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Abstract

Optimal Transport (OT) naturally arises in many

machine learning applications, yet the heavy com-

putational burden limits its wide-spread uses. To

address the scalability issue, we propose an im-

plicit generative learning-based framework called

SPOT (Scalable Push-forward of Optimal Trans-

port). Specifically, we approximate the optimal

transport plan by a pushforward of a reference dis-

tribution, and cast the optimal transport problem

into a minimax problem. We then can solve OT

problems efficiently using primal dual stochastic

gradient-type algorithms. We also show that we

can recover the density of the optimal transport

plan using neural ordinary differential equations.

Numerical experiments on both synthetic and real

datasets illustrate that SPOT is robust and has fa-

vorable convergence behavior. SPOT also allows

us to efficiently sample from the optimal trans-

port plan, which benefits downstream applications

such as domain adaptation.

1. Introduction

The Optimal Transport (OT) problem naturally arises in a

variety of machine learning applications, where we need to

handle data from multiple sources. One example is domain

adaptation: We collect multiple datasets from different do-

mains, and we need to learn a model from a source dataset,

which can be further adapted to target datasets (Ganin &

Lempitsky, 2014; Courty et al., 2017b; Damodaran et al.,

2018). Another example is resource allocation: We want to

assign a set of assets (one data source) to a set of receivers

(another data source) so that an optimal economic benefit

is achieved (Santambrogio, 2010; Galichon, 2017). Recent

literature has shown that both aforementioned applications

can be formulated as optimal transport problems.

The optimal transport problem has a long history, and its
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earliest literature dates back to Monge (1781). Since then,

it has attracted increasing attention and been widely stud-

ied in multiple communities such as applied mathematics,

probability, economy and geography (Villani, 2008; Carlier,

2012; Gross et al., 2016). Specifically, we consider two sets

of d-dimensional data, which are generated from two differ-

ent distributions denoted by X ⇠ µ and Y ⇠ ⌫.1 We aim

to find an optimal joint distribution � of X and Y , which

minimizes the expectation on some cost function c, i.e.,

�⇤ = argmin
�2⇧(µ,⌫)

E(X,Y )⇠� [c(X,Y )], (1)

The constraint � 2 ⇧(µ, ⌫) requires the marginal distribu-

tion of X and Y in � to be identical to µ and ⌫, respectively.

Existing literature often refers to the optimal expected cost

W⇤(µ, ⌫) = E(X,Y )⇠�⇤ [c(X,Y )] as Wasserstein distance,

and �⇤ as the optimal transport plan. For domain adaptation,

the function c measures the discrepancy between X and Y ,

and the optimal transport plan �⇤ essentially reveals the

transfer of the knowledge from source X to target Y . For

resource allocation, the function c is the cost of assigning

resource X to receiver Y , and the optimal transport plan �⇤

essentially yields the optimal assignment.

Since (1) is an optimization problem over the space of dis-

tributions, the problem is infinite dimensional and gener-

ally intractable when µ and ⌫ are continuous distributions.

Therefore, existing literature has resorted to finite dimen-

sional approximations. For example, Cuturi (2013) pro-

pose to discretize the support using a refined grid, and cast

(1) into a finite dimensional linear programming problem.

However, for complex distributions in high dimensions (e.g.,

images in domain adaptation), the grid size often needs to

be exponentially large (e.g., exponential in dimension) to

ensure a small approximation error (due to discretization).

Under such a regime, conventional linear programming al-

gorithms do not scale well, e.g., the interior point method

in conjunction with the Newton’s method takes O(n3 log n)
time, where n is the grid size. To ease such a scalability is-

sue, Cuturi (2013) propose an entropy regularization-based

Sinkhorn algorithm, which requires the computational cost

of O(n2), but still fail to scale to large problems.

1The optimal transport can also handle more than two distribu-
tions. See Section 3 for more details.
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While there exist several scalable stochastic algorithms for

computing Wasserstein distance for continuous distributions

µ and ⌫ (Genevay et al., 2016; Seguy et al., 2017; Yang &

Uhler, 2018), they cannot compute the optimal transport

plan �⇤ (see Section 7 for more discussion), which is crucial

in the aforementioned applications.

To address the scalability and efficiency issues, we pro-

pose a new implicit generative learning-based framework

for solving optimal transport problems. Specifically, we

approximate �⇤ by a generative model, which maps from

some latent variable Z to (X,Y ). For simplicity, we denote


X
Y

�

= G(Z) =



GX(Z)
GY (Z)

�

with Z ⇠ ⇢, (2)

where ⇢ is some simple latent distribution and G is some

operator, e.g., deep neural network or neural ordinary dif-

ferential equation (ODE). Accordingly, instead of directly

estimating the probability density of �⇤, we estimate the

mapping G between Z and (X,Y ) by solving

G⇤ = argmin
G

EZ⇠⇢[c(GX(Z), GY (Z))]. (3)

subject to GX(Z) ⇠ µ, GY (Z) ⇠ ⌫

We then cast (3) into a minimax optimization problem us-

ing the Lagrangian multiplier method. As the constraints

in (3) are over the space of continuous distributions, the

Lagrangian multiplier is actually infinite dimensional. Thus,

we propose to approximate the Lagrangian multiplier by

deep neural networks, which eventually delivers a finite

dimensional generative learning problem.

Our proposed framework has three major benefits: (1) Our

formulated minimax optimization problem can be efficiently

solved by primal dual stochastic gradient-type algorithms.

Many empirical studies have corroborated that these algo-

rithms can easily scale to very large minimax problems in

machine learning (Brock et al., 2018); (2) Our framework

can take advantage of recent advances in deep learning.

Many empirical evidences have suggested that deep neu-

ral networks can effectively adapt to data with intrinsic

low dimensional structures (Zhang et al., 2016; Li et al.,

2018a). Although they are often overparameterized, due to

the inductive biases of the training algorithms, the intrinsic

dimensions of deep neural networks are usually controlled

very well, which avoids the curse of dimensionality; (3) Our

adopted generative models allow us to efficiently sample

from the optimal transport plan. This is very convenient for

certain downstream applications such as domain adaptation,

where we can generate infinitely many data points paired

across domains (Liu & Tuzel, 2016).

Moreover, the proposed framework can also recover the den-

sity of entropy regularized optimal transport plan. Specif-

ically, we adopt the neural Ordinary Differential Equation

(ODE) approach in Chen et al. (2018) to model the dynamics

that how Z gradually evolves to G(Z). We then derive the

ODE that describes how the density evolves, and solve the

density of the transport plan from the ODE. The recovery of

density requires no extra parameters, and can be evaluated

efficiently.

Notations: Given a matrix A 2 R
d⇥d, det(A) denotes its

determinant, tr(A) =
P

i Aii denotes its trace, kAkF =
q

P

i,j A
2
ij denotes its Frobenius norm, and |A| denotes a

matrix with [|A|]ij = |Aij |. We use dim(v) to denote the

dimension of a vector v.

2. Background

We briefly review some background knowledge on optimal

transport and implicit generative learning.

Optimal Transport: The idea of optimal transport (OT)

originally comes from Monge (1781), which proposes to

solve the following problem,

T ⇤ = argmin
T (X)⇠⌫

EX⇠µ[c(X,T (X))], (4)

where T (·) is a mapping from the space of µ to the space of

⌫. The mapping T ⇤ is referred to as Monge map, and (4) is

referred to as Monge formulation of optimal transport.

Monge formulation, however, is not necessarily feasible.

For example, when X is a constant random variable and Y
is not, there does not exist such a map T satisfying T (X) ⇠
⌫. The Kantorovich formulation of our interest in (1) is

essentially a relaxation of (4) by replacing the deterministic

mapping with the coupling between µ and ⌫. Consequently,

Kantorovich formulation is guaranteed to be feasible and

becomes the classical formulation of optimal transport in

existing literature (Benamou et al., 2015; Chizat et al., 2015;

Frogner et al., 2015; Solomon et al., 2015; Xie et al., 2018).

Implicit Generative Learning: For generative learning

problems, direct estimation of a probability density function

is not always convenient. For example, we may not have

enough prior knowledge to specify an appropriate paramet-

ric form of the probability density function (pdf). Even

when an appropriate parametric pdf is available, computing

the maximum likelihood estimator (MLE) can be some-

times neither efficient nor scalable. To address these issues,

we resort to implicit generative learning, which do not di-

rectly specify the density. Specifically, we consider that

the observed variable X is generated by transforming a la-

tent random variable Z (with some known distribution ⇢)

through some unknown mapping G(·), i.e., X = G(Z).
We then can train a generative model by estimating G(·)
with a properly chosen loss function, which can be easier to

compute than MLE. Existing literature usually refer to the

distribution of G(Z) as the push-forward of reference dis-

tribution ⇢. Such an implicit generative learning approach

also enjoys an additional benefit: We only need to choose ⇢
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distributions of (X,Y ) (only up to a small approximation

error with sufficiently many neurons). Then the marginal

distribution constraints, GX(Z) ⇠ µ and GY (Z) ⇠ ⌫, are

not necessarily satisfied. Therefore, the Lagrangian mul-

tipliers can be unbounded and the equilibrium of (6) does

not necessarily exist. To address this issue, we directly treat

⌘X = ⌘Y = ⌘ as tuning parameters, and solve the following

problem instead

min
G2G

max
�X2F1

X
,�Y 2F1

Y

EZ⇠⇢[c(GX(Z), GY (Z))]

+ ⌘
�

EZ⇠⇢[�X(GX(Z))]� EX⇠µ[�X(X)]

+ EZ⇠⇢[�Y (GY (Z))]� EY⇠⌫ [�Y (Y )]
�

. (7)

We apply alternating stochastic gradient algorithm to solve

(7): in each iteration, we perform a few steps of gradient

ascent on �X and �Y , respectively for a fixed G, followed

by one-step gradient descent on G for fixed �X and �Y . We

use Spectral Normalization (SN, Miyato et al. (2018)) to

control the Lipschitz constant of �X and �Y being smaller

than 1. Specifically, SN constrains the spectral norm of each

weight matrix W by SN(W ) = W/�(W ) in every iteration,

where �(W ) denotes the spectral norm of W . Note that

�(W ) can be efficiently approximated by a simple one-step

power method (Golub & Van der Vorst, 2001). Therefore,

the computationally intensive SVD can be avoided. We

summarize the algorithm in Algorithm 1 with SN omitted.

Algorithm 1 Mini-batch Primal Dual Stochastic Gradient

Algorithm for SPOT

Require: Datasets {xi}
N
i=1 ⇠ µ, {yj}

M
j=1 ⇠ ⌫; Initialized

networks G, �X , and �Y with parameters w, ✓, and �,

respectively; ↵, the learning rate; ncritic, the number of

gradient ascent for �X and �Y ; n, the batch size

while w not converged do

for t = 1, 2, · · · , ncritic do

Sample mini-batch {xi}
n
i=1 from {xi}

N
i=1

Sample mini-batch {yj}
n
j=1 from {yj}

M
j=1

Sample mini-batch {zk}
n
k=1 from ⇢

g✓  r✓(⌘
1
n

Pn

k=1 �X,✓(GX,w(zk))
�⌘ 1

n

Pn

i=1 �X,✓(xi))
g�  r�(⌘

1
n

Pn

k=1 �Y,�(GY,w(zk))
�⌘ 1

n

Pn

i=1 �Y,�(yi))
✓  ✓ + ↵g✓, �  � + ↵g�

end for

Sample mini-batch {zk}
n
k=1 from ⇢

gw  rw(
1
n

Pn

k=1 c(GX,w(zk), GY,w(zk))
+⌘ 1

n

Pn

k=1 �X,✓(GX,w(zk))
+⌘ 1

n

Pn

k=1 �Y,�(GY,w(zk))
w  w + ↵gw

end while

Connection to Wasserstein Generative Adversarial Net-

works (WGANs): Our proposed framework (7) can be

viewed as a multi-task learning version of Wasserstein

GANs (Liu & Tuzel, 2016; Liu et al., 2018). Specifically,

the mapping G can be viewed as a generator that generates

samples in the domains X and Y . The Lagrangian multipli-

ers �X and �Y can be viewed as discriminators that evaluate

the discrepancies of the generated sample distributions and

the target marginal distributions. By restricting �X 2 F1
X ,

EZ⇠⇢[�X(GX(Z))] � EX⇠µ[�X(X)] essentially approx-

imates the Wasserstein distance between the distributions

of GX(Z) and X under the Euclidean ground cost (Villani

(2008), the same holds for Y ). Denote

R(GX , GY ) = EZ⇠⇢[c(GX(Z), GY (Z))], and

dw(GX , X) = max
�X2F1

X

EZ⇠⇢[�X(GX(Z))]� EX⇠µ[�X(X)].

Let dw(GY , Y ) be defined analogously as dw(GX , X). We

can rewrite (7) as

min
G2G

⌘
�

dw(GX , X) + dw(GY , Y )
�

+R(GX , GY ), (8)

which essentially learns two Wasserstein GANs with a joint

generator G through the regularizer R. An illustrative ex-

ample is provided in Figure 1.

Extension to Multiple Marginal Distributions: Our pro-

posed framework can be straightforwardly extended to more

than two marginal distributions. Consider the ground cost

function c taking m inputs X1, . . . , Xm with Xi ⇠ µi for

i = 1, . . . ,m. Then the optimal transport problem (1) be-

comes the multi-marginal problem (Pass, 2015):

�⇤ = argmin
�2⇧(µ1,µ2,··· ,µm)

E� [c(X1, X2, · · · , Xm)], (9)

where ⇧(µ1, µ2, · · · , µm) denotes all the joint distribu-

tions with marginal distributions satisfying Xi ⇠ µi for

all i = 1, . . . ,m. Following the same procedure for two

distributions, we cast (9) into the following form

min
G2G

max
�Xi

2F
⌘

Xi

EZ⇠⇢[c(GX1
(Z), · · · , GXm

(Z))]

+
Pm

i=1 (EZ⇠⇢[�Xi
(GXi

(Z))]� EXi⇠µi
[�Xi

(Xi)]) ,

where G and �Xi
’s are all parameterized by neural networks.

Existing methods for solving the multi-marginal problem

(9) suggest to discretize the support of the joint distribution

using a refined grid. For complex distributions, the grid size

needs to be very large and can be exponential in m (Villani,

2008). Our parameterization method actually only requires

at most 2m neural networks, which further corroborates the

scalability and efficiency of our framework.

4. SPOT for Regularized Density Recovery

Existing literature has shown that entropy-regularized opti-

mal transportation outperforms the un-regularized counter-

part in some applications (Erlander & Stewart, 1990; Cuturi,

2013). This is because the entropy regularizer can tradeoff

the estimation bias and variance by controlling the smooth-

ness of the density function.
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We demonstrate how to efficiently recover the density p� of

the transport plan with entropy regularization. Instead of pa-

rameterizing G by a feedforward neural network, we choose

the neural ODE approach, which uses neural networks to ap-

proximate the transition from input Z towards output G(Z)
in the continuous time. Specifically, we take z(0) = Z and

z(1) = G(Z). Let z(t) be the continuous interpolation of

Z with density p(t) varying according to time t. We split

z(t) into z1(t) and z2(t) such that dim(z1) = dim(X) and

dim(z2) = dim(Y ). We then write the neural ODE as

dz1/dt = ⇠1(z(t), t), dz2/dt = ⇠2(z(t), t), (10)

where ⇠1 and ⇠2 capture the dynamics of z(t). We param-

eterize ⇠ = (⇠1, ⇠2) by a neural network with parameter w.

We can describe the dynamics of the joint density p(t) in

the following proposition.

Proposition 1. Let z, z1, z2, ⇠1 and ⇠2 be defined as above.

Suppose ⇠1 and ⇠2 are uniformly Lipschitz continuous in z
(the Lipschitz constant is independent of t) and continuous

in t. The log joint density satisfies the following ODE:

@ log p(t)

@t
= �

✓

tr

✓

@⇠1

@z1

◆

+ tr

✓

@⇠2

@z2

◆◆

, (11)

where @⇠1
@z1

and @⇠2
@z2

are Jacobian matrices of ⇠1 and ⇠2 with

respect to z1 and z2, respectively.

Proposition 1 is a direct result of Theorem 1 in Chen et al.

(2018). We can now recover the joint density by taking

p� = p(1), which further enables us to efficiently compute

the entropy regularizer defined as

H(p�) = EG(Z)⇠� [log p�(G(Z))].

Then we consider the entropy regularized Wasserstein dis-

tance Lc(G,�X ,�Y ) + ✏H(p�) where Lc(G,�X ,�Y ) is

the objective function in (7). Note that here G is a func-

tional operator of ⇠, and hence parameterized with w. The

training algorithm follows Algorithm 1, except that updating

G becomes more complex due to involving the neural ODE

and the entropy regularizer.

To update G, we are essentially updating w using the gra-

dient gw = @(Lc + ✏H)/@w, where ✏ is the regularization

coefficient. First we compute @Lc/@w. We adopt the inte-

gral form from Chen et al. (2018) in the following

@Lc

@w
= �

Z 1

0

a(t)>
@⇠(z(t), t)

@w
dt, (12)

where a(t) = @Lc/@z(t) is the so-called “adjoint variable”.

The detailed derivation is slightly involved due to the com-

plicated terms in the chain rule. We refer the readers to

Chen et al. (2018) for a complete argument. The advantage

of introducing a(t) is that we can compute a(t) using the

following ODE,

da(t)

dt
= �a(t)>

@⇠(z(t), t)

@z
.

Then we can use a well developed numerical method to com-

pute (12) efficiently (Davis & Rabinowitz, 2007). Next, we

compute @H/@w in a similar procedure with a(t) replaced

by b(t) = @H/@ log p(t). We then write

@H

@w
= �

Z 1

0

b(t)>
@ log p(t)

@w
dt.

Using the same numerical method, we can compute @H/@w,

which eventually allows us to compute gw and update w.

5. SPOT for Domain Adaptation

Optimal transport has been used in domain adaptation,

but existing methods are either computationally inefficient

(Courty et al., 2017a; Damodaran et al., 2018), or cannot

achieve a state-of-the-art performance (Seguy et al., 2018).

Here, we demonstrate that SPOT can tackle large scale do-

main adaptation problems with state-of-the-art performance.

Specifically, we obtain labeled source data {xi} ⇠ µ, where

each data point is associated with a label vi, and target data

{yj} ⇠ ⌫ with unknown labels. For simplicity, we use X
and Y to denote the random vectors following distributions

µ and ⌫, respectively. The two distributions µ and ⌫ can be

coupled in a way that each paired samples of (X,Y ) from

the coupled joint distribution are likely to have the same la-

bel. In order to identify such coupling information between

source and target data, we propose a new OT-based domain

adaptation method — DASPOT (Domain Adaptation with

SPOT) as follows.

Specifically, we jointly train an optimal transport plan and

two classifiers for X and Y (denoted by DX and DY , re-

spectively). Each classifier is a composition of two neural

networks — an embedding network and a decision network.

For simplicity, we denote DX = De,X �Dc,X , where De,X

denotes the embedding network, and Dc,X denotes the de-

cision network (respectively for DY = De,Y �Dc,Y ). We

expect the embedding networks to extract high level fea-

tures of the source and target data, and then find an optimal

transport plan to align X and Y based on these high level

features using SPOT. Here we choose a ground cost

c(x, y) = kDe,X(x)�De,Y (y)k
2. (13)

Let G denote the generator of SPOT. The Wasserstein

distance of such an OT problem can be written as

EZkDe,X(GX(Z))�De,Y (GY (Z))k2.

Meanwhile, we train DX by minimizing the empirical risk
1
n

Pn

i=1[E(DX(xi), vi)], where E denotes the cross entropy

loss function, and train DY by minimizing

EZ [E(DY (GY (Z)), argmax
k

[DX(GX(Z))]k)], (14)

where [v]k denotes the k-th entry of the vector v. The

risk function defined in (14) essentially encourages DX
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