known as denoising score matching.

In practice, we approximate (5) by its empirical version.

Specifically, given n i.i.d. data points xi ∼ Pdata for

i = 1, . . . , n, we sample Xt given X0 = xi from

N(α(t)xi, h(t)ID). We also sample time t uniformly from

interval [t0, T ] for some small t0 > 0. (In Section 5, we
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will choose t0 based on sample size n.) The reason behind

avoiding [0, t0] is to prevent score from blowing up and

stabilize training (Song & Ermon, 2020). To this end, the

empirical score matching objective is

min
s∈S

L̂(s) = 1

n

n∑

i=1

ℓ(xi; s), (6)

where the loss function ℓ(xi; s) is defined as ℓ(xi; s) =
1

T−t0
∫ T

t0
EXt|X0=xi

[∥∇Xt log ϕt(Xt|X0)− s(Xt, t)∥22] dt.
Note that we have already taken w(t) = 1/(T − t0) for

simplicity and assumed sufficient sampling of Xt|xi and t,
as they are cheap to generate. For notational convenience,

we denote population loss L(·) = EPdata
[L̂(·)].

3. Score Decomposition

In this section, we show that for a low-dimensional data

distribution, the score function can be decomposed – each

component of the score function has distinct properties. Ex-

ploiting these properties enables an efficient approximation

and estimation of the score function; see Section 4.

We consider data x ∈ R
D supported on a d-dimensional

unknown linear subspace with d ≤ D.

Assumption 1. Data point x can be written as x = Az,

where A ∈ R
D×d is an unknown matrix with orthonor-

mal columns. The latent variable z ∈ R
d follows some

distribution Pz with a density function pz .

Assumption 1 is not restrictive, as it encodes high-

dimensional data with d = D and A = ID. Given the

low-dimensional structure in data, we show that the ground-

truth score function has the following decomposition.

Lemma 1. Let data x = Az follows Assumption 1. The

score function ∇ log pt(x) decomposes as

∇ log pt(x) = A∇ log pLDt (A⊤x)︸ ︷︷ ︸
s∥(A⊤x,t): on-support score

− 1

h(t)

(
ID −AA⊤

)
x

︸ ︷︷ ︸
s⊥(x,t): ortho. score

,

where

pLDt (z′) =
∫
ϕt(z

′|z)pz(z) dz

with ϕt(·|z) being the Gaussian density function of

N(α(t)z, h(t)Id) for α(t) = e−t/2 and h(t) = 1− e−t.

The proof follows from algebraic manipulation, which is de-

ferred to Appendix A.1. Here pLDt denotes a density function

on the latent space (superscript stands for “latent distribu-

tion”). The on-support score s∥ belongs to the column span

of A, depends on the projected data A⊤x, and is orthogonal

to s⊥. When t → 0, we can check that s⊥ will blow up

since h(t) → 0. This observation is consistent with the

X t,k

X t,?

X t

T0 t

Figure 1. Demonstration of score decomposition induces two back-

ward processes. X←t,∥ is the on-support backward process. X←t,⊥ is

the orthogonal backward process that will vanish as t→ 0.

score blowup phenomenon for manifold data (Pidstrigach,

2022; De Bortoli, 2022), as our linear subspace is a special

type of manifolds.

The decomposition of ∇ log pt also suggests a decompo-

sition of the backward process. Specifically, we denote

X←t,∥ = AA⊤X←t and X←t,⊥ = (ID −AA⊤)X←t . Then the

dynamic in (2) leads to

dX←t,∥ =

[
1

2
X←t,∥ + s∥(X

←
t,∥, T − t)

]
dt+AA⊤ dWt,

dX←t,⊥ =

[
1

2
− 1

h(T − t)

]
X←t,⊥ dt+ (ID −AA⊤) dWt.

A graphical illustration is provided in Figure 1. The dy-

namics of X←t,∥ incorporates information from the latent

distribution Pz , while the dynamics of X←t,⊥ is linear and

much simpler. The interesting part is that the coefficient

in the drift term of X←t,⊥ is always negative, indicating that

X←t,⊥ will vanish eventually and the data support will be

perfectly recovered.

For better interpretation, we analyze a Gaussian example.

Detailed computation is provided in Appendix A.2.

Example 1. We take latent distribution Pz = N(0,Σ) with

Σ = diag(λ21, . . . , λ
2
d) ≻ 0, a d-dimensional Gaussian dis-

tribution. The score function can be computed as

∇ log pt(x) = −AΣ−1t A⊤x︸ ︷︷ ︸
s∥

− 1

h(t)
(ID −AA⊤)x

︸ ︷︷ ︸
s⊥

,

where Σt = diag(. . . , α2(t)λ2k + h(t), . . . ).

One can verify that s∥ now is linear in x, whereas s⊥ blows

up when t approaches 0. Moreover, only the on-support

score s∥ carries the covariance information of the latent

distribution and will guide the distribution recovery.

A closer evaluation further reveals s∥ is Lipschitz continu-

ous, i.e.,
∥∥s∥(z1, t)− s∥(z2, t)

∥∥
2
≤ max{λ−2d , 1} ∥z1 − z2∥2

4





Score Approx. Estimation and Distribution Recovery

choose SNN with

L = O
(
log

1

ϵ
+ d
)
, K = O

(
(1 + β)d log1/2(d/(t0ϵ))

)
,

M = O
(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2 (d/(t0ϵ))

)
,

J = O
(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2+1 (d/(t0ϵ))

)
,

κ = O
(
max

{
2(1 + β)

√
d log (d/(t0ϵ)), T τ

})
,

γ = 10d(1 + β), γt = 10τ,

where τ = sup
t∈[t0,T ],∥z∥∞≤

√

d log d
t0ϵ

∥∥ ∂
∂t [h(t)s∥(z, t)]

∥∥
2
.

Then for any data distribution Pdata satisfying Assumptions

1 – 3, there exists an s̄V,θ ∈ SNN such that for any t ∈
[t0, T ], we have

∥s̄V,θ(·, t)−∇ log pt(·)∥L2(Pt)
≤

√
d+ 1

h(t)
ϵ.

The proof is provided in Appendix B.1. Theorem 1 con-

firms the universal approximation ability of SNN for score

functions. A few remarks are in order.

Universal Approximation under the L2 Norm Many

existing universal approximation theory of neural networks

focus on approximating target functions on a compact do-

main under the L∞ norm (Yarotsky, 2017; Schmidt-Hieber,

2017; Chen et al., 2019a; Gühring et al., 2020). Instead,

we provide an L2-approximation error bound over the un-

bounded input domain R
D, where we tackle the unbound-

edness through a truncation argument. In addition, thanks

to the encoder-decoder architecture, the network size only

depends on the intrinsic dimension d of data.

Lipschitz Score Network Conventional universal approx-

imation theory of neural networks hardly provide network

Lipschitz continuity guarantees (Cybenko, 1989; Barron,

1993; Yarotsky, 2017). By our construction, the Lipschitz

constraints γ and γt do not undermine the approximation

power of score networks. In practice, such a Lipschitz

regularity is often enforced during training, e.g., adding reg-

ularization (Virmaux & Scaman, 2018; Pauli et al., 2021;

Gouk et al., 2021). Further, from a theoretical perspective,

the Lipschitz property of the estimated score is essential to

bounding the distribution recovery error, as we demonstrate

in Section 5.

Time as an Additional Input Dimension We take time t
as an additional input dimension to the score network. The

network size depends on the Lipschitz constant τ . We show

a very coarse upper bound of τ in Appendix B.1. However,

τ depends on the latent distribution Pz and is highly instance

specific. In Example 1, we have τ = O(
√
d log (d/(t0ϵ))),

R
d

c

 i

 j

f̄✓(z, t) = 0

f̄✓(z, t) = g(c, t)

dY

i=1

 (zi)

[�R,R]d

Figure 3. Construction of f̄θ(z, t) for approximating g(z, t). For

a fixed t, inside [−R,R]d, we uniformly partition the hypercube

into smaller hypercubes. On each of the small hypercube, we

locally approximate g(z, t) by its value on the center g(c, t). To

detect whether an input z belongs to a local hypercube, we con-

struct a trapezoid function ψ on each coordinate. Their product∏d

i=1
ψ(zi) is an approximate indicator function. Outside the

cube [−R,R]d, we simply set fθ(z, t) = 0.

much smaller than its coarse upper bound. More inter-

estingly, in practice, time t is embedded using sinusoidal

positional encoding scheme (Vaswani et al., 2017) and the

processed embedding is added to the input data. Such a

dimensional lift of time opens research directions, however,

the analysis is beyond the scope of this paper.

Proof Sketch Theorem 1 is established by construction. A

significant difference from the existing universal approxima-

tion theories is that the input domain of SNN is unbounded.

We manipulate the tail behavior of Pz for developing a

truncation argument.

In the construction, we choose V = A and the approx-

imation of the score boils down to that of fθ(z, t) to

h(t)∇ log pLDt (z) + z for z ∈ R
d. We denote g(z, t) =

h(t)∇ log pLDt (z) + z. By Assumption 3, g(z, t) is (β+1)-
Lipschitz in z.

Let R > B be a truncation radius. On the hypercube

[−R,R]d × [t0, T ], we construct f̄θ as a piecewise linear

function for approximating s(z, t). Outside of the hyper-

cube, we simply set f̄θ = 0. See Figure 3 for an illustration.

The L2 approximation error is evaluated as

∥∥f̄θ(·, t)− g(·, t)
∥∥
L2(P LD

t )

≤
∥∥(f̄θ(·, t)− g(·, t)

)
1{∥·∥2 ≤ R}

∥∥
L2(P LD

t )︸ ︷︷ ︸
(A)

+
∥∥(f̄θ(·, t)− g(·, t)

)
1{∥·∥2 > R}

∥∥
L2(P LD

t )︸ ︷︷ ︸
(B)

.

Term (A) is directly bounded by the approximation error

of f̄θ on the hypercube. Term (B) utilizes the tail behavior
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of Pt. In particular, since g(z, t) is Lipschitz in z, for suffi-

ciently large R, ∥g(z, t)∥2 is bounded by O (∥z∥2) when-

ever ∥z∥2 > R. Consequently, term (B) is bounded by

(B) = O
(∫

∥z∥2>R

∥z∥22 pt(z)dz
)
.

Note that Assumption 2 implies that Pt has a sub-Gaussian

tail. Therefore, (B) can be bounded (by Lemma 2), which

leads to a choice of R = O
(√

d log d
t0

+ log 1
ϵ

)
. The

Lipschitzness of the constructed network is analyzed by

adapting Chen et al. (2020, Lemma 10).

4.2. Score Estimation Theory

In this subsection, we provide sample complexity for score

estimation using SNN. As we have parameterized the score

function using deep neural networks, we can rewrite the

score matching objective in (6) as

ŝV,θ ∈ argmin
sV,θ∈SNN

L̂(sV,θ),

where L̂ is defined in (6). The following theorem establishes

the L2 convergence of ŝV,θ to ∇ log pt when the sample size

n→ ∞.

Theorem 2. Suppose Assumptions 1 – 3 hold. We choose

SNN as in Theorem 1 with ϵ = n−
1−δ(n)
d+5 for δ(n) =

d log logn
logn . Then with probability 1− 1

n , it holds

1

T − t0

∫ T

t0

∥ŝV,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt =

Õ
(

1

t0

(
n−

2−2δ(n)
d+5 +Dn−

d+3
d+5

)
log3 n

)
,

where Õ hides factors depending on β, logD, d, log t0 and

τ defined in Theorem 1.

The proof is provided in Appendix B.2. To the best of our

knowledge, Theorem 2 is the first explicit sample complex-

ity bound for score matching. The rate of convergence only

depends on intrinsic dimension d. In the special case of

d = D, our theory still provides the first score estimation

guarantee in high-dimensional Euclidean spaces using neu-

ral networks, nonetheless, the sample complexity suffers

from the curse of data ambient dimensionality.

When n is sufficiently large, δ(n) is negligible and

the squared L2 estimation error converges at a rate of

Õ( 1
t0
n−

2
d+5 ). (We hide other factors depending on d in

the bound to highlight the fast convergence in terms of sam-

ple size n. As d is often much smaller than D and n is large

for diffusion models, those factors on d do not undermine

the convergence guarantee.)

Theorem 2 becomes vacuous if t0 → 0 when n is fixed. This

is a consequence of the blowup of score function ∇ log pt
as t0 → 0. Although larger t0 leads to a better estimation

error bound, following the backward process until a large

time t0 gives poor distribution recovery. In the following

section, we will show a tradeoff on t0.

Proof Sketch We first focus on the equivalent objective

L(ŝV,θ) and then switch to the desired score matching er-

ror. The proof relies on an oracle inequality for bounding

L(ŝV,θ):

L(ŝV,θ) ≤ Ltrunc(ŝV,θ)− (1 + a)L̂trunc(ŝV,θ)︸ ︷︷ ︸
(A)

+ L(ŝV,θ)− Ltrunc(ŝV,θ)︸ ︷︷ ︸
(B)

+ (1 + a) inf
sV,θ∈SNN

L̂(sV,θ)
︸ ︷︷ ︸

(C)

,

where a > 0 is arbitrary, and Ltrunc(ŝV,θ) is a truncated

loss defined as

Ltrunc(ŝV,θ) = Ex∼Pdata
[ℓ(x; ŝV,θ)1{∥x∥2 ≤ R} dt]

for some radius R > 0 to be determined, and L̂trunc is the

empirical counterpart of Ltrunc. We truncate on ∥x∥2 to

achieve an uniform upper bound on the loss L for concen-

tration. Here term (A) is the statistical error due to finite

samples, term (B) is the truncation error, term (C) reflects

the approximation error of SNN. We bound these error terms

separately and details are deferred to Appendix B.2.

5. Distribution Estimation

This section establishes distribution estimation guarantees

using the estimated score functions. Recall that in reality,

diffusion models generate data using the discretized back-

ward process (4) with step size η. Given an estimated score

function ŝV,θ as in Theorem 2, we denote the generated

distribution by P̂ dis
t0 .

We focus on three major criteria to assess the quality of

P̂ dis
t0 : 1). How accurate is the subspace A recovered; 2).

What is the estimation error of P̂ dis
t0 to the on-support latent

distribution Pz; 3). What is the behavior of P̂ dis
t0 in the

orthogonal space.

Recall from Lemma 1, we denote on-support latent distribu-

tion as P LD
t with density function pLDt . Since we early-stop

at time t0, we compare the estimated distribution with P LD
t0 .

Now we summarize our results in the following theorem.

Theorem 3. Given the estimated score ŝV,θ ∈ SNN in The-

orem 2, we choose T = Θ(log n), t0 = O(min{c0, 1/β}),

7
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where c0 = σmin(EPz
[zz⊤]) is the minimum eigenvalue.

Then the following items hold.

1). The unknown data subspace is recovered as

∥∥V V ⊤ −AA⊤
∥∥2
F
= Õ

(
1

c0
n−

2−2δ(n)
d+5 log7/2 n

)
,

2). Under the condition KL(Pz||N(0, Id)) <∞, we choose

the step size η ≤ t20
d n
− 2−2δ(n)

d+5 . Recall (V U)⊤♯ P̂
dis
t0 denotes

the pushforward distribution. Then there exists an orthogo-

nal matrix U ∈ R
d×d such that the total variation distance

TV(P LD

t0 , (V U)⊤♯ P̂
dis

t0 ) = Õ
(√

1

c0t0
n−

1−δ(n)
d+5 log2 n

)
.

Moreover, the Wasserstein-2 distance between P LD
t0 and Pz

satisfies

W2(P
LD

t0 , Pz) = O
(√

dt0

)
.

3). The orthogonal pushforward (I − V V ⊤)♯P̂ dis
t0 of the

continuous-time generated data distribution is N(0,Σ), with

Σ ⪯ ct0I for a constant c > 0.

The proof is provided in Appendix C. Theorem 3 has the

following interpretations.

Subspace Recovery Error Item 1 of Theorem 3 confirms

that the subspace is accurately learned, in that the column

span of matrix V closely matches that of A. The error is

proportional to the score estimation error and depends on the

minimum eigenvalue of the covariance of Pz . The intuition

behind is that we need Pz to span every direction of column

span of A for estimation.

Meanwhile, item 1 does not translate to ∥A − V ∥F being

small, since the column span is invariant under orthogonal

transformation, i.e., column spans of A and AU for an

orthogonal U are identical. Therefore, we need such an

orthogonal transformation in item 2.

Tradeoff on t0 From item 2, we observe that the latent

distribution error TV(P LD
t0 , (V U)⊤♯ P̂

dis
t0 ) increases as t0 de-

creases, because the error of score estimation amplifies. On

the other hand, the bias W2(P
LD
t0 , Pz) = O

(√
t0d
)

shrinks

as t0 decreases. This reveals a tradeoff concerning recov-

ery of data distribution Pz . Although we cannot directly

translate total variation distance to Wasserstein-2 distance

and vice versa, we can make them in the same order, which

implies setting t0 = n−
1−δ(n)
d+5 . We thus obtain

TV(P LD

t0 , (V U)⊤♯ P̂
dis

t0 ) = Õ
(
n−

1−δ(n)
2(d+5) log2 n

)
and

W2(P
LD

t0 , Pz) = Õ
(
n−

1−δ(n)
2(d+5)

)
.

Vanishing in the Orthogonal Space The behavior of P̂ dis
t0

matches our discussion in the score decomposition. In par-

ticular, (I − V V ⊤)♯P̂ dis
t0 degenerates to a point mass at

origin when t0 → 0. Due to item 1, (I −AA⊤)♯P̂ dis
t0 is also

approximately vanishing.

Proof Sketch We will be succinct on how to prove items 1

and 3, and focus on the proof of item 2. The intuition behind

item 1 is that the mismatch between the column span of A
and V will be significantly amplified due to the blowup of

the orthogonal score. Therefore, an accurate neural score

estimator forces A and V to match. Item 3 can be obtained

by analytically solving the orthogonal backward process.

• Proof of Item 2. We consider the continuous-time gen-

erated distribution P̂t0 for an exposure of the main idea.

The discrete result is obtained by adding discretization error

(Lemma 4).

For the ground-truth backward process, we consider the cor-

responding latent backward process Z←t = A⊤X←t , which

satisfies the following SDE

dZ←t =

[
1

2
Z←t +∇ log pLDT−t(Z

←
t )

]
dt+ dW

LD

t ,

where W
LD

t is a standard Wiener process in the latent space.

For the learned process, similarly we consider Z̃
←,r
t =

U⊤V ⊤X̃←t . We first show that (Z̃←,r
t )t≥0 satisfies the fol-

lowing SDE

dZ̃←,r
t =

[
1

2
Z̃
←,r
t + s̃LDθ,U (Z̃

←,r
t , T − t)

]
dt+ dW

LD

t ,

where s̃LDU,θ(z, t) =
1

h(t) [U
⊤fθ(Uz, t)−z] is the latent score

estimator.

Observe that P LD
t0 is the marginal distribution of Z←T−t0 , and

(V U)⊤♯ P̂t0 is the marginal distribution of Z̃
←,r
T−t0 . To this

end, it suffices to bound the divergence between the two

stochastic processes above. In the proof, we first convert

the score matching error bound to the latent score matching

error between ∇ log pLDt (z) and s̃LDU,θ(z, t). Then, similar

to Chen et al. (2022b), we adopt Girsanov’s Theorem and

bound the difference of the KL divergence of the two process

via the error bound of their drift terms.

6. Conclusion and Discussion

This paper studies distribution estimation of diffusion mod-

els for low-dimensional linear subspace data. We show

that with a properly chosen neural network, the score func-

tion can be accurately approximated and estimated. The

estimation error converges at a rate depending on the data

intrinsic dimension. We further show data distribution can

8
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be efficiently learned using the estimated score function.

The convergence rate is also free of the curse of ambient

dimensionality.

Linear Subspace Assumption Diffusion models are very

new in the field of machine learning theory. The theoret-

ical analysis has been very challenging, especially when

taking the intrinsic geometric structures of the data into

consideration. Although we make a linear subspace assump-

tion, characterizing the behavior of diffusion models in the

on-support and orthogonal subspaces has already required

highly non-trivial analysis. We expect to stimulate more so-

phisticated followup works, which analyze diffusion models

under more general assumptions such as manifold data.

End-to-End Distribution Learning Given our linear sub-

space assumption, one may advocate PCA-like methods,

which first reduce the data dimension by estimating the sub-

space structure, and then estimate the data distribution on

a projected subspace. However, such a two-step method

is rarely used in practice, and does not necessarily help us

understand the empirical success of diffusion models. On

the contrary, our results consider a more realistic end-to-end

learning scheme, and show that the learned diffusion model

can capture the unknown linear structure and the data dis-

tribution, and enjoy fast distribution estimation guarantees

with a proper score network.
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Content of Appendix

The supplementary material is orgaized as follows:

• Appendix A presents the proof of score decomposition in Lemma 1 and its instantiation to Gaussian distribution in

Example 1.

• Appendix B devotes to proving Theorem 1 and 2. Main steps are exposed in proof sketches in the main paper. Theorem 1

is proved by construction and Theorem 2 follows from a bias-variance decomposition.

• Appendix C presents the proof of Theorem 3. In particular, assuming the score estimation error is ϵ, Appendix C.1

proves item 1; Appendix C.2 proves item 2 as sketched in the main paper; Appendix C.3 proves item 3 by explicitly

solving the orthogonal backward process. Then Appendix C.4 combines the three items and specialize to the score

estimation error provided in Theorem 2.

• Appendix D and E consist of supporting lemmas for Appendix C and B, respectively.

A. Omitted Proofs in Section 3

A.1. Proof of Lemma 1

Proof. Using the latent variable z and according to the forward process (1), we have

pt(x) =

∫
ϕt(x|Az)pz(z) dz,

where ϕt(x|Az) = (2π)−D/2h−D/2(t) exp
(
− 1

2h(t) ∥α(t)Az− x∥22
)
. Then the score function can be written as

∇ log pt(x) =
∇
∫
ϕt(x|Az)pz(z) dz∫
ϕt(x|Az)pz(z) dz

=

∫
∇ϕt(x|Az)pz(z) dz∫
ϕt(x|Az)pz(z) dz

, (7)

where the last equality holds since ϕt(x|Az) is continuously differentiable in x. Substituting ϕt(x|Az) into (7) gives rise to

∇ log pt(x) =
(2π)−D/2h−D/2(t)∫
ϕt(x|Az)pz(z) dz

∫
1

h(t)
(α(t)Az− x) exp

(
− 1

2h(t)
∥α(t)Az− x∥22

)
pz(z) dz

=
(2π)−D/2h−D/2(t)∫
ϕt(x|Az)pz(z) dz

∫
1

h(t)

(
α(t)Az−AA⊤x

)
exp

(
− 1

2h(t)
∥α(t)Az− x∥22

)
pz(z) dz

− (2π)−D/2h−D/2(t)∫
ϕt(x|Az)pz(z) dz

∫
1

h(t)

(
ID −AA⊤

)
x · exp

(
− 1

2h(t)
∥α(t)Az− x∥22

)
pz(z) dz

=
1∫

ϕt(x|Az)pz(z) dz

∫
1

h(t)

(
α(t)Az−AA⊤x

)
ϕt(x|Az)pz(z) dz

︸ ︷︷ ︸
s∥

− 1

h(t)

(
ID −AA⊤

)
x

︸ ︷︷ ︸
s⊥

.

We can further simplify s∥. We decompose ϕt(x|Az) as

ϕt(x|Az) = (2π)−D/2h−D/2(t) exp

(
− 1

2h(t)

∥∥α(t)Az−AA⊤x+
(
ID −AA⊤

)
x
∥∥2
2

)

= (2π)−D/2h−D/2(t) exp

(
− 1

2h(t)

(∥∥α(t)Az−AA⊤x
∥∥2
2
+
∥∥(ID −AA⊤

)
x
∥∥2
2

))

= (2π)−d/2h−d/2(t) exp

(
− 1

2h(t)

∥∥α(t)z−A⊤x
∥∥2
2

)

× (2π)−(D−d)/2h−(D−d)/2(t) exp

(
− 1

2h(t)

∥∥(ID −AA⊤
)
x
∥∥2
2

)
.
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We denote

ϕt
(
A⊤x|z

)
= (2π)−d/2h−d/2(t) exp

(
− 1

2h(t)

∥∥α(t)z−A⊤x
∥∥2
2

)
and

ϕt
(
(ID −AA⊤)x

)
= (2π)−(D−d)/2h−(D−d)/2(t) exp

(
− 1

2h(t)

∥∥(ID −AA⊤
)
x
∥∥2
2

)

being both Gaussian densities. Substituting ϕt(x|Az) = ϕt
(
A⊤x|z

)
ϕt
(
(ID −AA⊤)x

)
into s∥, we obtain

s∥(x, t) =
1∫

ϕt(A⊤x|z)pz(z) dz

∫
1

h(t)

(
α(t)Az−AA⊤x

)
ϕt(A

⊤x|z)pz(z) dz.

As can be seen, s∥ only depends on the projected data A⊤x. Therefore, it is legitimate to overload s∥(x, t) by s∥(A⊤x, t).
The benefit is that the first input of s∥(A⊤x, t) now has the intrinsic dimension d. Denoting z′ = A⊤x, we ob-

serve 1
h(t) (α(t)z − A⊤x)ϕt(A⊤x|z) = ∇z′ϕt(z

′|z). Therefore, we can rewrite s∥(A⊤x, t) = ∇
z
′ϕt(z

′|z)pz(z)
∫

ϕt(z′|z)pz(z) dz
dz =

A∇ log pldt (A⊤x). The proof is complete.

A.2. Computation in Example 1

We find the marginal distribution Pt of the forward process is still Gaussian. Density function pt(x) =
∫
ϕt(A

⊤x|z)pz(z) dz.

We check

ϕt(A
⊤x|z)pz(z) ∝ exp

(
− 1

2h(t)

∥∥A⊤x− α(t)z
∥∥2
2
− z⊤Σ−1z

)

∝ exp

(
− 1

2h(t)

∥∥∥z− α(t)
(
α2(t)Id + h(t)Σ−1

)−1
A⊤x

∥∥∥
2

(α2(t)Id+h(t)Σ−1)−1

)
,

where ∥x∥A = x⊤Ax. Therefore, ϕt(A
⊤x|z)pz(z) corresponds to a Gaussian distribution with mean vector

α(t)
(
α2(t)Id + h(t)Σ−1

)−1
A⊤x. To this end, Lemma 1 leads to

s∥(A
⊤x, t) =

1

h(t)

(
α2(t)A

(
α2(t)Id + h(t)Σ−1

)−1
A⊤x−AA⊤x

)

=
1

h(t)
A

(
diag

(
α2(t)

α2(t) + h(t)λ−21

, . . . ,
α2(t)

α2(t) + h(t)λ−2d

)
− Id

)
A⊤x

= A diag

(
λ−21

α2(t) + h(t)λ−21

, . . . ,
λ−2d

α2(t) + h(t)λ−21

)
A⊤x

= A diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)
A⊤x.

Lastly, we check s∥ is Lipschitz continuous. We need to upper bound
∥∥∥∥diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)∥∥∥∥
op

≤ 1

α2(t)λ2d + h(t)
=

1

λ2d + (1− λ2d)h(t)
.

We discuss two cases. If λd > 1, we have 1
λ2
d+(1−λ2

d)h(t)
≤ 1; if λd ≤ 1, we have 1

λ2
d+(1−λ2

d)h(t)
≤ λ−2d . Combining the

two cases gives rise to
∥∥∥∥diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)∥∥∥∥
op

≤ max{λ−2d , 1}.

For the Lipschitzness with respect to t, we take time derivative of diag
(

1
α2(t)λ2

1+h(t)
, . . . , 1

α2(t)λ2
d+h(t)

)
:

∂

∂t
diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)
= diag

(
α2(t)(λ21 − 1)

(α2(t)λ21 + h(t))2
, . . . ,

α2(t)(λ2d − 1)

(α2(t)λ2d + h(t))2

)

⪯ diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)
.
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Therefore, for any t1, t2 ∈ [0, T ] and z, we have

∥∥s∥(z, t1)− s∥(z, t2)
∥∥
2
≤
∥∥∥∥diag

(
1

α2(t)λ21 + h(t)
, . . . ,

1

α2(t)λ2d + h(t)

)
z

∥∥∥∥
2

|t1 − t2|

≤ max{λ−2d , 1} ∥z∥2 |t1 − t2|.

B. Omitted Proofs in Section 4

B.1. Proof of Theorem 1

Proof. Due to Lemma 1, we cast score function ∇ log pt(x) into

∇ log pt(x) =
1

h(t)
A

∫
zϕt(A

⊤x|z)pz(z)∫
ϕt(A⊤x|z)pz(z) dz

dz

︸ ︷︷ ︸
Ag(A⊤x,t)

− 1

h(t)
x. (8)

Note that g(A⊤x, t) = h(t)A⊤(s∥(A⊤x, t) + x). It suffices to construct V fθ(V
⊤x, t) for approximating Ag(A⊤x, t). By

taking V = A, it further reduces to construct fθ(z
′, t) well approximating g(z′, t), where z′ ∈ R

d.

A major difficulty in approximating g(z′, t) is that the input space R
d × [t0, T ] is unbounded. Here we partition R

d into

a compact subset S and its complement. On set S × [t0, T ], we construct fθ to achieve an L∞ approximation. On the

complement of S , we simply let fθ(z
′, t) = 0. Thanks to the tail behavior of Pz , the L2 approximation error of fθ(z

′, t) to

s(z′, t) can still be controlled.

• Approximation on S × [t0, T ]. We choose S = {z′| ∥z′∥∞ ≤ R} to be a d-dimensional hypercube of edge length

2R > 0, where R will be determined later. On S × [t0, T ], we approximate coordinate maps gk(z
′, t) of g(z′, t) separately,

where g(z′, t) = [g1(z
′, t), . . . , gd(z′, t)]⊤. The main idea replicates Lemma 10 in Chen et al. (2020). To match the

function domain, we first rescale the input by y′ = 1
2R (z′ + R1) and t′ = t/T , so that the transformed input space is

[0, 1]d × [t0/T, 1]. Such a transformation can be exactly implemented by a single ReLU layer.

By Assumption 3, on-support score s∥(z′, t) is β-Lipschitz in z′. This implies g(z′, t) is 1+ β-Lipschitz in z′. When taking

the transformed inputs, g(y′, t′) = s(2Ry′ −R1, T t′) becomes 2R(1 + β)-Lipschitz in y′; so is each coordinate map. For

notational simplicity, we denote Lz = 1 + β.

We also denote the Lipschitz constant of g(y′, t′) with respect to t as Tτ(R), when y′ ∈ [0, 1]d. That is, we denote

τ(R) = sup
t∈[t0,T ]

sup
z′∈[0,R]d

∥∥∥∥
∂

∂t
g(z′, t)

∥∥∥∥
2

.

A very coarse upper bound on τ(R) is computed by

∂

∂t
g(z′, t) = A

∫
z ∂
∂tϕt(z

′|z)pz(z)∫
ϕt(z′|z)pz(z) dz

dz−A

∫
zϕt(z

′|z)pz(z)
∫

∂
∂tϕt(z

′|z)pz(z) dz(∫
ϕt(z′|z)pz(z) dz

)2 dz

(i)
=

α(t)

h2(t)
A
[
E

[
z ∥z∥22 |z′

]
− E[z|z′]E[∥z∥22 |z′]− (1 + α2(t)) Cov[z|z′]z′

]
,

where we plug in ∂
∂tϕt(z

′|z) = α(t)
h2(t)

(
∥z∥22 − (1 + α2(t))z⊤z′ + α(t) ∥z′∥22

)
ϕt(z

′|z) and collect terms in (i). Since

Pz has Gaussian tail, its third moment is bounded. By the computation in Appendix B.3, we have ∥Cov[z|z′]∥op ≤
h2(t)
α2(t) (β + 1

h(t) ). Therefore, we deduce

τ(R) = O
(
1 + α2(t)

α(t)

(
β +

1

h(t)

)√
dR

)
= O

(
eT/2βpoly(

√
dR)

)
,

as Pz having sub-Gaussian tail and ∥z′∥∞ ≤ R implies

∥∥∥E[z ∥z∥22 |z′]
∥∥∥
2

is bounded by O(poly(
√
dR)).
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Now we form a partition of [0, 1]d × [t0/T, 1]. For the first d dimension, we uniformly partition [0, 1]d into nonoverlapping

hypercubes with edge length e1. We also evenly partition the interval [t0/T, 1] into nonoverlapping subintervals of length

e2. e1 and e2 will be chosen depending on the desired approximation error. We also denote N1 = ⌈ 1
e1
⌉ and N2 = ⌈ 1

e2
⌉.

Let m = [m1, . . . ,md]
⊤ ∈ {0, . . . , N1 − 1}d be a multi-index. We define f̄ as

f̄i(y
′, t′) =

∑

m,j=0,...,N2−1
gi

(
2R

m

N1
−R1, T

j

N2

)
Ψm,j(y

′, t′),

where Ψm,j(y
′, t′) is a partition of unity function. We choose Ψ as a product of coordinatewise trapezoid functions:

Ψm,j(y
′, t′) = ψ

(
3N2

(
t′ − j

N2

)) d∏

i=1

ψ

(
3N1

(
y′i −

mi

N1

))
,

where ψ is a trapezoid function (see also a graphical illustration in Figure 4),

ψ(a) =





1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

.

mk

N

mk+1

N
a

 
�

3N
�

a� mk+1

N

��

 
�

3N
�

a� mk

N

��

Figure 4. Trapezoid function in one dimension.

We claim that

1. f̄i is an approximation to gi;

2. f̄i can be implemented by a ReLU neural network f̂i with small error.

Both claims are verified in Chen et al. (2020, Lemma 10), where we only need to substitute the Lipschitz coefficients

2cR(1+β) and Tτ(R) into the error analysis. (We use the coordinate wise analysis in the proof of Chen et al. (2020, Lemma

10) for deriving the Lipschitz continuity w.r.t. y′ and t′.) By concatenating f̄i’s together, we construct f̄θ = [f̄1, . . . , f̄d]
⊤.

Given ϵ, if we achieve

sup
y′,t′∈[0,1]d×[t0/T,1]

∥∥f̄θ(y′, t′)− g(y′, t′)
∥∥
∞ ≤ ϵ,

the neural network configuration is

L = O
(
log

1

ϵ
+ d

)
, M = O

(
Tτ(R)(RLz)

dϵ−(d+1)
)
, J = O

(
Tτ(R)(RLz)

dϵ−(d+1)

(
log

1

ϵ
+ d

))
,

K = O
(√

dRLz

)
, κ = max{1, RLz, T τ(R)}.

Here we already take e1 = O
(

ϵ
RLz

)
and e2 = O

(
ϵ

Tτ(R)

)
. The output range K is computed by K =

√
dmaxi ∥sk∥∞.

Combining with the input transformation layer (i.e., z′ → y′ and t → t′ rescaling), we have the constructed network is

Lipschitz continuous in z′, i.e., for any z′1, z
′
2 ∈ S and t ∈ [t0, T ], it holds

∥∥f̄θ(z′1, t)− f̄θ(z
′
2, t)

∥∥
∞ ≤ 10dLz ∥z′1 − z′2∥2 .
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Moreover, the network is also Lipschitz in t, i.e., for any t1, t2 ∈ [t0, T ] and ∥z′∥2 ≤ R, it holds

∥∥f̄θ(z′, t1)− f̄θ(z
′, t2)

∥∥
∞ ≤ 10τ(R) ∥t1 − t2∥2 .

Due to the partition of unity function Ψ vanishes outside S, we have f̄θ(z
′, t) = 0 for ∥z′∥2 > R. Therefore, the above

Lipschitz continuity in z′ extends to whole R
d.

• Bounding L2 Approximation Error. The L2 approximation error of f̄θ can be decomposed into two terms,

∥∥g(z′, t)− f̄θ(z
′, t)
∥∥
L2(P LD

t )
=
∥∥(g(z′, t)− f̄θ(z

′, t)1{∥z′∥2 < R}
∥∥
L2(P LD

t )
+ ∥g(z′, t)1{∥z′∥2 > R}∥

L2(P LD

t )
.

The first term on the right-hand side of the last display is bounded by

∥∥(g(z′, t)− f̄θ(z
′, t)1{∥z′∥2 < R}

∥∥
L2(P LD

t )
≤

√
d sup
z′,t∈S×[t0,T ]

∥∥g(z′, t)− f̄θ(z
′, t)
∥∥
∞ ≤

√
dϵ.

The second term assumes an upper bound in Lemma 2. Specifically, when choosing R = O
(√

d log d
t0

+ log 1
ϵ

)
, we have

∥g(z′, t)1{∥z′∥2 > R}∥
L2(P LD

t )
≤ ϵ.

As a result, with the choice of R, we obtain

∥∥g(z′, t)− f̄θ(z
′, t)
∥∥
L2(P LD

t )
≤ (

√
d+ 1)ϵ.

Substituting R into the network configuration and τ(R) denoted as τ , we obtain

L = O
(
log

1

ϵ
+ d

)
, M = O

(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2

d

t0ϵ

)
,

J = O
(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2

d

t0ϵ

(
log

1

ϵ
+ d

))
,

K = O
(
(1 + β)d log1/2

d

t0ϵ

)
, κ = max

{
(1 + β)

√
d log

d

t0ϵ
, T τ

}
, γ = 10d(1 + β), γt = 10τ.

The constructed approximator to ∇ log pt is s̄V,θ = 1
h(t)Af̄θ(A

⊤x, t)− 1
h(t)x, whose L2 approximation error is

∥∇ log pt(·, t)− s̄V,θ(·, t)∥L2(Pt)
≤

√
d+ 1

h(t)
ϵ

for t ∈ [t0, T ].

B.2. Proof of Theorem 2

Proof. The proof is based on the following oracle inequality to decompose L(ŝV,θ).
• Oracle Inequality. For any a ∈ (0, 1), we decompose L(ŝV,θ) as

L(ŝV,θ) = L(ŝV,θ)− (1 + a)L̂(ŝV,θ) + (1 + a)L̂(ŝV,θ)
(i)

≤ Ltrunc(ŝV,θ)− (1 + a)L̂trunc(ŝV,θ) + L(ŝV,θ)− Ltrunc(ŝV,θ) + (1 + a)L̂(ŝV,θ)
= Ltrunc(ŝV,θ)− (1 + a)L̂trunc(ŝV,θ)︸ ︷︷ ︸

(A)

+L(ŝV,θ)− Ltrunc(ŝV,θ)︸ ︷︷ ︸
(B)

+(1 + a) inf
sV,θ∈SNN

L̂(sV,θ)
︸ ︷︷ ︸

(C)

.

where in (i), Ltrunc is defined as

Ltrunc(ŝV,θ) = Ex∼Pdata

[
ℓtrunc(x; ŝV,θ)

]
= Ex∼Pdata

[ℓ(x; ŝV,θ)1{∥x∥2 ≤ R}dt] ,

16



Score Approx. Estimation and Distribution Recovery

for some radius R > B to be determined. In the sequel, we bound (A) – (C) separately.

⋆ Bounding Term (A). This term measures the concentration of the empirical loss to its population counterpart. We denote

G = {ℓtrunc(·; sV,θ) : sV,θ ∈ SNN} as an induced function class of score network SNN. We first determine an upper bound

on G. For any sV,θ ∈ SNN, we have

ℓtrunc(x; sV,θ) =
1

T − t0

∫ T

t0

Ex′∼ϕt(x′|x)
[
∥sV,θ(x′, t)−∇ log ϕt(x

′|x)∥22 1{∥x∥2 ≤ R}
]
dt

=
1

T − t0

∫ T

t0

Ex′∼ϕt(x′|x)

[∥∥∥∥sV,θ(x
′, t) +

1

h(t)
(x′ − α(t)x)

∥∥∥∥
2

2

1{∥x∥2 ≤ R}
]
dt

≤ 2

T − t0

∫ T

t0

(
sup
x′

∥∥∥∥sθ(x
′, t) +

1

h(t)
x′
∥∥∥∥
2

2

+

∥∥∥∥
α(t)

h(t)
x

∥∥∥∥
2

2

)
1{∥x∥2 ≤ R} dt

=
2

T − t0

∫ T

t0

(
sup
x′

∥∥∥∥
1

h(t)
V fθ(V

⊤x′, t)

∥∥∥∥
2

2

+

∥∥∥∥
α(t)

h(t)
x

∥∥∥∥
2

2

)
1{∥x∥2 ≤ R} dt

(i)

≤ K2 +R2

T − t0

∫ T

t0

2

h2(t)
dt

= O
(
K2 +R2

t0(T − t0)

)
,

where inequality (i) invokes the uniform upper bound of SNN. Moreover, suppose given sV1,θ1 and sV2,θ2 with

sup∥x∥2≤3R+
√
D logD,t∈[t0,T ] ∥sV1,θ1

(x, t)− sV2,θ2
(x, t)∥2 ≤ ι. We evaluate

∥∥ℓtrunc(·; sV1,θ1
)− ℓtrunc(·; sV2,θ2

)
∥∥
∞

= sup
∥x∥2≤R

1

T − t0

∫ T

t0

Ex′∼ϕt(x′|x)
[
∥sV1,θ1(x

′, t)− sV2,θ2(x
′, t)∥2 ∥sV1,θ1(x

′, t)− sV2,θ2(x
′, t)− 2∇ log ϕt(x

′|x)∥2
]
dt

≤ sup
∥x∥2≤R

2(K +R)

T − t0

∫ T

t0

1

h(t)
Ex′∼ϕt(x′|x)

[
∥sV1,θ1

(x′, t)− sV2,θ2
(x′, t)∥2 1{∥x′∥2 ≤ 3R+

√
D logD}

]
dt

+ sup
∥x∥2≤R

2(K +R)

T − t0

∫ T

t0

1

h(t)
Ex′∼ϕt(x′|x)

[
∥sV1,θ1(x

′, t)− sV2,θ2(x
′, t)∥2 1{∥x′∥2 > 3R+

√
D logD}

]
dt

≤ 2ι

T − t0
(K +R)

∫ T

t0

1

h(t)
dt

+ sup
∥x∥2≤R

2(K +R)

T − t0

∫ T

t0

1

h(t)
Ex′∼ϕt(x′|x)

[
∥sV1,θ1(x

′, t)− sV2,θ2(x
′, t)∥2 1{∥x′∥2 > 3R+

√
D logD}

]
dt

≤ ι

T − t0
(K +R)

∫ T

t0

1

h(t)
dt+

4(K +R)K

T − t0

∫ T

t0

1

h2(t)
dt

∫

∥x′∥2>3R+
√
D logD

ϕt(x
′|x) dx′

(i)
= O

(
ι

T − t0
(K +R) log

T

t0
+

4K(K +R)

t0(T − t0)
D(3R+ 2

√
D logD)D−2 exp

(
− 1

2h(t)

(
2R2 +

1

2
D logD

)))

= O
(

ι

T − t0
(K +R) log

T

t0
+

4K(K +R)

t0(T − t0)
(R/D)D−2 exp

(
− 1

h(t)
R2

))
,

where in (i), we upper bound ϕt(x
′|x) ≤ (2πh(t))−D/2 exp

(
− 1

2h(t)

(
1
2 ∥x′∥

2
2 − ∥x∥22

))
and invoke Lemma 16. Denote

η = 4K(K+R)
t0(T−t0) (R/D)D−2 exp

(
− 1

h(t)R
2
)

. The last display above indicates that an ι-covering of SNN induces a ι
T−t0 (K +

R) log T
t0

+ η-covering of G. Now we apply Lemma 15 and obtain with probability 1− δ,

(A) = O


 (1 + 3/a)(K2 +R2)

nt0(T − t0)
log

N
(

(T−t0)(ι−η)
(K+R) log(T/t0)

,SNN, ∥·∥2
)

δ
+ (2 + a)τ


 .
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We emphasize that norm in the covering of SNN is sup∥x∥2≤3R+
√
D logD ∥sV,θ(x, t)∥2.

⋆ Bounding Term (B). By the truncation, we have

(B) = Ex∼Pdata
[ℓ(x; ŝV,θ)1{∥x∥2 > R}]

=
1

T − t0

∫ T

t0

Ex∼Pdata

[
Ex′∼ϕt(x′|x)

[
∥ŝV,θ(x′, t)−∇ log ϕt(x

′|x)∥22
]
1{∥x∥2 > R}

]
dt

≤ 2

T − t0

∫ T

t0

Ex∼Pdata

[
Ex′∼ϕt(x′|x)

(∥∥∥∥ŝV,θ(x
′, t) +

1

h(t)
x′
∥∥∥∥
2

2

+

∥∥∥∥
α(t)

h(t)
x

∥∥∥∥
2

2

)
1{∥x∥2 > R}

]
dt

≤ 2

T − t0

∫ T

t0

1

h2(t)
Ex∼Pdata

[(
K2 + ∥x∥22

)
1{∥x∥2 > R}

]
dt

(i)

≤ 2

T − t0

(
C1K

2Rd−2 d2−d/2+1

C2Γ(d/2 + 1)
exp(−C2R

2/2) + C1
d2−d/2+1

C2Γ(d/2 + 1)
Rd exp(−C2R

2/2)

)∫ T

t0

1

h2(t)
dt

= O
(

1

t0(T − t0)
K2Rd 2−2/d+2d

Γ(d/2 + 1)
exp

(
−C2R

2/2
))

.

where the last inequality follows from x = Az and applying Lemma 16, since pz(z) ≤ (2π)−d/2C1 exp(−C2 ∥z∥22 /2) for

∥z∥2 > B.

⋆ Bounding Term (C). For any ϵ > 0, denote s̄V,θ as the constructed network approximator to the score function in

Theorem 1. Then we have

(C) ≤ L̂(s̄V,θ)− (1 + a)Ltrunc(s̄V,θ)︸ ︷︷ ︸
(C1)

+(1 + a)Ltrunc(s̄V,θ)︸ ︷︷ ︸
(C2)

,

where (C1) is the statistical error and (C2) is the approximation error.

As data distribution Pdata has sub-Gaussian tail, L̂(s̄V,θ) = L̂trunc(s̄V,θ) holds with high probability. In fact, Lemma 16

yields

Pdata (∥x∥2 > R) ≤ C1
d2−d/2+1

C2Γ(d/2 + 1)
Rd−2 exp(−C2R

2/2).

Applying union bound leads to

Pdata (∥xi∥2 ≤ R for all i = 1, . . . , n) ≥ 1− nC1
d2−d/2+1

C2Γ(d/2 + 1)
Rd−2 exp(−C2R

2/2).

Therefore, (C1) is equal to

(C1) = L̂trunc(s̄V,θ)− (1 + a)Ltrunc(s̄V,θ)

with high probability. Since s̄V,θ is a fixed function, Lemma 15 implies

L̂trunc(s̄V,θ)− (1 + a)Ltrunc(s̄V,θ) = O
(
(1 + 6/a)(K2 +R2)

nt0(T − t0)
log

1

δ

)
.

with probability 1− δ. For (C2), we have

Ltrunc(s̄V,θ) ≤ L(s̄V,θ)

=
1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt+ L(s̄V,θ)−

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

︸ ︷︷ ︸
(E)

.

18
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Recall that the two terms in (E) are equivalent score matching objective functions. Their difference is an absolute constant,

denoted as (E) = E. By Theorem 1, we have

(C2) = O
(

d

t0(T − t0)
ϵ2
)
+ E.

• Putting (A), (B), (C) Together. We first take R = O
(√

d log d+ logK + log n
δ

)
such that η ≤ 1

nt0(T−t0) , (B) ≤
1

nt0(T−t0) and Pdata (∥xi∥2 ≤ R for all i = 1, . . . , n) ≥ 1− δ. Next, we set ι = 2
nt0(T−t0) , which gives rise to

(A) = O



(1 + 3/a)

(
(1 + β)2d2 log d

t0ϵ
+ log n

δ

)

nt0(T − t0)
log

N
(

1
n(K+R)t0 log(T/t0)

,SNN, ∥·∥2
)

δ
+

1

n




with probability 1− δ. For term (C), we have

(C) = O



(1 + 6/a)

(
(1 + β)2d2 log d

t0ϵ
+ log n

δ

)

nt0(T − t0)
log

1

δ
+

1

n
+

d

t0(T − t0)
ϵ2


+ (1 + a)E

with probability 1− 2δ. Summing up error terms (A), (B) and (C), we derive

L(ŝV,θ) ≤ (A) + (B) + (1 + a) · (C)

= O



(1 + 6/a)

(
(1 + β)2d2 log d

t0ϵ
+ log n

δ

)

nt0(T − t0)
log

N
(

1
n(K+R)t0 log(T/t0)

,SNN, ∥·∥2
)

δ
+

1

n
+

d

t0(T − t0)
ϵ2




+ (1 + a)2E

with probability 1− 3δ. Using the relation 1
T−t0

∫ T

t0
∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)

dt = L(s̄V,θ)− E, with probability

1− 3δ, we can bound

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

= O



(1 + 6/a)

(
(1 + β)2d2 log d

t0ϵ
+ log n

δ

)

nt0(T − t0)
log

N
(

1
n(K+R)t0 log(T/t0)

,SNN, ∥·∥2
)

δ
+

1

n
+

d

t0(T − t0)
ϵ2




+ (2a+ a2)E.

Setting a = ϵ2 leads to

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

= O




(
(1 + β)2d2 log d

t0ϵ
+ log n

δ

)

ϵ2nt0(T − t0)
log

N
(

1
n(K+R)t0 log(T/t0)

,SNN, ∥·∥2
)

δ
+

1

n
+

d

t0(T − t0)
ϵ2


 (9)

with probability 1− 3δ.

• Covering Number of SNN. The only remaining task is to find the covering number of SNN. SNN consists of two

components: 1) matrix V with orthonormal columns; 2) network function fθ . Suppose we have V1, V2 and θ1,θ2 such that
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∥V1 − V2∥F ≤ δ1 and sup∥x∥2≤3R+
√
D logD,t∈[t0,T ] ∥fθ1

(x, t)− fθ2
(x, t)∥2 ≤ δ2. Then we evaluate

sup
∥x∥2≤3R+

√
D logD,t∈[t0,T ]

∥sV1,θ1
(x, t)− sV2,θ2

(x, t)∥2

=
1

h(t)
sup

∥x∥2≤3R+
√
D logD,t∈[t0,T ]

∥∥V1fθ1
(V ⊤1 x, t)− V2fθ2

(V ⊤2 x, t)
∥∥
2

=
1

h(t)
sup

∥x∥2≤3R+
√
D logD,t∈[t0,T ]

[ ∥∥V1fθ1(V
⊤
1 x, t)− V1fθ1(V

⊤
2 x, t)

∥∥
2
+
∥∥V1fθ1(V

⊤
2 x, t)− V1fθ2(V

⊤
2 x, t)

∥∥
2

+
∥∥V1fθ2(V

⊤
2 x, t)− V2fθ2(V

⊤
2 x, t)

∥∥
2

]

≤ 1

h(t)

(
γδ1

√
d(3R+

√
D logD) + δ2 + δ1K

)
,

where we recall γ upper bounds the Lipschitz constant of fθ1
. For set {V ∈ R

D×d : ∥V ∥2 ≤ 1}, its δ1-covering number is(
1 + 2

√
d

δ1

)Dd

(Chen et al., 2019b, Lemma 8). For the δ2-covering number of fθ , we follow the upper bound in Chen et al.

(2022a, Lemma 5.3):

(
2L2M(3R+

√
D logD))κLML+1

δ2

)J

.

To this end, with R = O
(√

d log d+ logK + log n
δ

)
, we compute the log covering number of SNN as

logN (ι,SNN, ∥·∥2) = O
(
2Dd · log

(
1 +

6Kγ
√
d(3R+

√
D logD)

t0ι

)

+ J log
6L2M(3R+

√
D logD))κLML+1

t0ι

)

= O
((

(1 + β)dTτdd/2ϵ−(d+1) logd/2
d

t0ϵ
+Dd

)(
d log

1

ϵ
+ d2

)
log

TτDd logD

t0ιϵ

)
.

Substituting the log covering number into (9), we have

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

= O
((

(1 + β)2d2 log d
t0ϵ

+ log n
δ

)

ϵ2nt0(T − t0)

(
(1 + β)dTτdd/2ϵ−(d+1) logd/2

d

t0ϵ
+Dd

)(
d log

1

ϵ
+ d2

)
log

nTτDd logD

(T − t0)ϵ

+
1

n
+

d

t0(T − t0)
ϵ2

)
.

• Balancing Error Terms. Note that logd/2 1
ϵ ≤

(
1
ϵ

) d log log(1/ϵ)
2 log(1/ϵ) . We set ϵ = n−

1−δ(n)
d+5 , which implies 1

nϵ
−d−3 logd/2 1

ϵ ≤
n−

2−2δ(n)
d+5 . Then with probability 1− 3δ, it holds

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

= O
(
τ(1 + β)d+2dd/2+4

t0

(
n−

2−2δ(n)
d+5 +Ddn−

d+3+2δ(n)
d+5

)
logd/2+3

(
d

δt0

)
logD log3 n

)
.

Setting δ = 1
3n gives rise to

1

T − t0

∫ T

t0

∥s̄V,θ(·, t)−∇ log pt(·)∥2L2(Pt)
dt

= O
(
τ(1 + β)d+2dd/2+4

t0

(
n−

2−2δ(n)
d+5 +Ddn−

d+3+2δ(n)
d+5

)
logd/2+3

(
d

t0

)
logD log3 n

)
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with probability 1− 1
n . Omitting factors in d, β, τ, logD, log t0 yields the bound in Theorem 2.

B.3. Conditional Covariance Bound

We repeat the on-support score expression for reference:

s∥(z
′, t) =

α(t)

h(t)
A

∫
z · ϕt(z′|z)pz(z)∫
ϕt(z′|z)pz(z) dz

dz− 1

h(t)
Az′. (10)

Using (10) and taking derivative with respect to z′, we have

∂

∂z′
s∥(z

′, t) =

(
α(t)

h(t)

)2

A

[∫
zz⊤ϕt(z′|z)pz(z)∫
ϕt(z′|z)pz(z) dz

dz−
∫

zϕt(z
′|z)pz(z)∫

ϕt(z′|z)pz(z) dz
dz

∫
z⊤ϕt(z′|z)pz(z)∫
ϕt(z′|z)pz(z) dz

dz

]
− 1

h(t)
A

=

(
α(t)

h(t)

)2

A

[
Cov(z|z′)− 1

h(t)
Id

]
,

which implies

∥Cov(z|z′)∥op ≤ h2(t)

α2(t)

(
β +

1

h(t)

)
.

B.4. Truncation Error

Lemma 2. Suppose Assumption 2 holds. Let g be defined in (8). Given ϵ > 0, with R = c
(√

d log d
t0

+ log 1
ϵ

)
for an

absolute constant c, it holds

∥∥g(A⊤x, t)1{
∥∥A⊤x

∥∥
2
≥ R}

∥∥
L2(Pt)

≤ ϵ for t ∈ [t0, T ].

Proof. Let η ∈ (0, 1/2) to be chosen later. Plugging in the expression of g, we have

∫ ∥∥∥∥
∫

zϕt(A
⊤x|z)pz(z) dz∫

ϕt(A⊤x|z)pz(z) dz

∥∥∥∥
2

2

1{
∥∥A⊤x

∥∥
2
> R}pt(x) dx

≤
∫

∥A⊤x∥2>R

∫

∥z∥2≤η∥A⊤x∥2
∥z∥22

ϕt(A
⊤x|z)pz(z)∫

ϕt(A⊤x|z)pz(z) dz
pt(x) dx

+

∫

∥A⊤x∥2>R

∫

∥z∥2>η∥A⊤x∥2
∥z∥22

ϕt(A
⊤x|z)pz(z)∫

ϕt(A⊤x|z)pz(z) dz
pt(x) dx

≤
∫

∥A⊤x∥2>R

∫

∥z∥2≤η∥A⊤x∥2
∥z∥22 ϕt(A⊤x|z)ϕt((ID −AA⊤)x)pz(z) dz dx

+

∫

∥A⊤x∥2>R

∫

∥z∥2>η∥A⊤x∥2
∥z∥22 ϕt(A⊤x|z)ϕt((ID −AA⊤)x)pz(z) dz dx

(i)
=

∫

∥z′∥2>R

∫

∥z∥2≤η∥z′∥2
∥z∥22 ϕt(z′|z)pz(z) dz dz′

︸ ︷︷ ︸
(A)

+

∫

∥z′∥2>R

∫

∥z∥2>η∥z′∥2
∥z∥22 ϕt(z′|z)pz(z) dz dz′

︸ ︷︷ ︸
(B)

,

where we recall Gaussian density ϕt((ID − AA⊤)x) = (2π)−(D−d)/2h−(D−d)/2(t) exp
(
− 1

2h(t)

∥∥(ID −AA⊤
)
x
∥∥2
2

)
,

and in (i), we observe ϕt(A
⊤x|z) and ϕt((ID −AA⊤)x) are independent Gaussians for any fixed z.
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In term (A), when ∥z∥2 ≤ η ∥z′∥2, we have ∥z′ − α(t)z∥22 ≥ 1
2 ∥z′∥

2
2 − α2(t) ∥z∥22 ≥

(
1
2 − η

)
∥z′∥22. As a result, we have

(A) ≤
∫

∥z′∥2>R

∫

∥z∥2≤η∥z′∥2
∥z∥22 (2πh(t))−d/2 exp

(
−

1
2 − η

2h(t)
∥z′∥22

)
pz(z) dz dz

′

≤ E[∥z∥22]
∫

∥z′∥2>R

(2πh(t))−d/2 exp

(
−

1
2 − η

2h(t)
∥z′∥22

)
dz′

≤ E[∥z∥22]
2−d/2+2dh−d/2+1(t)

(1/2− η)Γ(d/2 + 1)
Rd−2 exp

(
−

1
2 − η

2h(t)
R2

)
.

For term (B), under the condition R > η−1B ∨ 1, we have

(B) =

∫

∥z′∥2>R

∫

∥z∥2>η∥z′∥2
∥z∥22 ϕt(z′|z)(2π)−d/2C1 exp(−C2 ∥z∥22 /2) dz dz′

≤ C1

∫

∥z′∥2>R

∫

∥z∥2>η∥z′∥2
∥z∥22 (2πh(t))−d exp

(
− C2

2(α2(t) + C2h(t))
∥z′∥22

)

· exp
(
−α

2(t) + C2h(t)

2h(t)

∥∥∥∥z−
α(t)

α2(t) + C2h(t)
z′
∥∥∥∥
2

2

)
dz dz′

≤ C1(α
2(t) + C2h(t))

−d/2(2πh(t))−d/2

·
∫

∥z′∥2>R

[
α2(t)

(α2(t) + C2h(t))2
∥z′∥22 +

h(t)d

α2(t) + C2h(t)

]
exp

(
− C2

2(α2(t) + C2h(t))
∥z′∥22

)
dz′

≤ C1(α
2(t) + C2h(t))

−d/2 2
−d/2+2dh−d/2(t)
C2Γ(d/2 + 1)

Rd exp

(
− C2

2(α2(t) + C2h(t))
R2

)
.

It suffices to choose η = 1
4 . Combining (A) and (B), we conclude

∥∥g(A⊤x, t)1{
∥∥A⊤x

∥∥
2
≥ R}

∥∥2
L2(Pt)

≤ c′
2−d/2+3dh−d/2(t)

Γ(d/2 + 1)
Rd exp

(
− C2

8(α2(t) + C2h(t))
R2

)

for an absolute constant c′. In order for
∥∥g(A⊤x, t)1{

∥∥A⊤x
∥∥
2
≥ R}

∥∥2
L2(Pt)

≤ ϵ, we deduce

R = c

(√
d log

d

t0
+ log

1

ϵ

)
,

where c is an absolute constant.

C. Omitted Proofs in Section 5

C.1. Subspace Error and Latent Score Matching Error

For simplicity, we define the (unnormalized) expectation Ē as

Ē[ϕ(x, t)] =

∫ T

t0

1

h2(t)
Ex∼Pt

[ϕ(x, t)]dt.

During the analysis, we also denote z = A⊤x and

Ē[ϕ(z, t)] =

∫ T

t0

1

h2(t)
Ex∼Pt

[ϕ(A⊤x, t)]dt.

Define

g(z, t) = h(t)∇ log pLDt (z) + z,
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Then the objective of diffusion models is

∫ T

t0

EXt∼Pt
∥sV,θ(Xt, t)−∇ log pt(Xt)∥22dt = Ē∥V fθ(V

⊤x, t)−Ag(A⊤x, t)∥22.

Lemma 3. Assume that the following holds

Ez∼Pz
∥∇ log pz(z)∥22 ≤ CE ,

λminEz∼Pz
[zz⊤] ≥ c0,

Ez∼Pz
∥z∥22 ≤ Cz.

We set t0 ≤ min
{
log(d/CE + 1), 1, log(1 + c0),

c0
4e log(4e)

}
and T ≥ max{log(Cz/d+ 1), 1}. Suppose we have

Ē∥V fθ(V
⊤x, t)−Ag(A⊤x, t)∥22 ≤ ϵ.

Then we have

∥V V ⊤ −AA⊤∥2F = O
( t0
c0
ϵ
)
,

and there exists an orthonormal matrix U ∈ R
d×d, such that:

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22 ≲ ϵ ·
[
1 +

t0
c0

(
(T − log t0)d ·max

t
∥fθ(·, t)∥2Lip + CE

)
+

maxt ∥fθ(·, t)∥2Lip · Cz

c0

]
.

C.2. Backward Processes

In this section, we provide the distribution estimation error of the learned backward SDEs. The objects of our arguments

are all in the latent space. Specifically, we consider the following decomposition of the ground-truth backward process:

X←t = AZ←t +X←t,⊥, where

Z←t = A⊤X←t and X←t,⊥ = (I −AA⊤)X←t .

We know that the forward SDE for (Zt)t≥0 is

dZt = −1

2
Zt dt+ d(A⊤Wt),

where Z0 ∼ Pz . Denote P LD
t as the marginal distribution of Zt . The backward SDE for Z←t is

dZ←t =

[
1

2
Z←t +∇ log pLDT−t(Z

←
t )

]
dt+ d(A⊤Wt).

For the learned process X̃←t , we consider a similar decomposition X̃←t = V Z̃←t + X̃←t,⊥, where

Z̃←t = V ⊤X̃←t and X̃←t,⊥ = (I − V V ⊤)X̃←t .

For any orthogonal matrix U ∈ R
d×d, define the U transformed version of Z̃←t as Z̃

←,r
t = U⊤Z̃←t . The backward SDEs

for Z̃
←,r
t is

dZ̃←,r
t =

[
1

2
Z̃
←,r
t + s̃LDU,θ(Z̃

←,r
t , T − t)

]
dt+ d(U⊤V ⊤Wt), (11)

where

s̃LDU,θ(z, t) =
1

h(t)

[
− z+ U⊤fθ(Uz, t)

]
.

When X̃←0 ∼ N(0, I), we have Z̃
←,r
0 ∼ N(0, Id). We define P̂ LD

t0 to be the marginal distribution of Z̃
←,r
T−t0 .
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The discretized backward SDE is

dZ̃⇐,r
t =

[
1

2
Z̃
⇐,r
kη + s̃LDU,θ(Z̃

⇐,r
kη , T − kη)

]
dt+ d(U⊤V ⊤Wt) for t ∈ [kη, (k + 1)η).

We define P̂ LD,dis
t0 to be the marginal distribution of Z̃

⇐,r
T−t0 .

Lemma 4. Assume that Pz is subGaussian. fθ(z, t) and ∇ log pLDt (z) is Lipschitz in both z and t. Assume we have the

latent score matching error bound

∫ T

t0

EZt∼P LD

t
∥s̃LDU,θ(Zt, t)−∇ log pLDt (Zt)∥22 dt ≤ ϵlatent(T − t0).

Then we have the following latent distribution estimation error for the undiscretized backward SDE

TV(P LD

t0 , P̂
LD

t0 ) ≲
√
ϵlatent(T − t0) +

√
KL(Pz||N(0, Id)) exp(−T ).

Furthermore, we have the following latent distribution estimation error for the discretized backward SDE

TV(P LD

t0 , P̂
LD,dis
t0 ) ≲

√
ϵlatent(T − t0) +

√
KL(Pz||N(0, Id)) exp(−T ) +

√
ϵdis(T − t0),

where

ϵdis =
(maxz ∥fθ(z, ·)∥Lip

h(t0)
+

maxz,t ∥fθ(z, t)∥2
t20

)2
η2 +

(maxt ∥fθ(·, t)∥Lip

h(t0)

)2
η2 max{E∥Z0∥2, d}+ ηd.

C.3. Orthogonal Process

Lemma 5. Consider the following SDE

dYt =
[1
2
− 1

h(T − t)

]
Yt dt+ dBt,

where Y0 ∼ N(0, I). Then when T > 1 and t0 ≤ 1, we have YT−t0 ∼ N(0, σ2I) with σ2 ≤ et0.

Lemma 6 (Discretized version). Consider the following discretized SDE with step size η satisfying T − t0 = KT η.

dYt =
[1
2
− 1

h(T − kη)

]
Ykη dt+ dBt, for t ∈ [kη, (k + 1)η),

where Y0 ∼ N(0, I).

Then when T > 1 and t0 + η ≤ 1, we have YT−t0 ∼ N(0, σ2I) with σ2 ≤ e(t0 + η).

C.4. Proof of Theorem 3

Proof. In Lemma 3, we replace ϵ to be ϵ(T − t0) and we set CE = βd by Lemma 10, we have

∥V V ⊤ −AA⊤∥2F = ϵ · O
( t0T
c0

)
.

Substituting the score estimation error in Theorem 2 and T = O(log n) into the bound above, we deduce

∥V V ⊤ −AA⊤∥2F = Õ
(

1

c0
n−

2−2δ(n)
d+5 log7/2 n

)
.

The first item in Theorem 3 is proved.

Lemma 10 also implies

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22 ≲ ϵlatent(T − t0),
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where

ϵlatent = ϵ · O
([ t0
c0

(
(T − log t0)d · γ2 + dβ

)
+
γ2 · Cz

c0

])
.

Some algebra yields

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22 =

∫ T

t0

Ez∼P LD

t

∥∥∥U
⊤fθ(Uz, t)− z

h(t)
−∇ log pLDt (z)

∥∥∥
2

2
dt ≤ ϵlatent(T − t0).

Therefore, by Lemma 4, we obtain

TV(P LD

t0 , P̂
LD,dis
t0 ) ≲

√
ϵlatent(T − t0) +

√
KL(Pz||N(0, Id)) exp(−T ) +

√
ϵdis(T − t0)

= Õ
(

1√
t0c0

n−
1−δ(n)
d+5 log2 n+

1

n
+ η

√
d log d

t20
+

√
η
√
d

)
.

With η ≲
t20√

d log d
n−

2−2δ(n)
d+5 , we deduce

TV(P LD

t0 , P̂
LD,dis
t0 ) = Õ

(
1√
c0t0

n−
1−δ(n)
d+5 log2 n

)
.

By definition, P̂ LD,dis
t0 = (UV )⊤♯ P̂

dis
t0 . The total variation distance bound in item 2 is proved. The Wasserstein-2 distance

W2(P
LD
t0 , Pz) is bounded using the same technique as Chen et al. (2022b, Lemma 16). Although they require bounded

support, the proof only relies on finite second moment of Pz , which is verified under our Assumption 2. As a result, we have

W2(P
LD

t0 , Pz) = O
(√

dt0

)
.

Lastly, in item 3, due to our score decomposition, the orthogonal process follows that in Lemma 6. Invoking the marginal

distribution at time T − t0 and observing η ≪ t0, we obtain the desired result.

D. Omitted Proofs in Section C

D.1. Proof of Lemma 3

We introduce several lemmas in preparation for the proof of Lemma 3.

Lemma 7. Let X,Y be random variables, A, V ∈ R
D×d have orthonormal columns. Then Ē ∥V X −AY ∥22 ≤ ϵ implies

∥(ID − V V ⊤)A∥2F ≤ ϵV =
1

λmin
ϵ,

where λmin is the smallest eigenvalue of Ē[Y Y ⊤].

proof of Lemma 7. Notice that the best L2 approximation in the subspace Im(V ) to AY is V ⊤AY , which can be verified

through the following calculation:

∥V X −AY ∥22 = ∥V X − V V ⊤AY ∥22 + ∥V V ⊤AY −AY ∥22 + 2⟨V X − V V ⊤AY, V V ⊤AY −AY ⟩
= ∥V X − V V ⊤AY ∥22 + ∥V V ⊤AY −AY ∥22 + 2⟨X − V ⊤AY, V ⊤(V V ⊤AY −AY )⟩
= ∥V X − V V ⊤AY ∥22 + ∥V V ⊤AY −AY ∥22.

Therefore, we have

∥V X −AY ∥22 ≥ ∥V V ⊤AY −AY ∥22 = ∥(ID − V V ⊤)AY ∥22.
Then

ϵ ≥ Ē∥V X −AY ∥22
≥ Ē∥(ID − V V ⊤)AY ∥22
= Tr

[
A⊤(ID − V V ⊤)(ID − V V ⊤)A · ĒY Y ⊤

]

≥ λmin Tr
[
A⊤(ID − V V ⊤)(ID − V V ⊤)A

]

≥ λmin∥(ID − V V ⊤)A∥2F.
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Lemma 8. Assume that we have

Ē∥V fθ(V
⊤x, t)−Ag(A⊤x, t)∥22 ≤ ϵ.

There exists an orthonormal matrix U ∈ R
d×d, such that:

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22
≲ ϵ+

ϵ

λmin
· Ē∥g(z, t)∥22 +

ϵ

λmin
Ē∥z∥22 ·max

t
∥fθ(·, t)∥2Lip.

where λmin = λmin(Ē[g(z, t)g(z, t)
⊤]).

Proof of Lemma 8. Since

Ē∥V fθ(V
⊤x, t)−Ag(A⊤x, t)∥22 ≤ ϵ,

by Lemma 7, we have

∥(ID − V V ⊤)A∥2F ≤ ϵV
def
=

1

λmin
ϵ,

where λmin is the smallest eigenvalue of Ē[g(z, t)g(z, t)⊤].

Then by Lemma 17, we know that there exists an orthonormal matrix U ∈ R
d×d, such that

∥U − V ⊤A∥2F ≤ 2ϵV .

We have the following error decomposition

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22 = Ē∥fθ(Uz, t)− Ug(z, t)∥22
≲ Ē∥fθ(Uz, t)− fθ(UU

⊤V ⊤Az, t)∥22
+ Ē∥fθ(UU⊤V ⊤Az, t)− V ⊤Ag(A⊤x, t)∥22
+ Ē∥V ⊤Ag(A⊤x, t)− Ug(z, t)∥22.

Next we provide upper bounds on the three terms.

Ē∥fθ(Uz, t)− fθ(UU
⊤V ⊤Az, t)∥22 ≤ Ē∥fθ(·, t)∥2Lip · ∥U(Id − U⊤V ⊤A)z∥22

≤ max
t

∥fθ(·, t)∥2Lip · Ē∥U(Id − U⊤V ⊤A)z∥22
≤ max

t
∥fθ(·, t)∥2Lip · ∥Id − U⊤V ⊤A∥22 · Ē∥z∥22

= max
t

∥fθ(·, t)∥2Lip · ∥U − V ⊤A∥22 · Ē∥z∥22
≤ 2max

t
∥fθ(·, t)∥2Lip · Ē∥z∥22 · ϵV .

Ē∥fθ(UU⊤V ⊤Az, t)− V ⊤Ag(A⊤x, t)∥22 = Ē∥fθ(V ⊤Az, t)− V ⊤Ag(A⊤x, t)∥22
≤ Ē∥V fθ(V

⊤Az, t)−Ag(A⊤x, t)∥22
≤ ϵ.

Ē∥V ⊤Ag(A⊤x, t)− Ug(z, t)∥22 ≤ ∥V ⊤A− U∥22 · Ē∥g(z, t)∥22
≤ 2ϵV · Ē∥g(z, t)∥22.

Proof of Lemma 3. The proof is dedicated to compute the problem constants in Lemma 8.

Denote Etϕ(x) = Ex∼Ptϕ(x) and Etϕ(z) = Ex∼Pt,z=A⊤xϕ(z). Specifically, E0ϕ(z) = Ez∼Pzϕ(z).
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Properties of h(t). We set g(t) = 1. Then h(t) = 1− exp(−t), h−1(w) = − log(1− w). And we have

∫
1− h(t)

h2(t)
dt =

1

1− exp(t)
+ Constant.

∫
1

h(t)
dt = log(exp(t)− 1) + Constant.

∫
1

1− h(t)
dt = exp(t) + Constant.

We have the following bounds ∫ t2

t1

1− h(t)

h2(t)
dt ≤ 1

t1
.

∫ t2

t1

1

h(t)
dt ≤ t2 − log t1.

∫ t2

t1

1

1− h(t)
dt ≤ exp(t2)− t1 − 1.

Upper Bounds for Ē∥z∥22.

Ē∥z∥22 =

∫ T

t0

1

h2(t)
Et∥z∥22dt

=

∫ T

t0

1

h2(t)
[(1− h(t))E0∥z∥22 + h(t)d]dt

=

∫ T

t0

1− h(t)

h2(t)
dt · E0∥z∥22 +

∫ T

t0

1

h(t)
dt · d

≤ 1

t0
E0∥z∥2 + (T − log t0) · d

≤ 1

t0
Cz + (T − log t0) · d.

Upper Bounds for Ē∥g(z, t)∥22.

Ē∥g(z, t)∥22 ≤ 2Ēh(t)2∥∇ log pLDt (z)∥22 + 2Ē∥z∥22.

By Lemma 9, we have

Ēh(t)2∥∇ log pLDt (z)∥22 =

∫ T

t0

Et∥∇ log pLDt (z)∥22dt

≤
∫ T

t0

min

{
1

1− h(t)
E0∥∇ log pz(z)∥22,

1

h(t)
d

}
dt.

We see that when t increases, 1/(1− h(t)) increases and 1/h(t) decreases. By setting

1

1− h(t∗)
E0∥∇ log pz(z)∥22 =

1

h(t∗)
d

we have

t∗ = h−1
(

d

d+ E0∥∇z log pz(z)∥22

)
.

Notice that we have chosen t0 ≤ log(d/CE + 1), where E0∥∇ log pz(z)∥22 ≤ CE . Then we have

t0 ≤ log(d/CE + 1) ≤ log(d/E0∥∇ log pz(z)∥22 + 1) = t∗.
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Therefore

Ēh(t)2∥∇ log pLDt (z)∥22 ≤
∫ t∗∧T

t0

1

1− h(t)
dt · E0∥∇ log pz(z)∥22 +

∫ T

t∗∧T

1

h(t)
dt · d

≤ exp(t∗) · E0∥∇ log pz(z)∥22 + (T − log(t∗ ∧ T )) · d
≤ (d+ E0∥∇ log pz(z)∥22) + d(T − log t0)

≲ E0∥∇ log pz(z)∥22 + d(T − log t0).

Lower Bounds for λmin(Ēg(z, t)g(z, t)
⊤). By Lemma 9, we have

Etg(z, t)g(z, t)
⊤ = Etzz

⊤ + h(t)2Et∇ log pLDt (z)∇ log pLDt (z)⊤

+ h(t)Et∇ log pLDt (z)z⊤ + h(t)Etz∇ log pLDt (z)⊤

= (1− h(t))E0zz
⊤ − h(t)I + h2(t)Et∇ log pLDt (z)∇ log pLDt (z)⊤

⪰ (1− h(t))E0zz
⊤ − h(t)I.

Denote λ0 = λmin(E0zz
⊤), then we have for any t0 ≤ T ∗ ≤ T ,

λmin(Ēg(z, t)g(z, t)
⊤) ≥

∫ T∗

t0

(1− h(t)

h2(t)
λ0 −

1

h(t)

)
dt.

Taking maximum w.r.t. to T ∗ and we get:

T ∗ = h−1(λ0/(λ0 + 1)).

We need to verify that the above T ∗ lies in [t0, T ]. Notice that we have dλ0 ≤ E0∥z∥2 ≤ Cz. By the assumptions that

t0 ≤ log(1 + c0) and T ≥ log(Cz/d+ 1), we have

T ≥ log(Cz/d+ 1) ≥ log(1 + λ0) = T ∗,

and

t0 ≤ log(1 + c0) ≤ log(1 + λ0) = T ∗.

Therefore

λmin(Ēg(z, t)g(z, t)
⊤) ≥

∫ T∗

t0

(1− h(t)

h2(t)
λ0 −

1

h(t)

)
dt

≥
[ 1

1− exp(T ∗)
− 1

1− exp(t0)

]
λ0 − (T ∗ − log t0)

=
1

exp(t0)− 1
λ0 − 1− log(1 + λ0) + log t0

(i)

≥ λ0
e

1

t0
− 1− log(1 + λ0) + log t0

(ii)

≥ 1

2e

λ0
t0

≥ 1

2e

c0
t0
,

where we use exp(t0)− 1 ≤ et0 for t0 ≤ 1 in (i).

Then by Lemma 7 and Lemma 17 we know that

∥V V ⊤ −AA⊤∥2F ≤ ϵ · O
( t0
c0

)
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Next we show that (ii) holds. Since we have chosen t0 ≤ c0
4e log(4e) , one can show that

1

t0
≥ 4e

c0
log
(4e(1 + c0)

c0

)
.

Then
1

t0
≥ 4e

c0
log
(4e(1 + c0)

c0

)
≥ 4e

λ0
log
(4e(1 + λ0)

λ0

)
. (12)

By log(x2/x1) ≤ x2/x1 − 1, we have

log(
e(1 + λ0)

t0
)− log

4e2(1 + λ0)

λ0
≤ λ0

4et0
− 1.

Then

1 + log(1 + λ0)− log t0 = log(
e(1 + λ0)

t0
) ≤ log

4e2(1 + λ0)

λ0
+

λ0
4et0

− 1

= log
4e(1 + λ0)

λ0
+

λ0
4et0

≤ λ0
4et0

+
λ0
4et0

(By (12))

=
λ0
2et0

.

By substituting the above bounds into Lemma 8, we have

Ē∥U⊤fθ(Uz, t)− g(z, t)∥22
≲ ϵ+

ϵ

λmin
· Ē∥g(z, t)∥22 +

ϵ

λmin
Ē∥z∥22 ·max

t
∥fθ(·, t)∥2Lip

≲ ϵ ·
[
1 +

t0
c0

(
(T − log t0)d ·max

t
∥fθ(·, t)∥2Lip + CE

)
+

maxt ∥fθ(·, t)∥2Lip · Cz

c0

]
,

where we assume maxt ∥fθ(·, t)∥2Lip = Ω(1).

D.1.1. EVOLUTION OF SCORE FUNCTION

In the subsection we analyze the property of ∇ log pLDt (z) in terms of the assumptions made on ∇ log pz(z). Specifically, at

time t, the distribution pLDt (z) is given by

z0 ∼ Pz, z|z0 ∼ N(
√
1− h(t)z0, h(t)Id).

Lemma 9. We have the following holds

∫
pLDt (z)∥∇ log pLDt (z)∥22 dz ≤ min{ 1

1− h(t)

∫
pz(z0)∥∇ log pz(z0)∥22dz0,

d

h(t)
},

and ∫
pLDt (z)∇ log pLDt (z)z⊤ dz = −Id.

Proof. In the proof, we drop the superscript in pLDt for simplicity and denote pt as the probability density function of z at

time t. We use ϕt(z|z0) to represent the density function of z|z0 ∼ N(
√
1− h(t)z0, h(t)Id). By Integration by parts, one

can verify that

∇ log pt(z) =
1√

1− h(t)

∫
p0(z0)ϕt(z|z0)∇ log p0(z0)dz0∫

p0(z0)ϕt(z|z0)dz0
.
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∫
pt(z)∥∇ log pt(z)∥22dz =

1

1− h(t)

∫ ∥
∫
p0(z0)ϕt(z|z0)∇ log p0(z0)dz0∥22

pt(z)
dz

=
1

1− h(t)

∫ ∥Ept(z0|z)[pt(z)∇ log p0(z0)]∥22
pt(z)

dz

≤ 1

1− h(t)

∫
Ept(z0|z)[p

2
t (z)∥∇ log p0(z0)∥22]
pt(z)

dz

=
1

1− h(t)

∫∫
pt(z0|z)[pt(z)∥∇ log p0(z0)∥22]dz0dz

=
1

1− h(t)

∫
p0(z0)∥∇ log p0(z0)∥22dz0.

Further, we have

∇ log pt(z) =
∇pt(z)
pt(z)

=

∫
p0(z0)∇ϕt(z|z0) dz0

pt(z)

=

∫
p0(z0)ϕt(z|z0)−(z−

√
1−h(t)z0)

h(t) dz0

pt(z)
.

Therefore,

∫
pt(z)∥∇ log pt(z)∥2 dz =

∫
pt(z)

∥
∫
p0(z0)ϕt(z|z0)−(z−

√
1−h(t)z0)

h(t) dz0∥22
p2t (z)

dz

=

∫
pt(z)

∥
∫
pt(z)pt(z0|z)−(z−

√
1−h(t)z0)

h(t) dz0∥22
p2t (z)

dz

=

∫
pt(z)

∥∥∥∥∥

∫
pt(z0|z)

−(z−
√

1− h(t)z0)

h(t)
dz0

∥∥∥∥∥

2

2

dz

≤
∫
pt(z)

∫
pt(z0|z)

∥∥∥∥∥
−(z−

√
1− h(t)z0)

h(t)

∥∥∥∥∥

2

2

dz0 dz

=

∫
p0(z0)

∫
ϕt(z|z0)

∥∥∥∥∥
−(z−

√
1− h(t)z0)

h(t)

∥∥∥∥∥

2

2

dz dz0

=
d

h(t)
,

where we use the fact that z|z0 ∼ N(
√

1− h(t)z0, h(t)Id) in the last equality.

To summarize, we have

∫
pt(z)∥∇ log pt(z)∥22 dz ≤ min{ 1

1− h(t)

∫
p0(z0)∥∇ log p0(z0)∥22dz0,

d

h(t)
}.

This is tight for Gaussian.

Next we prove that
∫
pt(z)∇ log pt(z)z

⊤ dz = −Id.
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We have

∫
pt(z)∇ log pt(z)z

⊤ dz =

∫
pt(z)

∫
p0(z0)ϕt(z|z0)−(z−

√
1−h(t)z0)

h(t) dz0

pt(z)
z⊤ dz

=

∫∫
p0(z0)ϕt(z|z0)

−(z−
√
1− h(t)z0)

h(t)
z⊤ dz0 dz

= −Id.

where we use the fact that z|z0 ∼ N(
√

1− h(t)z0, h(t)Id) in the last equality.

D.1.2. OTHER LEMMAS.

Lemma 10. Suppose Assumption 3 holds. Then we have Ez∼Pz∥∇ log pz(z)∥22 ≤ dβ.

Proof. We have

Ez∼Pz∇ log pz(z)∇ log pz(z)
⊤ =

∫
pz(z)∇ log pz(z)∇ log pz(z)

⊤ dz

=

∫
∇pz(z)∇ log pz(z)

⊤ dz

= −
∫
pz(z)∇∇ log pz(z)

⊤ dz. (Integration by parts.)

Therefore

Ez∼Pz∥∇ log pz(z)∥2 = Tr
[
−
∫
pz(z)∇∇ log pz(z)

⊤ dz
]
≤ βd.

D.2. Proof of Lemma 4, Undiscretized Setting

First, we show that the Novikov’s condition holds

Lemma 11 (Novikov’s condition). We have

E exp
(1
2

∫ T−t0

0

∥s̃LDθ,U (Z←t , T − t)−∇ log pLDT−t(Z
←
t )∥22dt

)
<∞,

where the expectation is taken over the ground-truth latent backward diffusion process (Z←t )t.

Proof of Lemma 11. We consider the forward process (Zt)0≤t≤T , which is an O-U process. We know that (Z←T−t)t0≤t≤T
and (Zt)t0≤t≤T has the same distribution. Therefore, we have

E(Z←t )t exp
(1
2

∫ T−t0

0

∥s̃LDθ,U (Z←t , T − t)−∇ log pLDT−t(Z
←
t )∥22dt

)

= E(Zt)t exp
(1
2

∫ T

t0

∥s̃LDθ,U (Zt, t)−∇ log pLDt (Zt)∥22dt
)
.

The solution of (Zt) can be explicitly calculated as

Zt = e−t/2Z0 +

∫ t

0

es/2dWs.
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And the two terms Z0 and
∫ t

0
es/2dWs are independent.

Denote C = maxt∈[t0,T ] ∥s̃LDθ,U (·, t)∥Lip + maxt∈[t0,T ] ∥∇ log pLDt (·)∥Lip and C0 = maxt∈[t0,T ] ∥s̃LDθ,U (0, t) −
∇ log pLDt (0)∥2. By our assumptions on the Lipschitz constants of the score network and the ground truth latent score

function, we have C,C0 <∞, we have

E exp
(1
2

∫ T

t0

∥s̃LDθ,U (Zt, t)−∇ log pLDt (Zt)∥22dt
)

≤ E exp
(1
2

∫ T

t0

C2∥Zt∥22dt
)
· exp

(1
2

∫ T

t0

C2
0dt
)

≲ E exp
(∫ T

t0

C2∥e−t/2Z0∥22dt+
∫ T

t0

C2
∥∥∥
∫ t

0

es/2dWs

∥∥∥
2

2
dt
)

= E exp
(∫ T

t0

C2∥e−t/2Z0∥22dt
)
· E exp

(∫ T

t0

C2
∥∥∥
∫ t

0

es/2dWs

∥∥∥
2

2
dt
)
.

Since by our assumption that Z0 is Sub-Gaussian, we have the first term is finite.

For the second term, by Theorem 5.13 of (Le Gall et al., 2016), there exists a d dimensional Brownian motion Bt =

(B
(1)
t , · · · , B(d)

t ) such that ∫ t

0

es/2dWs
a.s.
= Bet−1.

Therefore,

E exp
(∫ T

t0

C2
∥∥∥
∫ t

0

es/2dWs

∥∥∥
2

2
dt
)
= E exp

(
C2

∫ T

t0

∥Bet−1∥22dt
)

= E exp
(
C2

∫ eT−1

et0−1
∥Bs∥22

1

s+ 1
ds
)

= E exp
(
dC2

∫ eT−1

et0−1
|B(1)

s |2 1

s+ 1
ds
)

≤ E exp
(
dC2

∫ eT−1

et0−1

1

s+ 1
ds · sup

0≤s≤t
|B(1)

s |2
)
.

Denote C2 = dC2
∫ eT−1
et0−1

1
s+1ds <∞.

By the property of Brownian Motion (Theorem 2.21 of (Le Gall et al., 2016)), sup0≤s≤tB
(1)
s has the same distribution as

|B(1)
t |, which is sub-gaussian. Since sup0≤s≤t |B(1)

s | ≤ sup0≤s≤tB
(1)
s − sup0≤s≤t(−B(1)

s ), we know that

E exp
(
C2 sup

0≤s≤t
|B(1)

s |2
)
≤ E exp

(
C2

∣∣∣ sup
0≤s≤t

B(1)
s − sup

0≤s≤t
(−B(1)

s )
∣∣∣
2)

≤ E exp
(
2C2

∣∣∣ sup
0≤s≤t

B(1)
s

∣∣∣
2

+
∣∣∣ sup
0≤s≤t

(−B(1)
s )
∣∣∣
2)

≤ E
1/2 exp

(
4C2

∣∣∣ sup
0≤s≤t

B(1)
s

∣∣∣
2)

· E1/2 exp
(
4C2

∣∣∣ sup
0≤s≤t

(−B(1)
s )
∣∣∣
2)

<∞.

Then we have the following result:

Lemma 12. When both started with Z←0 =d Z̃
←,r
0 ∼ P LD

T , the KL divergence between the laws of the paths of the processes

(Z←t )0≤t≤T−t0 and (Z̃←,r
t )0≤t≤T−t0 can be bounded by

KL = E

(1
2

∫ T−t0

0

∥s̃LDθ,U (Z←t , T − t)−∇ log pLDT−t(Z
←
t )∥22dt

)
≤ 1

2
ϵlatent(T − t0).
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Proof of Lemma 12. Since by Lemma 11 the Novikov’s condition holds, we invoke Girsanov’s Theorem (Chen et al., 2022b)

(Theorem 6).

Proof of Lemma 4, part 1. We use the same argument in (Chen et al., 2022b). The subtlety here lies in that the initial

distribution of the learned backward process (11) is N(0, Id) rather than P LD

T . Recall that P̃ LD
t0 is the marginal distribution of

Z̃
←,r
T−t0 when started from N(0, Id). We define Q̃LD

t0 to be the marginal distribution of Z̃
←,r
T−t0 when started from Z̃

←,r
0 ∼ P LD

T .

Then we have

TV(P LD

t0 , P̃
LD

t0 ) ≤ TV(P LD

t0 , Q̃
LD

t0 ) + TV(Q̃LD

t0 , P̃
LD

t0 )

For the first term, since marginalization only reduces the KL-divergence, we have by Lemma 12 and Pinsker’s Inequality

TV(P LD

t0 , Q̃
LD

t0 ) ≲
√
ϵlatent(T − t0).

For the second term, P̃ LD
t0 and Q̃LD

t0 are obtained through the same backward SDE but with different initial distributions.

Therefore by Data Processing Inequality and Pinsker’s Inequality, we know that

TV(Q̃LD

t0 , P̃
LD

t0 ) ≲

√
KL(Q̃LD

t0 ||P̃ LD
t0 ) ≤

√
KL(P LD

T ||N(0, Id)) ≲
√

KL(Pz||N(0, Id)) exp(−T ),

where in the last inequality we use the exponential convergence of the O-U process.

D.3. Proof of Lemma 4, Discretized Setting

Assume we choose η as the time interval such that T − t0 = KT η. We first show the Novikov’s condition holds.

Lemma 13 (Novikov’s condition). We have the Novikov’s condition holds for the discretized setting.

E exp
(KT−1∑

k=0

1

2

∫ (k+1)η

kη

∥∥∥∥
1

2
Z←kη + s̃LDU,θ(Z

←
kη, T − kη)− 1

2
Z←t −∇ log pLDT−t(Z

←
t )

∥∥∥∥
2

2

dt
)
<∞,

where the expectation is taken over (Z←t )t≥0.

Proof of Lemma 13. The proof is similar to the proof of Lemma 11.

E exp
(KT−1∑

k=0

1

2

∫ (k+1)η

kη

∥1
2
Z←kη + s̃LDU,θ(Z

←
kη, T − kη)− 1

2
Z←t −∇ log pLDT−t(Z

←
t )∥22dt

)

= E exp
(KT−1∑

k=0

1

2

∫ T−kη

T−(k+1)η

∥1
2
ZT−kη + s̃LDU,θ(ZT−kη, T − kη)− 1

2
Zt −∇ log pLDT−t(Zt)∥22dt

)

≤ E exp
(KT−1∑

k=0

3

2

∫ T−kη

T−(k+1)η

∥1
2
ZT−kη −

1

2
Zt∥22 + ∥s̃LDU,θ(ZT−kη, T − kη)∥22 + ∥∇ log pLDT−t(Zt)∥22dt

)

≤ E exp
(KT−1∑

k=0

3

2

∫ T−kη

T−(k+1)η

C2
0 + C2∥ZT−kη∥22 + C2∥Zt∥22dt

)

= E exp
(3C2

2

∫ T

t0

∥Zt∥22dt+ (T − t0)
3C2

0

2
+

3C2

2

KT−1∑

k=0

∥ZT−kη∥22
)

(i)

≲ E exp
(3C2(KT + 2)

2

∫ T

t0

∥Zt∥22dt
)
+ E exp

(
(T − t0)

3C2
0 (KT + 2)

2

)

+

KT−1∑

k=0

E exp
(3C2(KT + 2)

2
∥ZT−kη∥22

)

(ii)
< ∞.
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where

C0 ≲ max
t

∥∇ log pLDt (0)∥2 +max
t

∥s̃LDU,θ(0, t)∥2 <∞,

C ≲ 1 + max
t

∥∇ log pLDt (·)∥Lip +max
t

∥s̃LDU,θ(·, t)∥Lip <∞.

and in (i) we use

EA1 · · · · ·An ≤ EAn
1 + · · ·+ EAn

n

n
,

and in (ii) we use the fact that Z0 is subGaussian, and a similar argument in the proof of Lemma 11.

Lemma 14. When both started with Z←0 =d Z̃
⇐,r
0 ∼ P LD

T , the KL divergence between the laws of the paths of the processes

(Z←t )0≤t≤T−t0 and (Z̃⇐,r
t )0≤t≤T−t0 can be bounded by

KL =

KT−1∑

k=0

E

(∫ (k+1)η

kη

∥1
2
Z←kη + s̃LDU,θ(Z

←
kη, T − kη)− 1

2
Z←t −∇ log pLDT−t(Z

←
t )∥22dt

)

≲
(maxz ∥fθ(z, ·)∥Lip

h(t0)
+

maxz,t ∥fθ(z, t)∥2
t20

)2
η2(T − t0) +

(maxt ∥fθ(·, t)∥Lip

h(t0)

)2
η2(T − t0)max{E∥Z0∥22, d}

+ η(T − t0)d+ ϵlatent(T − t0).

proof of Lemma 14. Since by Lemma 13 the Novikov’s condition holds, we can invoke Girsanov’s Theorem as in (Chen

et al., 2022b) (Theorem 6). Next we provide an upper bound on the discretized score matching error.

E

(1
2

∫ (k+1)η

kη

∥1
2
Z←kη + s̃LDU,θ(Z

←
kη, T − kη)− 1

2
Z←t −∇ log pLDT−t(Z

←
t )∥22dt

)

≤ E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
kη, T − kη)−∇ log pLDT−t(Z

←
t )∥22dt

)
+ E

∫ (k+1)η

kη

∥1
2
Z←kη −

1

2
Z←t ∥22 dt

We decompose the first term as

E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
kη, T − kη)−∇ log pLDT−t(Z

←
t )∥22dt

)

≲ E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
kη, T − kη)− s̃LDU,θ(Z

←
kη, T − t)∥22dt

)

+ E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
kη, T − t)− s̃LDU,θ(Z

←
t , T − t)∥22dt

)

+ E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
t , T − t)−∇ log pLDT−t(Z

←
t )∥22dt

)

≲ E

(∫ (k+1)η

kη

∥L̄t(t− kη)∥22dt
)

+ E

(∫ (k+1)η

kη

L̄2
z∥Z←kη − Z←t ∥22dt

)

+ E

(∫ (k+1)η

kη

∥s̃LDU,θ(Z
←
t , T − t)−∇ log pLDT−t(Z

←
t )∥22dt

)
.

For any s ≤ t,

E∥Zs − Zt∥2dt ≲ (t− s)2E∥Zs∥22 + (t− s)d ≤ (t− s)2 max{E∥Z0∥22, d}+ (t− s)d.
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Therefore

E

(∫ (k+1)η

kη

∥Z←kη − Z←t ∥22dt
)

≤ E

(∫ (k+1)η

kη

[
(t− kη)2 max{E∥Z0∥22, d}+ (t− kη)d

]
dt
)

≲ η3 max{E∥Z0∥22, d}+ η2d.

Finally we have

KT−1∑

k=0

E

(∫ (k+1)η

kη

∥1
2
Z←kη + s̃LDU,θ(Z

←
kη, T − kη)− 1

2
Z←t −∇ log pLDT−t(Z

←
t )∥22dt

)

≲ L̄2
tη

2(T − t0) + (1 + L̄2
z)η

2(T − t0)max{E∥Z0∥22, d}+ η(T − t0)d+ ϵlatent(T − t0).

where

L̄z
def
= max

t
∥s̃LDU,θ(·, t)∥Lip ≤ 1

h(t0)
(1 + max

t
∥fθ(·, t)∥Lip),

and

L̄t
def
= max

z
∥s̃LDU,θ(z, ·)∥Lip ≤ maxz ∥fθ(z, ·)∥Lip

h(t0)
+

maxz,t ∥fθ(z, t)∥2
t20

.

To see why the above two bounds on the Lipschitz constants hold, notice that

s̃LDU,θ(z, t) =
1

h(t)

[
− z+ U⊤fθ(Uz, t)

]
.

To calculate the Lipschitz constant of
a(t)
b(t) , notice that

∣∣∣∣
a(t)

b(t)
− a(s)

b(s)

∣∣∣∣ ≤
∣∣∣∣
a(t)

b(t)
− a(s)

b(t)

∣∣∣∣+
∣∣∣∣
a(s)

b(t)
− a(s)

b(s)

∣∣∣∣ ≤
∥a∥Lip|t− s|
mint |b(t)|

+max
t

|a(t)| · |t− s| · ∥1/b∥Lip.

We use the fact that ∥∥∥∥
1

h(t)

∥∥∥∥
Lip

= max
t∈[t0,T ]

∣∣∣∣
h′(t)
h2(t)

∣∣∣∣ =
1

et0 + e−t0 − 2
≤ 1

t20
.

proof of Lemma 4, part 2. For the discretized setting, only notice that by Lemma 14 there is an additional error term

ϵdis(T − t0).

D.4. Proof of Lemma 5

proof of Lemma 5. Define ψ(t) = exp
∫ t

0

[
1

h(T−s) − 1
2

]
ds. Plug in h(t) = 1− exp(−t), we have

ψ(t) =
eT − 1

eT − et
et/2.

We know that the solution of Yt is

Yt =
1

ψ(t)

[
Y0 +

∫ t

0

ψ(s) dBs

]
.

∫ t

0

ψ(s)2 ds = (eT − 1)2[1/(eT − et)− 1/(eT − 1)].
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When Y0 ∼ N(0, I), we have

Yt ∼ N

(
0,

1 +
∫ t

0
ψ(s)2 ds

ψ(t)2
I
)
.

We provide an upper bound of

Vt
def
=

1 +
∫ t

0
ψ(s)2 ds

ψ(t)2
≤ (eT − 1)2[1/(eT − et)]

ψ(t)2
(when T > 1)

= (eT − et)/et = eT−t − 1.

Therefore, we have when t0 ≤ 1
VT−t0 ≤ et0 − 1 ≤ et0.

To conclude, we know that YT−t0 is a zero-mean Gaussian random variable with covariance bounded by et0I .

proof of Lemma 6. Denote α(t) = 1
h(T−t) − 1

2 . We know that

Y(k+1)η −Ykη = −ηα(kη)Ykη +B(k+1)η −Bkη.

Denote by Vk the variance of Ykη . We know that Ykη ∼ N(0, Vk). And we have the following recursion

V0 = 1, and Vk+1 = (1− α(kη)η)2Vk + η.

By solving the recursion we know that

VKT
=

KT−1∏

k=0

[
1− α(kη)η

]2
+ η

KT−1∑

i=1

[KT−1∏

k=i

[
1− α(kη)η

]2]

Define ψ(t) = exp
∫ t

0
α(s) ds. We have

ψ(t) =
eT − 1

eT − et
et/2.

Since α(t) is monotonically increasing, we have

k2∏

k=k1

[
1− α(kη)η

]
≤

k2∏

k=k1

exp
[
− α(kη)η

]

≤ exp
[
−

k2∑

k=k1

α(kη)η
]

≤ exp
[
−
∫ k2η

(k1−1)η
α(t) dt

]

=
ψ((k1 − 1)η)

ψ(k2η)
.

Therefore we have

VKT
≤ ψ2(−η)
ψ2((KT − 1)η)

+ η

KT−1∑

k=1

ψ2((k − 1)η)

ψ2((KT − 1)η)
.

Since ψ(t) ≥ 0 and ψ(t) monotonically increases, we have

VKT
≤ ψ2(−η) + η

∑KT−1
k=1 ψ2((k − 1)η)

ψ2((KT − 1)η)

≤ ψ2(−η) +
∫ (KT−1)η
0

ψ2(t) dt

ψ2((KT − 1)η)
.
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By ∫ t

0

ψ(s)2 ds = (eT − 1)2[1/(eT − et)− 1/(eT − 1)]

We have

VKT
≤ ψ2(−η) +

∫ (KT−1)η
0

ψ2(t) dt

ψ2((KT − 1)η)

≤ ψ2(−η) + (eT − 1)2[1/(eT − eT−t0−η)− 1/(eT − 1)]

ψ2(T − t0 − η)

≤ 1 + (eT − 1)2[1/(eT − eT−t0−η)− 1/(eT − 1)]

ψ2(T − t0 − η)
(ψ2(−η) ≤ 1)

≤ (eT − 1)2(eT − eT−t0−η)
ψ2(T − t0 − η)

(when T ≥ 1)

≤ et0+η − 1

≤ e(t0 + η). (when t0 + η ≤ 1)

E. Helper Lemmas

We collect technical results frequently used in previous proofs. We group them according to topics: concentration inequality,

Gaussian integral tail bounds, matrix norm inequalities.

Bernstein-Type Concentration Inequality The following concentration bound is useful in the proof of Theorem 2.

Lemma 15. Let G be a bounded function class, i.e., there exists a constant B such that any g ∈ G : Rd 7→ [0, B]. Let

z1, . . . , zn ∈ R
d be i.i.d. random variables. For any δ ∈ (0, 1), a ≤ 1, and τ > 0, we have

P

(
sup
g∈G

1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ
+ (2 + a)τ

)
≤ δ and

P

(
sup
g∈G

E[g(z)]− 1 + a

n

n∑

i=1

g(zi) >
(1 + 6/a)B

3n
log

N (τ,G, ∥·∥∞)

δ
+ (2 + a)τ

)
≤ δ.

Proof. The proof utilizes Bernstein-type inequalities. Consider the deviation supg∈G
1
n

∑n
i=1 g(zi)− (1 + a)E[g(z)] first.

Let {gk}N (τ,G,∥·∥∞)
k=1 be a discretization of G, where N (τ,G, ∥·∥∞) is the covering number with respect to the function L∞

norm. Then we have

sup
g∈G

1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] ≤ max
k

1

n

n∑

i=1

gk(zi)− 2E[gk(z)] + (2 + a)τ,

as for any g ∈ G, we can find some gk⋆ such that ∥g − gk⋆∥∞ ≤ τ . Therefore, it is enough to show

P

(
max

k

1

n

n∑

i=1

gk(zi)− (1 + a)E[gk(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)
≤ δ.

By union bound, we have

P

(
max

k

1

n

n∑

i=1

gk(zi)− (1 + a)E[gk(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)

≤ N (τ,G, ∥·∥∞)P

(
1

n

n∑

i=1

g1(zi)− (1 + a)E[g1(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)
.

37



Score Approx. Estimation and Distribution Recovery

Therefore, it further suffices to provide an upper bound on

P

(
1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)
,

where g ∈ G is any fixed function. Let λ > 0 be some parameter to be chosen later. Chernoff bound yields

P

(
1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)
≤ E

[
exp

(
λ
(
1
n

∑n
i=1 g(zi)− (1 + a)E[g(z)]

))]

exp
(

(1+3/a)λB
3n log

N (τ,G,∥·∥∞)

δ

) .

(13)

It remains to find E
[
exp

(
λ
(
1
n

∑n
i=1 g(zi)− (1 + a)E[g(z)]

))]
. We rewrite

1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] =
1

n

n∑

i=1

g(zi)− aE[g(z)]− E[g(z)] ≤ 1

n

n∑

i=1

g(zi)− E[g(z)]− a

B
E[g2(z)].

Introducing independent ghost samples z̄1, . . . , z̄n, we have

1

n

n∑

i=1

g(zi)− E[g(z)]− a

B
E[g2(z)] =

1

n

n∑

i=1

g(zi)− Ez̄

[
1

n

n∑

i=1

g(z̄i)

]
− a

B
E[g2(z)]

= Ez̄

[
1

n

n∑

i=1

g(zi)− g(z̄i)

]
− a

2B
E[g2(z) + g2(z̄)]

(i)

≤ Ez̄

[
1

n

n∑

i=1

g(zi)− g(z̄i)

]
− a

2B
Var [g(z)− g(z̄)] ,

where inequality (i) invokes identity Var [g(z)− g(z̄)] = E[(g(z) − g(z̄))2] ≤ E[g2(z) + g2(z̄)]. For convenience, we

denote hi = g(zi)− g(z̄i). For 0 < λ < 3n/B, we compute

E

[
exp

(
λ

n
hi

)]
= E


1 + λ

n
hi +

∞∑

j=2

(λ/n)jhji
j!




(i)

≤ 1 + E



∞∑

j=2

(λ/n)jBj−2

2 · 3j−2 h2i




= 1 +
λ2

2n2

1

1− λB
3n

E[h2i ]

(ii)

≤ exp

(
3λ2

6n2 − 2λBn
Var(hi)

)
,

where inequality (i) follows from E[hi] = 0 and |hi| ≤ B, and inequality (ii) invokes 1 + x ≤ exp(x) for x ≥ 0. To this

end, we derive

E

[
exp

(
λ

(
1

n

n∑

i=1

g(zi)− 2E[g(z)]

))]
(i)

≤ E

[
λ

n

n∑

i=1

hi −
λa

2Bn

n∑

i=1

Var[hi]

]

≤ exp

(
3λ2

6n2 − 2λBn

n∑

i=1

Var[hi]−
λa

2Bn

n∑

i=1

Var[hi]

)
,

where (i) follows from Jensen’s inequality. We choose λ = 3n
(1+3/a)B , which satisfies 3λ2

6n2−2λBn = λa
2Bn and λ < 3n/B.

Substituting into (13), we obtain

P

(
1

n

n∑

i=1

g(zi)− (1 + a)E[g(z)] >
(1 + 3/a)B

3n
log

N (τ,G, ∥·∥∞)

δ

)
≤ exp

(
− log

N (τ,G, ∥·∥∞)

δ

)
=

δ

N (τ,G, ∥·∥∞)
.
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Therefore, the first inequality is proved. The second inequality can be proved in the exact same argument, by observing

E[g(z)]− 1 + a

n

n∑

i=1

g(zi) = 2

(
E[g(z)]− 1

n

n∑

i=1

g(zi)−
a

2
E[g(z)]

)

≤ 2

(
E[g(z)]− 1

n

n∑

i=1

g(zi)−
a

2B
E[g2(z)]

)
.

The proof is complete.

Tail Bound of Gaussian Integral Tail bounds of Gaussian integrals appear frequently in score approximation and

estimation theories. We show the following results.

Lemma 16. Consider a probability density function p(x) = exp
(
−C ∥x∥22 /2

)
for x ∈ R

d and constant C > 0. Let

R > 0 be a fixed radius. Then it holds

∫

∥x∥2>R

p(x) dx ≤ 2dπd/2

CΓ(d/2 + 1)
Rd−2 exp(−CR2/2),

∫

∥x∥2>R

∥x∥22 p(x) dx ≤ 2dπd/2

CΓ(d/2 + 1)
Rd exp(−CR2/2).

Proof. We apply change of variable using polar coordinate systems. For the first integral, we have

∫

∥x∥2>R

p(x) dx =

∫

∥x∥2>R

exp(−C ∥x∥22 /2) dx

=

∫ ∞

R

∫

θ1,...,θd−1

rd−1 exp
(
−Cr2/2

) d−2∏

j=1

sind−j−1(θj) dr dθ1 . . . dθd−1

(i)
=

dπd/2

Γ(d/2 + 1)

∫ ∞

R

rd−1 exp
(
−Cr2/2

)
dr

(ii)
=

d(2π)d/2

2Cd/2Γ(d/2 + 1)

∫ ∞

CR2/2

ud/2−1 exp(−u) du

=
(2π)d/2

Cd/2Γ(d/2 + 1)

∫ ∞

(CR2/2)d/2
exp

(
−v2/d

)
dv

(iii)

≤ 2dπd/2

CΓ(d/2 + 1)
Rd−2 exp(−CR2/2).

In (i), we invoke the identity
∫ 1

0

∫
θ1,...,θd−1

rd−1
∏d−2

j=1 sin
d−j−1(θj) dr dθ1 . . . dθd−1 =

∫
∥x∥2≤1

dx = πd/2

Γ(d/2+1) being

the volume of a unit d-ball. To obtain (ii), we change variable by letting u = Cr2/2. Inequality (iii) bounds the upper tail

of incomplete gamma function (Qi & Mei, 1999, Inequality (10) with α = 2/d,A = −d).
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A similar argument can be applied to the second integral:

∫

∥x∥2>R

∥x∥22 p(x) dx =

∫

∥x∥2>R

∥x∥22 exp(−C ∥x∥22 /2) dx

=

∫ ∞

R

∫

θ1,...,θd−1

rd+1 exp
(
−Cr2/2

) d−2∏

j=1

sind−j−1(θj) dr dθ1 . . . dθd−1

=
dπd/2

Γ(d/2 + 1)

∫ ∞

R

rd+1 exp
(
−Cr2/2

)
dr

=
dπd/2

(d+ 2)Γ(d/2 + 1)

(
2

C

)d/2+1 ∫ ∞

(CR2/2)d/2+1

exp
(
−v2/(d+2)

)
dv

≤ 2dπd/2

CΓ(d/2 + 1)
Rd exp(−CR2/2).

The proof is complete.

Matrix Norm Inequalities The following lemma deals with matrices with orthonormal columns, whose linear span is

approximately equal. These are useful results in deriving score estimation error bounds in Theorem 3.

Lemma 17. Let A, V ∈ R
D×d with d < D be two matrices with orthonormal columns, i.e., A⊤A = V ⊤V = Id. Given

any ϵ > 0, if ∥(ID − V V ⊤)A∥2F ≤ ϵ, then the following holds

(a).

∥∥(ID −AA⊤)V
∥∥2
F
≤ ϵ,

∥∥V V ⊤ −AA⊤
∥∥2
F
≤ 2ϵ,

∥∥V ⊤AA⊤V − Id
∥∥2
F
≤ 2ϵ.

(b). There exists an orthogonal matrix U ∈ R
d×d such that

∥∥U − V ⊤A
∥∥2
F
≤ 2ϵ.

Proof of Lemma 17. The first set of results in item (a) follows from some algebraic manipulation. Consider∥∥(ID −AA⊤
)
V
∥∥2
F

first. We have

∥∥(ID −AA⊤
)
V
∥∥2
F
= Tr

((
V −AA⊤V

) (
V −AA⊤V

)⊤)

= Tr
(
V V ⊤ −AA⊤V V ⊤

)

(i)
=

1

2
Tr
(
V V ⊤ −AA⊤V V ⊤ − V V ⊤AA⊤ +AA⊤

)

=
1

2
Tr
((
AA⊤ − V V ⊤

) (
AA⊤ − V V ⊤

))

=
1

2

∥∥AA⊤ − V V ⊤
∥∥2
F
,

where (i) follows from Tr(V V ⊤) = d = Tr(AA⊤). Similarly, we have

∥∥(ID − V V ⊤
)
A
∥∥2
F
=

1

2

∥∥AA⊤ − V V ⊤
∥∥2
F
.
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Next we consider ∥V ⊤AA⊤V − Id∥2F . We have

∥∥V ⊤AA⊤V − Id
∥∥2
F
= Tr

(
V ⊤AA⊤V V ⊤AA⊤V − 2V ⊤AA⊤V + Id

)

= Tr
(
V V ⊤AA⊤(V V ⊤ − ID)AA⊤ + (ID − V V ⊤)AA⊤ −AA⊤ + Id

)

= Tr
(
V V ⊤AA⊤(V V ⊤ − ID)AA⊤ + (ID − V V ⊤)AA⊤

)
− Tr

(
AA⊤ − Id

)

= Tr
(
(V V ⊤AA⊤ − ID)(V V ⊤ − ID)AA⊤

)

= Tr
(
(V V ⊤AA⊤ − V V ⊤)(V V ⊤ − ID)AA⊤

)
+Tr

(
(V V ⊤ − ID)(V V ⊤ − ID)AA⊤

)

≤
∥∥V V ⊤(AA⊤ − ID)

∥∥
F
·
∥∥(V V ⊤ − ID)AA⊤

∥∥
F
+
∥∥(V V ⊤ − ID)A

∥∥2
F

≤ ϵ+ ϵ = 2ϵ.

For item (b), we consider the SVD decomposition of V ⊤A. Let V ⊤A =W⊤1 ΣW2, where W1,W2 ∈ R
d×d are orthogonal

matrices, and Σ = diag(s1, s2, · · · , sd) are diagonal matrix with s1, . . . , sd being the singular values of V ⊤A. Then we

have
∥∥V ⊤AA⊤V − Id

∥∥2
F
=

d∑

i=1

(s2i − 1)2.

Let U =W⊤1 W2 ∈ R
d×d. Then we know that U is orthonormal. We have

∥∥U − V ⊤A
∥∥2
F
=

d∑

i=1

(si − 1)2

≤
d∑

i=1

(si − 1)2(si + 1)2

=

d∑

i=1

(s2i − 1)2

=
∥∥V ⊤AA⊤V − Id

∥∥2
F
.

The proof is complete.
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