Projection-Free Methods for Stochastic Simple Bilevel
Optimization with Convex Lower-level Problem

Jincheng Cao Ruichen Jiang Nazanin Abolfazli
ECE Department ECE Department SIE Department
UT Austin UT Austin The University of Arizona

jinchengcao@utexas.edu rjiang@utexas.edu nazaninabolfazli@arizona.edu

Erfan Yazdandoost Hamedani Aryan Mokhtari
SIE Department ECE Department
The University of Arizona UT Austin
erfany@arizona.edu mokhtari@austin.utexas.edu
Abstract

In this paper, we study a class of stochastic bilevel optimization problems, also
known as stochastic simple bilevel optimization, where we minimize a smooth
stochastic objective function over the optimal solution set of another stochastic
convex optimization problem. We introduce novel stochastic bilevel optimization
methods that locally approximate the solution set of the lower-level problem
via a stochastic cutting plane, and then run a conditional gradient update with
variance reduction techniques to control the error induced by using stochastic
gradients. For the case that the upper-level function is convex, our method requires
O(max{1/€},1/e;}) stochastic oracle queries to obtain a solution that is ¢-
optimal for the upper-level and ¢ 4-optimal for the lower-level. This guarantee
improves the previous best-known complexity of O(max{1/ e}%, 1/€4}). Moreover,
for the case that the upper-level function is non-convex, our method requires at
most O(max{1/ e‘;’f, 1/€}) stochastic oracle queries to find an (e, €,)-stationary
point. In the finite-sum setting, we show that the number of stochastic oracle
calls required by our method are O(y/n/€) and O(,/n/e?) for the convex and
non-convex settings, respectively, where e = min{ey, e, }.

1 Introduction

An important class of bilevel optimization problems is simple bilevel optimization in which we aim
to minimize an upper-level objective function over the solution set of a lower-level problem [1-4].
Recently this class of problems has attracted great attention in machine learning society due to their
applications in continual learning [5], hyper-parameter optimization [6, 7], meta-learning [8, 9], and
reinforcement learning [10, 11]. Motivated by large-scale learning problems, in this paper, we are
particularly interested in the stochastic variant of the simple bilevel optimization where the upper
and lower-level objective functions are the expectations of some random functions with unknown
distributions and are accessible only through their samples. Hence, the computation of the objective
function values or their gradients is not computationally tractable. Specifically, we focus on the
stochastic simple bilevel problem defined as

mirg flx)=]E[f(x,&)] s.t. x € argming(z) = E[g(z,)], (1)
x€R zCZ

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Results on stochastic simple bilevel optimization. The abbreviations “SC”, “C”, and “NC”

9%

stand for “strongly convex”, “convex”, and “non-convex”, respectively. Note that e = min{e 7 eg}

References Type Upper level Lower level Convergence Sample Complexity
Objective f Objective g Feasible set Z Upperlevel Lower level
aR-IP-SeG [16] Stochastic ~ C, Lipschitz C, Lipschitz Closed O (max{ 1/5310 s 1/6;; H O(1/€*)
Algorithm1 Stochastic C, smooth C, smooth Compact O (max{ 1/5? s 1/63 D O(1/€%)
Algorithm1 Stochastic ~ NC, smooth C, smooth Compact @(max{l/ef}, 1/62 D O(1/€%)
Algorithm2 Finite-sum C, smooth C, smooth Compact O(max{1/es,1/eg}) O(n/e)
Algorithm2 Finite-sum NC, smooth C, smooth Compact O(max{1/ e?p , 1 /ef? H O(Vn/e?)

where Z is compact and convex and f, § : R? — R are continuously differentiable functions on an
open set containing Z, and # and £ are some independent random variables drawn from some possibly
unknown probability distributions. As a result, the functions f, g : R? — R are also continuously
differentiable functions on Z. We assume that g is convex but not necessarily strongly convex, and
hence the solution set of the lower-level problem in (1) is in general not a singleton. We also study
the finite sum version of the above problem where both functions can be written as the average of n
component functions, i.e., f(x) = (1/n) >_1, f(x,6;) and g(z) = (1/n) >, §(z,&).

The main challenge in solving problem (1), which is inherited from its deterministic variant, is the
absence of access to the feasible set, i.e., the lower-level solution set. This issue eliminates the
possibility of using any projection-based or projection-free methods. There have been some efforts
to overcome this issue in the deterministic setting (where access to f and g and their gradients is
possible), including [12—15], however, there is little done on the stochastic setting described above.
In fact, the only work that addresses the stochastic problem in (1) is [16], where the authors present
an iterative regularization-based stochastic extra gradient algorithm and show that it requires O(1/ e‘}c)

and O(1/ 63) queries to the stochastic gradient of the upper-level and lower-level function, respectively,
to obtain a solution that is €¢-optimal for the upper-level and €,4-optimal for the lower-level. We
improve these bounds and also extend our results to nonconvex settings.

Contributions. In this paper, we present novel projection-free stochastic bilevel optimization methods
with tight non-asymptotic guarantees for both upper and lower-level problems. At each iteration,
the algorithms use a small number of samples to build unbiased and low variance estimates and
construct a cutting plane to locally approximate the solution set of the lower-level problem and
then combine it with a Frank-Wolfe-type update on the upper-level objective. Our methods require
careful construction of the cutting plane so that with high probability it contains the solution set of
the lower-level problem, which is obtained by selecting proper function and gradient estimators to
achieve the obtained optimal convergence guarantees. Next, we summarize our main theoretical
results for the proposed Stochastic Bilevel Conditional Gradient methods for Infinite and Finite
sample settings denoted by SBCGI and SBCGF, respectively.

* (Stochastic setting) We show that SBCGI (Algorithm 1), in the convex setting, finds a solution X
that satisfies f(X) — f* < e and g(%x) — g* < €, with probability 1 — § within O(log(d/Je)/€?)
stochastic oracle queries, where € = min{ey, 5}, f* is the optimal value of problem (1) and g*
is the optimal value of the lower-level problem. Moreover, in the non-convex setting, it finds x
satisfying G(%) < e; and g(%) — g* < ¢, with probability 1 — ¢ within O((log(d/de))3/?/€3)
stochastic oracle queries, where G(X) is the Frank-Wolfe (FW) gap.

¢ (Finite-sum setting) We show that SBCGF (Algorithm 2), in the convex setting, finds X that satis-
fies f(X) — f* < ¢; and g(X) — g* < €, with probability 1 — § within O(y/n(log(1/d¢))>/2/e)
stochastic oracle queries, where n is the number of samples of finite-sum problem. Moreover, in
the nonconvex setting, it finds x that satisfies G(x) < ¢; and g(%x) — g* < ¢, with probability
1 — & within O(y/nlog(1/d¢€)/€?) stochastic oracle queries.

1.1 Related work

General stochastic bilevel. In a general format of stochastic bilevel problems, the upper-level
function f also depends on an extra variable y € RP which also affects the lower-level objective,

min _ f(x,y) = E[f(x,y,0)] s.t.x € argming(z,y) = E[§(z,y,£)]. 2)
x€R y €RP z€Z

There have been several works including [10, 17-21] on solving the general stochastic bilevel
problem (2). However, they only focus on the setting where the lower-level problem is strongly
convex, i.e., g(z,y) is strongly convex with respect to z for any value of y. In fact, (2) with a convex
lower-level problem is known to be NP-hard [22]. Hence, the results of these works are not directly
comparable with our work as we focus on a simpler setting, but our assumption on the lower-level
objective function is weaker and it only requires the function to be convex.

Deterministic simple bilevel. There have been some recent results on non-asymptotic guarantees for
the deterministic variant of problem (1). The BiG-SAM algorithm was presented in [14], and it was
shown that its lower-level objective error converges to zero at a rate of O(1/t), while the upper-level
error asymptotically converges to zero. In [15], the authors achieved the first non-asymptotic rate
for both upper- and lower-level problems by introducing an iterative regularization-based method
which achieves an (e, €,)-optimal solution after O(max{1/€}, 1/e;}) iterations. In [12], the authors
proposed a projection-free method for deterministic simple bilevel problems that has a complexity
of O(max{1/ef,1/€,}) for convex upper-level and complexity of O(max{1/e7,1/(eyey)}) for
non-convex upper-level. Moreover, in [23] the authors presented a switching gradient method to solve
simple bilevel problems with convex smooth functions for both upper- and lower-level problems with
complexity O(1/e). However, all the above results are limited to the deterministic setting.

General bilevel without lower-level strong convexity. Recently, there are several recent works on
general bilevel optimization problems without lower-level strong convexity including [24-27, 23].
However, they either have a weaker theoretical results like asymptotic convergence rate in [24]
or have some additional assumptions. Specifically, in [25], the authors reformulated the problem
as a constrained optimization problem and further assumes such problem to be a convex program.
Moreover, in [26, 27], the authors in both papers assumed that the lower-level objective satisfies the
PL inequality, while we assumed that the lower-level objective is convex. In [23], the authors used a
looser convergence criterion that only guarantees convergence to a Goldstein stationary point. Since
these works consider a more general class of problems, we argue that their theoretical results when
applied to our setting are necessarily weaker.

2 Preliminaries

2.1 Motivating examples

Example 1: Over-parameterized regression. A general form of problem (1) is when the lower-level
problem represents training loss and the upper-level represents test loss. The goal is to minimize the
test loss by selecting one of the optimal solutions for the training loss [13]. An instance of that is
the constrained regression problem, where we intend to find an optimal parameter vector 3 € R?
that minimizes the loss ¢;,(3) over the training dataset D;,. To represent some prior knowledge,
we usually constrain 3 to be in some subsets Z C R, e.g., Z = {3 | ||| < A} for some A > 0
to induce sparsity. To handle multiple global minima, we adopt the over-parameterized approach,
where the number of samples is less than the parameters. Although achieving one of these global
minima is possible, not all optimal solutions perform equally on other datasets. Hence, we introduce
an upper-level objective: the loss on a validation set D,,; . This helps select a training loss optimizer
that performs well on both training and validation sets. It leads to the following bilevel problem:

min f(B) £ bw(B) st. B € argmin g(z) 2 Ly (2) 3)

In this case, both the upper- and lower-level losses are smooth and convex if £ is smooth and convex.

Example 2: Dictionary learning. Problem (1) also appears in lifelong learning, where the learner
takes a series of tasks sequentially and tries to accumulate knowledge from past tasks to improve
performance in new tasks. Here we focus on continual dictionary learning. The aim of dictionary

learning is to obtain a compact representation of the input data. Let A = {a;,...,a,} € R™*"
denote a dataset of n points. We seek a dictionary D = [d4, ..., d,] € R™*P such that all data points
a; can be represented by a linear combination of basis vectors in D which can be cast as [28-31]:

min - min % Z la; — Dxl|3 st |djll, <L, 5 =1,...,p; %, <8 ieN. @)
1EN

Moreover, we denote X = [x1,...,X,]| € RP*™ as the coefficient matrix. In practice, data points
usually arrive sequentially and the representation evolves gradually. Hence, the dictionary must be
updated sequentially as well. Assume that we already have learned a dictionary D € R™*? and the
corresponding coefficient matrix X € RP*" for the dataset A. As a new dataset A’ = {a},...,a’, }
arrives, we intend to enrich our dictionary by learning De R™*4(g > p) and the coefficient matnx
X € R9*™ for the new dataset while malntalnlng good performance of D on the old dataset A as
well as the learned coefficient matrix X. This leads to the following stochastic bilevel problem:

“min _min f(D,X) st ||%ell, <6,k=1,...,n; D€ argming(D), (5)
DeR™mXxa X cRaxn’ HajH2§1

where f(D,X) £ 2n’ Z el ||ak Dxy || represents the average reconstruction error on the new
dataset A’, and g(D) £ ;L 3" ||a; — Dx%;||3 represents the error on the old dataset A. Note

2n
that we denote X; as the prolonged vector in R? by appending zeros at the end. In problem (5), the

upper-level objective is non-convex, while the lower-level loss is convex with multiple minima.

2.2 Assumptions and definitions

Next, we formally state the assumptions required in this work.
Assumption 2.1. Z is convex and compact with diameter D, i.e., Vx,y € Z, we have |x —y|| < D.

Assumption 2.2. The upper-level stochastic function f satisfies the following conditions:

f(x,0) = Vf(y.0)ll < Lslx —yl.

(ii) The stochastic gradients noise is sub-Gaussian, E[exp{||V f(x,0) — V f(x) 1?/07}] < exp{1}.

(i) Vf is Lipschitz with constant Ly, i.e.,

Assumption 2.3. The lower-level stochastic function g satisfies the following conditions:

9(x,£) = Vi(y, Il < Lglx = y].
(ii) The stochastic gradients noise is sub-Gaussian, Elexp{||Vj(x, &) — Vg(x)||*/o2}] < exp{1}.

(i) gis convex and Vg is Lg-Lipschitz, i.e.,

(iii) The stochastic functions noise is sub-Gaussian, Elexp{|3(x, &) — g(x)|?/0?}] < exp{1}.

Remark 2.1. Assumptions 2.1 and 2.3(i) imply that g is Lipschitz continuous on an open set containing
Z with some constant Ly, i.e., for all x,y € Z, we have |§(x) — §(y)| < Li||x — y|[.

In the paper, we denote g* = min,cz g(z) and X, o £ arg min,. z g(z) as the optimal value and the
optimal solution set of the lower-level problem, respectively. Note that by Assumption 2.3, the set
A is nonempty, convex, and compact, but typlcally not a singleton as g potentially has multiple
mlnlma on Z. Furthermore, we denote f* and x* as the optimal value and an optimal solution of
problem (1), which are assured to exist since f is continuous and X is compact.

Definition 2.1. When f is convex, a point x € Z is (e, €,)-optimal if f(X) — f* < ¢; and
g(%x) — g* < €g4. When f is non-convex, X € Z is (e, €,)-optimal if G(X) < €5 and g(X) — g* < €,
where G(X) is the FW gap [32, 33] defined as G(X) = maxsexx {(Vf(X),X —s)}.

3 Algorithms

Conditional gradient for simple bilevel optimization. A variant of the conditional gradient (CG)
method for solving bilevel problems has been introduced in [12] which uses a cutting plane idea [34]

to approximate the solution set of the lower-level problem denoted by X;. More precisely, if one has
access to X, it is possible to run the FW update with stepsize 7; as

Xer1 = (1 — ve)xe + Vest, where s; = arggﬁn(Vf(xt), s) 6)
seXy
However, the set X is not explicitly given and the above method is not implementable. In [12], the
authors suggested the use of the following set: X; = {s € Z : (Vg(xy),s — x¢) < g(x0) — g(x¢)}
instead of the set X in the FW update given in (6). Note that x is selected in a way that g(x0) — g*
is smaller than €, /2, and such a point can be efficiently computed. A crucial property of the above
set is that it always contains the solution set of the lower-level problem denoted by X;'. This can be
easily verified by the fact that for any x7 in X7 we have x; € Z and

(Vg(xe),xg —x1) < g(x5) = g9(x4) < 9(x0) = g(x1), M

where the second inequality holds as g(xo) > g(xj). As shown in [12], this condition is sufficient
to show that if one follows the update in (6) with &} instead of X’ ;, the iterates will converge to the
optimal solution. However, this framework is not applicable to the stochastic setting as we cannot
access the functions or their gradients. Next, we present our main idea to address this delicate issue.

Random set for the subproblem. A natural idea to address stochasticity is to replace all gradients
and functions with their stochastic estimators for both the subproblem in (6), i.e., V f(x;), as well as
the construction of the cutting plane X}, i.e., g(x;), and Vg(x;). However, this simple idea fails since
the set X} may no longer contain the solution set X. More precisely, if g; and 6\91‘/ are unbiased
estimators of g(x;) and Vg(x;), respectively, for the following approximation set

X ={s€Z:(Vg,s—x)<g(x0) — i} ®)

we can not argue that it contains X, as the second inequality in (7) does not hold, i.e., (@(xt), Xy —
x¢) < §(x}) — §(x¢) £ g(x0) — g(x;). In the appendix, we numerically illustrate this point.

To address this issue, we tune the cutting plane by only moving it but not rotating it, i.e., adding
another term to tolerate the noise from stochastic estimates. We introduce the stochastic cutting plane

X ={s€Z:(Vg,s—x) < g(x0) — it + K}, ©)

where Vg, and §; are gradient and function value estimators, respectively, that we formally define
later. In the above expression, the addition of the term K, which is a sequence of constants converging
to zero as t — ©o, allows us to ensure that with high probability the random set X, contains all
optimal solutions of the lower-level problem. Choosing suitable values for the sequence K; is a
crucial task. If we select a large value for K; then the probability of X, containing X' goes up at the
price allowing points with larger values g in the set. As a result, once we perform an update similar to
the one in (6), the lower-level function value could increase significantly. On the other hand, selecting
small values for /K; would allow us to show that the lower level objective function is not growing,
while the probability of X, containing X7 becomes smaller which could even lead to a case that the
set becomes empty and the bilevel problem becomes infeasible.

Remark 3.1. How to compute g(x()? In the finite sum setting, we can accurately compute g(xo),
and the additional cost of n function evaluations will be dominated by the overall complexity. In the
stochastic setting, we could use a large batch of samples to compute g(x) with high precision at the
beginning of the process. This additional operation will not affect the overall sample complexity of
the proposed method, as the additional cost is negligible compared to the overall sample complexity.
Specifically, we need to take a batch size of b = O(e~2) to estimate j(x). Using the Hoeffding
inequality for subgaussian random variables, we have the following bound: |§(xq) — g(x0)| <

V20,(T 4 1)~“/2,/log(2/5), with a probability of at least 1 — &, where 7T is the maximum number
of iterations. Comparing this with Lemma 4.1.3, we can further derive: |§(xo) — g(x0)| < V20, (T +
1)~«/2\/log(2/6) < v2(2L;D + %m)(t +1)~«/2,/1og(6/4), with a probability of at least
1 —¢forall 0 <t < T. Consequently, the introduced error term would be absorbed in K ; and will
not affect any parts of the analysis.

Variance reduced estimators. As mentioned above, a key point in the design of our stochastic bilevel
algorithms is to select K properly such that X; contains X with high probability, for all ¢ > 0. To

Algorithm 1 SBCGI

1: Input: Target accuracy: ef, e, > 0, probability § > 0, step size: o, B¢, pr, e > 0
2: Initialization: Initialize xo € Z such that g(xo) — g* < €4/2

3: fort=0,...,7T do

4: if £ = 0 then

5: Vi =V 00), Vg, = Vi(xi, &), 6 = §(x1,&)

6: else - . . _

7: Update the estimate of Vf, Vf, = (1—o)Vf,_1 +Vf(xe,01) — (1— o)V f(x¢—1,0:)
8: Update the estimate of Vg, Vg, = (1 — 58,)Vg,_1 + V§(x¢, &) — (1 — B)VG(xe—1,&)
9: Update the estimate of g, §: = (1 — p)ge—1 + G(%¢,&) — (1 — pe) G(%e—1,&t)

10: end if

—~ T —~
11: Compute s; € argminge y,{Vf; s} where X; = {s € Z: (Vg;,s—x;) < g(x0)—g: + K}
12: Update the variable x¢41 = (1 — ye41)X¢ + Y2415t
13: end for

achieve such a guarantee, we first need to characterize the error of our gradient and function value
estimators. More precisely, suppose that for our function estimator we have that P(|g: — g(x:)| <

Ko4) > 1 — 4 and for the gradient estimator we have P(||@t — Vx| < K1) > 17,
for some § € (0,1). Then, by setting K, = Ky, + DK 4, we can guarantee that the conditions
required for the inequalities in (7) hold with probability at least (1 — 24").

Using simple sample average estimators would not allow for the selection of a diminishing K, as
the variance is not vanishing, but by using proper variance-reduced estimators the variance of the
estimators vanishes over time and eventually, we can send K to zero. In this section, we focus on
two different variance reduction estimators. For the stochastic setting in (1) we use the STOchastic
Recursive Momentum estimator (STORM), proposed in [35], and for the finite-sum setting, we utilize
the Stochastic Path-Integrated Differential EstimatoR (SPIDER) proposed in [36]. If v,_; is the
gradient estimator of STORM at time ¢ — 1, the next estimator is computed as

vi = (1 —a)vio1 + VI (x:,0:) — (1 — ar)VF(xi_1,0:), (10)

where V f(x, 0) is the stochastic gradient evaluated at x with sample 6. The main advantage of the
above estimator is that it can be implemented even with one sample per iteration. Unlike STORM, for
the SPIDER estimator, we need a larger batch of samples per update. More precisely, if we consider
v¢_1 as the estimator of SPIDER for V f(x;), it is updated according to

vi = Vfs(x¢) = Vfs(x¢—1) + vi_1, (11)

where V fs(x) = (1/5) > ;cs Vf(x,0;) is the average sub-sampled stochastic gradient computed
using samples that are in the set S. As we will discuss later, in the finite sum case that we use
SPIDER, the size of batch .S depends on n which is the number of component functions. We delay
establishing a high probability error bound for these estimators to section 4.1.

3.1 Conditional gradient algorithms with random sets: stochastic and finite-sum

Next, we present our Stochastic Bilevel Conditional Gradient method for Infinite sample case
abbreviated by SBCGI for solving (1) and its finite sum variant denoted by SBCGF. In both cases,
we first find a point x that satisfies g(x¢) — g* < €4/2, for some accuracy €,. The cost of finding
such a point is negligible compared to the cost of the main algorithm as we discuss later. At each
iteration ¢, we first update the gradient estimator of the upper-level and the function and gradient
estimators of the lower-level problem. In SBCGI, we follow the STORM idea as described in steps
4-6 of Algorithm 1, while in SBCGF, we use the SPIDER technique as presented in steps 7-10 of
Algorithm 2.In the case of SBCGF, we need to compute the exact gradient and function values once
every q iteration as presented in steps 4-6 of Algorithm 2. Once the estimators are updated, we can

define the random set 2& as in (9) and solve the following subproblem over the set /'\A’t,

S¢ = arg min (ﬂ"t,s% (12)
SEA?t

Algorithm 2 SBCGF

1: Input: Target accuracy: ef, e, > 0, probability accuracy: dg, d; > 0, step size: vy > 0
2: Initialization: Initialize xo € Z such that g(xo) — g* < €4/2

3: fort=0,...,7T do

4: if mod(t, ¢) = 0 then

5 Set Vf, = Vf(x). Vg, = Vg(xs). du = g(x1)
6: else
7: Draw S samples
8: Update the estimate of Vfas Vf, = Vf,_; + Vfs(xi) — Vfs(x4-1)
9: Update the estimate of Vg as Vg, = Vg,_; + Vgs(x:) — Vgs(xi—1)
10: Update the estimate of g as §; = §:—1 + gs(Xt) — gs(Xt—1)
11: end if

—~ T ~
12: Compute s; € argminge y,{V f, s} where X} = {s € Z: (Vg,,s—x;) < g(x0)— Gt +K;}
13: Update the variable Xt+1 = (1 — Pyt+1)Xt + Yt+1St
14: end for

where V f, is the unbiased estimator of V f(x;). Note that we implicitly assume that we have access
to a linear optimization oracle that returns a solution of the subproblem in (12), which is standard
for projection-free methods [32, 33]. In particular, if Z can be described by a system of linear
inequalities, then problem (12) corresponds to a linear program and can be solved by a standard
solver as we show in our experiments. Once, s; is calculated we simply update the iterate

X1 = (1 — Y1) Xt + Vo415 (13)

with stepsize Y:11 € [0, 1]. The only missing part for the implementation of our methods is the choice
of K, in the random set and the stepsize parameters. We address these points in the next section.

Remark 3.2. SBCGI can be implemented with a batch size as small as S = 1. However, this does not
imply that the batch size "has to be" S = 1. In other words, the main advantage of SBCGI, compared
to SBCGEF, is its capability to be implemented with any mini-batch size, even as small as § = 1.
Therefore, for SBCGI, the batch size can be set arbitrarily, whereas for SBCGF, it must be /7.

Remark 3.3. In the finite-sum setting, if the numbers of functions in the upper- and lower-level losses
are different, we could simply modify SBCGF 2 by choosing S,, = q, = \/n, and S; = q; = \/ny,
where n,, and n; are the number of functions in the upper- and lower-level, respectively.

4 Convergence analysis

In this section, we characterize the sample complexity of our methods for stochastic and finite-sum
settings. Before stating our results, we first characterize a high probability bound for the estimators of
our algorithms, which are crucial in the selection of parameter K; and the overall sample complexity.

4.1 High probability bound for the error terms

To achieve a high probability bound, it is common to assume that the noise of gradient or function
is uniformly bounded as in [36, 37], but such assumptions may not be realistic for most machine
learning applications. Hence, in our analysis, we consider a milder assumption and assume the noise
of function and gradient are sub-Gaussian as in Assumptions 2.2 and 2.3, respectively. Given these
assumptions, we next establish a high probability error bound for the estimators in SBCGI.

Lemma 4.1. Consider SBCGI in Algorithm I with parameters oy = By = py = v¢ = 1/(t + 1)¥
where w € (0, 1]. If Assumptions 2.1, 2.2, and 2.3 are satisfied, foranyt > 1 and § € (0,1), with
probability at least 1 — ¢, for some absolute constant ¢, (d is the number of dimension), we have

7, — VGl £ VLD + o) e+ 1)V iog6dfs), (14
¥, = Vglx)ll < V3OLD + o)t +1) logl6dfd), (19)
190 = g(xe)| < eV2(2LD + i Co1)(t+1)7/%/10g(6/9). (16)

Lemma 4.1 shows that for any w € (0, 1], if we set oy = 8¢ = pp = ¢ = 1/(t + 1)“, then with high
probability the gradient and function approximation errors converge to zero at a sublinear rate of

O(1/+/?). Moreover, the above result characterizes the choice of K. Specifically, if we define K ;
as the upper bound in (15) and K ; as the upper bound in (16), by setting K; = Ko + DK, then

with probability (1 — §) the random set X, contains X, - Later, we show that w = 1 leads to the best
complexity bound for the convex setting and w = 2/3 is the best choice for the nonconvex setting.
Next, we establish a similar result for the estimators in SBCGF.

Lemma 4.2. Consider SBCGF with stepsize v and S = q = +/n. If Assumptions 2.1-2.3 hold, for
anyt > 1and § € (0,1), with probability 1 — § we have Hﬂt — Vf(xt)| < 4L,Dy\/1og(12/9),
IVg, — Va(x:)|| < 4Ly Dy+/10g(12/5), and |, — g(x:)| < 4LiDy+/1og(12/9).

Similarly, for SBCGF, we set K ; = 4L,D~v+/log(12/6) and Ko = 4L;Dv+/log(12/§) and
choose K; = K, + DK 4, then the random set)E't contains X g* with probability 1 — 4.

Next, we formalize our claim about the random set with the above choice of K.

Lemma 4.3. If X7 is the solution set of the lower-level problem and X, is the feasible set constructed
by cutting plane at iteration t, then for any t > 0 and § € (0, 1), we have P(X; C /\A’t) >1-6.

This lemma shows all X* is a subset of the constructed feasible set X; with a high probability of
1 — 4. Indeed, using a union bound one can show that the above statement holds for all iterations up
to time ¢ with probability 1 — 4.

4.2 Convergence and complexity results for the stochastic setting

Next, we characterize the iteration and sample complexity of the proposed method in SBCGI for the
stochastic setting. First, we present the result for the case that f is convex.

Theorem 4.4 (Stochastic setting with convex upper-level). Consider SBCGI in Algorithm 1 for
solving problem (1). Suppose Assumptions2.1, 2.2, and 2.3 hold and f is convex. If the stepsizes
of SBCGI are selected as oy = By = py = v = (t + 1)~%, and the cutting plane parameter is
Ky = c((2LyD + 207)/210g(6t/5) + D(2LyD + 30,)+/210g(6td/5))(t + 1)~1/2, then after T
iterations,

. Ci¢ LgD2 logT ¢ . CaC f(xo)— f*4+ LfD2 logT
< 25 e P D9 < 22 .
g(XT) g > \/T + T + 2 ’ f(XT) f = \/T + T

with probability 1 — ¢ for some absolute constants Cy and Cs and ¢ := \/log (6T'd/9).

Theorem 4.4 shows a convergence rate of O(y/log(T'd/8)/v/T). As a corollary, SBCGI re-
turns an (ef, €,)-optimal solution with probability 1 — ¢ after O(log(d/d¢)/€?) iterations, where
e = min{ey, ¢, }. Since we use one sample per iteration, the overall sample complexity is also
O(log(d/&¢)/€?). Note that the iteration complexity and sample complexity of our method outper-
form the ones in [16], as they require O(1/e*) iterations and sample to achieve the same guarantee.

Remark 4.1. The task of finding xo which is equivalent to a single-level stochastic optimization
problem requires O(1/ 63) iterations and samples. As a result, this additional cost does not affect the
overall complexity of our method. The same argument also holds in the non-convex case.

Theorem 4.5 (Stochastic setting with non-convex upper level). Consider SBCGI for solving problem
(1). Suppose Assumptions 2.1-2.3 hold, f is nonconvex, and define f = minye z f(x). If the stepsizes

of SBCGI are selected as vy = f; = p; = (t +1)72/3, v, = (T + 1)=%/3, and the cutting plane
parameter is K; = c((QLlD—i—%al)\/Z 10g(6T/5)+D(2LgD+%Ug)\/210g(6Td/5))(t—|—

1)_1/3, then after T iterations, there exists an iterate X, in the set € {xXo,X1, ..., Xp—_1} for which

. CsC+L,D?* ¢ f(XO)_i+C4C+LfD2
gxp)—g" < 2+ 2 G(xpe) < (T + 1)1/3

> (T n 1)1/3 9
with probability 1 — 0 for some absolute constants C5 and Cy and ¢ := \/log (6Td/9).

As a corollary of Theorem 4.5, the number of iterations required to find an (e, €5)-optimal solution

can be upper bounded by O(log(d/d¢)3/2 /e3), where € = min{e, ¢, }. We note that the dependence
on the upper-level accuracy € also matches that in the standard CG method for a single-level non-
convex problem [33, 38]. Moreover, as we only need one stochastic oracle query per iteration, SBCGI

only requires O(log (d/ (56)3/ ? /€3) stochastic oracle queries to find an (e 7, €g)-optimal.

4.3 Convergence and complexity results for the finite-sum setting

Similarly, we present iteration and sample complexity for algorithm 2 under the finite-sum setting.

Theorem 4.6 (Finite-sum setting with convex upper-level). Consider SBCGF presented in Algorithm

2 for solving the finite-sum version of (1). Suppose Assumptions 2.1, 2.2, and 2.3 hold and f is

convex. If we set the stepsizes of SBCGF as v = logT/T, S = q = \/n, and the cutting plane

parameter as K, = AD(L;+/log(12T/6) + L,D+/log(12T/5))log T /T, then after T iterations,
Cs¢' + LyD*)logT ¢ N Xg) — f* 4+ Cs¢'log T

< (G5¢ ;)g+§q7 f(XT)—f§f<O)fT GCg’

with probability at least 1 — §, for some absolute constant Cs and Cg, and ' = \/log(12T'/4).

*

g(xr) —g" <

Theorem 4.6 implies the number of stochastic oracle queries is O(log(1/8¢)%/2y/n/¢), where ¢ =
min{ey, €, }, which matches the optimal sample complexity of single-level problems [39].

Theorem 4.7 (Finite-sum setting with non-convex upper-level). Consider SBCGF presented in
Algorithm 2 for solving the finite-sum version of (1). Suppose Assumptions2.1-2.3 hold, and [is
non-convex. Define f = minycz f(x). If the parameters of SBCGF are selected as v = 1/VT, S =

q = \/n, and the cutting plane parameter is K; = 4D (L;+/1og(12T/8) + L,D+/1og(12T/4))/V/T,

then after T iterations, there exists an iterate Xy € {Xo,X1,...,X1_1} for which,
Cr¢' + LyD* ¢y f(xo)—f + Cs(
T1/2 27 T1/2
with probability at least 1 — §, for some absolute constants C; and Cs, and (' = \/log(12T/9).

*

g(xe=) —g" < G(xp) <

As a corollary of Theorem 4.7, the number of stochastic oracle queries is O(log(1/d¢)+/n/€e?), where
€ = min{ey, €, }, which matches the state-of-the-art single-level result O(y/n/€?) in [40]. SBCGF
also improves the number of linear minimization oracle queries of SBCGI from O(1/€2) to O(1/e)
for convex upper-level and from O(1/€3) to O(1/€2) for non-convex upper-level.

5 Numerical experiments

In this section, we test our methods on two different stochastic bilevel optimization problems with
real and synthetic datasets and compare them with other existing stochastic methods in [16] and [13].

Over-parameterized regression. We consider the bilevel problem corresponding to sparse linear
regression introduced in (3). We apply the Wikipedia Math Essential dataset [30] which composes
of a data matrix A € R™*? with n = 1068 samples and d = 730 features and an output vector
b € R™. To ensure the problem is over-parameterized, we assign 1/3 of the dataset as the training set
(A, byr), 1/3 as the validation set (A, , bya) and the remaining 1/3 as the test set (Aest , Drest)-
For both upper- and lower-level loss functions we use the least squared loss, and we set A = 10. We
compare the performance of our methods with the aR-IP-SeG method by [16] and the stochastic
version of DBGD introduced by [13]. We employ CVX [41, 42] to solve the lower-level problem
and the reformulation of the bilevel problem to obtain g* and f*, respectively. We also include the
additional cost of finding xg in SBCGI and SBCGF in our comparisons.

In Figure 1(a)(b), we observe that SBCGF maintains a smaller lower-level gap than other methods and
converges faster than the rest in terms of upper-level error. SBCGI has the second-best performance
in terms of lower- and upper-level gaps, while aR-IP-SeG performs poorly in terms of both lower- and
upper-level objectives. The performance of DBGD-sto for the upper-level objective is well, however,
it underperforms in terms of lower-level error. In Figure 1(c), SBCGF, SBCGI, and DBGD-sto
achieve almost equally small test errors, while aR-IP-SeG fails to achieve a low test error. Note

10’

SBCGI SBCGI

100 SBCGF SBCGF
PP p—f aR-IP-SeG aR-IP-SeG
10 $-DBGD-Sto 4> DBGD-Sto

= A A 102
04 He-SBCGI
10 #eSBCGF P
aR-IP-SeG D 107
o [IBZDBGD-5t0 104
10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
number of samples «10° number of samples %108 number of samples 108
(a) Lower-level gap (b) Upper-level gap (c) Test error

Figure 1: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (3)

&-SBCGT

A SBCGF
aR-IP-SeG

> DBGD-Sto|

10°

©-5BCGT

A SBCGF
aR-IP-SeG

108 ,_,lB>DBGDSt0

0 1 2 3 4 5 6 7
number of samples <105 number of samples <105 number of samples <105

(a) Lower-level gap (b) Upper-level gap (c) Recovery rate
Figure 2: Comparison of SBCGI, SBCGEF, aR-IP-SeG, and DBGD-Sto for solving Problem (5).

that after the initial stage, SBCGI increases slightly in terms of all the performance criteria, because
SBCGI (1) only takes one sample per iteration and uses a decreasing step-size while SBCGF takes /1
samples per iteration and uses a small constant stepsize, demonstrating a more robust performance.

Dictionary learning. To test our methods on problems with non-convex upper-level we consider
problem (5) on a synthetic dataset with a similar setup to [12]. We first construct the true dictionary
D* € R?%*%0 comprising of 50 basis vectors in R?®. All entries of these basis vectors are drawn
from the standard Gaussian distribution and then normalized to have unit £2-norm. We also generate
two more dictionaries D* and D’* consisting of 40 and 20 basis vectors in D*, respectively (thus
they share at least 10 bases). These two datasets A = {ay,...,a250} and A’ = {a),... al;,} are
constructed as a; = D*x; +ny, fori = 1,...,250, and a}, = D"*x}, + n,, fork = 1,...,250,

where {x;}259, {x}.}2°% are coefficient vectors and {n; ?i%, {n},}2°% are random Gaussian noises.

As neither A nor A’ includes all the elements of D*, it is important to renew our dictionary by using
the new dataset A’ while maintaining the knowledge from the old dataset A.

In our experiment, we initially solve the standard dictionary learning problem employing dataset

A, achieving the initial dictionary D and coefficient vectors {%}2%). We define the lower-level
objective as the reconstruction error on A using {%X}2?59, and the upper—level objective as the error

on new dataset A’. We compare our algorithms with aR-IP-SeG and DBGD (stochastic version),
measuring performance with the recovery rate of true basis vectors. Note that a basis vector d* in
D* is considered as successfully recovered if there exists d in D such that |<d* il > 0.9 (for
more details of the experiment setup see Appendix F). In Flgure 2(a), we observe SBCGF converges
faster than any other method regarding the lower-level objective. While SBCGI has the second-best
performance in terms of the lower-level gap, aR-IP-SeG and DBGD-sto perform poorly compared
with SBCGI and SBCGEF. In Figures 2(b) and (c), we see that SBCGI, SBCGF, and DBGD-sto
achieve good results in terms of the upper-level objective and the recovery rate. However, aR-IP-SeG
still performs poorly in terms of both criteria, which matches the theoretical results in Table 1.

Acknowledgements

The research of J. Cao, R. Jiang, and A. Mokhtari is supported in part by NSF Grant 2127697 and
the NSF Al Institute for Foundations of Machine Learning (IFML) at UT Austin. The research of N.
Abolfazli and E. Yazdandoost Hamedani is supported by NSF Grant 2127696.

10

References

[1] Jerome Bracken and James T McGill. Mathematical programs with optimization problems in
the constraints. Operations research, 21(1):37-44, 1973.

[2] Stephen Dempe, Nguyen Dinh, and Joydeep Dutta. Optimality conditions for a simple con-
vex bilevel programming problem. Variational Analysis and Generalized Differentiation in
Optimization and Control: In Honor of Boris S. Mordukhovich, pages 149-161, 2010.

[3] Joydeep Dutta and Tanushree Pandit. Algorithms for simple bilevel programming. Bilevel
Optimization: Advances and Next Challenges, pages 253-291, 2020.

[4] Yekini Shehu, Phan Tu Vuong, and Alain Zemkoho. An inertial extrapolation method for convex
simple bilevel optimization. Optimization Methods and Software, 36(1):1-19, 2021.

[5] Zalan Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for contin-
ual learning and streaming. Advances in Neural Information Processing Systems, 33:14879—
14890, 2020.

[6] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568-1577. PMLR, 2018.

[7] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723—-1732. PMLR, 2019.

[8] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

[9] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[10] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

[11] Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and Jun
Wang. Bi-level actor-critic for multi-agent coordination. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 7325-7332, 2020.

[12] Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. A
conditional gradient-based method for simple bilevel optimization with convex lower-level
problem. In International Conference on Artificial Intelligence and Statistics, pages 10305—
10323. PMLR, 2023.

[13] Chengyue Gong and Xingchao Liu. Bi-objective trade-off with dynamic barrier gradient descent.
NeurIPS 2021, 2021.

[14] Shoham Sabach and Shimrit Shtern. A first order method for solving convex bilevel optimization
problems. SIAM Journal on Optimization, 27(2):640-660, 2017.

[15] Harshal D Kaushik and Farzad Yousefian. A method with convergence rates for optimization
problems with variational inequality constraints. SIAM Journal on Optimization, 31(3):2171-
2198, 2021.

[16] Afrooz Jalilzadeh and Farzad Yousefian. Stochastic approximation for estimating the price of
stability in stochastic nash games. arXiv preprint arXiv:2203.01271, 2022.

[17] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[18] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670-13682, 2021.

11

[19] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances
in neural information processing systems, 34:30271-30283, 2021.

[20] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient
method for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.

[21] Zeeshan Akhtar, Amrit Singh Bedi, Srujan Teja Thomdapu, and Ketan Rajawat. Projection-free
stochastic bi-level optimization. arXiv preprint arXiv:2110.11721, 2021.

[22] Benoit Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.
Annals of operations research, 153:235-256, 2007.

[23] Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023.

[24] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel opti-
mization with non-convex followers and beyond. Advances in Neural Information Processing
Systems, 34:8662-8675, 2021.

[25] Daouda Sow, Kaiyi Ji, Ziwei Guan, and Yingbin Liang. A primal-dual approach to bilevel
optimization with multiple inner minima. arXiv preprint arXiv:2203.01123, 2022.

[26] Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

[27] Feihu Huang. On momentum-based gradient methods for bilevel optimization with nonconvex
lower-level. arXiv preprint arXiv:2303.03944, 2023.

[28] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee,
and Terrence J Sejnowski. Dictionary learning algorithms for sparse representation. Neural
computation, 15(2):349-396, 2003.

[29] Mehrdad Yaghoobi, Thomas Blumensath, and Mike E Davies. Dictionary learning for sparse
approximations with the majorization method. IEEE Transactions on Signal Processing,
57(6):2178-2191, 20009.

[30] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lépez, Nicolas Collignon, et al. Pytorch
geometric temporal: Spatiotemporal signal processing with neural machine learning models.
In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pages 4564-4573, 2021.

[31] Chenglong Bao, Hui Ji, Yuhui Quan, and Zuowei Shen. Dictionary learning for sparse coding:
Algorithms and convergence analysis. IEEE transactions on pattern analysis and machine
intelligence, 38(7):1356-1369, 2015.

[32] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427-435. PMLR, 2013.

[33] Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[34] Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods. From
Stanford EE 364b lecture notes, 2007.

[35] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. Advances in neural information processing systems, 32, 2019.

[36] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

12

[37] Jiahao Xie, Zebang Shen, Chao Zhang, Boyu Wang, and Hui Qian. Efficient projection-free
online methods with stochastic recursive gradient. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 6446-6453, 2020.

[38] Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie. Escaping saddle points in constrained
optimization. Advances in Neural Information Processing Systems, 31, 2018.

[39] Aleksandr Beznosikov, David Dobre, and Gauthier Gidel. Sarah frank-wolfe: Methods for
constrained optimization with best rates and practical features. arXiv preprint arXiv:2304.11737,
2023.

[40] Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochastic
path-integrated differential estimator. In International Conference on Machine Learning, pages
7282-7291. PMLR, 2019.

[41] Michael C Grant and Stephen P Boyd. Graph implementations for nonsmooth convex programs.
In Recent advances in learning and control, pages 95—-110. Springer, 2008.

[42] Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex programming,
version 2.1, 2014.

[43] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[44] Iosif Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The Annals
of Probability, pages 1679-1706, 1994.

[45] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short
note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

[46] Tong Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17(9):2077-2098, 2005.

13

Supplementary material

A Additional Motivating Examples

The bilevel optimization problem in (1) provides a versatile framework that covers a broad class of
optimization problems. In addition to the motivating examples provided in the main body of the
paper, here we also provide a generic example of stochastic convex constrained optimization that can
be formulated as (1). We further present a more general form of the examples covered in the main
body.

Stochastic convex optimization with many conic constraints: Consider the following convex optimiza-
tion problem

irenRrg E[f(x,0)] s.t. h(x,8) € =K, V¢ € Q,
where K C R? is a closed convex cone. This problem can be formulated as a special case of (1)
by letting §(x,§) = 1d? (h(x,&)) where d_x(-) £ || - =P_x(-)|| denotes the distance function
and P_j(-) denotes the projection map. Our proposed framework provides an efficient method for
solving this class of problems when the projections onto K can be computed efficiently, while the
projection onto the preimage h~!(—/C, £) is not practical, e.g., when K is the positive semidefinite
cone, computing a projection onto the preimage set requires solving a nonlinear SDP.

A.1 Lexicographic optimization

Example 1 (over-parameterized regression) can be generalized as a broader class of problem, which
is known as lexicographic optimization [13] and uses the secondary loss to improve generalization.
The problem can be formulated as the following stochastic simple bilevel optimization problem,
min £(8) st B € argmint,(0) = Ep, [¢(y, Jo(x))] (17)
BER? vez
In general, the lower-level problem could have multiple optimal solutions and be very sensitive to
small perturbations. To tackle the issue, we use a secondary criterion £(-) to select some of the
optimal solutions with our desired properties. For instance, we can find the optimal solutions with
minimal £o-norm by letting £(3) = ||3||?, which is also known as Lexicographic {3 Regularization.

A.2 Lifelong learning

Example 2 (dictionary learning) is an instance of a popular framework known as lifelong learning,
which can be formulated as follows,

’
n

1
min > (B p) st Y Bl < Y kB (18)
i=1 (xi,y:) EM (xi,yi)EM

In this problem, the objective is the training loss on the current tasks D; = {(x y;)};il While the

79
constraint enforces that the model parameterized by 3 performs no worse than the previous one on
the episodic memory M (i.e., data samples from all the past tasks).

In the paper, we discuss a variant of the problem above, where we slightly change the constraint and
ensure that the current model also minimizes the error on the past tasks. It can be formulated as the
following finite-sum/stochastic simple bilevel optimization problem [12],

1 .
In[;nng(@é,ﬂ%yé) st. Beargmin Y ((xi,2),7i). (19)
=1

i (xi,y:)EM

B Supporting lemmas

B.1 Proof of Lemma 4.1

Before we proceed to the proof for Lemma 4.1, we present the following technical lemma, which
gives us an upper bound for a complex term appearing in the following analysis.

14

Lemma B.1. Define p, = 1/(t + 1) where w € (0,1] and t > 1. Forallt > 2, let {s;} be a
sequence of real numbers given by

t t 2

St = Z(m [Ia _Pk)) .
T=2 k=1

Then it holds that

s < i +11)w. (20)
Proof. We prove the result by induction. For ¢ = 2, we can verify that
G s AN
52 = <33) S3m S
Now we suppose that the inequality in (20) holds when ¢ = T" for some T" > 2, i.e.,
T T 2 1
o z_;(p I - m) < e
First note that the sequence {s;} satisfies the following recurrence relation:
T+1 T+1 2 T+1 T 2
sTi1 = (pr [Ta- Pk)) = (1—pr1)*) (Pr ITa- Pk))
=2 k=t T=2 k=T
T T 2
=1 =pr1)* > (pT ITa- Pk)) + p2T+1‘|
=2 k=T
= (1= pr+1)* (s + P7pa)-
Moreover, since w € (0, 1], we have (T +)“ — 1 < (¢t + 1)%. Therefore, we obtain
(T +2)© ? 1
ST“§< (T +2)» <t+1 (T+2)2w)
< (T+2)~ -1+ 1)~ (1 . 1)
- (T+2) w t+1)w (TH1)
- (T+2)*-1(T+1)*+1
(T+2)2 (TH+1)»
C(T+2¥(t+ 1)+ (T+2)% —1— (t+1)*
- (T +2)2(t + 1)
(T+2)“(t+1) 1
T (T+2)2(t+1)« (T+2)"
By induction, the inequality in (20) holds for all ¢ > 2. O

Now we proceed to prove Lemma 4.1.

Proof of Lemma 4.1. We show the proof of part (i) here. The proof of part (ii) is very similar to

part (i). The first step is to reformulate e; = Vg, — Vg(x;) as the sum of a martingale difference
sequence. For ¢t > 1, by unrolling the reucurrence we have

e = (1—p)es1+ B(Vi(xe, &) — Vg(xt))
+(1— Bt)(v§<xta§t) = Vi(xi-1,&) — (Vg(xt) — Vg(xi-1))

= H 1- ﬁk el + Z H 1- ﬁk Vg XT»&T) Vg(x‘rflﬂg’r) - (Vg(XT) - Vg(XTfl))

T=2 k=1

+ Z B I] (1= Be)(Vi(x, &) — Vg(xr).

T=2 k=1+1
2D

15

Thus, we can write e; as the sum e; = 23:1 (;, where we define (; = HZZQ(l — Br)e; and

t

&= 110 =B)(Vaxr, &) = Viler1,&7) = (Vo(xr) = Vg(xr-1)) (22)
k=T
t
+8: J] (1= B)(Vix, &) — V() (23)
k=141
for 7 > 1. Recall that e; = V§(x¢, (1) — Vg(x1). We observe that E[(,|F,_1] = 0 where F,_;
is the o-field generated by {x1,&1,...,%X,_1,& —1}. Therefore, {¢, }L_; is a martingale difference
sequence.
Next, we derive upper bounds of ||, ||. To begin with, we observe that for any 7 = 1,2,... ¢,
t t t
1 (k+1)* -1 o~
1— = 1—-—) = < 24
-0 =TT (- tye) = G0 = e = e @

where we used the fact that (k + 1)* — 1 < k“ in the last inequality. By using the above inequality,
we can bound ||(1 || as follows:

t

2¢ 2¥01 [[Vg(x1,&) — Vg(xa)|
= 1— = .
¢l]};[2(Bi)lleill < (S Vg(x1,&1)—Vg(x1)|| CEE o
Define ¢; = (T+1)w , then by Assumption 2.3(ii) we have Efexp (||¢1]/?/c?)] < exp (1). Moreover,

for 7 > 1, by triangle inequality, ||(;|| can be bounded by

t
I < TT = B)IVE(xr, &) = Va(xe—1, &) + [1(V(xr) = Va(xr—1)])
k=1
+ /87' H (1 - ﬁk)va(XTagT) - VQ(XT)H
k=1+1
t t
< 2Lyl =] [T (1= 8r) + [V3(xr, &) = Vo) 18 [(1= 5)
k=T k=1+1
t t
=20, D [[(1= Bk) + IVi(x-, &) = Vo) 18- [(1= 5) (25)
k=T k=71+1
t w t
<2L,DB; [T(1=5) + §(xr, &) — V()18 T] (1= Br)
k=t k=1
IV &) = Vatxo)])5 TT - 60

k=1

— (21,D
(21204

(2L D4 3700 IV3(xr,&r) = Vg(xf)ll) H(l_m

3@ —1 o4 Pl

Define ¢, = (2LyD + g’w”gl)ﬁT [Th._.(1 — Bi). Note that if we have E[exp(X?/c?)] < 1 and
Elexp(X3/c3)] < 1, then we have Elexp((X; + X2)?/(c1 + ¢2)?)] < 1 [43]. Thus, we have

Elexp (||¢-]12/¢2)] < exp (1) forall 1 < 7 < t. Hence by proposition E.2, with probability 1 — ¢’

lled| < c- (26)

16

where c is an absolute constant, d is the number of dimension, and Z
Lemma B.1 as follows,

can be bounded by

7'17'

2w 2 qw T T
— 2 2
E:C—ﬁ+2} ‘?:TQ+Q%D+§ij%)Z¥%th5W

_ 22042 . (2LyD + 33—0,)?
S (T+1)2 (t+ 1)w o7

(V2)“0y)* | (2LgD + 5i=50,)°

- (t+ 1) (t+1)~
2(2LyD + 52 0,)?
(t+1)»

where the last inequality follows from the fact that (v/2) < 3%/(3* — 1) for any w € (0, 1].
Combining (26) and (27), we have with probability at least 1 — 5',

“ def

IVg0x0) = F9,ll < eVBELD + 20,0 + 1)/ fog(2d/0) € Kre ©8)
Similarly with probability at least 1 — &,
J9x0) = 31l < eVBELD + o —on)(t+ 1) flog(2d/) L Ko @9)
and with probability at least 1 — 5,
IV5000) = 1l £ VLD + 57— o)t 1) flog(20/) £ Ko G0)

where ¢ is an absolute constant and d is the dimension of vectors. We can use union bound to obtain
that these three inequalities hold for at least probability 1 — 30 = 1 — §. For simplicity, we define
constant A and Ag such that,

AL (t+1)792/log(6d/d) = K1, and A% (t+1)"“/2/log(6d/d) = Ko, (31)
and similarly Ag t+1)79/2,/log(6d/5) = K. O
B.2 Proof of Lemma 4.2

Proof. Let us define tg = |t/q| forany t € {0,..., T — 1}, then whenever ¢ = tyq according to the

Algorithm 2 a full batch of sample gradients are selected, hence, @t = Vyg(x:); otherwise, the error
of computing a sample gradient can be expressed as follows

1
€10 = E(Vgs@) (xt) = Vs (x¢-1) — Vg(xt) + Vg(x¢-1)), (32)
where 7 is the index with S(i) denoting the i-th random component function selected at iteration ¢.
Furthermore, from the update rule of z; we have ||x; — x;—1|| = Y¢[[st—1 — x¢—1|| < D~y for any

t > 0, therefore,

llewill < l(||Vgi(xt) = Vg1 + [IVg(xt) = Vg(xi 1))
2L 2L,Dvy
g

forallt € {toc +1,...,¢0 +¢q}andi € {1,...,S}. On the other hand, from the update of %t and

(32) we have that for any ¢ # £yq, 6\9,5 —Vyg(x¢) = 6\915—1 —Vg(xe—1) + Zle €¢,i. Therefore, by
continuing the recursive relation and taking the norm from both sides of the equality we obtain

(33)
gHXt—'Xt 1l <

Vg, — Vg(xo)ll = [IVg(xe) — V(xs,) + Z Zeﬂn

j=to+1 i=1 (34)

t S
> D el

j=to+1 i=1

17

where the last equality follows from %(xto) = Vg(xy,). Then by Proposition E.1, we have

A2 A2
412 D22) < 46Xp(—

P(|Vg, — Vg(x¢)| > A) < dexp(— B —
AS(t — to) iy 16L3 D?~?

) (35)

where the last inequality follows from the fact S = /n and t — ty < ¢ = /n. By setting
A = (4L,Dv+/1og(4/5)) for some § € (0,1), we have with probability at least 1 — &,

IVg, = Vg(xi)[| < 4Ly Dyy/log(4/5). (36)
Similarly, with probability at least 1 — &,
|9t — g(x¢)| < 4L Dyy/log(4/0"), (37

and with probability 1 — &,

197, - Vo)l < ALy Dy flog(4/8). (38)

Then by union bound and § = 34", we show these three equalities hold with probability 1 — 4.

B.3 Proof of Lemma 4.3

Proof. Let x; be any point in X/, i.e., any optimal solution of the lower-level problem. By definition,
we have g (x;) = g*. Since g is convex and g* < g (xg), we have

g(x0) —g(xe) > g" —g(xt) =g (x5) —9(x) = (Vg (1), % — %¢) (39)
Add and subtract terms in inequality above, we have,

(Vgi,xg —%4) + G0 — 9(x0) < (Vg = Vg(x0), X5 — x0)[+[9¢ — 9(x1)] (40)
Considering the random hyperplane we used in (9), we want to prove the following inequality holds
with high probability,

(Vgy,xy —x¢) + 9 — g(x0) < Ky 41)

Recall K; = Ko + DK, ;. And K and K ; were set as the high probability bounds of Hﬁgt —
Vg(x:)|| and |§: — g(x:)| in Lemma 4.1 for Algorithm 1 or Lemma 4.2 for Algorithm 2. Then

compare the two inequalities above and use Jensen’s inequality, |<€gt, Xy —X¢)| 4Gt — g(%0)| < Ky
holds with high probability 1 — ¢ for all £ > 0. Hence, Lemma 4.3 holds with probability 1 — ¢ for
all t > 0. O

B.4 Improvement in one step

The following lemma characterizes the improvement of both the upper-level and lower-level objective
values after one step of the algorithms.

Lemma B.2. [If Assumptions 2.1, 2.2, 2.3 are satisfied,

(i) Forallt > 0, assume that X; C X;. Then we have

Dz’Vt2+1

—~ L
Y+1G(xe) < F(x4) = f(Xex1) + 241 DIV F(x0) = V|| + =2 5 (42)

As a corollary, if f is convex, we further have

ny LfD27t2+1
fxer1) = 7 < (M=) (f(xe) = 7)) + 01 DIV (xe) = Vil + s (43)

18

(ii) We have

g(xt4+1) — 9(x0) < (1 —y41)(9(xt) — 9(%0)) + Dye41([[Vg(xt) — Vg || + K1t)
LgD2’YE+1
.

(44)
+ 1 (lg(xe) — gell + Koe) +

Proof. (i) Based on the L ¢-smoothness of the expected function f we show that f(x¢.1) is bounded
by
T N Ly 2
fxep1) < f(xe) + V(%) (xe1 —%x¢) + 5 [[xe+1 — x| (45)

T
Replace the terms x;41 — X¢ by Y+1(st — x¢) and add and subtract the term ;41 V f, (st — x¢) to
the right hand side to obtain,

_ —~ L
f(xep1) < f(Xt)+’Yt+1(Vf(Xt)*Vft)T(St*Xt)+%+1vftT(St*Xt)+7f||xt+1*Xt||2 (46)

By Lemma 4.3, X7 C & with high probability 1 — ¢, forall ¢ = 1,...,T". Note that if we define
s; = argmaxgey, {(Vf(x¢), x¢ — s)}. Recall that FW gap is G(X) = max,cx: {(Vf(X),Xx —s)}.

We can replace the inner product (ﬂt, s¢) by its upper bound (ﬂt, s}). Applying this substitution
leads to

T r \T =3 Ly 2
Fxe1) < f(%e) + 701 (Vi) = V) (8t — %) + 941V, () — %) + 7||Xt+1 — x|
= (%) + Y41 (VF(xe) = V) (8¢ = %) + 71 (VF, = VF(x2)) T (57 — %)

L
— Y1 VF(xe) (%0 — 8}) + 7f||xt+1 —x?

< f(xe) F v (Vf(xe) — 6\ft)—r(st - Sé) — V416G (x¢) + %thﬂ - XtH2

_ L ’72 D2
< fxe) + 91 DIV F(e) = VFll =t Gxe) + =0
47)
Rearrange the terms for the inequality above, we can obtain,
P L ,.YZ D2
YVe+1G(xt) < f(x¢) = f(Xe41) + 71 DIV f(xe) = Vo)l + ft% (48)
As a simple corollary, since G(x;) > f(x;) — f* when f is convex, we have,
\ \ =, LD
Fxes1) = 7 < (L= 7e) (F(xe) =) + 90 D VF(xe) = V| + L5 @9)

2
(ii) Based on the L,-smoothness of the expected function g we show that g(x;1) is bounded by

L
9(xe41) < g(x¢) + Vg(xe) T (X1 — %) + 7g||xt+1 —x4|? (50)

T
Replace the terms x;41 — X; by V+1(8: — x¢) and add and subtract the term ;11 Vg, (8¢ — X¢) to

the right-hand side to obtain,
—~ —~ T L
9(xe41) < g(xe) + 141 (Vg(xe) = V) T (st = x¢) + 141 Vg, (56— x¢) + 7ngt+1 —x¢|[* (51)

Now by definition of the set X}, using (@t, st —x¢) < g(x0) — Gt + Ko + DK . In addition,
we could use Cauchy—Schwarz inequality to upper bound the second term. Then add and subtract
Yt+19(x0) on the right hand side to obtain,

9(xe+1) < g(xt) +Ye+1(9(%0) — 9(xt)) + 141D Vg(xs) — Vgl
A L (52)
+4+1(9(%t) = G¢) + Vo1 (Ko, + DK1,) + 7g||xt+1 — x|
Then subtract g(x() on both sides,

9(xt+1) — 9(x0) < (1 —ye4+1)(9(xt) — 9(x0))

_) L
+741(D[[Vg(xt) — Vgl + [lg(x¢) — g¢ll + Kot + DKy ¢) + 7g||xt+1 - x?

(53)
and the claim in the lemma follows. O

19

C Proof of Theorem for Algorithm 1

C.1 Proof of Theorem 4.4

Proof. For lower-level, by Lemma B.2, we have

9(%e41) — 9(%0) < (1= ve41)(9(xe) — 9(%0)) + Dyes1(|V9(xe) — Vgyl| + K1 1)
LgDZ’Y? 1 (54)
+ Y1 (lg(xe) — Gell + Koe) + %

By Lemma 4.1, we have ||Vg(x;) — @tH < K 4 and ||g(x;) — §:]| < Ko, with probability 1 — §'.
Plug them in the inequality above to obtain,

gxi41) — g0x0) < (1= 7050)(g0x0) — 90x0)) + 201 (DR + o) + ~22 1081
<(1- m)(g(xt) —g(x0)) (55)
| ADALI0B(60/5) + AL/10g6/5) | L,D?

(t+1)3/2 2(t+1)2

with probability 1 — & for all £. Let C; = 4(DA} + Al) and § = T4'. Then, by applying the
inequality recursively for¢t = 1,...,7T — 1, we obtain that

g(xr) — g(x0) < (1 — 1> (9(x7—1) — g(x0)) + Ol/Q\/W LyD?

T T3/2 272
T—1
B 1 L 01 /2+/Tog (6d/5) 1
- E (1 t+1> (9(x0) = g(x0)) + ; (t 4 1)3/2 H ey
+T71 LyD” Tl:[l (1 !)
. -
— 2(t+1) el i+1

“os 01/2\/10g (6d/5") Z 1 LgDQT_l 1
tlvt+ 2T t:1t+1

(1+1logT)

C1\/log (6d/6") L,D?
< +
VT

2T

C1+/log (6td/9) n L,D*logT
- VT

T

(56)
with probability 1 — 6.

For upper-level, by Lemma B.2, we have
. . _ L DQ’}/Q
i) = 7 < (L= y)(f(x0) = f7) + Dy (IVf(xe) = Vfil]) + % 57)

By Lemma 4.1, we have ||V f(x;) — WtH < % with probability 1 — & . Plug it in the
inequality above to obtain,

* 1 .\, DAYIog(6d/8) | L;D
f(Xt-H) - f S (1 - m)(f(Xt) - f) + 2(t i 1)3/2 + 2(t + 1)2 (58)

20

with probability 1 — & forallt. Let Cy = 2D A} and § = T¥'. Then, by applying the inequality
recursively for¢ = 1,...,7T — 1, we obtain that

1 DAL/log(6d/5") L;D?
foer) = f* < (1 - T> (f(xr—1) = f7) + W e

)i +ZDA1¢W ()

(t+1)3/2 i+1

i=t+1

L;p? o 1
i 1—
T2 o0t I1 < i+1>

1=t+1

PNICORY A DAL \/log 64/ Z 1 LfD?T‘1 1
a tl‘/t+ 2T t:1t+1

)
T
F(x0) — f* 2DA§\/log (6d/5) L;D?
< + +
T VT
)

~

oT (1+1logT)

f(xo) — f* 2DAY\/log(6td/5) LyD?*logT
< + +
T VT T

(59)
with probability 1 — . The theorem is obtained.

C.2 Proof of Theorem 4.5
Proof. For lower-level, by Lemma B.2, we have
9(xt+1) — 9(x0) < (1 = ve41)(9(xt) — 9(x0)) + Dye+1([|Vg(xt) — Vgl + K1,e)

LgD27t2+1
2

(60)
+ Y1 (lg(xe) — Gell + Koe) +

By Lemma 4.1, we have ||Vg(x;) — @t\\ < K4 and ||g(x;) — §:]| < Ko, with probability 1 — 4.
Plug them in the inequality above to obtain,

LgD27t2+1
g(xt41) — 9(%0) < (1 = vey1)(9(xt) — 9(%0)) + 2v74+1(DEK1 ¢ + Kot) + 2
1
<(1- W)g(xt) — g(x0) (61)
2/3 log 6d/5 —|—A2/3 log 6d/5 L9D2
(t+1)13(T +1)2/3 AT 1)

with probability 1 — ¢ for all . Let Cy = 2(DA?/ Sy A(Q)/ 3).Then we can sum all the inequality up
for all ¢ to obtain,

1 C3+/log(6d/d") L,D?
g(xt41) — g(x0) < (1= W)(g(xt) —9(x0)) + (t+ D)I/3(T+1)2/3 + 2T j_ 1)4/3
1 C3+/10g(6Td/d) + L,D?/2
(62)
By induction, we have for all ¢ > 1,
2
o(x1) — 9o C3+/log(6Td/d) + L,D*/2 63)

(T + 1)1/3

with probability 1 — 8, where § = 76 .

21

For upper-level, by Lemma B.2, we have

= Lf7t2+1D2
Y1419 (x¢) < f(xt) = f(Xeq1) + 741DV f(x¢) = V[l + - (64)

—~ 2/3 / ,
By Lemma 4.1, we have |V f(x;) — Vf,|| < Az(tﬁ—)gl(?;lﬁ) with probability 1 — ¢ . Plug it and
Yip1 = 1/(T + 1)?/? in inequality above to obtain,
T—1 T—1 - p2 -1
D wpaG(xe) < f(x0) = f(xr) + DD el VF(xe) = V1| + L Z Vi
t=0 t=0
= AQ/S\/lOg (6d/4") LfD2 = 1 (65)
< f(xo) — flxr +DZ D)/3(T + 1)2/3 D) Z(T+1)4/3

4 L;D? i
< f(xo) = f(x1) + §DA§/3\/W+ 5 (T +11)1/3

Let x4+ = argmin; << g(xt) then

G(x4-) < ’Yt+1g X¢)
Zt 0 Mt+1 =0
1 2/3 Lyp* 1 (66)
<= - DA log(6Td /s
= (T+1)1/3(f(xo) f(XT)+ 09(/)+ 2 (T+1)1/3)
1 2/3 L¢D? 1
with probability 1 — 6, where § = T'§". By letting Cy = 2 DA}/, the theorem is obtained. O

D Proof of Theorem for Algorithm 2

D.1 Proof of Theorem 4.6

Proof. For lower-level By Lemma B.2, we have
9(xi11) = 9(x0) < (1 = ve41)(9(x¢) — 9(x0)) + D41 ([[Vg(xe) = Vgl + Kie)

LgD27t2+1
2

(67)
+ Y1 (lg(xe) — Gel| + Koe) +

By Lemma 4.2, we have ||Vg(x:) — @tH < 4LyDv+/log(12/4") and ||g(x:) —]| <
4L;D~y+/log(12/5") with probability 1 — §. Let C5 = 8D(DL, + L;) and § = T4 . Plug
them in inequality above and let v, = v = log T'/T to obtain,

g(xr11) = g(x0) < (1= 7)(9(x1) — g(x0)) + (C51/10g(12/8") + LyD?/2)* (68)

with probability 1 — §/7". Sum up the inequalities for all 1 < ¢ < T to get,

T
g(xr+1) = g9(x0) = (1 =)" (g(x0) = g(x0)) + (C5/log(12/6") + LyD?/2)7* Y (1 —

k=1
Cs+/1og(12T/8) + LyD?/2)1log T
<0+ (C5y/log(12/8') + L,D?/2)y 0g(127/9) + /2)log
(69)
with probability 1 — 6.
For upper-level, by Lemma B.2, we have,
. . = LyD*v3
fxr) = f* < (U =q7)f(xr-1) = "+ Dyr||[Vf(xr-1) = Vil + —— (70)

22

Now we proceed by replacing the terms ||V f(x;) — ﬂ‘t || by its upper bounds from Lemma 4.2, i.e.

IV£(xe) = V|l < 4Ly Dyy/log (12/3),
fxr) = f* < (L= (f(xr—1) — f*) + LyD*y*(44/log (12/5") + 1/2) (71)

log T
T b

with probability (1 — 5'). And we can choose § = 370" Then by telescope, with y =
obtain,

T
fxr) = f7 < (1=)" (f(x0) = f*) + (44/log (12/8") + 1/2) Ly D*y* Z(l -7)

< (1 =" (f(x0) = [*) + (4y/log (12/6") + 1/2) Ly D*~ (72)

< exp (—T)(f(x0) = f*) + (44/log (12/8") + 1/2) Ly Dy

< (f(x0) — f*)/T + (4/log (12T/5) + 1/2)L; D* log T/ T
with probability 1 — §. Note that without loss of generality, we can assume f(xg) — f* > 0. If it is
less than 0, we can bound it by 0. By letting Cs = 5L D?, the theorem is obtained.

O
D.2 Proof of Theorem 4.7
Proof. For lower-level, by Lemma B.2, we have
g(xt41) — 9(x0) < (1 —y41)(9(xt) — 9(x0)) + Dye+1([[Vg(xt) — Vgl + K1.t)
LgDQ’YtQH (73)

+e(llg(xe) = Gell + Koe) + ——

By Lemma 4.2, we have ||Vg(x:) — @t\\ < 4LyDv+/log(12/4") and ||g(x:) — G <
4L;D~y+/log(12/5") with probability 1 — §. Let C; = 8D(DL, 4+ L;) and § = T4 . Plug
them in inequality above and let -, = 1/+/T to obtain,

1 C7+/log(12/6 L,D?
9(xe41) = 9(x0) < (1= Z75)(9(x2) = g(x0)) + 7@ + =0
(714)
1 C7+/10g(12/68") + L,D?/2
< (11— o)) — g + CVIEIZT) £ LoD
with probability 1 — §/7". Sum up the inequalities for all ¢ > 1 to get,
1 Cm/log 12/5)+ L,D?/2) <
9(xt1) — g(x%0) = (1 - Tl/Q)tE[g(Xo) — 9(%0) Z Tl/g
k=1
Cr7+/1og(12T/8) + L,D?/2
T1/2
(75)
with probability 1 — 6.
For upper-level, by Lemma B.2, we have
S& Lf’YtQ-&—lD2 76
V419 (xe) < f(xe) = f(xig1) + 71 DIV F(xe) = Vil + —— (76)

2

By Lemma 4.2, we have ||V f(x;) — §\ft|| < 4Ly Dv+/log(12/6") with probability 1 — . Plug it
and ;41 = 1/+/T in inequality above to obtain,
T-1 p2 T-1

7 29050 < S o) = Sler) 4D 3 o0V S6) = Il + = 3
t=0 t=0 ()

< f(x0) — f(xr) + Ly D*(4/log(12d") +1/2)

23

Divide both sides by v/T', we can get, Let x;- £ arg min, <, 7 G(x¢), then

T-1 2
1 f(xo0) = f+ LyD?*(4y/log(127/5) + 1/2)
G(xe) < = ; G(x;) < T (78)
with probability 1 — §. By letting Cs = 5L D2, the theorem is obtained. O

E Azuma-Hoeffding-type inequalities

In this section, we present two useful vector versions of Azuma-Hoeffding-type concentration
inequalities with uniform bound assumption or sub-gaussian assumption. They are crucial in our high
probability analysis.

Proposition E.1. (Pinelis and other 1994 [44], Theorem 3.5) Let (1, ...,(; € R? be a vector-
valued martingale difference sequence w.r.t. a filtration {F;}, i.e. for each 7 € 1,...,t, we have
E[¢-|Fr—1] = 0. Suppose that ||(;|| < ¢ almost surely. Then Vit > 1,

T /\2
P> "¢l = X) < dexp(—) (79)

T 2
T=1 427:1 cr

Proposition E.2. (Jin et al. [45], Corollary 7) Let (1, . .., € R? be a vector-valued martingale
difference sequence w.r.t. a filtration {F.}, i.e. for each T € 1,...,t, we have E[(;|F,_1] = 0.
Suppose that Elexp(||(,]|?/c2)] < exp(1). Then there exists a absolute constant c such that, for any
0 > 0, with probability at least 1 — 6,

T
I ¢l <e
T=1

(80)

This proposition was also used in previous literature including [46] and [37]. It is common to use
such martingale inequality to obtain some high-probability results recently.

F Experiment details

In this section, we include more details about the numerical experiments in Section 5. For complete-
ness, we briefly introduce the update rules of aR-IP-SeG in [16] and DBGD in [13]. In the following,
we use the notation IIz(+) to denote the Euclidean projection onto the set Z.

The aR-IP-SeG algorithm is given by,

Vi1 = z(xe — w(V (%2, 00)) + pe V(xe, 1))
xer1 =z (% — 1% (Vf(ye, ‘9;&)) + Ptvg()’tyf;))
Dip1 =T+ (mp)” (81)
_ Ty + (wpe) yen
Yt+1 =
|

where ~; is the stepsize, p; is the regularization parameter, and y is the output of the algorithm. In
this experiment, we choose v; = vo/(t 4+ 1)/ and p; = po(t 4 1)'/* for some constants o and py.
The DBGD-sto is a stochastic version of DBGD, which simply replaces the gradients in DBGD with
stochastic gradients. Although the stochastic version of DBGD does not have a theoretical guarantee,
it has been used to solve stochastic simple bilevel optimization problems in [13], which worked pretty
well empirically. Hence, we use it as a baseline for solving stochastic simple bilevel problems and
compare it with our proposed algorithms. The DBGD algorithm is given by

Xp+1 = Xk — Yk (Vf (xk) + A Vg (x1))

where 7y is the stepsize and we set Ay as

24

Ak—max{“"k) VS (x3), Vg (xk)) o} and $(x) = min {a(g(x) - §), B Vo(x)|?}
1V (xe) I

where o and (8 are hyperparameters and § is a lower bound of ¢*. In this experiment, we choose
g = 0. We also note that [13] only considered unconstrained simple bilevel optimization, i.e. Z = R4,
We further project x; onto Z for each iteration to ensure the constraints are satisfied.

F.1 Over-parameterized regression

Dataset generation. The original Wikipedia Math Essential dataset [30] composes of a data matrix
of size 1068 x 731. We randomly select one of the columns as the outcome vector b € R'%%® and
the rest to be a new matrix A € R1968x731 We gset constraint parameter A = 10 in this experiment.
Initialization. We run the algorithm, SPIDER-FW [40], with stepsize chosen as y; = 0.1/(¢ + 1) on
the lower-level problem in (1). We terminate the process to get x as the initial point for both SBCGI
1 and SBCGF 2 after 10° stochastic oracle queries.

Implementation details. We query stochastic oracle 9 x 105 times with stepsize v; = 0.01/(t + 1)
and v = 10~° for SBCGI 1 and SBCGF 2 with K; = 10~%/+/t + 1, respectively. In each iteration,
we need to solve the following subproblem induced by the methods,

min (Vf(Be),s) st lslli <A (Vg (Br),s = Br) < g(Bo) — 9 (Br)- (82)
Introduce s*, s~ > 0 such that s = sT — s~. Then we can reformulate the problem above as follows,
. + _ —
i (Vf (Br),s" —s7)
st.sT,s™ >0,(sT, 1)+ (s7,1) <A\ (Vg (Br).s" —s™ —Br) <g(Bo) —g(Br),

where 1 € R? is the all-one vector.
For aR-IP-SeG, we choose 7o = 10~7 and py = 10. For DBGD, we set & = 3 = 1 and ; = 1076.

(83)

F.2 Dictionary learning

Dataset generation. We generate 500 sparse coefficient vectors {xl}fiq and {x k}i"ol with 5 random
nonzero entries, whose absolute values are drawn uniformly from [0.2, 1]. The entries of the random
noise vectors {n;}>") and {nﬁc}iiol are drawn from i.i.d. Gaussian distribution with mean 0 and
standard deviation 0.01.

Initialization. We use a similar initialization procedure as [12], which consists of two phases. In
the first phase, we run the standard Frank-Wolfe algorithm on both the variables D € R?°*40 and
X € R40x250 for 104 iterations with the stepsize 7 = 1/4/t + 1. Next, in the second phase, we
fix the variable X and only update D usmg the Frank-Wolfe algorlthm with exact line search for
additional 10 iterations to obtain D and X as the initial point for the full bilevel problem.
Implementation Details. We choose § = 3 in both problems (5). To be fair, all four algorithms
start from the same initial point. We slightly modify the initial point by letting D € R25%50 pe
the concatenation of D € R25%40 and 10 columns of all zeros vectors. Furthermore, we initialize
another variable X randomly by choosing its entries from a standard Gaussian distribution and then
normalizing each column to have a £;-norm of §. We choose the stepsize as v, = 0.1/(t + 1)%/3 and
v = 1073 for our SBCGI 1 and SBCGF2 with K; = 0.01/(t + 1)'/2, respectively. Empirically, we
observe that taking one sample per iteration leads to a very unstable process in this problem. In this
case, we choose a mini-batch of size 8 for SBCGI, aR-IP-SeG, and the stochastic version of DBGD.
For each iteration, we will solve the following subproblem,

min <fo, (Dk, xk) , f)> s.t. \ 1, <vg (f)k) D f)k> <g (130) _g (f)k)
D
(84)
The above problem can be reformulated by using the KKT condition, which is equivalent to get a
root of the following one-dimensional nonlinear equation involving A > 0 :

D =TIz (V/p (De.X) + A9 (Dy)), (Vg (Dx),D~Dx) =g (Do) g (Dr) (83)

d;|| <
2

25

1
SBCGI 10 SBCGI
10% SBOGF SBCGF
B—bpbbb b b aR-IP-SeG aR-IP-SeG
- . +$-DBGD-Sto| - DBGD-Sto
2 = g 0
110 | £ 10
= A—b = =10° &
107 [[©-SBCGI -
A SBOGF
aR-IP-SeG 107!
o [IBZDBGD-St0 104
10 0 100 200 300 0 100 200 300 0 100 200 300

time (s)

(a) Lower-level gap

time (s)

(b) Upper-level gap

time (s)

(c) Test error

Figure 3: Comparison of SBCGI, SBCGEF, aR-IP-SeG, and DBGD-Sto for the over-parameterized

regression problem

I o T R

©-SBCGT

J(DiXy)

4> DBGD-Sto|

o
el

e
@

o
=

Recovery rate

e sl

©-SBCGI

A SBCGF
aRIP-SeG

4> DBGD-Sto|

60

time (s)

20

40 60

time (s)

80 100 120 0 20 40 60

time (s)

80 100 120

(a) Lower-level gap (b) Upper-level gap (c) Recovery rate

Figure 4: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving the dictionary
learning problem.

where the projection onto Z = {]3 € R25%50 . H&ZH <lji=1,..., 50} is equivalent to project
2

each column on the Euclidean ball. In practice, the reformulated problem can be solved efficiently by

MATLAB'’s root-finding solver.

For aR-IP-SeG, we choose 7o = 10~% and pg = 1. For the stochastic version of DBGD, we set
a=p3=100andy; =5 x 1073,

Additional plots illustrating the comparison of the studied methods in terms of runtime rather than
the number of sample used are provided in Figure 3 and Figure 4.

F.3 Experiments with different random seeds

We further repeat the experiment 10 times with different random seeds to see more realizations of the
stochastic algorithms. The results are reported in Figure 5 and Figure 6. The solid lines denote the
average statistics over 10 trials of the algorithms. While the shaded regions surrounding each line
reflect the span of all the random instances involved. Figure 5 and Figure 6 present similar results as
Figure 1 and Figure 2, which eliminates the possibility of choosing a particularly good instance.

©-SBCGI
SBOGF 10°

l9(B) — g°|

[} 2 4 6 8
number of samples

(a) Lower-level gap

10

x10°

©-SBCGI
10 @rSBCGF
aR-IP-ScG
$-DBGD-sto
% 2 4 6 8
number of samples

10
x10°

(b) Upper-level gap

Test error

S,

0

1

©-SBCGI

-&-SBCGF
aR-IP-SeG

5 DBGD-sto

10

2 4 6 8
number of samples

12
x10°

(c) Test error

Figure 5: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (3) with

10 different random seeds

26

©-SBCGI
- SBCGF
aR-IP-SeG
4 DBGD-sto
©-SBCGI
0.2 &-SBCGF

(a) Lower-level gap (b) Upper-level gap (c) Recovery rate

Figure 6: Comparison of SBCGI, SBCGEF, aR-IP-SeG, and DBGD-Sto for solving Problem (5) with
10 different random seeds

- SBCGT A
-© SBCGI-M Sl B
-FW ot TS o _ SBCGI

A:ggglél v 084l U gsmtm.m

A SBCGF-M < ‘ STORM-FW

SPDIER-FW]| |4 SBCGF

4 SBCGF-M
SPIDER-FW|

9(Dy) — g(Do)

(a) Lower-level gap (b) Upper-level gap (c) Recovery rate

Figure 7: Comparison of SBCGI, SBCGF, SBCGI-M, SBCGF-M, STORM-FW, and SPIDER-FW
for solving Problem (5).

F.4 TImportance of the right cutting plane

In this section, we numerically illustrate the importance of choosing the right cutting plane on
Example 2 (dictionary learning). Specifically, we compare our proposed methods with the ones
without a cutting plane and with an unregularized cutting plane (without additional term K3).

If we replace the stochastic cutting plane (9) with the unregularized cutting plane (8) in SBCGI 1 and
SBCGEF 2, then the algorithm usually fail at some point in the process, depending on the datasets and
parameters chosen, based on our experimental observations. More specifically, algorithms’ failure
means that the subproblem of dictionary learning (85) is infeasible. So we slightly modify it by
adding a checkpoint before solving the subproblem. If the subproblem is infeasible at the current

iteration, then we choose the update direction s; = Vg,. This adjustment prevents unnecessary
interruptions during the process and enforce the algorithms to focus only on the lower-level problem
when the subproblem is infeasible. We denote the modified algorithms SBCGI-M and SBCGF-M.
Moreover, we also take SBCGI and SBCGF without cutting planes into consideration, denoted as
STORM-FW and SPIDER-FW. In fact, in this case, the bilevel algorithms degenerate to single-level
projection-free algorithms similar to algorithms in [37] and [40].

Figure 7 (a) indicates that SBCGI-M and SBCGF-M focus more on the lower-level problem due
to the design of the algorithms and extremely unstable as we can see in Figure 7 (b)(c). While
STORM-FW and SPIDER-FW only focus on the upper-level problem, which leads to terrible results
on the lower-level gap and recovery rate.

27

	Introduction
	Related work

	Preliminaries
	Motivating examples
	Assumptions and definitions

	Algorithms
	Conditional gradient algorithms with random sets: stochastic and finite-sum

	Convergence analysis
	High probability bound for the error terms
	Convergence and complexity results for the stochastic setting
	Convergence and complexity results for the finite-sum setting

	Numerical experiments
	Additional Motivating Examples
	Lexicographic optimization
	Lifelong learning

	Supporting lemmas
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Improvement in one step

	Proof of Theorem for Algorithm 1
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Proof of Theorem for Algorithm 2
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	Azuma-Hoeffding-type inequalities
	Experiment details
	Over-parameterized regression
	Dictionary learning
	Experiments with different random seeds
	Importance of the right cutting plane

