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Abstract

In this paper, we study a class of stochastic bilevel optimization problems, also
known as stochastic simple bilevel optimization, where we minimize a smooth
stochastic objective function over the optimal solution set of another stochastic
convex optimization problem. We introduce novel stochastic bilevel optimization
methods that locally approximate the solution set of the lower-level problem
via a stochastic cutting plane, and then run a conditional gradient update with
variance reduction techniques to control the error induced by using stochastic
gradients. For the case that the upper-level function is convex, our method requires
Õ(max{1/ϵ2f , 1/ϵ2g}) stochastic oracle queries to obtain a solution that is ϵf -
optimal for the upper-level and ϵg-optimal for the lower-level. This guarantee
improves the previous best-known complexity of O(max{1/ϵ4f , 1/ϵ4g}). Moreover,
for the case that the upper-level function is non-convex, our method requires at
most Õ(max{1/ϵ3f , 1/ϵ3g}) stochastic oracle queries to find an (ϵf , ϵg)-stationary
point. In the finite-sum setting, we show that the number of stochastic oracle
calls required by our method are Õ(

√
n/ϵ) and Õ(

√
n/ϵ2) for the convex and

non-convex settings, respectively, where ϵ = min{ϵf , ϵg}.

1 Introduction

An important class of bilevel optimization problems is simple bilevel optimization in which we aim
to minimize an upper-level objective function over the solution set of a lower-level problem [1–4].
Recently this class of problems has attracted great attention in machine learning society due to their
applications in continual learning [5], hyper-parameter optimization [6, 7], meta-learning [8, 9], and
reinforcement learning [10, 11]. Motivated by large-scale learning problems, in this paper, we are
particularly interested in the stochastic variant of the simple bilevel optimization where the upper
and lower-level objective functions are the expectations of some random functions with unknown
distributions and are accessible only through their samples. Hence, the computation of the objective
function values or their gradients is not computationally tractable. Specifically, we focus on the
stochastic simple bilevel problem defined as

min
x∈Rd

f(x) = E[f̃(x, θ)] s.t. x ∈ argmin
z∈Z

g(z) = E[g̃(z, ξ)], (1)
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Table 1: Results on stochastic simple bilevel optimization. The abbreviations “SC”, “C”, and “NC”
stand for “strongly convex”, “convex”, and “non-convex”, respectively. Note that ϵ = min{ϵf , ϵg}

References Type Upper level Lower level Convergence Sample Complexity
Objective f Objective g Feasible set Z Upper level Lower level

aR-IP-SeG [16] Stochastic C, Lipschitz C, Lipschitz Closed O(max{1/ϵ4f , 1/ϵ
4
g}) O(1/ϵ4)

Algorithm1 Stochastic C, smooth C, smooth Compact Õ(max{1/ϵ2f , 1/ϵ
2
g}) Õ(1/ϵ2)

Algorithm1 Stochastic NC, smooth C, smooth Compact Õ(max{1/ϵ3f , 1/ϵ
3
g}) Õ(1/ϵ3)

Algorithm2 Finite-sum C, smooth C, smooth Compact Õ(max{1/ϵf , 1/ϵg}) Õ(
√
n/ϵ)

Algorithm2 Finite-sum NC, smooth C, smooth Compact Õ(max{1/ϵ2f , 1/ϵ
2
g}) Õ(

√
n/ϵ2)

where Z is compact and convex and f̃ , g̃ : Rd → R are continuously differentiable functions on an
open set containing Z , and θ and ξ are some independent random variables drawn from some possibly
unknown probability distributions. As a result, the functions f, g : Rd → R are also continuously
differentiable functions on Z . We assume that g is convex but not necessarily strongly convex, and
hence the solution set of the lower-level problem in (1) is in general not a singleton. We also study
the finite sum version of the above problem where both functions can be written as the average of n
component functions, i.e., f(x) = (1/n)

∑n
i=1 f̃(x, θi) and g(z) = (1/n)

∑n
i=1 g̃(z, ξi).

The main challenge in solving problem (1), which is inherited from its deterministic variant, is the
absence of access to the feasible set, i.e., the lower-level solution set. This issue eliminates the
possibility of using any projection-based or projection-free methods. There have been some efforts
to overcome this issue in the deterministic setting (where access to f and g and their gradients is
possible), including [12–15], however, there is little done on the stochastic setting described above.
In fact, the only work that addresses the stochastic problem in (1) is [16], where the authors present
an iterative regularization-based stochastic extra gradient algorithm and show that it requires O(1/ϵ4f )

and O(1/ϵ4g) queries to the stochastic gradient of the upper-level and lower-level function, respectively,
to obtain a solution that is ϵf -optimal for the upper-level and ϵg-optimal for the lower-level. We
improve these bounds and also extend our results to nonconvex settings.

Contributions. In this paper, we present novel projection-free stochastic bilevel optimization methods
with tight non-asymptotic guarantees for both upper and lower-level problems. At each iteration,
the algorithms use a small number of samples to build unbiased and low variance estimates and
construct a cutting plane to locally approximate the solution set of the lower-level problem and
then combine it with a Frank-Wolfe-type update on the upper-level objective. Our methods require
careful construction of the cutting plane so that with high probability it contains the solution set of
the lower-level problem, which is obtained by selecting proper function and gradient estimators to
achieve the obtained optimal convergence guarantees. Next, we summarize our main theoretical
results for the proposed Stochastic Bilevel Conditional Gradient methods for Infinite and Finite
sample settings denoted by SBCGI and SBCGF, respectively.

• (Stochastic setting) We show that SBCGI (Algorithm 1), in the convex setting, finds a solution x̂
that satisfies f(x̂)−f∗ ≤ ϵf and g(x̂)−g∗ ≤ ϵg with probability 1−δ within O(log(d/δϵ)/ϵ2)
stochastic oracle queries, where ϵ = min{ϵf , ϵg}, f∗ is the optimal value of problem (1) and g∗

is the optimal value of the lower-level problem. Moreover, in the non-convex setting, it finds x̂
satisfying G(x̂) ≤ ϵf and g(x̂)− g∗ ≤ ϵg with probability 1− δ within O((log(d/δϵ))3/2/ϵ3)
stochastic oracle queries, where G(x̂) is the Frank-Wolfe (FW) gap.

• (Finite-sum setting) We show that SBCGF (Algorithm 2), in the convex setting, finds x̂ that satis-
fies f(x̂)− f∗ ≤ ϵf and g(x̂)− g∗ ≤ ϵg with probability 1− δ within O(

√
n(log(1/δϵ))3/2/ϵ)

stochastic oracle queries, where n is the number of samples of finite-sum problem. Moreover, in
the nonconvex setting, it finds x̂ that satisfies G(x̂) ≤ ϵf and g(x̂)− g∗ ≤ ϵg with probability
1− δ within O(

√
n log(1/δϵ)/ϵ2) stochastic oracle queries.
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1.1 Related work

General stochastic bilevel. In a general format of stochastic bilevel problems, the upper-level
function f also depends on an extra variable y ∈ Rp which also affects the lower-level objective,

min
x∈Rd,y∈Rp

f(x,y) = E[f̃(x,y, θ)] s.t. x ∈ argmin
z∈Z

g(z,y) = E[g̃(z,y, ξ)]. (2)

There have been several works including [10, 17–21] on solving the general stochastic bilevel
problem (2). However, they only focus on the setting where the lower-level problem is strongly
convex, i.e., g(z,y) is strongly convex with respect to z for any value of y. In fact, (2) with a convex
lower-level problem is known to be NP-hard [22]. Hence, the results of these works are not directly
comparable with our work as we focus on a simpler setting, but our assumption on the lower-level
objective function is weaker and it only requires the function to be convex.

Deterministic simple bilevel. There have been some recent results on non-asymptotic guarantees for
the deterministic variant of problem (1). The BiG-SAM algorithm was presented in [14], and it was
shown that its lower-level objective error converges to zero at a rate of O(1/t), while the upper-level
error asymptotically converges to zero. In [15], the authors achieved the first non-asymptotic rate
for both upper- and lower-level problems by introducing an iterative regularization-based method
which achieves an (ϵf , ϵg)-optimal solution after O(max{1/ϵ4f , 1/ϵ4g}) iterations. In [12], the authors
proposed a projection-free method for deterministic simple bilevel problems that has a complexity
of O(max{1/ϵf , 1/ϵg}) for convex upper-level and complexity of O(max{1/ϵ2f , 1/(ϵf ϵg)}) for
non-convex upper-level. Moreover, in [23] the authors presented a switching gradient method to solve
simple bilevel problems with convex smooth functions for both upper- and lower-level problems with
complexity O(1/ϵ). However, all the above results are limited to the deterministic setting.

General bilevel without lower-level strong convexity. Recently, there are several recent works on
general bilevel optimization problems without lower-level strong convexity including [24–27, 23].
However, they either have a weaker theoretical results like asymptotic convergence rate in [24]
or have some additional assumptions. Specifically, in [25], the authors reformulated the problem
as a constrained optimization problem and further assumes such problem to be a convex program.
Moreover, in [26, 27], the authors in both papers assumed that the lower-level objective satisfies the
PL inequality, while we assumed that the lower-level objective is convex. In [23], the authors used a
looser convergence criterion that only guarantees convergence to a Goldstein stationary point. Since
these works consider a more general class of problems, we argue that their theoretical results when
applied to our setting are necessarily weaker.

2 Preliminaries

2.1 Motivating examples

Example 1: Over-parameterized regression. A general form of problem (1) is when the lower-level
problem represents training loss and the upper-level represents test loss. The goal is to minimize the
test loss by selecting one of the optimal solutions for the training loss [13]. An instance of that is
the constrained regression problem, where we intend to find an optimal parameter vector β ∈ Rd

that minimizes the loss ℓtr(β) over the training dataset Dtr. To represent some prior knowledge,
we usually constrain β to be in some subsets Z ⊆ Rd, e.g., Z = {β | ∥β∥1 ≤ λ} for some λ > 0
to induce sparsity. To handle multiple global minima, we adopt the over-parameterized approach,
where the number of samples is less than the parameters. Although achieving one of these global
minima is possible, not all optimal solutions perform equally on other datasets. Hence, we introduce
an upper-level objective: the loss on a validation set Dval . This helps select a training loss optimizer
that performs well on both training and validation sets. It leads to the following bilevel problem:

min
β∈Rd

f(β) ≜ ℓval(β) s.t. β ∈ argmin
z∈Z

g(z) ≜ ℓtr(z) (3)

In this case, both the upper- and lower-level losses are smooth and convex if ℓ is smooth and convex.

Example 2: Dictionary learning. Problem (1) also appears in lifelong learning, where the learner
takes a series of tasks sequentially and tries to accumulate knowledge from past tasks to improve
performance in new tasks. Here we focus on continual dictionary learning. The aim of dictionary
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learning is to obtain a compact representation of the input data. Let A = {a1, . . . , an} ∈ Rm×n

denote a dataset of n points. We seek a dictionary D = [d1, . . . ,dp] ∈ Rm×p such that all data points
ai can be represented by a linear combination of basis vectors in D which can be cast as [28–31]:

min
D∈Rm×p

min
X∈Rp×n

1

2n

∑
i∈N

∥ai −Dxi∥22 s.t. ∥dj∥2 ≤ 1, j = 1, . . . , p; ∥xi∥1 ≤ δ, i ∈ N . (4)

Moreover, we denote X = [x1, . . . ,xn] ∈ Rp×n as the coefficient matrix. In practice, data points
usually arrive sequentially and the representation evolves gradually. Hence, the dictionary must be
updated sequentially as well. Assume that we already have learned a dictionary D̂ ∈ Rm×p and the
corresponding coefficient matrix X̂ ∈ Rp×n for the dataset A. As a new dataset A′ = {a′1, . . . , a′n′}
arrives, we intend to enrich our dictionary by learning D̃ ∈ Rm×q(q > p) and the coefficient matrix
X̃ ∈ Rq×n′

for the new dataset while maintaining good performance of D̃ on the old dataset A as
well as the learned coefficient matrix X̂. This leads to the following stochastic bilevel problem:

min
D̃∈Rm×q

min
X̃∈Rq×n′

f(D̃, X̃) s.t. ∥x̃k∥1 ≤ δ, k = 1, . . . , n′; D̃ ∈ argmin
∥d̃j∥

2
≤1

g(D̃), (5)

where f(D̃, X̃) ≜ 1
2n′

∑n′

k=1 ∥a′k − D̃x̃k∥22 represents the average reconstruction error on the new
dataset A′, and g(D̃) ≜ 1

2n

∑n
i=1 ∥ai − D̃x̂i∥22 represents the error on the old dataset A. Note

that we denote x̂i as the prolonged vector in Rq by appending zeros at the end. In problem (5), the
upper-level objective is non-convex, while the lower-level loss is convex with multiple minima.

2.2 Assumptions and definitions

Next, we formally state the assumptions required in this work.

Assumption 2.1. Z is convex and compact with diameter D, i.e., ∀x,y ∈ Z, we have ∥x−y∥ ≤ D.

Assumption 2.2. The upper-level stochastic function f̃ satisfies the following conditions:

(i) ∇f̃ is Lipschitz with constant Lf , i.e., ∀x,y ∈ Z, ∀θ, ∥∇f̃(x, θ)−∇f̃(y, θ)∥ ≤ Lf∥x− y∥.

(ii) The stochastic gradients noise is sub-Gaussian, E[exp{∥∇f̃(x, θ)−∇f(x)∥2/σ2
f}] ≤ exp{1}.

Assumption 2.3. The lower-level stochastic function g̃ satisfies the following conditions:

(i) g is convex and ∇g̃ is Lg-Lipschitz, i.e., ∀x,y ∈ Z, ∀ξ, ∥∇g̃(x, ξ)−∇g̃(y, ξ)∥ ≤ Lg∥x− y∥.

(ii) The stochastic gradients noise is sub-Gaussian, E[exp{∥∇g̃(x, ξ)−∇g(x)∥2/σ2
g}] ≤ exp{1}.

(iii) The stochastic functions noise is sub-Gaussian, E[exp{|g̃(x, ξ)− g(x)|2/σ2
l }] ≤ exp{1}.

Remark 2.1. Assumptions 2.1 and 2.3(i) imply that g̃ is Lipschitz continuous on an open set containing
Z with some constant Ll, i.e., for all x,y ∈ Z, we have |g̃(x)− g̃(y)| ≤ Ll∥x− y∥.

In the paper, we denote g∗ ≜ minz∈Z g(z) and X ∗
g ≜ argminz∈Z g(z) as the optimal value and the

optimal solution set of the lower-level problem, respectively. Note that by Assumption 2.3, the set
X ∗

g is nonempty, convex, and compact, but typically not a singleton as g potentially has multiple
minima on Z . Furthermore, we denote f∗ and x∗ as the optimal value and an optimal solution of
problem (1), which are assured to exist since f is continuous and X ∗

g is compact.

Definition 2.1. When f is convex, a point x̂ ∈ Z is (ϵf , ϵg)-optimal if f(x̂) − f∗ ≤ ϵf and
g(x̂)− g∗ ≤ ϵg . When f is non-convex, x̂ ∈ Z is (ϵf , ϵg)-optimal if G(x̂) ≤ ϵf and g(x̂)− g∗ ≤ ϵg ,
where G(x̂) is the FW gap [32, 33] defined as G(x̂) ≜ maxs∈X∗

g
{⟨∇f(x̂), x̂− s⟩}.

3 Algorithms

Conditional gradient for simple bilevel optimization. A variant of the conditional gradient (CG)
method for solving bilevel problems has been introduced in [12] which uses a cutting plane idea [34]
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to approximate the solution set of the lower-level problem denoted by X ∗
g . More precisely, if one has

access to X ∗
g , it is possible to run the FW update with stepsize γt as

xt+1 = (1− γt)xt + γtst, where st = argmin
s∈X∗

g

⟨∇f(xt), s⟩ (6)

However, the set X ∗
g is not explicitly given and the above method is not implementable. In [12], the

authors suggested the use of the following set: Xt = {s ∈ Z : ⟨∇g(xt), s− xt⟩ ≤ g(x0)− g(xt)}
instead of the set X ∗

g in the FW update given in (6). Note that x0 is selected in a way that g(x0)− g∗

is smaller than ϵg/2, and such a point can be efficiently computed. A crucial property of the above
set is that it always contains the solution set of the lower-level problem denoted by X ∗

g . This can be
easily verified by the fact that for any x∗

g in X ∗
g we have x∗

g ∈ Z and

⟨∇g(xt),x
∗
g − xt⟩ ≤ g(x∗

g)− g(xt) ≤ g(x0)− g(xt), (7)

where the second inequality holds as g(x0) ≥ g(x∗
g). As shown in [12], this condition is sufficient

to show that if one follows the update in (6) with Xt instead of X ∗
g , the iterates will converge to the

optimal solution. However, this framework is not applicable to the stochastic setting as we cannot
access the functions or their gradients. Next, we present our main idea to address this delicate issue.

Random set for the subproblem. A natural idea to address stochasticity is to replace all gradients
and functions with their stochastic estimators for both the subproblem in (6), i.e., ∇f(xt), as well as
the construction of the cutting plane Xt, i.e., g(xt), and ∇g(xt). However, this simple idea fails since
the set Xt may no longer contain the solution set X ∗

g . More precisely, if ĝt and ∇̂gt are unbiased
estimators of g(xt) and ∇g(xt), respectively, for the following approximation set

X ′
t = {s ∈ Z : ⟨∇̂gt, s− xt⟩ ≤ g(x0)− ĝt} (8)

we can not argue that it contains X ∗
g , as the second inequality in (7) does not hold, i.e., ⟨∇̂g(xt),x

∗
g−

xt⟩ ≤ ĝ(x∗
g)− ĝ(xt) ≰ g(x0)− ĝ(xt). In the appendix, we numerically illustrate this point.

To address this issue, we tune the cutting plane by only moving it but not rotating it, i.e., adding
another term to tolerate the noise from stochastic estimates. We introduce the stochastic cutting plane

X̂t = {s ∈ Z : ⟨∇̂gt, s− xt⟩ ≤ g(x0)− ĝt +Kt}, (9)

where ∇̂gt and ĝt are gradient and function value estimators, respectively, that we formally define
later. In the above expression, the addition of the term Kt, which is a sequence of constants converging
to zero as t → ∞, allows us to ensure that with high probability the random set X̂t contains all
optimal solutions of the lower-level problem. Choosing suitable values for the sequence Kt is a
crucial task. If we select a large value for Kt then the probability of X̂t containing X ∗

g goes up at the
price allowing points with larger values g in the set. As a result, once we perform an update similar to
the one in (6), the lower-level function value could increase significantly. On the other hand, selecting
small values for Kt would allow us to show that the lower level objective function is not growing,
while the probability of X̂t containing X ∗

g becomes smaller which could even lead to a case that the
set becomes empty and the bilevel problem becomes infeasible.
Remark 3.1. How to compute g(x0)? In the finite sum setting, we can accurately compute g(x0),
and the additional cost of n function evaluations will be dominated by the overall complexity. In the
stochastic setting, we could use a large batch of samples to compute g(x0) with high precision at the
beginning of the process. This additional operation will not affect the overall sample complexity of
the proposed method, as the additional cost is negligible compared to the overall sample complexity.
Specifically, we need to take a batch size of b = Õ(ϵ−2) to estimate ĝ(x0). Using the Hoeffding
inequality for subgaussian random variables, we have the following bound: |ĝ(x0) − g(x0)| ≤√
2σl(T + 1)−ω/2

√
log(2/δ), with a probability of at least 1− δ, where T is the maximum number

of iterations. Comparing this with Lemma 4.1.3, we can further derive: |ĝ(x0)− g(x0)| ≤
√
2σl(T +

1)−ω/2
√
log(2/δ) ≤

√
2(2LlD + 3ω

3ω−1σl)(t + 1)−ω/2
√

log(6/δ), with a probability of at least
1− δ for all 0 ≤ t ≤ T . Consequently, the introduced error term would be absorbed in K0,t and will
not affect any parts of the analysis.

Variance reduced estimators. As mentioned above, a key point in the design of our stochastic bilevel
algorithms is to select Kt properly such that X̂t contains X ∗

g with high probability, for all t ≥ 0. To
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Algorithm 1 SBCGI

1: Input: Target accuracy: ϵf , ϵg > 0, probability δ > 0, step size: αt, βt, ρt, γt > 0
2: Initialization: Initialize x0 ∈ Z such that g(x0)− g∗ ≤ ϵg/2
3: for t = 0, . . . , T do
4: if t = 0 then
5: ∇̂f t = ∇f̃(xt, θt), ∇̂gt = ∇g̃(xt, ξt), ĝt = g̃(xt, ξt)
6: else
7: Update the estimate of ∇f , ∇̂f t = (1−αt)∇̂f t−1+∇f̃(xt, θt)−(1−αt)∇f̃(xt−1, θt)

8: Update the estimate of ∇g, ∇̂gt = (1− βt)∇̂gt−1 +∇g̃(xt, ξt)− (1− βt)∇g̃(xt−1, ξt)
9: Update the estimate of g, ĝt = (1− ρt)ĝt−1 + g̃(xt, ξt)− (1− ρt)g̃(xt−1, ξt)

10: end if
11: Compute st ∈ argmins∈Xt

{∇̂f
⊤
t s} where Xt = {s ∈ Z : ⟨∇̂gt, s−xt⟩ ≤ g(x0)−ĝt+Kt}

12: Update the variable xt+1 = (1− γt+1)xt + γt+1st
13: end for

achieve such a guarantee, we first need to characterize the error of our gradient and function value
estimators. More precisely, suppose that for our function estimator we have that P (|ĝt − g(xt)| ≤
K0,t) ≥ 1 − δ

′
and for the gradient estimator we have P (∥∇̂gt − ∇g(xt)∥ ≤ K1,t) ≥ 1 − δ

′
,

for some δ
′ ∈ (0, 1). Then, by setting Kt = K0,t +DK1,t, we can guarantee that the conditions

required for the inequalities in (7) hold with probability at least (1− 2δ
′
).

Using simple sample average estimators would not allow for the selection of a diminishing Kt, as
the variance is not vanishing, but by using proper variance-reduced estimators the variance of the
estimators vanishes over time and eventually, we can send Kt to zero. In this section, we focus on
two different variance reduction estimators. For the stochastic setting in (1) we use the STOchastic
Recursive Momentum estimator (STORM), proposed in [35], and for the finite-sum setting, we utilize
the Stochastic Path-Integrated Differential EstimatoR (SPIDER) proposed in [36]. If vt−1 is the
gradient estimator of STORM at time t− 1, the next estimator is computed as

vt = (1− αt)vt−1 +∇f̃(xt, θt)− (1− αt)∇f̃(xt−1, θt), (10)

where ∇f̃(x, θ) is the stochastic gradient evaluated at x with sample θ. The main advantage of the
above estimator is that it can be implemented even with one sample per iteration. Unlike STORM, for
the SPIDER estimator, we need a larger batch of samples per update. More precisely, if we consider
vt−1 as the estimator of SPIDER for ∇f(xt), it is updated according to

vt = ∇fS(xt)−∇fS(xt−1) + vt−1, (11)

where ∇fS(x) = (1/S)
∑

i∈S ∇f(x, θi) is the average sub-sampled stochastic gradient computed
using samples that are in the set S. As we will discuss later, in the finite sum case that we use
SPIDER, the size of batch S depends on n which is the number of component functions. We delay
establishing a high probability error bound for these estimators to section 4.1.

3.1 Conditional gradient algorithms with random sets: stochastic and finite-sum

Next, we present our Stochastic Bilevel Conditional Gradient method for Infinite sample case
abbreviated by SBCGI for solving (1) and its finite sum variant denoted by SBCGF. In both cases,
we first find a point x0 that satisfies g(x0)− g∗ ≤ ϵg/2, for some accuracy ϵg. The cost of finding
such a point is negligible compared to the cost of the main algorithm as we discuss later. At each
iteration t, we first update the gradient estimator of the upper-level and the function and gradient
estimators of the lower-level problem. In SBCGI, we follow the STORM idea as described in steps
4-6 of Algorithm 1, while in SBCGF, we use the SPIDER technique as presented in steps 7-10 of
Algorithm 2.In the case of SBCGF, we need to compute the exact gradient and function values once
every q iteration as presented in steps 4-6 of Algorithm 2. Once the estimators are updated, we can
define the random set X̂t as in (9) and solve the following subproblem over the set X̂t,

st = argmin
s∈X̂t

⟨∇̂f t, s⟩, (12)
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Algorithm 2 SBCGF

1: Input: Target accuracy: ϵf , ϵg > 0, probability accuracy: δ0, δ1 > 0, step size: γt > 0
2: Initialization: Initialize x0 ∈ Z such that g(x0)− g∗ ≤ ϵg/2
3: for t = 0, . . . , T do
4: if mod(t, q) = 0 then
5: Set ∇̂f t = ∇f(xt), ∇̂gt = ∇g(xt), ĝt = g(xt)
6: else
7: Draw S samples
8: Update the estimate of ∇f as ∇̂f t = ∇̂f t−1 +∇fS(xt)−∇fS(xt−1)

9: Update the estimate of ∇g as ∇̂gt = ∇̂gt−1 +∇gS(xt)−∇gS(xt−1)
10: Update the estimate of g as ĝt = ĝt−1 + gS(xt)− gS(xt−1)
11: end if
12: Compute st ∈ argmins∈Xt

{∇̂f
⊤
t s} where Xt = {s ∈ Z : ⟨∇̂gt, s−xt⟩ ≤ g(x0)−ĝt+Kt}

13: Update the variable xt+1 = (1− γt+1)xt + γt+1st
14: end for

where ∇̂f t is the unbiased estimator of ∇f(xt). Note that we implicitly assume that we have access
to a linear optimization oracle that returns a solution of the subproblem in (12), which is standard
for projection-free methods [32, 33]. In particular, if Z can be described by a system of linear
inequalities, then problem (12) corresponds to a linear program and can be solved by a standard
solver as we show in our experiments. Once, st is calculated we simply update the iterate

xt+1 = (1− γt+1)xt + γt+1st (13)

with stepsize γt+1 ∈ [0, 1]. The only missing part for the implementation of our methods is the choice
of Kt in the random set and the stepsize parameters. We address these points in the next section.

Remark 3.2. SBCGI can be implemented with a batch size as small as S = 1. However, this does not
imply that the batch size "has to be" S = 1. In other words, the main advantage of SBCGI, compared
to SBCGF, is its capability to be implemented with any mini-batch size, even as small as S = 1.
Therefore, for SBCGI, the batch size can be set arbitrarily, whereas for SBCGF, it must be

√
n.

Remark 3.3. In the finite-sum setting, if the numbers of functions in the upper- and lower-level losses
are different, we could simply modify SBCGF 2 by choosing Su = qu =

√
nu and Sl = ql =

√
nl,

where nu and nl are the number of functions in the upper- and lower-level, respectively.

4 Convergence analysis

In this section, we characterize the sample complexity of our methods for stochastic and finite-sum
settings. Before stating our results, we first characterize a high probability bound for the estimators of
our algorithms, which are crucial in the selection of parameter Kt and the overall sample complexity.

4.1 High probability bound for the error terms

To achieve a high probability bound, it is common to assume that the noise of gradient or function
is uniformly bounded as in [36, 37], but such assumptions may not be realistic for most machine
learning applications. Hence, in our analysis, we consider a milder assumption and assume the noise
of function and gradient are sub-Gaussian as in Assumptions 2.2 and 2.3, respectively. Given these
assumptions, we next establish a high probability error bound for the estimators in SBCGI.
Lemma 4.1. Consider SBCGI in Algorithm 1 with parameters αt = βt = ρt = γt = 1/(t + 1)ω

where ω ∈ (0, 1]. If Assumptions 2.1, 2.2, and 2.3 are satisfied, for any t ≥ 1 and δ ∈ (0, 1), with
probability at least 1− δ, for some absolute constant c, (d is the number of dimension), we have

∥∇̂f t −∇f(xt)∥ ≤ c
√
2(2LfD +

3ω

3ω − 1
σf )(t+ 1)−ω/2

√
log(6d/δ), (14)

∥∇̂gt −∇g(xt)∥ ≤ c
√
2(2LgD +

3ω

3ω − 1
σg)(t+ 1)−ω/2

√
log(6d/δ), (15)

|ĝt − g(xt)| ≤ c
√
2(2LlD +

3ω

3ω − 1
σl)(t+ 1)−ω/2

√
log(6/δ). (16)
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Lemma 4.1 shows that for any ω ∈ (0, 1], if we set αt = βt = ρt = γt = 1/(t+ 1)ω , then with high
probability the gradient and function approximation errors converge to zero at a sublinear rate of
Õ(1/tω/2). Moreover, the above result characterizes the choice of Kt. Specifically, if we define K1,t

as the upper bound in (15) and K0,t as the upper bound in (16), by setting Kt = K0,t +DK1,t, then
with probability (1− δ) the random set X̂t contains X ∗

g . Later, we show that ω = 1 leads to the best
complexity bound for the convex setting and ω = 2/3 is the best choice for the nonconvex setting.

Next, we establish a similar result for the estimators in SBCGF.
Lemma 4.2. Consider SBCGF with stepsize γ and S = q =

√
n. If Assumptions 2.1-2.3 hold, for

any t ≥ 1 and δ ∈ (0, 1), with probability 1− δ we have ∥∇̂f t −∇f(xt)∥ ≤ 4LgDγ
√
log(12/δ),

∥∇̂gt −∇g(xt)∥ ≤ 4LgDγ
√
log(12/δ), and |ĝt − g(xt)| ≤ 4LlDγ

√
log(12/δ).

Similarly, for SBCGF, we set K1,t = 4LgDγ
√

log(12/δ) and K0,t = 4LlDγ
√
log(12/δ) and

choose Kt = K0,t +DK1,t, then the random set X̂t contains X ∗
g with probability 1− δ.

Next, we formalize our claim about the random set with the above choice of Kt.

Lemma 4.3. If X ∗
g is the solution set of the lower-level problem and X̂t is the feasible set constructed

by cutting plane at iteration t, then for any t ≥ 0 and δ ∈ (0, 1), we have P(X ∗
g ⊆ X̂t) ≥ 1− δ.

This lemma shows all X ∗
g is a subset of the constructed feasible set X̂t with a high probability of

1− δ. Indeed, using a union bound one can show that the above statement holds for all iterations up
to time t with probability 1− tδ.

4.2 Convergence and complexity results for the stochastic setting

Next, we characterize the iteration and sample complexity of the proposed method in SBCGI for the
stochastic setting. First, we present the result for the case that f is convex.
Theorem 4.4 (Stochastic setting with convex upper-level). Consider SBCGI in Algorithm 1 for
solving problem (1). Suppose Assumptions2.1, 2.2, and 2.3 hold and f is convex. If the stepsizes
of SBCGI are selected as αt = βt = ρt = γt = (t + 1)−1, and the cutting plane parameter is
Kt = c((2LlD + 3

2σl)
√

2 log(6t/δ) +D(2LgD + 3
2σg)

√
2 log(6td/δ))(t+ 1)−1/2, then after T

iterations,

g(xT )− g∗ ≤ C1ζ√
T

+
LgD

2 log T

T
+

ϵg
2
, f(xT )− f∗ ≤ C2ζ√

T
+

f(x0)− f∗ + LfD
2 log T

T
.

with probability 1− δ for some absolute constants C1 and C2 and ζ :=
√

log (6Td/δ).

Theorem 4.4 shows a convergence rate of O(
√
log(Td/δ)/

√
T ). As a corollary, SBCGI re-

turns an (ϵf , ϵg)-optimal solution with probability 1 − δ after O(log(d/δϵ)/ϵ2) iterations, where
ϵ = min{ϵf , ϵg}. Since we use one sample per iteration, the overall sample complexity is also
O(log(d/δϵ)/ϵ2). Note that the iteration complexity and sample complexity of our method outper-
form the ones in [16], as they require O(1/ϵ4) iterations and sample to achieve the same guarantee.

Remark 4.1. The task of finding x0 which is equivalent to a single-level stochastic optimization
problem requires O(1/ϵ2g) iterations and samples. As a result, this additional cost does not affect the
overall complexity of our method. The same argument also holds in the non-convex case.
Theorem 4.5 (Stochastic setting with non-convex upper level). Consider SBCGI for solving problem
(1). Suppose Assumptions 2.1-2.3 hold, f is nonconvex, and define f = minx∈Z f(x). If the stepsizes
of SBCGI are selected as αt = βt = ρt = (t + 1)−2/3, γt = (T + 1)−2/3, and the cutting plane
parameter is Kt = c((2LlD+ 32/3

32/3−1
σl)

√
2 log(6T/δ)+D(2LgD+ 32/3

32/3−1
σg)

√
2 log(6Td/δ))(t+

1)−1/3, then after T iterations, there exists an iterate xt∗ in the set ∈ {x0,x1, . . . ,xT−1} for which

g(xt∗)−g∗ ≤ C3ζ + LgD
2

(T + 1)1/3
+

ϵg
2
, G(xt∗) ≤

f(x0)−f + C4ζ + LfD
2

(T + 1)1/3

with probability 1− δ for some absolute constants C3 and C4 and ζ :=
√

log (6Td/δ).
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As a corollary of Theorem 4.5, the number of iterations required to find an (ϵf , ϵg)-optimal solution
can be upper bounded by O(log(d/δϵ)3/2/ϵ3), where ϵ = min{ϵf , ϵg}. We note that the dependence
on the upper-level accuracy ϵf also matches that in the standard CG method for a single-level non-
convex problem [33, 38]. Moreover, as we only need one stochastic oracle query per iteration, SBCGI
only requires O(log (d/δϵ)

3/2
/ϵ3) stochastic oracle queries to find an (ϵf , ϵg)-optimal.

4.3 Convergence and complexity results for the finite-sum setting

Similarly, we present iteration and sample complexity for algorithm 2 under the finite-sum setting.
Theorem 4.6 (Finite-sum setting with convex upper-level). Consider SBCGF presented in Algorithm
2 for solving the finite-sum version of (1). Suppose Assumptions 2.1, 2.2, and 2.3 hold and f is
convex. If we set the stepsizes of SBCGF as γ = log T/T , S = q =

√
n, and the cutting plane

parameter as Kt = 4D(Ll

√
log(12T/δ) + LgD

√
log(12T/δ)) log T/T , then after T iterations,

g(xT )− g∗ ≤ (C5ζ
′ + LgD

2) log T

T
+

ϵg
2
, f(xT )− f∗ ≤ f(x0)− f∗ + C6ζ

′ log T

T
,

with probability at least 1− δ, for some absolute constant C5 and C6, and ζ ′ =
√

log(12T/δ).

Theorem 4.6 implies the number of stochastic oracle queries is O(log(1/δϵ)3/2
√
n/ϵ), where ϵ =

min{ϵf , ϵg}, which matches the optimal sample complexity of single-level problems [39].
Theorem 4.7 (Finite-sum setting with non-convex upper-level). Consider SBCGF presented in
Algorithm 2 for solving the finite-sum version of (1). Suppose Assumptions2.1-2.3 hold, and f is
non-convex. Define f = minx∈Z f(x). If the parameters of SBCGF are selected as γ = 1/

√
T , S =

q =
√
n, and the cutting plane parameter is Kt = 4D(Ll

√
log(12T/δ)+LgD

√
log(12T/δ))/

√
T ,

then after T iterations, there exists an iterate xt∗ ∈ {x0,x1, . . . ,xT−1} for which,

g(xt∗)− g∗ ≤ C7ζ
′ + LgD

2

T 1/2
+

ϵg
2
, G(xt∗) ≤

f(x0)−f + C8ζ
′

T 1/2

with probability at least 1− δ, for some absolute constants C7 and C8, and ζ ′ =
√

log(12T/δ).

As a corollary of Theorem 4.7, the number of stochastic oracle queries is O(log(1/δϵ)
√
n/ϵ2), where

ϵ = min{ϵf , ϵg}, which matches the state-of-the-art single-level result O(
√
n/ϵ2) in [40]. SBCGF

also improves the number of linear minimization oracle queries of SBCGI from O(1/ϵ2) to O(1/ϵ)
for convex upper-level and from O(1/ϵ3) to O(1/ϵ2) for non-convex upper-level.

5 Numerical experiments

In this section, we test our methods on two different stochastic bilevel optimization problems with
real and synthetic datasets and compare them with other existing stochastic methods in [16] and [13].

Over-parameterized regression. We consider the bilevel problem corresponding to sparse linear
regression introduced in (3). We apply the Wikipedia Math Essential dataset [30] which composes
of a data matrix A ∈ Rn×d with n = 1068 samples and d = 730 features and an output vector
b ∈ Rn. To ensure the problem is over-parameterized, we assign 1/3 of the dataset as the training set
(Atr,btr), 1/3 as the validation set (Aval ,bval ) and the remaining 1/3 as the test set (Atest ,btest ).
For both upper- and lower-level loss functions we use the least squared loss, and we set λ = 10. We
compare the performance of our methods with the aR-IP-SeG method by [16] and the stochastic
version of DBGD introduced by [13]. We employ CVX [41, 42] to solve the lower-level problem
and the reformulation of the bilevel problem to obtain g∗ and f∗, respectively. We also include the
additional cost of finding x0 in SBCGI and SBCGF in our comparisons.

In Figure 1(a)(b), we observe that SBCGF maintains a smaller lower-level gap than other methods and
converges faster than the rest in terms of upper-level error. SBCGI has the second-best performance
in terms of lower- and upper-level gaps, while aR-IP-SeG performs poorly in terms of both lower- and
upper-level objectives. The performance of DBGD-sto for the upper-level objective is well, however,
it underperforms in terms of lower-level error. In Figure 1(c), SBCGF, SBCGI, and DBGD-sto
achieve almost equally small test errors, while aR-IP-SeG fails to achieve a low test error. Note
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Figure 1: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (3)
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Figure 2: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (5).

that after the initial stage, SBCGI increases slightly in terms of all the performance criteria, because
SBCGI (1) only takes one sample per iteration and uses a decreasing step-size while SBCGF takes

√
n

samples per iteration and uses a small constant stepsize, demonstrating a more robust performance.

Dictionary learning. To test our methods on problems with non-convex upper-level we consider
problem (5) on a synthetic dataset with a similar setup to [12]. We first construct the true dictionary
D̃∗ ∈ R25×50 comprising of 50 basis vectors in R25. All entries of these basis vectors are drawn
from the standard Gaussian distribution and then normalized to have unit ℓ2-norm. We also generate
two more dictionaries D∗ and D′∗ consisting of 40 and 20 basis vectors in D̃∗, respectively (thus
they share at least 10 bases). These two datasets A = {a1, . . . , a250} and A′ = {a′1, . . . , a′250} are
constructed as ai = D∗xi + ni, for i = 1, . . . , 250, and a′k = D′∗x′

k + n′
k, for k = 1, . . . , 250,

where {xi}250i=1, {x′
k}250k=1 are coefficient vectors and {ni}250i=1, {n′

k}250k=1 are random Gaussian noises.
As neither A nor A′ includes all the elements of D̃∗, it is important to renew our dictionary by using
the new dataset A′ while maintaining the knowledge from the old dataset A.

In our experiment, we initially solve the standard dictionary learning problem employing dataset
A, achieving the initial dictionary D̂ and coefficient vectors {x̂}250i=1. We define the lower-level
objective as the reconstruction error on A using {x̂}250i=1, and the upper-level objective as the error
on new dataset A′. We compare our algorithms with aR-IP-SeG and DBGD (stochastic version),
measuring performance with the recovery rate of true basis vectors. Note that a basis vector d̃∗

i in
D̃∗ is considered as successfully recovered if there exists d̃j in D̃ such that |⟨d̃∗

i , d̃j⟩| > 0.9 (for
more details of the experiment setup see Appendix F). In Figure 2(a), we observe SBCGF converges
faster than any other method regarding the lower-level objective. While SBCGI has the second-best
performance in terms of the lower-level gap, aR-IP-SeG and DBGD-sto perform poorly compared
with SBCGI and SBCGF. In Figures 2(b) and (c), we see that SBCGI, SBCGF, and DBGD-sto
achieve good results in terms of the upper-level objective and the recovery rate. However, aR-IP-SeG
still performs poorly in terms of both criteria, which matches the theoretical results in Table 1.
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Supplementary material

A Additional Motivating Examples

The bilevel optimization problem in (1) provides a versatile framework that covers a broad class of
optimization problems. In addition to the motivating examples provided in the main body of the
paper, here we also provide a generic example of stochastic convex constrained optimization that can
be formulated as (1). We further present a more general form of the examples covered in the main
body.

Stochastic convex optimization with many conic constraints: Consider the following convex optimiza-
tion problem

min
x∈Rd

E[f̃(x, θ)] s.t. h(x, ξ) ∈ −K, ∀ξ ∈ Ω,

where K ⊆ Rd is a closed convex cone. This problem can be formulated as a special case of (1)
by letting g̃(x, ξ) = 1

2d
2
−K(h(x, ξ)) where d−K(·) ≜ ∥ · −P−K(·)∥ denotes the distance function

and P−K(·) denotes the projection map. Our proposed framework provides an efficient method for
solving this class of problems when the projections onto K can be computed efficiently, while the
projection onto the preimage h−1(−K, ξ) is not practical, e.g., when K is the positive semidefinite
cone, computing a projection onto the preimage set requires solving a nonlinear SDP.

A.1 Lexicographic optimization

Example 1 (over-parameterized regression) can be generalized as a broader class of problem, which
is known as lexicographic optimization [13] and uses the secondary loss to improve generalization.
The problem can be formulated as the following stochastic simple bilevel optimization problem,

min
β∈Rd

L(β) s.t. β ∈ argmin
θ∈Z

ℓtr(θ) = EDtr
[ℓ(y, ŷθ(x))] (17)

In general, the lower-level problem could have multiple optimal solutions and be very sensitive to
small perturbations. To tackle the issue, we use a secondary criterion L(·) to select some of the
optimal solutions with our desired properties. For instance, we can find the optimal solutions with
minimal ℓ2-norm by letting L(β) = ∥β∥2, which is also known as Lexicographic ℓ2 Regularization.

A.2 Lifelong learning

Example 2 (dictionary learning) is an instance of a popular framework known as lifelong learning,
which can be formulated as follows,

min
β

1

n′

n′∑
i=1

ℓ (⟨x′
i,β⟩ , y′i) s.t.

∑
(xi,yi)∈M

ℓ(⟨xi,β⟩, yi) ≤
∑

(xi,yi)∈M

ℓ(⟨xi,β
(t−1)⟩, yi) (18)

In this problem, the objective is the training loss on the current tasks Dt = {(x′
i, y

′
i)}

n′

i=1. While the
constraint enforces that the model parameterized by β performs no worse than the previous one on
the episodic memory M (i.e., data samples from all the past tasks).

In the paper, we discuss a variant of the problem above, where we slightly change the constraint and
ensure that the current model also minimizes the error on the past tasks. It can be formulated as the
following finite-sum/stochastic simple bilevel optimization problem [12],

min
β

1

n′

n′∑
i=1

ℓ (⟨x′
i,β⟩ , y′i) s.t. β ∈ argmin

z

∑
(xi,yi)∈M

ℓ (⟨xi, z⟩ , yi) . (19)

B Supporting lemmas

B.1 Proof of Lemma 4.1

Before we proceed to the proof for Lemma 4.1, we present the following technical lemma, which
gives us an upper bound for a complex term appearing in the following analysis.
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Lemma B.1. Define ρt = 1/(t + 1)ω where ω ∈ (0, 1] and t ≥ 1. For all t ≥ 2, let {st} be a
sequence of real numbers given by

st =
t∑

τ=2

(
ρτ

t∏
k=τ

(1− ρk)

)2

.

Then it holds that
st ≤

1

(t+ 1)ω
. (20)

Proof. We prove the result by induction. For t = 2, we can verify that

s2 =

(
1

3ω
· 3

ω − 1

3ω

)2

≤ 1

32ω
≤ 1

3ω
.

Now we suppose that the inequality in (20) holds when t = T for some T ≥ 2, i.e.,

sT =
T∑

τ=2

(
ρτ

T∏
k=τ

(1− ρk)

)2

≤ 1

(t+ 1)ω
.

First note that the sequence {st} satisfies the following recurrence relation:

sT+1 =

T+1∑
τ=2

(
ρτ

T+1∏
k=τ

(1− ρk)

)2

= (1− ρT+1)
2
T+1∑
τ=2

(
ρτ

T∏
k=τ

(1− ρk)

)2

= (1− ρT+1)
2

[
T∑

τ=2

(
ρτ

T∏
k=τ

(1− ρk)

)2

+ ρ2T+1

]
= (1− ρT+1)

2(sT + ρ2T+1).

Moreover, since ω ∈ (0, 1], we have (T + 2)ω − 1 ≤ (t+ 1)ω . Therefore, we obtain

sT+1 ≤
(
(T + 2)ω − 1

(T + 2)ω

)2 (
1

(t+ 1)ω
+

1

(T + 2)2ω

)
≤ ((T + 2)ω − 1)(t+ 1)ω

(T + 2)2ω

(
1

(t+ 1)ω
+

1

(T + 1)2ω

)
=

(T + 2)ω − 1

(T + 2)2ω
(T + 1)ω + 1

(T + 1)ω

=
(T + 2)ω(t+ 1)ω + (T + 2)ω − 1− (t+ 1)ω

(T + 2)2ω(t+ 1)ω

≤ (T + 2)ω(t+ 1)ω

(T + 2)2ω(t+ 1)ω
=

1

(T + 2)ω
.

By induction, the inequality in (20) holds for all t ≥ 2.

Now we proceed to prove Lemma 4.1.

Proof of Lemma 4.1. We show the proof of part (i) here. The proof of part (ii) is very similar to
part (i). The first step is to reformulate et = ∇̂gt −∇g(xt) as the sum of a martingale difference
sequence. For t ≥ 1, by unrolling the reucurrence we have
et = (1− βt)et−1 + βt(∇g̃(xt, ξt)−∇g(xt))

+ (1− βt)(∇g̃(xt, ξt)−∇g̃(xt−1, ξt)− (∇g(xt)−∇g(xt−1))

=

t∏
k=2

(1− βk)e1 +

t∑
τ=2

t∏
k=τ

(1− βk)(∇g̃(xτ , ξτ )−∇g̃(xτ−1, ξτ )− (∇g(xτ )−∇g(xτ−1))

+
t∑

τ=2

βτ

t∏
k=τ+1

(1− βk)(∇g̃(xτ , ξτ )−∇g(xτ )).

(21)
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Thus, we can write et as the sum et =
∑t

τ=1 ζτ , where we define ζ1 =
∏t

k=2(1− βk)e1 and

ζτ =
t∏

k=τ

(1− βk)(∇g̃(xτ , ξτ )−∇g̃(xτ−1, ξτ )− (∇g(xτ )−∇g(xτ−1)) (22)

+ βτ

t∏
k=τ+1

(1− βk)(∇g̃(xτ , ξτ )−∇g(xτ )) (23)

for τ > 1. Recall that e1 = ∇g̃(xt, ζ1) −∇g(x1). We observe that E[ζτ |Fτ−1] = 0 where Fτ−1

is the σ-field generated by {x1, ξ1, . . . ,xτ−1, ξτ−1}. Therefore, {ζτ}tτ=1 is a martingale difference
sequence.

Next, we derive upper bounds of ∥ζτ∥. To begin with, we observe that for any τ = 1, 2, . . . , t,

t∏
k=τ

(1− βk) =
t∏

k=τ

(
1− 1

(k + 1)ω

)
=

t∏
k=τ

(k + 1)ω − 1

(k + 1)ω
≤

t∏
k=τ

kα

(k + 1)ω
=

τω

(t+ 1)ω
, (24)

where we used the fact that (k + 1)ω − 1 ≤ kω in the last inequality. By using the above inequality,
we can bound ∥ζ1∥ as follows:

∥ζ1∥ =
t∏

k=2

(1−βk)∥e1∥ ≤ 2ω

(t+ 1)ω
∥∇g̃(x1, ξ1)−∇g(x1)∥ =

2ωσ1

(t+ 1)ω
∥∇g̃(x1, ξ1)−∇g(x1)∥

σ1
.

Define c1 =
2ωσg

(T+1)ω , then by Assumption 2.3(ii) we have E[exp (∥ζ1∥2/c21)] ≤ exp (1). Moreover,
for τ > 1, by triangle inequality, ∥ζτ∥ can be bounded by

∥ζτ∥ ≤
t∏

k=τ

(1− βk)(∥∇g̃(xτ , ξτ )−∇g̃(xτ−1, ξτ )∥+ ∥(∇g(xτ )−∇g(xτ−1)∥)

+ βτ

t∏
k=τ+1

(1− βk)∥∇g̃(xτ , ξτ )−∇g(xτ )∥

≤ 2Lg∥xτ − xτ−1∥
t∏

k=τ

(1− βk) + ∥∇g̃(xτ , ξτ )−∇g(xτ )∥βτ

t∏
k=τ+1

(1− βk)

= 2LgγτD
t∏

k=τ

(1− βk) + ∥∇g̃(xτ , ξτ )−∇g(xτ )∥βτ

t∏
k=τ+1

(1− βk)

≤ 2LgDβτ

t∏
k=τ

(1− βk) +
3ω

3ω − 1
∥∇g̃(xτ , ξτ )−∇g(xτ )∥βτ

t∏
k=τ

(1− βk)

=

(
2LgD +

3ω

3ω − 1
∥∇g̃(xτ , ξτ )−∇g(xτ )∥

)
βτ

t∏
k=τ

(1− βk)

=

(
2LgD +

3ωσg

3ω − 1

∥∇g̃(xτ , ξτ )−∇g(xτ )∥
σg

)
βτ

t∏
k=τ

(1− βk)

(25)

Define cτ = (2LgD +
3ωσg

3ω−1 )βτ

∏t
k=τ (1 − βk). Note that if we have E[exp(X2

1/c
2
1)] ≤ 1 and

E[exp(X2
2/c

2
2)] ≤ 1, then we have E[exp((X1 + X2)

2/(c1 + c2)
2)] ≤ 1 [43]. Thus, we have

E[exp (∥ζτ∥2/c2τ )] ≤ exp (1) for all 1 ≤ τ ≤ t. Hence by proposition E.2, with probability 1− δ
′

∥et∥ ≤ c ·

√√√√ t∑
τ=1

c2τ log
2d

δ′ (26)
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where c is an absolute constant, d is the number of dimension, and
∑T

τ=1 c
2
τ can be bounded by

Lemma B.1 as follows,
t∑

τ=1

c2τ = c21 +
t∑

τ=2

c2τ =
22ωσ2

g

(T + 1)2ω
+ (2LgD +

3ω

3ω − 1
σg)

2
T∑

τ=2

(βτ

T∏
k=τ

(1− βk))
2

≤
22ωσ2

g

(T + 1)2ω
+

(2LgD + 3ω

3ω−1σg)
2

(t+ 1)ω

≤ ((
√
2)ωσg)

2

(t+ 1)ω
+

(2LgD + 3ω

3ω−1σg)
2

(t+ 1)ω

≤
2(2LgD + 3ω

3ω−1σg)
2

(t+ 1)ω

(27)

where the last inequality follows from the fact that (
√
2)ω ≤ 3ω/(3ω − 1) for any ω ∈ (0, 1].

Combining (26) and (27), we have with probability at least 1− δ
′
,

∥∇g(xt)− ∇̂gt∥ ≤ c
√
2(2LgD +

3ω

3ω − 1
σg)(t+ 1)−ω/2

√
log(2d/δ′)

def
= K1,t (28)

Similarly with probability at least 1− δ
′
,

|g(xt)− ĝt| ≤ c
√
2(2LlD +

3ω

3ω − 1
σl)(t+ 1)−ω/2

√
log(2d/δ′)

def
= K0,t (29)

and with probability at least 1− δ
′
,

∥∇f(xt)− ∇̂f t∥ ≤ c
√
2(2LfD +

3ω

3ω − 1
σf )(t+ 1)−ω/2

√
log(2d/δ′)

def
= K2,t (30)

where c is an absolute constant and d is the dimension of vectors. We can use union bound to obtain
that these three inequalities hold for at least probability 1− 3δ

′
= 1− δ. For simplicity, we define

constant Aω
1 and Aω

0 such that,

Aω
1 (t+ 1)−ω/2

√
log(6d/δ) = K1,t and Aω

0 (t+ 1)−ω/2
√

log(6d/δ) = K0,t (31)

and similarly Aω
2 (t+ 1)−ω/2

√
log(6d/δ) = K2,t.

B.2 Proof of Lemma 4.2

Proof. Let us define t0 ≜ ⌊t/q⌋ for any t ∈ {0, . . . , T − 1}, then whenever t = t0q according to the
Algorithm 2 a full batch of sample gradients are selected, hence, ∇̂gt = ∇g(xt); otherwise, the error
of computing a sample gradient can be expressed as follows

ϵt,i =
1

S
(∇gS(i)(xt)−∇gS(i)(xt−1)−∇g(xt) +∇g(xt−1)), (32)

where i is the index with S(i) denoting the i-th random component function selected at iteration t.
Furthermore, from the update rule of xt we have ∥xt − xt−1∥ = γt∥st−1 − xt−1∥ ≤ Dγ for any
t ≥ 0, therefore,

∥ϵt,i∥ ≤ 1

S
(∥∇gi(xt)−∇gi(xt−1)∥+ ∥∇g(xt)−∇g(xt−1)∥)

≤ 2Lg

S
∥xt − xt−1∥ ≤ 2LgDγ

S
,

(33)

for all t ∈ {t0 + 1, . . . , t0 + q} and i ∈ {1, . . . , S}. On the other hand, from the update of ∇̂gt and
(32) we have that for any t ̸= t0q, ∇̂gt −∇g(xt) = ∇̂gt−1 −∇g(xt−1) +

∑S
i=1 ϵt,i. Therefore, by

continuing the recursive relation and taking the norm from both sides of the equality we obtain

∥∇̂gt −∇g(xt)∥ = ∥∇̂g(xt0)−∇g(xt0) +
t∑

j=t0+1

S∑
i=1

ϵj,i∥

= ∥
t∑

j=t0+1

S∑
i=1

ϵj,i∥,

(34)
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where the last equality follows from ∇̂g(xt0) = ∇g(xt0). Then by Proposition E.1, we have

P(∥∇̂gt −∇g(xt)∥ ≥ λ) ≤ 4 exp(− λ2

4S(t− t0)
4L2

gD
2γ2

S2

) ≤ 4 exp(− λ2

16L2
gD

2γ2
), (35)

where the last inequality follows from the fact S =
√
n and t − t0 ≤ q =

√
n. By setting

λ = (4LgDγ
√

log(4/δ′)) for some δ
′ ∈ (0, 1), we have with probability at least 1− δ

′
,

∥∇̂gt −∇g(xt)∥ ≤ 4LgDγ
√

log(4/δ′). (36)

Similarly, with probability at least 1− δ
′
,

|ĝt − g(xt)| ≤ 4LlDγ
√

log(4/δ′), (37)

and with probability 1− δ
′
,

∥∇̂f t −∇f(xt)∥ ≤ 4LfDγ
√

log(4/δ′). (38)

Then by union bound and δ = 3δ
′
, we show these three equalities hold with probability 1− δ.

B.3 Proof of Lemma 4.3

Proof. Let x∗
g be any point in X ∗

g , i.e., any optimal solution of the lower-level problem. By definition,
we have g

(
x∗
g

)
= g∗. Since g is convex and g∗ ≤ g (x0), we have

g (x0)− g (xt) ≥ g∗ − g (xt) = g
(
x∗
g

)
− g (xt) ≥

〈
∇g (xt) ,x

∗
g − xt

〉
(39)

Add and subtract terms in inequality above, we have,

⟨∇̂gt,x
∗
g − xt⟩+ ĝt − g(x0) ≤ |⟨∇̂gt −∇g(xt),x

∗
g − xt⟩|+ |ĝt − g(xt)| (40)

Considering the random hyperplane we used in (9), we want to prove the following inequality holds
with high probability,

⟨∇̂gt,x
∗
g − xt⟩+ ĝt − g(x0) ≤ Kt (41)

Recall Kt = K0,t +DK1,t. And K0,t and K1,t were set as the high probability bounds of ∥∇̂gt −
∇g(xt)∥ and |ĝt − g(xt)| in Lemma 4.1 for Algorithm 1 or Lemma 4.2 for Algorithm 2. Then
compare the two inequalities above and use Jensen’s inequality, |⟨∇̂gt,x

∗
g−xt⟩|+ |ĝt−g(x0)| ≤ Kt

holds with high probability 1− δ for all t ≥ 0. Hence, Lemma 4.3 holds with probability 1− δ for
all t ≥ 0.

B.4 Improvement in one step

The following lemma characterizes the improvement of both the upper-level and lower-level objective
values after one step of the algorithms.

Lemma B.2. If Assumptions 2.1, 2.2, 2.3 are satisfied,

(i) For all t ≥ 0, assume that X ∗
g ⊂ Xt. Then we have

γt+1G(xt) ≤ f(xt)− f(xt+1) + γt+1D∥∇f(xt)− ∇̂f t∥+
LfD

2γ2
t+1

2
(42)

As a corollary, if f is convex, we further have

f(xt+1)− f∗ ≤ (1− γt+1)(f(xt)− f∗)) + γt+1D∥∇f(xt)− ∇̂f t∥+
LfD

2γ2
t+1

2
. (43)
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(ii) We have

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) +Dγt+1(∥∇g(xt)− ∇̂gt∥+K1,t)

+ γt+1(∥g(xt)− ĝt∥+K0,t) +
LgD

2γ2
t+1

2
.

(44)

Proof. (i) Based on the Lf -smoothness of the expected function f we show that f(xt+1) is bounded
by

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

Lf

2
∥xt+1 − xt∥2 (45)

Replace the terms xt+1 − xt by γt+1(st − xt) and add and subtract the term γt+1∇̂f
T

t (st − xt) to
the right hand side to obtain,

f(xt+1) ≤ f(xt)+γt+1(∇f(xt)−∇̂f t)
⊤(st−xt)+γt+1∇̂f

⊤
t (st−xt)+

Lf

2
∥xt+1−xt∥2 (46)

By Lemma 4.3, X ∗
g ⊆ Xt with high probability 1 − δ, for all t = 1, . . . , T . Note that if we define

s′t = argmaxs∈Xt
{⟨∇f(xt),xt − s⟩}. Recall that FW gap is G(x̂) = maxs∈X∗

g
{⟨∇f(x̂), x̂− s⟩}.

We can replace the inner product ⟨∇̂f t, st⟩ by its upper bound ⟨∇̂f t, s
′
t⟩. Applying this substitution

leads to

f(xt+1) ≤ f(xt) + γt+1(∇f(xt)− ∇̂f t)
⊤(st − xt) + γt+1∇̂f

⊤
t (s

′
t − xt) +

Lf

2
∥xt+1 − xt∥2

= f(xt) + γt+1(∇f(xt)− ∇̂f t)
⊤(st − xt) + γt+1(∇̂f t −∇f(xt))

⊤(s′t − xt)

− γt+1∇f(xt)
⊤(xt − s′t) +

Lf

2
∥xt+1 − xt∥2

≤ f(xt) + γt+1(∇f(xt)− ∇̂f t)
⊤(st − s′t)− γt+1G(xt) +

Lf

2
∥xt+1 − xt∥2

≤ f(xt) + γt+1D∥∇f(xt)− ∇̂f t∥ − γt+1G(xt) +
Lfγ

2
t+1D

2

2
(47)

Rearrange the terms for the inequality above, we can obtain,

γt+1G(xt) ≤ f(xt)− f(xt+1) + γt+1D∥∇f(xt)− ∇̂f t)∥+
Lfγ

2
t+1D

2

2
(48)

As a simple corollary, since G(xt) ≥ f(xt)− f∗ when f is convex, we have,

f(xt+1)− f∗ ≤ (1− γt+1)(f(xt)− f∗)) + γt+1D∥∇f(xt)− ∇̂f t∥+
LfD

2γ2
t+1

2
(49)

(ii) Based on the Lg-smoothness of the expected function g we show that g(xt+1) is bounded by

g(xt+1) ≤ g(xt) +∇g(xt)
⊤(xt+1 − xt) +

Lg

2
∥xt+1 − xt∥2 (50)

Replace the terms xt+1 − xt by γt+1(st − xt) and add and subtract the term γt+1∇̂g
⊤
t (st − xt) to

the right-hand side to obtain,

g(xt+1) ≤ g(xt)+γt+1(∇g(xt)−∇̂gt)
⊤(st−xt)+γt+1∇̂g

⊤
t (st−xt)+

Lg

2
∥xt+1−xt∥2 (51)

Now by definition of the set Xt, using ⟨∇̂gt, st − xt⟩ ≤ g(x0) − ĝt +K0,t +DK1,t. In addition,
we could use Cauchy–Schwarz inequality to upper bound the second term. Then add and subtract
γt+1g(x0) on the right hand side to obtain,

g(xt+1) ≤ g(xt) + γt+1(g(x0)− g(xt)) + γt+1D∥∇g(xt)− ∇̂gt∥

+ γt+1(g(xt)− ĝt) + γt+1(K0t +DK1t) +
Lg

2
∥xt+1 − xt∥2

(52)

Then subtract g(x0) on both sides,
g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0))

+ γt+1(D∥∇g(xt)− ∇̂gt∥+ ∥g(xt)− ĝt∥+K0,t +DK1,t) +
Lg

2
∥xt+1 − xt∥2

(53)
and the claim in the lemma follows.
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C Proof of Theorem for Algorithm 1

C.1 Proof of Theorem 4.4

Proof. For lower-level, by Lemma B.2, we have

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) +Dγt+1(∥∇g(xt)− ∇̂gt∥+K1,t)

+ γt+1(∥g(xt)− ĝt∥+K0,t) +
LgD

2γ2
t+1

2

(54)

By Lemma 4.1, we have ∥∇g(xt)− ∇̂gt∥ ≤ K1,t and ∥g(xt)− ĝt∥ ≤ K0,t with probability 1− δ
′
.

Plug them in the inequality above to obtain,

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) + 2γt+1(DK1,t +K0,t) +
LgD

2γ2
t+1

2

≤ (1− 1

t+ 1
)(g(xt)− g(x0))

+
2(DA1

1

√
log(6d/δ′) +A1

0

√
log(6/δ′))

(t+ 1)3/2
+

LgD
2

2(t+ 1)2

(55)

with probability 1 − δ
′

for all t. Let C1 = 4(DA1
1 + A1

0) and δ = Tδ
′
. Then, by applying the

inequality recursively for t = 1, . . . , T − 1, we obtain that

g(xT )− g(x0) ≤
(
1− 1

T

)
(g(xT−1)− g(x0)) +

C1/2
√

log (6d/δ′)

T 3/2
+

LgD
2

2T 2

=

T−1∏
t=1

(
1− 1

t+ 1

)
(g(x0)− g(x0)) +

T−1∑
t=1

C1/2
√

log (6d/δ′)

(t+ 1)3/2

T−1∏
i=t+1

(1− 1

i+ 1
)

+
T−1∑
t=1

LgD
2

2(t+ 1)2

T−1∏
i=t+1

(1− 1

i+ 1
)

≤ 0 +
C1/2

√
log (6d/δ′)

T

T−1∑
t=1

1√
t+ 1

+
LgD

2

2T

T−1∑
t=1

1

t+ 1

≤
C1

√
log (6d/δ′)√

T
+

LgD
2

2T
(1 + log T )

≤
C1

√
log (6td/δ)√

T
+

LgD
2 log T

T
(56)

with probability 1− δ.

For upper-level, by Lemma B.2, we have

f(xt+1)− f∗ ≤ (1− γt+1)(f(xt)− f∗) +Dγt+1(∥∇f(xt)− ∇̂f t∥) +
LfD

2γ2
t+1

2
(57)

By Lemma 4.1, we have ∥∇f(xt)− ∇̂f t∥ ≤ A1
2

√
log(6d/δ′ )

(t+1)1/2
with probability 1− δ

′
. Plug it in the

inequality above to obtain,

f(xt+1)− f∗ ≤ (1− 1

t+ 1
)(f(xt)− f∗) +

DA1
2

√
log(6d/δ′)

(t+ 1)3/2
+

LfD
2

2(t+ 1)2
(58)
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with probability 1 − δ
′

for all t. Let C2 = 2DA1
2 and δ = Tδ′. Then, by applying the inequality

recursively for t = 1, . . . , T − 1, we obtain that

f(xT )− f∗ ≤
(
1− 1

T

)
(f(xT−1)− f∗) +

DA1
2

√
log(6d/δ′)

T 3/2
+

LfD
2

2T 2

=
T−1∏
t=1

(
1− 1

t+ 1

)
(f(x0)− f∗) +

T−1∑
t=1

DA1
2

√
log(6d/δ′)

(t+ 1)3/2

T−1∏
i=t+1

(
1− 1

i+ 1

)

+
T−1∑
t=1

LfD
2

2(t+ 1)2

T−1∏
i=t+1

(
1− 1

i+ 1

)

≤ f(x0)− f∗

T
+

DA1
2

√
log(6d/δ′)

T

T−1∑
t=1

1√
t+ 1

+
LfD

2

2T

T−1∑
t=1

1

t+ 1

≤ f(x0)− f∗

T
+

2DA1
2

√
log(6d/δ′)√
T

+
LfD

2

2T
(1 + log T )

≤ f(x0)− f∗

T
+

2DA1
2

√
log(6td/δ)√
T

+
LfD

2 log T

T
(59)

with probability 1− δ. The theorem is obtained.

C.2 Proof of Theorem 4.5

Proof. For lower-level, by Lemma B.2, we have

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) +Dγt+1(∥∇g(xt)− ∇̂gt∥+K1,t)

+ γt+1(∥g(xt)− ĝt∥+K0,t) +
LgD

2γ2
t+1

2

(60)

By Lemma 4.1, we have ∥∇g(xt)− ∇̂gt∥ ≤ K1,t and ∥g(xt)− ĝt∥ ≤ K0,t with probability 1− δ
′
.

Plug them in the inequality above to obtain,

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) + 2γT+1(DK1,t +K0,t) +
LgD

2γ2
t+1

2

≤ (1− 1

(T + 1)2/3
)g(xt)− g(x0)

+
2D(A

2/3
1

√
log(6d/δ′) +A

2/3
0

√
log(6d/δ′))

(t+ 1)1/3(T + 1)2/3
+

LgD
2

2(T + 1)4/3

(61)

with probability 1− δ
′

for all t. Let C3 = 2(DA
2/3
1 +A

2/3
0 ).Then we can sum all the inequality up

for all t to obtain,

g(xt+1)− g(x0) ≤ (1− 1

(T + 1)2/3
)(g(xt)− g(x0)) +

C3

√
log(6d/δ′)

(t+ 1)1/3(T + 1)2/3
+

LgD
2

2(T + 1)4/3

≤ (1− 1

(T + 1)2/3
)(g(xt)− g(x0)) +

C3

√
log(6Td/δ) + LgD

2/2

(t+ 1)1/3(T + 1)2/3

(62)
By induction, we have for all t ≥ 1,

g(xt+1)− g(x0) ≤
C3

√
log(6Td/δ) + LgD

2/2

(T + 1)1/3
(63)

with probability 1− δ, where δ = Tδ
′
.
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For upper-level, by Lemma B.2, we have

γt+1G(xt) ≤ f(xt)− f(xt+1) + γt+1D∥∇f(xt)− ∇̂f t∥+
Lfγ

2
t+1D

2

2
(64)

By Lemma 4.1, we have ∥∇f(xt)− ∇̂f t∥ ≤ A
2/3
2

√
log(6d/δ′ )

(t+1)1/3
with probability 1− δ

′
. Plug it and

γt+1 = 1/(T + 1)2/3 in inequality above to obtain,
T−1∑
t=0

γt+1G(xt) ≤ f(x0)− f(xT ) +D
T−1∑
t=0

γt+1∥∇f(xt)− ∇̂f t∥+
LfD

2

2

T−1∑
t=0

γ2
t+1

≤ f(x0)− f(xT ) +D
T−1∑
t=0

A
2/3
2

√
log(6d/δ′)

(t+ 1)1/3(T + 1)2/3
+

LfD
2

2

T−1∑
t=0

1

(T + 1)4/3

≤ f(x0)− f(xT ) +
3

2
DA

2/3
2

√
log(6d/δ′) +

LfD
2

2

1

(T + 1)1/3

(65)

Let xt∗ = argmin1≤t≤T G(xt), then

G(xt∗) ≤
1∑T−1

t=0 γt+1

T−1∑
t=0

γt+1G(xt)

≤ 1

(T + 1)1/3
(f(x0)− f(xT ) +

3

2
DA

2/3
2

√
log(6Td/δ) +

LfD
2

2

1

(T + 1)1/3
)

≤ 1

(T + 1)1/3
(f(x0)− f +

3

2
DA

2/3
2

√
log(6Td/δ) +

LfD
2

2

1

(T + 1)1/3
)

(66)

with probability 1− δ, where δ = Tδ
′
. By letting C4 = 3

2DA
2/3
2 , the theorem is obtained.

D Proof of Theorem for Algorithm 2

D.1 Proof of Theorem 4.6

Proof. For lower-level By Lemma B.2, we have

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) +Dγt+1(∥∇g(xt)− ∇̂gt∥+K1,t)

+ γt+1(∥g(xt)− ĝt∥+K0,t) +
LgD

2γ2
t+1

2

(67)

By Lemma 4.2, we have ∥∇g(xt) − ∇̂gt∥ ≤ 4LgDγ
√
log(12/δ′) and ∥g(xt) − ĝt∥ ≤

4LlDγ
√

log(12/δ′) with probability 1 − δ
′
. Let C5 = 8D(DLg + Ll) and δ = Tδ

′
. Plug

them in inequality above and let γt = γ = log T/T to obtain,

g(xT+1)− g(x0) ≤ (1− γ)(g(xT )− g(x0)) + (C5

√
log(12/δ′) + LgD

2/2)γ2 (68)

with probability 1− δ/T . Sum up the inequalities for all 1 ≤ t ≤ T to get,

g(xT+1)− g(x0) = (1− γ)T (g(x0)− g(x0)) + (C5

√
log(12/δ′) + LgD

2/2)γ2
T∑

k=1

(1− γ)k

≤ 0 + (C5

√
log(12/δ′) + LgD

2/2)γ ≤
(C5

√
log(12T/δ) + LgD

2/2) log T

T
(69)

with probability 1− δ.

For upper-level, by Lemma B.2, we have,

f(xT )− f∗ ≤ (1− γT )f(xT−1)− f∗ +DγT ∥∇f(xT−1)− ∇̂f t−1∥+
LfD

2γ2
T

2
(70)
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Now we proceed by replacing the terms ∥∇f(xt)− ∇̂f t∥ by its upper bounds from Lemma 4.2, i.e.
∥∇f(xt)− ∇̂f t∥ ≤ 4LfDγ

√
log (12/δ′),

f(xT )− f∗ ≤ (1− γ)(f(xT−1)− f∗) + LfD
2γ2(4

√
log (12/δ′) + 1/2) (71)

with probability (1− δ
′
). And we can choose δ = 3Tδ

′
Then by telescope, with γ = log T

T , we can
obtain,

f(xT )− f∗ ≤ (1− γ)T (f(x0)− f∗) + (4
√

log (12/δ′) + 1/2)LfD
2γ2

T∑
i=1

(1− γ)i

≤ (1− γ)T (f(x0)− f∗) + (4
√

log (12/δ′) + 1/2)LfD
2γ

≤ exp (−γT )(f(x0)− f∗) + (4
√
log (12/δ′) + 1/2)LfD

2γ

≤ (f(x0)− f∗)/T + (4
√
log (12T/δ) + 1/2)LfD

2 log T/T

(72)

with probability 1− δ. Note that without loss of generality, we can assume f(x0)− f∗ ≥ 0. If it is
less than 0, we can bound it by 0. By letting C6 = 5LfD

2, the theorem is obtained.

D.2 Proof of Theorem 4.7

Proof. For lower-level, by Lemma B.2, we have

g(xt+1)− g(x0) ≤ (1− γt+1)(g(xt)− g(x0)) +Dγt+1(∥∇g(xt)− ∇̂gt∥+K1,t)

+ γt+1(∥g(xt)− ĝt∥+K0,t) +
LgD

2γ2
t+1

2

(73)

By Lemma 4.2, we have ∥∇g(xt) − ∇̂gt∥ ≤ 4LgDγ
√
log(12/δ′) and ∥g(xt) − ĝt∥ ≤

4LlDγ
√

log(12/δ′) with probability 1 − δ
′
. Let C7 = 8D(DLg + Ll) and δ = Tδ

′
. Plug

them in inequality above and let γt = 1/
√
T to obtain,

g(xt+1)− g(x0) ≤ (1− 1

T 1/2
)(g(xt)− g(x0)) +

C7

√
log(12/δ′)

T
+

LgD
2

2T

≤ (1− 1

T 1/2
)(g(xt)− g(x0)) +

C7

√
log(12/δ′) + LgD

2/2

T

(74)

with probability 1− δ/T . Sum up the inequalities for all t ≥ 1 to get,

g(xt+1)− g(x0) = (1− 1

T 1/2
)tE[g(x0)− g(x0)] +

(C7

√
log(12/δ′) + LgD

2/2)

T

t∑
k=1

(1− 1

T 1/2
)k

≤
C7

√
log(12T/δ) + LgD

2/2

T 1/2

(75)

with probability 1− δ.

For upper-level, by Lemma B.2, we have

γt+1G(xt) ≤ f(xt)− f(xt+1) + γt+1D∥∇f(xt)− ∇̂f t∥+
Lfγ

2
t+1D

2

2
(76)

By Lemma 4.2, we have ∥∇f(xt)− ∇̂f t∥ ≤ 4LfDγ
√
log(12/δ′) with probability 1− δ

′
. Plug it

and γt+1 = 1/
√
T in inequality above to obtain,

1√
T

T−1∑
t=0

G(xt) ≤ f(x0)− f(xT ) +D
T−1∑
t=0

γt+1∥∇f(xt)− ∇̂f t∥+
LfD

2

2

T−1∑
t=0

γ2
t+1

≤ f(x0)− f(xT ) + LfD
2(4

√
log(12δ′) + 1/2)

(77)
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Divide both sides by
√
T , we can get, Let xt∗ ≜ argmin1≤t≤T G(xt), then

G(xt∗) ≤
1

T

T−1∑
t=0

G(xt) ≤
f(x0)− f + LfD

2(4
√

log(12T/δ) + 1/2)

T 1/2
(78)

with probability 1− δ. By letting C8 = 5LfD
2, the theorem is obtained.

E Azuma-Hoeffding-type inequalities

In this section, we present two useful vector versions of Azuma-Hoeffding-type concentration
inequalities with uniform bound assumption or sub-gaussian assumption. They are crucial in our high
probability analysis.

Proposition E.1. (Pinelis and other 1994 [44], Theorem 3.5) Let ζ1, . . . , ζt ∈ Rd be a vector-
valued martingale difference sequence w.r.t. a filtration {Ft}, i.e. for each τ ∈ 1, . . . , t, we have
E[ζτ |Fτ−1] = 0. Suppose that ∥ζτ∥ ≤ cτ almost surely. Then ∀t ≥ 1,

P (∥
T∑

τ=1

ζτ∥ ≥ λ) ≤ 4 exp(− λ2

4
∑T

τ=1 c
2
τ

) (79)

Proposition E.2. (Jin et al. [45], Corollary 7) Let ζ1, . . . , ζt ∈ Rd be a vector-valued martingale
difference sequence w.r.t. a filtration {Ft}, i.e. for each τ ∈ 1, . . . , t, we have E[ζτ |Fτ−1] = 0.
Suppose that E[exp(∥ζτ∥2/c2τ )] ≤ exp(1). Then there exists a absolute constant c such that, for any
δ > 0, with probability at least 1− δ,

∥
T∑

τ=1

ζτ∥ ≤ c ·

√√√√ T∑
τ=1

c2τ log
2d

δ
(80)

This proposition was also used in previous literature including [46] and [37]. It is common to use
such martingale inequality to obtain some high-probability results recently.

F Experiment details

In this section, we include more details about the numerical experiments in Section 5. For complete-
ness, we briefly introduce the update rules of aR-IP-SeG in [16] and DBGD in [13]. In the following,
we use the notation ΠZ(·) to denote the Euclidean projection onto the set Z .
The aR-IP-SeG algorithm is given by,

yt+1 = ΠZ(xt − γt(∇f̃(xt, θt)) + ρt∇g̃(xt, ξt))

xt+1 = ΠZ(xt − γt(∇f̃(yt, θ
′

t)) + ρt∇g̃(yt, ξ
′

t))

Γt+1 = Γt + (γtρt)
r

ȳt+1 =
Γtȳt + (γtρt)

ryt+1

Γt+1

(81)

where γt is the stepsize, ρt is the regularization parameter, and ȳT is the output of the algorithm. In
this experiment, we choose γt = γ0/(t+ 1)3/4 and ρt = ρ0(t+ 1)1/4 for some constants γ0 and ρ0.
The DBGD-sto is a stochastic version of DBGD, which simply replaces the gradients in DBGD with
stochastic gradients. Although the stochastic version of DBGD does not have a theoretical guarantee,
it has been used to solve stochastic simple bilevel optimization problems in [13], which worked pretty
well empirically. Hence, we use it as a baseline for solving stochastic simple bilevel problems and
compare it with our proposed algorithms. The DBGD algorithm is given by

xk+1 = xk − γk (∇f (xk) + λk∇g (xk))

where γk is the stepsize and we set λk as
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λk = max

{
ϕ (xk)− ⟨∇f (xk) ,∇g (xk)⟩

∥∇g (xk)∥2
, 0

}
and ϕ(x) = min

{
α(g(x)− ĝ), β∥∇g(x)∥2

}
where α and β are hyperparameters and ĝ is a lower bound of g∗. In this experiment, we choose
ĝ = 0. We also note that [13] only considered unconstrained simple bilevel optimization, i.e. Z = Rd.
We further project xt onto Z for each iteration to ensure the constraints are satisfied.

F.1 Over-parameterized regression

Dataset generation. The original Wikipedia Math Essential dataset [30] composes of a data matrix
of size 1068× 731. We randomly select one of the columns as the outcome vector b ∈ R1068 and
the rest to be a new matrix A ∈ R1068×731. We set constraint parameter λ = 10 in this experiment.
Initialization. We run the algorithm, SPIDER-FW [40], with stepsize chosen as γt = 0.1/(t+ 1) on
the lower-level problem in (1). We terminate the process to get x0 as the initial point for both SBCGI
1 and SBCGF 2 after 105 stochastic oracle queries.
Implementation details. We query stochastic oracle 9× 105 times with stepsize γt = 0.01/(t+ 1)
and γ = 10−5 for SBCGI 1 and SBCGF 2 with Kt = 10−4/

√
t+ 1, respectively. In each iteration,

we need to solve the following subproblem induced by the methods,

min
s

⟨∇f (βk) , s⟩ s.t. ∥s∥1 ≤ λ, ⟨∇g (βk) , s− βk⟩ ≤ g (β0)− g (βk) . (82)

Introduce s+, s− ≥ 0 such that s = s+− s−. Then we can reformulate the problem above as follows,

min
s+,s−

〈
∇f (βk) , s

+ − s−
〉

s.t. s+, s− ≥ 0,
〈
s+,1

〉
+
〈
s−,1

〉
≤ λ,

〈
∇g (βk) , s

+ − s− − βk

〉
≤ g (β0)− g (βk) ,

(83)

where 1 ∈ Rd is the all-one vector.
For aR-IP-SeG, we choose γ0 = 10−7 and ρ0 = 103. For DBGD, we set α = β = 1 and γt = 10−6.

F.2 Dictionary learning

Dataset generation. We generate 500 sparse coefficient vectors {xi}250i=1 and {x′
k}

250
k=1 with 5 random

nonzero entries, whose absolute values are drawn uniformly from [0.2, 1]. The entries of the random
noise vectors {ni}250i=1 and {n′

k}
250
k=1 are drawn from i.i.d. Gaussian distribution with mean 0 and

standard deviation 0.01.
Initialization. We use a similar initialization procedure as [12], which consists of two phases. In
the first phase, we run the standard Frank-Wolfe algorithm on both the variables D ∈ R25×40 and
X ∈ R40×250 for 104 iterations with the stepsize γt = 1/

√
t+ 1. Next, in the second phase, we

fix the variable X and only update D using the Frank-Wolfe algorithm with exact line search for
additional 104 iterations to obtain D̂ and X̂ as the initial point for the full bilevel problem.
Implementation Details. We choose δ = 3 in both problems (5). To be fair, all four algorithms
start from the same initial point. We slightly modify the initial point by letting D̃ ∈ R25×50 be
the concatenation of D̂ ∈ R25×40 and 10 columns of all zeros vectors. Furthermore, we initialize
another variable X̃ randomly by choosing its entries from a standard Gaussian distribution and then
normalizing each column to have a ℓ1-norm of δ. We choose the stepsize as γt = 0.1/(t+ 1)2/3 and
γ = 10−3 for our SBCGI 1 and SBCGF2 with Kt = 0.01/(t+ 1)1/3, respectively. Empirically, we
observe that taking one sample per iteration leads to a very unstable process in this problem. In this
case, we choose a mini-batch of size 8 for SBCGI, aR-IP-SeG, and the stochastic version of DBGD.
For each iteration, we will solve the following subproblem,

min
D̃

〈
∇fD̃

(
D̃k, X̃k

)
, D̃

〉
s.t.

∥∥∥d̃i

∥∥∥
2
≤ 1,

〈
∇g

(
D̃k

)
, D̃− D̃k

〉
≤ g

(
D̃0

)
− g

(
D̃k

)
(84)

The above problem can be reformulated by using the KKT condition, which is equivalent to get a
root of the following one-dimensional nonlinear equation involving λ ≥ 0 :

D̃ = ΠZ

(
∇fD̃

(
D̃k, X̃k

)
+ λ∇g

(
D̃k

))
,

〈
∇g

(
D̃k

)
, D̃− D̃k

〉
= g

(
D̃0

)
−g

(
D̃k

)
(85)
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Figure 3: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for the over-parameterized
regression problem
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Figure 4: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving the dictionary
learning problem.

where the projection onto Z =
{
D̃ ∈ R25×50 :

∥∥∥d̃i

∥∥∥
2
≤ 1, i = 1, . . . , 50

}
is equivalent to project

each column on the Euclidean ball. In practice, the reformulated problem can be solved efficiently by
MATLAB’s root-finding solver.
For aR-IP-SeG, we choose γ0 = 10−4 and ρ0 = 1. For the stochastic version of DBGD, we set
α = β = 100 and γt = 5× 10−3.

Additional plots illustrating the comparison of the studied methods in terms of runtime rather than
the number of sample used are provided in Figure 3 and Figure 4.

F.3 Experiments with different random seeds

We further repeat the experiment 10 times with different random seeds to see more realizations of the
stochastic algorithms. The results are reported in Figure 5 and Figure 6. The solid lines denote the
average statistics over 10 trials of the algorithms. While the shaded regions surrounding each line
reflect the span of all the random instances involved. Figure 5 and Figure 6 present similar results as
Figure 1 and Figure 2, which eliminates the possibility of choosing a particularly good instance.

(a) Lower-level gap (b) Upper-level gap (c) Test error

Figure 5: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (3) with
10 different random seeds
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(a) Lower-level gap (b) Upper-level gap (c) Recovery rate

Figure 6: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (5) with
10 different random seeds
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Figure 7: Comparison of SBCGI, SBCGF, SBCGI-M, SBCGF-M, STORM-FW, and SPIDER-FW
for solving Problem (5).

F.4 Importance of the right cutting plane

In this section, we numerically illustrate the importance of choosing the right cutting plane on
Example 2 (dictionary learning). Specifically, we compare our proposed methods with the ones
without a cutting plane and with an unregularized cutting plane (without additional term Kt).
If we replace the stochastic cutting plane (9) with the unregularized cutting plane (8) in SBCGI 1 and
SBCGF 2, then the algorithm usually fail at some point in the process, depending on the datasets and
parameters chosen, based on our experimental observations. More specifically, algorithms’ failure
means that the subproblem of dictionary learning (85) is infeasible. So we slightly modify it by
adding a checkpoint before solving the subproblem. If the subproblem is infeasible at the current
iteration, then we choose the update direction st = ∇̂gt. This adjustment prevents unnecessary
interruptions during the process and enforce the algorithms to focus only on the lower-level problem
when the subproblem is infeasible. We denote the modified algorithms SBCGI-M and SBCGF-M.
Moreover, we also take SBCGI and SBCGF without cutting planes into consideration, denoted as
STORM-FW and SPIDER-FW. In fact, in this case, the bilevel algorithms degenerate to single-level
projection-free algorithms similar to algorithms in [37] and [40].
Figure 7 (a) indicates that SBCGI-M and SBCGF-M focus more on the lower-level problem due
to the design of the algorithms and extremely unstable as we can see in Figure 7 (b)(c). While
STORM-FW and SPIDER-FW only focus on the upper-level problem, which leads to terrible results
on the lower-level gap and recovery rate.
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