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Abstract

Sound and complete algorithms have been pro-
posed to compute identifiable causal queries using
the causal structure and data. However, most of
these algorithms assume accurate estimation of
the data distribution, which is impractical for high-
dimensional variables such as images. On the
other hand, modern deep generative architectures
can be trained to sample from high-dimensional
distributions. However, training these networks
are typically very costly. Thus, it is desirable
to leverage pre-trained models to answer causal
queries using such high-dimensional data. To ad-
dress this, we propose modular training of deep
causal generative models that not only makes
learning more efficient, but also allows us to uti-
lize large, pre-trained conditional generative mod-
els. To the best of our knowledge, our algorithm,
Modular-DCM is the first algorithm that, given
the causal structure, uses adversarial training to
learn the network weights, and can make use of
pre-trained models to provably sample from any
identifiable causal query in the presence of la-
tent confounders. With extensive experiments
on the Colored-MNIST dataset, we demonstrate
that our algorithm outperforms the baselines. We
also show our algorithm’s convergence on the
COVIDx dataset and its utility with a causal in-
variant prediction problem on CelebA-HQ.

1. Introduction

Evaluating the causal effect of an intervention on a system
of interest is one of the fundamental questions that arise
across disciplines. Pearl’s structural causal models (SCMs)
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Figure 1. Causal graph for the Xraylmg example (top) and its
deep causal generative model (bottom). For each variable, an NN
(Gc,Gx,Gp) is trained to mimic the true mechanism.

provide a principled approach to answering such queries
from data. Using SCMs, today we have a clear understand-
ing of which causal queries can be answered from data,
and which cannot without further assumptions (Pearl, 1995;
Shpitser & Pearl, 2008; Huang & Valtorta, 2012; Barein-
boim & Pearl, 2012b). These identification algorithms find
a closed-form expression for an interventional distribution
using only observational data, by making use of the causal
structure via do-calculus rules (Pearl, 1995). Today, most
of our datasets contain high-dimensional variables, such
as images. Modern deep learning architectures can handle
high-dimensional data and solve non-causal machine learn-
ing problems such as classification, detection or generation.
The existing causal inference algorithms can answer any
identifiable causal question, but they cannot handle high-
dimensional variables as they require access to the joint
distribution, which is not practical with image data.

As an example, consider a healthcare dataset of Covid symp-
toms (C), Pneumonia diagnosis (/V) and chest X-rays (X)
of patients from hospitals in two cities with different socio-
economic status, which we do not observe to ensure patient
privacy. Then, hospital location acts as a latent confounder
for both C and N since it might have effect on how likely pa-
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tients are getting sick on average and if they have access to
better trained doctors. In this scenario, the data-generating
process can be summarized by the causal graph in Figure 1.
We would like to understand how likely an average person
across the two cities is to be diagnosed with pneumonia if
they have Covid symptoms, i.e., the causal effect of Covid
symptoms on pneumonia diagnosis, Pc(N). The causal
effect can be computed from the observational distribution
as fx#, p(z|e)p(n|z, ¢ )p(c') through the front-door adjust-
ment (Pearl, 2009). However, it is not possible to reliably es-
timate P(x|c) or marginalize over all possible XrayImage
due to its high dimensionality. To the best of our knowledge,
no existing algorithm can address this problem.

Although the use of such structured deep generative mod-
els has been explored recently, existing solutions either
assume no unobserved confounders (Kocaoglu et al., 2018;
Pawlowski et al., 2020), consider specific graphs (Louizos
et al., 2017; Zhang et al., 2021) or are effective for low-
dimensional variables (Xia et al., 2021; 2023) due to the
challenge of learning high-dimensional joint distribution.
Furthermore, these methods do not have the flexibility to
use pre-trained models without affecting their weights. This
is useful since state-of-the-art deep models, such as large
image generators, can only be successfully trained by a few
industrial research labs with expensive resources.

In this paper, we propose a modular, sampling-based solu-
tion to address the high-dimensionality challenge the exist-
ing algorithms face while learning deep causal generative
models. Our solution uses deep learning architectures that
mimic the causal structure of the system such as in Figure
1b. We offer efficient and flexible training facilitated by
our key contribution: the ability to identify which parts
of the deep causal generative models can be trained sepa-
rately (such as {Gx } in Figure 1b), and which parts should
be trained together ({Gs,Gp}). We show that after this
modularization, there is a correct training order for each
sub-network (ex:{Gx} — {Ggs, Gp}). Our algorithm fol-
lows such an order to train the sub-networks while freezing
weights of already trained ones in the previous steps. After
training, our method can be used to obtain samples from the
interventional distribution (ex: P (INV)), which is implicitly
modeled. Thus the modularity in our method enables the
flexibility to plug in pre-trained generative networks, and
paves the way to utilize large pre-trained models for causal
inference. The following are our main contributions.

* We propose an adversarial learning algorithm for
training deep causal generative models with latent
confounders for high-dimensional variables. We
show that, after convergence, our model can produce
high-dimensional samples according to interventional
queries that are identifiable from the data distributions.

* To the best of our knowledge, ours is the first algorithm

that can modularize the training process in the pres-
ence of latent confounders while preserving their the-
oretical guarantees, thereby enabling the use of large
pre-trained models for causal effect estimation.

» With extensive experiments on Colored-MNIST, we
demonstrate that Modular-DCM converges better com-
pared to the closest baselines and can correctly gen-
erate interventional samples. We also show our con-
vergence on COVIDx CXR-3 and solve an invariant
prediciton problem on CelebA-HQ.

2. Related Works

In recent years, a variety of neural causal methods have
been developed in the literature to answer interventional
queries (Gao et al., 2022; Jerzak et al., 2022; Dash et al.,
2022; Qin et al., 2021; Castro et al., 2020). Shalit et al.
(2017); Louizos et al. (2017); Nemirovsky et al. (2020) offer
to solve the causal inference problem using deep generative
models. Yet, they do not offer theoretical guarantees of
causal estimation in general, but for some special cases.

Researchers have recently focused on imposing causal struc-
tures within neural network architectures. Particularly, Ko-
caoglu et al. (2018) introduced a deep causal model that
produces interventional image samples after training on
observational data. Chao et al. (2023) offer similar contri-
bution with diffusion-based (Song et al., 2020) approaches.
Pawlowski et al. (2020); Ribeiro et al. (2023) apply normal-
izing flows and variational inference to predict exogenous
noise for counterfactual inference. Dash et al. (2022) use
an encoder and a generator to produce counterfactual im-
ages in order to train a fair classifier. A major limitation
of these works is the causal sufficiency assumption, i.e.,
each variable is caused by independent unobserved vari-
ables. Semi-Markovian models (Tian et al., 2006) which
allow unobserved confounders affect pairs is more practical.

For semi-Markovian models, Xia et al. (2021); Bal-
azadeh Meresht et al. (2022); Xia et al. (2023) follow a
similar approach as Kocaoglu et al. (2018) to arrange neural
models as a causal graph. They propose a minimization-
maximization method to identify and estimate causal effects.
Xia et al. (2023) extend these to identify and estimate coun-
terfactual queries.

Most of the existing methods described above can handle
only discrete or low-dimensional (Bica et al., 2020; Yang
et al., 2021) variables and it is not clear how to extend
their results to continuous high-dimensional image data.
Moreover, if these methods are given a pre-trained neural
network model, they do not have the ability to incorporate
them in their training. To the best of our knowledge, our
approach is the first to address this problem in the presence
of unobserved confounders, unlocking the potential of large
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pre-trained models for causal inference.

3. Background

Definition 3.1 (Structural causal model (SCM) (Pearl,
2009)). An SCM M is a 5-tuple M = (V, N, U, F, P(.)),
where each observed variable V; € V is realized as an eval-
uation of the function f; € F which looks at a subset of
the remaining observed variables Pa; C )V, an unobserved
exogenous noise variable F; € N, and an unobserved con-
founding (latent) variable U; € Y. P(.) is a product joint
distribution over all unobserved variables A U /.

Each SCM induces a directed graph called the causal graph,
or acyclic directed mixed graph (ADMG) with V as the
vertex set. The directed edges are determined by which
variables directly affect which other variable by appearing
explicitly in that variable’s function. Thus the causal graph
is G = (V, E) where V; — V; iff V; € Pa;. The set Pa;
is called the parent set of V;. We assume this directed graph
is acyclic (DAG). Under the semi-Markovian assumption,
each unobserved confounder can appear in the equation of
exactly two observed variables. We represent the existence
of an unobserved confounder between X, Y in the SCM by
adding a bidirected edge X <> Y to the causal graph. These
graphs are no longer DAGs although still acyclic.

V; is called an ancestor for V; if there is a directed path
from V; to V;. Then V} is said to be a descendant of V;.
The set of ancestors of V; in graph G is shown by Ang(V;).
A do-intervention do(v;) replaces the functional equation
of V; with V; = v; without affecting other equations. The
distribution induced on the observed variables after such an
intervention is called an interventional distribution, shown
by P, (V). Py(V) = P(V) is called the observational dis-
tribution. In this paper, we use £; and L2 as notation for
observational and interventional distributions, respectively.

Definition 3.2 (c-components). A subset of nodes is called
a c-component if it is a maximal set of nodes in G that are
connected by bi-directed paths.

4. Deep Causal Generative Model with Latents

Suppose the ground truth data-generating SCM is made up
of functions X; = f;(Pa;, E;). If we have these equations,
we can simulate an intervention on, say X5 = 1, by eval-
uating the remaining equations. However, we can never
hope to learn the true functions and unobserved noise terms
from data. The fundamental observation of Pearl is that
even then there are some causal queries that can be uniquely
identified as some deterministic function of the causal graph
and the joint distribution between observed variables, e.g.,
p(nldo(c)) = &(G,p(c,z,n)) in Figure la for some de-
terministic £. This means that, if we can, somehow, train
a causal model made up of neural networks that fits the

data ~ p(v), and has the same causal graph, then it has
to induce the same interventional distribution p(d|do(s)) as
the ground truth SCM, irrespective of what functions the
neural network uses. This is a very strong idea that allows
mimicing the causal structure, and opens up the possibility
of using deep learning algorithms for performing causal
inference through sampling even with high-dimensional
variables. This is the basic idea behind (Kocaoglu et al.,
2018) without latents. Motivated by their work, we define
a deep causal generative model for semi-Markovian model
and show identifiability ! results. Now, we formalize the
above simple observations.

Definition 4.1 (DCM). A neural net architecture G is called
a deep causal generative model (DCM) for an ADMG G =
(V, &) if it is composed of a collection of neural nets, one G;
for each V; € V such that i) each G; accepts a sufficiently
high-dimensional noise vector Nj, ii) the output of G; is
input to G; iff V; € Pag(V;), iil) N; = N; iff V; < Vj.

We define @ as the distribution induced by the DCM. Noise
vectors N; replace both the exogenous noises and the unob-
served confounders in the true SCM. They are of sufficiently
high dimension to induce the observed distribution. We say
that a DCM is representative enough for an SCM if the neu-
ral networks have sufficiently many parameters to induce
the observed distribution induced by the SCM. For the neu-
ral architectures of variables in the same c-component, we
can consider conditional GANs (Mirza & Osindero, 2014),
as they are effective in matching the joint distribution by
feeding the same prior noise IV; = N (as confounders) into
multiple generators. For variables that are not confounded
(N; # N;), we can use conditional models such as diffusion
models (Ho & Salimans, 2022). With Defintion4.1, we have
the following, similar to (Xia et al., 2021):

Theorem 4.2. Consider any SCM M =
(G,N,U,F,P(.)). ADCM G for G entails the same
identifiable interventional distributions as the SCM M if it
entails the same observational distribution.

Thus, even with high-dimensional variables in the true SCM,
given a causal graph, in principle, any identifiable interven-
tional query can be sampled from, with a DCM that fits
the observational distribution. However, to learn the DCM,
(Kocaoglu et al., 2018; Xia et al., 2021) suggest training
all neural nets G in the DCM together. Such an approach
to match the joint distribution containing all low and high-
dimensional variables is empirically challenging in terms
of convergence. Any modularization not only is expected
to help train more efficiently for better solution quality, but
also allow the flexibility to use pre-trained image generative
models. Now, we focus on uncovering how to achieve such
modularization and how it contributes along the two aspects.

dentifiability here refers to our ability to uniquely sample
from an interventional distribution. See Definition C.1 for details.
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Figure 2. (Left:) Modular training in 3 steps. (Right:) Causal graphs and their h-graphs showing modularization of the training process.

4.1. Modular-DCM Intuitive Explanation

Consider the graph G in Figure 2a. Suppose, we have an
observational dataset D ~ P(V). Based on Theorem 4.2,
we can to sample from different £, distributions such as
P(x3|do(x1)) and P(z2|do(z1)) by training a DCM G that
is consistent with G and fits the observational data P()).
The DCM will contain one feed-forward neural net per
observed variable, i.e., G = {Gz,,Gz,,Gz,,Gx,,Gx, }.
If we follow the naive way and jointly train all networks in G
together, we have to match P(x1, 22, 21, 22, 23) containing
all low and high dimensional variables in a single training
phase. Matching this joint distribution by training all models
at the same time could be difficult, since we are attempting
to minimize a very complicated loss function. Thus, the
question we are interested in is, which neural nets can be
trained separately, and which need to be trained together to
be able to fit the joint distribution.

Suppose we first train the causal generative model G, , i.e.,
learn a mapping that can sample from P(z1|z3, x1). Even if
we provide the unobserved confounder /N; (Definition 4.1),
which also affects Z5 and Zs, the neural network might
learn a mapping that later makes it impossible to induce the
correct dependence between Z1, Z5, or Z1, Z3 no matter
how Gz, or Gz, are trained later. This is because fitting the
conditional P(Z;|Z3, X1) does not provide any incentive
for the model Gz, to induce the correct confounding depen-
dency (through the latent variables) with Z5 and Zs. If the
model ignores the confounding dependence, it cannot in-
duce the dependence between Z3 and Z5 conditioned on Z;
(Z3 /L Z5|Zy). This observation suggests that the causal
mechanisms of variables that are in the same c-component
should be trained together. Therefore, we have to train
[Gz,,Gz,,Gz,] together; similarly [Gx,, Gx,] together.

To match the joint P(V) for semi-Markovian models while
preserving the integrity of c-components, we propose using
Tian’s factorization (Tian & Pearl, 2002). It factorizes P()V)

into c-factors: the joint distributions of each c-component
C; intervened on their parents, i.e., Ppa(c;)(¢;)-

P(v) = P(x1,22|do(21)) P(21, 22, z3|do(21)) (1)
Due to this factorization, fitting P()) is equivalent to fitting
each of the c-factors. If we had access to the £ distribu-
tions from do(z;) and do(z1), V2121, we could intervene
on Gz, and Gy, in the DCM to obtain do(z1) and do(x1)
samples and train the models to match these Lo distributions.
However, we only have access to the P()) dataset.

Note that it is very difficult to condition in feedforward mod-
els during training, which is the case in a DCM. To sample
from Q(x2|z1) it is not sufficient to feed z; to the network
Gx,. In fact, observe that this is exactly the intervention
operation, and would give us a sample from Q(z2|do(21)).
It is trivial to intervene on the inputs to a neural network,
but highly non-trivial to condition since feedforward models
cannot easily be used to correctly update the posterior via
backdoor paths. Thus, we need to find some interventional
distribution such that the DCM can generate samples for
this distribution and can be trained by comparing them with
some equivalent true observational samples.

Our key idea is to leverage the do-calculus rule-2 (Pearl,
1995) to use observational samples and pretend that they
are from these L distributions. This gives us a handle on
how to modularize the training process of c-components.
For example, in Figure 2a, c-factor P(z1, 22, z3|do(z1)) =
P(z1, 22, 23|21) since do-calculus rule-2 applies, i.e., inter-
vening on X is equivalent to conditioning on X;. We can
then use the conditional distribution as a proxy/alternative
to the c-factor to learn Q(z1, 22, z3|do(z1)) with the DCM.
However, P(x1,x2|do(z1)) # P(x1,22]z1). To overcome
this issue, we seek to fit a joint distribution that implies
this c-factor, i.e., we find a superset of X1, X2 on which
rule-2 applies. We can include Z; into the joint distribution
that needs to be matched together with X, X5 and check if
the parent set of { X1, Xo, 7, } satisfy rule-2. We continue
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including variables until we reach the joint P(x1, 22, 21, 23)
to be the alternative distribution for { X7, X2 }’s c-factor.

After identifying which sub-networks of the DCM can
be trained separately, we need to decide a valid or-
der in which they should be trained. For the same
example, we can first train [Gz,,Gz,,Gz,] together
to induce Q(z1,22,23|do(z1)) = P(z1,22,23)21) =
P(z1, 22, z3|do(x1)). This is shown in step (2/3) in Fig-
ure 2a: We can produce samples from the mechanisms
of Z1,Zs, Zs by intervening on their parent X; with real
observations from dataset D. Thus, we do not need Gx,
to be pre-trained. Now, we train mechanisms of the next
c-component [Gx,,Gx,] in our training order (step 3/3).
As discussed, we need to ensure Q(z1, T2, 21, 23|do(0)) =
P(J)1, T2, 21, 23|d0(®)) = P(l‘l, T2, 21, 2’3‘@) Since mech-
anisms of Z1, Z3 were trained in the previous step, we can
freeze the network weights of [Gz,, Gz,]. These are used to
correctly sample from Z; given X1, and feed this correctly
sampled value into the network of X5. In Appendix D.1, we
show that the c-factors in Equation 1 will correctly match
the true c-factors after fitting these two conditional prob-
abilities in this order. Therefore, DCM matches the joint
distribution P(V) as well. On the other hand, if we first
trained the networks [G x, , Gx,], it would not be possible
to match the joint P(x1, z2, 21, 23) as the mechanisms of
Z1, Z3 are not yet trained. Thus, this order would not work.

4.2. Training Algorithm for Modular-DCM

In this section, we generalize the discussed ideas, into a
modular algorithm that has mainly two phases: 1) arranging
the c-components in a valid training order and 2) training
(sets of) c-components to match their c-factors.

Arranging the c-components: Consider a c-component Cy.
When should a c-component Cy be trained before C;? Since
we need rule 2 of do-calculus to hold on the parents of C;
for training, if C contains some parents of C; that are
located on the backdoor paths between any two variables
in CY, then C'; must be pre-trained before C;. Conditioning
and intervening on those parents of C; is not the same, i.e.,
P(Ct|do(pa(Cy) N C5) # P(Ctlpa(Cy) N Cs). Thus we
include pa(Cy) N C in the joint distribution that we want to
match for C;, which requires those parents in C' to be pre-
trained. For the front-door graph in Figure 2b, we observe
that P(X,Y|do(Z)) # P(X,Y|Z). Thus, we train Gx,
Gz, Gy in [CZ : {Gz}] — [CXY : {Gx, Gy}} order.

To obtain a partial order among all c-components, we con-
struct a directed graph structure called H-graph that contains
c-components as nodes. While adding edges, if any cycle
is formed, we merge c-components on that cycle into a
single h-node indicating that they will need to be trained
jointly. Thus some h-nodes may contain more than one
c-component. The final structure is a DAG and gives us a

Algorithm 1 Modular Training(G, D)

1: Input: Causal Graph G, Dataset D.
2: Initialize DCM G

3: H <+ Construct_Hgraph(G)

4: for each Hj, € H in partial order do
5:  Initialize Ax < 0
6
7
8
9

while IsRule2(Hy, Ax) = 0 do
.Ak < Pac;(Hk, .Ak)
Gu,, < TrainModule(Gg,, G, Hi, Ak, D)
: Return: G

valid partial order 7 for modular training (Proposition D.14).
Formally, an #H-graph is defined as:

Definition 4.3 (#-graph). Given a causal graph G with c-
components C = {C1,...C,}, let { Hy } 1 be some partition
of C. The directed graph (V3, Ey) where Vyy = {Hj}i
and Hy — H; € Ey iff P(Hy|do(pag(H;) N Hy)) #
P(H¢|pac(H:) N Hy), is called an H-graph for G if acyclic.

We run Algorithm 7:Contruct_Hgraph() to build an H-
graph by checking the edge condition on line 5. In Fig-
ure 2 and Appendix E.1, we provide some examples of
‘H-graphs. Note that we only use the H-graph to obtain
a partial training order of h-nodes. For any h-node Hy,
An(Hy) and Pa(Hy) below refer to ancestors and par-
ents in the causal graph G, not in the H-graph. Train-
ing c-components: We follow H-graph’s topological order
and train the c-components in an h-node Hy. If we can
match Py, g, ) (Hg), it will ensure that the DCM will learn
their corresponding c-factors Py, (c;)(C;),VC; € Hy, as
well. As mentioned earlier, we can generate fake interven-
tional samples from Qp,(x,)(Hy) induced by the DCM,
but they cannot be used to train Gy, as we do not have
access to real data samples from the interventional distri-
bution P, (g7, )(Hy). Thus, we train Gy, to learn a larger
joint distribution that can be obtained from the observa-
tional dataset as an alternative to its c-factors. We search
for a set Aj, that can be added to the joint with Hy such
that Ppo sy, a) (H, Ax) = P(Hg, Ar|Pa(Hy, Ag)). ie.,
true interventional and conditional distribution are the same.
This enables us to take conditional samples from the in-
put dataset and use them as true interventional samples to
match them with the DCM-generated fake interventional
samples from Qpqa(m, . A,)(Hr, Ax) and train Gy,. The
above condition is generalized as a modularity condition:

Definition 4.4. Let Hy, be an h-node in the H-graph. A set
A € Ang(Hy) \ Hy, satisfies the modularity condition if
it is the smallest set with P(Hy, Ay|do(Pa(Hy, Ax))) =
P(Hk, Ak|Pa(Hk, .Ak))

As mentioned earlier, such £; and L5 distributional equiva-
lence holds when the do-calculus rule-2 applies:

Ppa(m, ) (Hi, Ax) = P(Hg, Ax|Pa(Hy, Ay)),

if (Hg, Ay, 1L Pa(Hy, Ar)) @

Gpa(Hy,Ay)
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This suggests a graphical criterion to find such a set Ay
and we apply it at line 6 in Algorithm 1. Intuitively, if the
outgoing edges of Pa(Hjy, Ay) are deleted (G'pq(,,.A,))
and they become d-separated from { Hy, A}, then there
exists no backdoor path from Pa(Hy, Ay) to {Hy, A} in
G. Therefore, for a specific Hy, we start with A, = () and
check if Pa(Hy, Ay) satisfies the conditions of the rule-2
for {Hy, Ax}. If not, we add parents of { Hy, A} to Ag.
We include ancestors, since only they can affect Hy,’s mech-
anisms from outside of the c-component. We continue the
process until Pa(Hy, Ay) satisfies rule-2. Finally, finding
a set Ay, satisfying the modularity condition implies that we
can train G, by matching:

Qpa(H,.A) (Hi, Ay) = P(Hy, Ay |Pa(Hy, Ay))
; Now training: Hy, Pre-trained: Ay,

3

We utilize adversarial training to train the generators in G g,
on observational dataset D to match the above. This is done
by Algorithm 3: TrainModule() called in line 8. More
precisely, this sub-routine uses all mechanisms in { Hy, Ay }
to produce samples but only updates the mechanisms in
G, corresponding to the current h-node and returns those
models after convergence. Even though we will train only
Gup, ie., Gy,VV € Hy, Ay appears together with Hy, in
the joint distribution that we need to match. Thus, we use
pre-trained causal mechanisms of Ay, i.e., Gy,VV € A
here. The partial order of H-graph ensures that we have
already trained Ay, before Hy,.

Training G 7, to match the distribution in Equation 3, is suf-
ficient to learn the c-factors Ppq(c,)(Cj), VC; € Hy,. After
training each G, according to the partial order of H-graph,
Modular-DCM will learn a DCM that induces Q(V) = P(V).
Finally, the trained DCM can sample from interventional Lo
distributions identifiable from P()). These are formalized
in Theorem 4.5. Proofs are in Appendix D.6.

Assumptions: 1. The true ADMG is known. 2. The causal
model is semi-Markovian. 3. The data distribution is strictly
positive. 4. Each conditional generative model G;, Vi in the
DCM can correctly learn the target conditional distribution.

Theorem 4.5. Consider any SCM M =
(G,N, U, F,P(.).  Suppose Assumptions 1-4 hold.
Algorithm 1 on (G,D) returns a DCM G that entails )
the same observational distribution, and ii) the same
identifiable interventional distributions as the SCM M.

5. Experimental Evaluation

We present Modular-DCM performance on two semi-
synthetic Colored-MNIST experiments and training con-
vergence on a real-world COVIDx CXR-3 dataset provided
in Appendix F.5. We also propose a solution to an invari-
ant prediction problem for classification in CelebA-HQ.

For distributions and image quality comparison, we use
metrics such as the total variation distance (TVD), the KL-
divergence, and the Frechet Inception Distance (FID). We
share our implementation at https://github.com/
Musfigshohan/Modular—DCM.

5.1. Semi-Synthetic Colored-MNIST Experiments

MNIST frontdoor graph: We constructed a synthetic SCM
that induces the graph in Figure 4a. Image variable I shows
an image of the digit value of Digit(D). We pick some
random projection of the image as Attribute(A) such that
P(A|do(D = 0)) # P(A|do(D = 1)) holds, ensuring a
strong causal effect. A hidden variable U affects both D
and A such that P(A|do(D)) # P(A|D). Suppose we are
given a dataset D sampled from P(D, A, I). Our goal is
to estimate the causal effect P(A|do(D)). We can use the
backdoor criterion (Pearl, 1993), to measure the ground
truth P(A|do(D)) = [,, P(A|D,U)P(U).

To estimate P (A|do( )) by training on the observational
dataset D[D, A, I], we construct the Modular-DCM archi-
tecture with a neural network Gp having fully connected
layers to produce D, a CNN-based generator G to generate
images, and a classifier G 4 to classify MNIST images into
variable A such that D and A are confounded. Now, if we
can train all mechanisms in the DCM to match P(D, A, I),
we can produce correct samples from P(A|do(D)). For this
graph, the corresponding H-graph is [I] — [D, A]. Thus,
we first train G; by matching P(I|D). Instead of training
Gy, we can also employ a pre-trained generative model
that takes digits D as input and produces an MNIST image
showing D digit in it. Next, we freeze G and train Gp and
G 4, to match the joint distribution P(D, A, I) since {I} is
ancestor set A for c-component {D, A}. Convergence of
generative models becomes difficult using the loss of this
joint distribution since the losses generated by both low and
high dimensional variables are non-trivial to compare and re-
weight (see Appendix F.3). Thus, we map samples of I to a
low-dimensional representation, [2/ with a trained encoder
and match P(D, A, RI) instead of the joint P(D, A, I).

Evaluation: In Figure 3, we compare our method with (Xia
et al., 2023): NCM and a version of our method: DCM-
Rep that does not use modular training (to serve as abla-
tion study). First, we evaluate how each method matches
the £, and L, distributions in Figure 3b. Since NCM
trains all mechanisms with the same loss function involving
both low and high-dimensional variables, it learns marginal
distribution P(I) but does not fully converge to match
P(A|do(D = 0)) finishing with TVD= 0.43 at epoch
300. DCM-Rep uses a low-dim representation of images:
RI and matches the joint distribution P(D, A, RI) as a
proxy to P(D, A, I) without modularization. We observe
DCM-Rep to converge slower (TVD= 0.36 at epoch 300
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) _ Consistent,
Inconsitent  Low quality G464 quality

(b) TVD for frontdoor graph

Total Variation Distance (TVD) | P(D, A P(Aldo(D = 0)) P(Al|do(D = 1))
Epochs 25 150 | 300 25 150 | 300 25 150 | 300
5 NCM 0.14 | 0.16 | 0.17 | 048 | 042 | 043 | 0.08 | 0.11 | 0.11
" DCM-Rep 038 | 0.17 | 0.16 | 036 | 045 | 036 | 022 | 0.1 | 0.1
OQ DCM (Ours) 027 | 0.17 | 0.08 | 043 | 036 | 0.13 | 0.14 | 0.1 | 0.04
S
(c) FID for frontdoor graph (d) FID for Diamond graph
Frechet Inception Distance (FID) | Frechet Inception Distance FID(17) |
> Epochs 25 300 Epochs 25 150 300
" NCM 61.40 59.28 59.59 NCM 101.00 | 67.82 80.54
Q NCM DCM (Ours) | 79.96 | 35.74 32.88
S Pre-trained 26.60 184.40 19227 Frechet Inception Distance FID(I2) |
NCM Rep Ours DCM-Rep | 15141 | 78.69 80.65 NCM 112.61_| 6756 | 65.17
DCM (Ours) 27.02 27.37 27.20 DCM (Ours) 2222 [ 1547 | 11.80

(a) Generated Images

Figure 3. For the frontdoor graph in Figure 4a, NCM produces good images but not consistent with do(D). Modular-DCM without modular
training (DCM-rep) produces consistent but low-quality images. Our modular approach (DCM) with training order: {I} — {D, A}
produces consistent, good images and converges faster (as shown in Figure 3a, 3b, 3c). In Figure 3d, we show our performance for the

graph in Figure 4b that contains two image variables.

for P(A|do(D = 0))) compared to the original Modular-
DCM. Finally, Modular-DCM matches P(D, A, RI) and
converges faster with TVD= 0.08 for P(D, A) and 0.13 for
P(A|do(D = 0)). In Figure 3a, we show generated images
of each method for do(D = 0)(top) and do(D = 1)(bottom)
and evaluate their quality with FID scores in Figure 3c.
We observe that NCM produces good-quality images (Fig-
ure 3a left, FID= 59.59 at epoch 300) but is inconsistent
with do(D) intervention since it learns only marginal P(I).
DCM-Rep generates consistent but low-quality images (Fig-
ure 3a middle, FID= 80.65). Modular-DCM equipped with
a pre-trained model produces good-quality (FID= 27.20),
consistent P(I|do(D)) images (Figure 3a right). To justify
the necessity of modularity, we add another method (NCM
Pre-trained) in our ablation study, where we equip it with
a pre-trained model but have to match the original joint by
training all mechanisms together, the same as NCM. Note
that it starts with a low FID (26.60) but ends up worsening
the image quality with FID= 192.27 (Figure 3c, row 2).

For a more rigorous evaluation, we use the effectiveness
metric proposed in (Monteiro et al., 2023) and employ a clas-
sifier to map all images generated according to P(I|do(D))
back to discrete digits D. Next, we compute the exact like-
lihoods and compare with the true uniform intervention
do(D) : [0.5,0.5] that we perform for P(I|do(D)). We
observe that the results are consistent with Figure 3a. NCM
generated images are classified as [0.19, 0.81], implying that
NCM learns only marginal P(I). On the other hand, DCM-
Rep and DCM generated images are classified as uniform
distribution with 98% and 99% accuracy.

MNIST diamond graph: We illustrate our performance
with a second synthetic SCM for the graph in Figure 4b. It
contains multiple image nodes {I;, [>} and discrete vari-
ables Digit(D) and Color(C'). We consider a hidden con-

y'as - A “» | mmm Modular-DCM
T [ Joint training in NCM
Digit &1 = Att 3 _ o 9
g
(a) Frontdoor graph g g,
g8
h 4 =]
oo 2%
N | =8
Digit Color & v
©
-

N :
Iy

(b) Diamond graph (c) Largest number of networks need to be
trained together for different number of nodes.

15 20 25 0 35 20 5 0
Number of nodes (N)

Figure 4. Modular DCM on specific and arbitrary graphs.

founders between {I;, C'} and one between {D, C'}. Base-
line NCM matches P(Iy, D, I, C') by training mechanisms
of all variables at the same time. Whereas we utilize the
modularity offered by c-components {I;, D, C'} and {I3}.
We i) first train I to match P(I3|D) and then ii) train
I, D, Ctomatch P(Iy, D, I, C) while freezing weights of
I5. At the first step, I trains well. In the 2nd step, since we
don’t have to train /5 anymore, we optimize a less complex
loss function compared to NCM. In Figure 3d, we compare
the FID scores of I; and I generated by Modular-DCM
and NCM. We observe that while both matches P(D, C)
(thus TVD omitted), DCM achieves FID(I;) = 32.88 and
FID(I2) = 11.80 while NCM achieves FID(I;) = 80.54
and FID(I3) = 65.17 after running for 300 epochs.

Arbitrary graphs: In this experiment, we showcase the
benefit of modularization over a random ensemble of graphs.
We numerically visualize the largest number of mechanisms
we have to update and train together compared to the full
training of existing works. We sample random DAGs with a
varying number of nodes (N € [15 — 50]) keeping the arc
ratio and the number of latents equal to N/3. We call Al-
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gorithm 7: Construct_H-graph(.) to find the largest training
component. We took the average of five runs and plot it in
Figure 4c. This plot demonstrates the number of networks
that are trained together in a single training phase.

We observe that the number of models NCM trains together
increases linearly with respect to N whereas the growth in
our method is relatively smaller since it does not depend on
the number of nodes, but rather on the number of latents.
For a graph of N = 50 variables, NCM updates the 50
networks corresponding to the mechanisms of all variables
with a common loss function. Whereas, we train the same
set of neural networks but modularly c-component by c-
component with average max size of 20 (for the setting in
Figure 4c). We achieve better convergence since we min-
imize a less complex loss function at each training phase.
We experience such convergence for Colored-MNIST with
a low total variation distance compared to NCM (Figure 3c).
We discuss complexity evaluation of our algorithm in Ap-
pendix F.2.

5.2. Invariant Prediction on CelebA-HQ

In this section, we design a causal invariant classifier f
for the high-dimensional image dataset, CelebA-HQ (Lee
et al., 2020) such that its specific attribute classification
Eyeglass = f(Image); does not experience low accuracy
with domain shift.

Motivation: Among all attributes of CelebA-HQ, some
attributes, such as Sex and Eyeglass have spurious cor-
relations between them (Shen et al., 2020) (men are more
likely to wear eyeglasses, correlation coefficient 0.47). A
classifier trained on this dataset might consider the facial
features of a male as an indicator to predict the presence
of eyeglasses. As a result, if there is a shift in the sex dis-
tribution in the test domain, i.e., P(Sex|domain = test)
# P(Sex|domain = train) (Figure 5a), and the classifier
has to predict more images of females, it might have low
eyeglass accuracy. For example, in Figure 5b (row-1), the
accuracy for such a classifier in the Sex = 0, Eyeglass = 1
sub-population is 0.81 (comparatively lower). We model
the above scenario with the causal graph in Figure 5a (top-
left). We assume Eyeglass and Sex attributes determine how
the Image variable would look like (shown with directed
edges). The spurious correlation between the attributes is
represented with a bi-directed edge. We reflect the distri-
bution shift in P(Sez), with an edge from the Domain
variable.

To make the CelebA-HQ attribute classification independent
of the domain shift, we employ causal invariant prediction.
Causal invariant prediction refers to the problem of learning
a predictive model which is invariant to specific distribution
shifts. According to (Subbaswamy et al., 2019; Lee et al.,
2023), to build a causal invariant predictor, we need to train

it on an interventional dataset where the target attribute is
independent of spuriously correlated/sensitive attributes due
to the intervention performed. In our context, we need inter-
ventional samples from the high-dimensional interventional
distribution P(Eyeglass, Image|do(Sex)) to train the in-
variant classifier, since the connection between Domain
and Fyeglass is cut off by do(Sex). The first step to ob-
tain these interventional samples is to train a deep causal
generative model and learn the observational distribution
P(Sex, Eyeglass, Image). For this purpose, we utilize
our algorithm Modular-DCM.

Dataset: The original CelebA-HQ dataset contains 1468
images of Fyeglasses = 1. We distribute these samples
among 5380 train samples and 1280 test samples maintain-
ing the joint distribution in Figure 5a such that the distribu-
tion shift in P(Sex) is reflected across domains.

Training: Here we discuss three classifiers that we trained.
TrainDomain: This classifier is trained on the train-
ing dataset. Intervention: According to (Sub-
baswamy et al., 2019), if we can generate a dataset
D[Eyeglass, Image] ~ P(Eyeglass, Image|do(Sex))
and train a classifier on this dataset, its prediction will be in-
variant to the Domain and Sezx, since intervention on Sex
removes their influence. To generate this high-dimensional
interventional dataset, Modular-DCM employs neural net-
works (G gyegiass: Gses, Gr) for each of Eyeglass, Sex
and I'mage and connects them according to the causal graph
in Figure 5a. First, we train {Ggycgiass; Gses } together
(same c-component). Now, for Gy, Modular-DCM’s flexi-
bility to incorporate pre-trained networks in its causal gener-
ative models allows us to utilize InterFaceGAN (Shen et al.,
2020), that uses StyleGAN (Karras et al., 2019) under the
hood to produce realistic human faces. This pre-trained
model plays an important role for a classifier since it needs
to see realistic images and training a model from scratch to
match the true P(I|Eyeglass, Sex) will be costly. Next,
we uniformly intervene on Sex = 0 and Sex = 1 and push
forward through the trained models to generate 10k samples
D ~ P(Eyeglass, Image|do(Sex)) of both females and
males. Finally, we train a new classifier Intervention
on this dataset for eyeglass prediction. Augmented : To
obtain the benefits of both classifiers, we create an aug-
mented dataset by combining the training dataset and the
interventional dataset generated by Modular-DCM. We train
a new classifier Augmented on it.

Evaluation: We evaluate the accuracy of the classifiers in
the test domain (Figure 5b). Since TrainDomain (row-1)
learns the M ale- Eyeglass bias, it achieves accuracy= 0.90
in the Sex = 1, Eyeglass = 1 sub-population but it per-
forms badly for Sex = 0, Eyeglass = 1 (accuracy 0.81).
Intervention (row-3) is trained on images generated
by InterFaceGAN, but due to the large support of the im-
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Domain
Sex=0
+ RN Eye=1 | |
Sex Eyeglass
\ K SEeyX::ll
Image .
Classifier/ Sex=0 Sex=0 Sex=1 Sex=1
Train Accuracy 1 Sex=0 | Sex=I | Eyeglass=0 | Eyeglass=1 Eyeglass=0 | Eyeglass=1 | Eyeglass=0 | Eyeglass=1
EG=0 | EG=l TrainDomain | 0.948 0.946 0.971 0.847 0.998 0.810 0.953 0.90
Sex=0 0.60 0.018 IRM 0.880 0.866 0.918 0.681 0.980 0.600 0.877 0.800
Sex=1 0.18 0.20 i
X fntvention | 913 | 0944 | 0993 0.674 1000 0.669 0.988 0.68
Test (Ours)
Sex=0 031 | 0.14 Augmented
Soxc] 0.47 | 0.08 (Ours) 0.970 0.981 0.994 0.905 0.995 0.901 0.993 0.91

(a) Train & Test distribution

(b) Image samples and classifier accuracy for different sub-population

Figure 5. (Top-Left): Invariant prediction causal graph. (Top-right) Images generated by InterFaceGAN from P(I|Sex, Eyeglass = 1).
(Bottom-left): Joint distribution of P(Sez, Eyeglass). (Bottom-right): Eyeglass prediction accuracy of 3 classifiers in different sub-
populations. Three classifiers are trained on the training dataset, the interventional dataset, and the augmented dataset (combined both).
Note that the Augmented has better accuracy in the Sex = 0, Eyeglass = 1 sub-population which was our target to achieve.

age manifold, samples generated by InterFaceGAN from
P(Image|Eyeglass, Sex) might not represent all types of
images that are present in the original CelebA-HQ dataset.
For example, CelebA-HQ contains more variety of sun-
glasses compared to the InterFaceGAN generated images
(Figure 22 vs 21). As aresult, Intervention does not
perform very well in the Fyeglass = 1 sub-population
(0.67). However, the generated interventional dataset con-
tains images of both Sex = 0, 1 wearing eyeglasses which
are free from the training dataset bias. Thus, when we
combine both datasets, samples from the training dataset
introduce the Augmented classifier (row-4) to different
varieties of Eyeglass = 1 images and samples from the
interventional dataset enforce it to focus on only eyeglass
property in an image. We observe that Augmented im-
proves accuracy in the three sub-populations (bolded in
Figure 5b) : i){Sex = 0} : 0.948 — 0.97 ii){ Eyeglass =
1} : 0.847 — 0.905 and iii){Sex = 0, Eyeglass = 1} :
0.810 — 0.901. Thus, even though we have access to only
the biased observational dataset, Modular-DCM offered a
bias-free interventional dataset and enabled us to train a
domain invariant classifier.

Note that we also evaluate the Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019) method for this specific exper-
iment although the problem setup of IRM and our proposed
method are different. We train IRM on data from two envi-
ronments: Sex = 0 and Sex = 1. We provide its accuracy
in Figure 5b (row-2) and show that the classifiers trained
according to our approach outperform it in most cases.

6. Conclusion

We propose a modular adversarial training algorithm for
learning deep causal generative models and estimate causal
effects with high-dimensional variables in the presence of
confounders. After convergence, Modular-DCM can gen-

erate high-dimensional samples from identifiable interven-
tional distributions. We assume the causal model to be semi-
Markovian which aim to relax in our future work. Some
potential application of our algorithm includes: continual
learning (Busch et al., 2023) of deep causal generative mod-
els or high-dimensional interventional sampling in federated
setting (Vo et al., 2022).
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Our proposed algorithm Modular-DCM, can sample from
high-dimensional observational and interventional distribu-
tions. As a result, it can be used to explore different creative
directions such as producing realistic interventional images
that we can not observe in real world. We can train Modular-
DCM models on datasets and perform an intervention on
sensitive attributes to detect any bias towards them or any
unfairness against them (Xu et al., 2019; van Breugel et al.,
2021). However, an adversary might apply our method to
produce realistic images that are causal. As a result, it will
be harder to detect fake data generated by DCM.
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A. Limitations and Future work

Similar to most causal inference algorithms, we had to make the assumption of having a fully specified causal graph
with latents, as prior. We also assume each confounder to cause only two observed variables, which is considered as
semi-Markovian in the literature. Another limitation of our work is that same as our close baselines, we do not consider
conditional sampling. Modular-DCM can perform rejection sampling, which is practical if the evidence variables are
low-dimensional. With the advancements in causal discovery with latents, it might be possible to reliably learn part of the
structure and leverage the partial identifiability results from the literature. Indeed, this would be one of the future directions
we are interested in. We aim to extend our work for non-Markovian causal models where confounders can cause any number
of observed variables. We aim to resolve these limitations in our future work.

B. Modular-DCM Training on Interventional Datasets

Although Theorem 4.5 focuses training on observational data and sampling from interventional distributions, it can
trivially be generalized to z-identifiability (Bareinboim & Pearl, 2012b). That is we can generate samples from other
interventional distributions that are non-identifiable from only observational data but are identifiable from a combination of
both observational and interventional data. This can be trivially done by expanding the notion of identifiability to use a
given collection of interventional distributions, and requiring Modular-DCM to entail the same interventional distributions
for the said collection. Thus in the appendix we provide proofs for both setups.

C. Appendix: Modular-DCM: Adversarial Training of Deep Causal Generative Models

Definition C.1 (Identifiability (Shpitser & Pearl, 2007)). Given a causal graph, G, let M be the set of all causal models that
induce G and objects ¢ and 6 are computable from each model in M. We define that ¢ is f-identifiable in G, if there exists a

deterministic function g determined by the graph structure, such that ¢ can be uniquely computable as ¢ = g¢(6) in any
M cM.

Definition C.2 (Causal Effects z-Identifiability). Let X,Y,Z be disjoint sets of variables in the causal graph G. If ¢ = Px(y)
is the causal effect of the action do(X=x) on the variables in Y, and 6 contains P(V) and interventional distributions
P(V \ Z'|do(Z")), for all Z/ C Z, where ¢ and 0 satisfies the definition of Identifiability, we define it as z-identifiabililty.
(Bareinboim & Pearl, 2012a) proposes a z-identification algorithm to derive g¢ for these ¢ and 0

C.1. Modular-DCM Interventional Sampling after Training

After Modular-DCM training, to perform hard intervention and produce samples accordingly, we manually set values
of the intervened variables instead of using their neural network. Then, we feed forward those values into its children’s
mechanisms and generate rest of the variable like as usual. Figure 6(b) is the Modular-DCM network for the causal graph in
Figure 6(a). Now, in Figure 6(c), we performed do(X = z). Exogenous variables U; and nx are not affecting X anymore
as we manually set X = x.

Figure 6. (a) Causal Graph with latents. (b), (c) DCM before and after intervention.
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C.2. Modular-DCM: Adversarial Training of Deep Causal Generative Models (Full Training)

Full training of the DCM indicates the setup when we update all mechanisms in the causal graph with the same common
loss. In this section, we prove that a trained DCM can sample from identifiable causal queries from any causal layer. We
assume M, as true SCM and M5 as DCM of Modular-DCM.

Theorem C.3. Let M; = (G = (V,&),N,U,F,P(.)) be an SCM. If a causal query K4, (V) is identifiable from
a collection of observational and/or interventional distributions {P;(V)}ic[m) for graph G, then any SCM My =
(G, N, U, F',Q(.)) entails the same answer to the causal query if it entails the same input distributions. Therefore,
for any identifiable query IC, if { P;(V) }icim)m K, (V) and Pi(V) = Qi(V), Vi € [m], then K, (V) = K, (V).

Proof. By definition of identifiability, we have that rq, = g ({Pi(V) }iem)) for some deterministic function g¢ that is
determined by the graph structure. Since M has the same causal graph, the query XC 4, is also identifiable and through the
same function gg, i.e., Kr, = ga({Qi(V)iem) })- Thus, the query has the same answer in both SCMs, if they entail the

same input distributions over the observed variables, i.e., P;(V) = Q;(V), Vi. O
Uy
(a) Front-door graph ® {PV), VY I=Puy oy (Y21, 75) (©) {P( ), P.(X,Y) P (Y)

Figure 7. Causal graphs with latents and respective identifiable causal queries. 6 identifies ¢ :0—¢

Corollary C4. Let My = (G = (V,E),N,U,F,P(.)) and Ms = (GN' U, F',Q(.)) be two SCMs. If
{PW)}=Pu(Y) for X, Y CV, XNY =0 and P(V) = Q(V) then P,(Y) = Q,(Y)

For example, in Figure 7(b), the interventional query P, ,, (W) is identifiable from P()). According to the Corollary C.4,
after training on P()) dataset, Modular-DCM will produce correct interventional sample from P, .., (W) and along with
other queries in L2(P(V)).

(Bareinboim & Pearl, 2012b) showed that we can identify some Ls-queries with other surrogate interventions and L1-
distributions. Similarly, we can apply Theorem C.3:

Corollary C.5. Let M; = (G = (V,&),N,U,F,P(.)) and My = (G N U F',Q(.)) be two SCMs and XY
be disjoint, and {S;}; arbitrary subsets of variables. If i){P(V), Ps,(V), Ps,(V).. }=P.(Y), is)P(V) = Q(V) and
i) Ps, (V) = Qs,(V), Vi, s; then P, (Y) = Q. (Y).

In Figure 7(c), the interventional query P, (Y") is identifiable from P(V) and P, (X,Y"). Therefore, after being trained on
datasets sampled from these distributions, Modular-DCM will produce correct interventional sample from P, (Y") and all
other queries in L2(P(V), P,(X,Y)).

C.3. Training with Multiple Datasets

We propose a method in Algorithm 2 for training Modular-DCM with both £, and £, datasets. We use Wasserstein
GAN with penalized gradients (WGAN-GP) (Gulrajani et al., 2017) for adversarial training. We can also use more recent
generative models such as diffusion models when variables are not in any c-component. G is the DCM, a set of generators
and {D, } x 1 are a set of discriminators for each intervention value combinations. The objective function of a two-player
minimax game would be

i L(D
mén;nﬂlﬁx (D, G),

LDsG) = E De(v)] = E  [Du(G™(z,))]

v~PT z~Py u~Py
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Algorithm 2 Modular-DCM Training on Multiple Datasets

1: Input: Causal Graph G = (V, £), Interventional datasets= (I, D), DCM G, Critic D, Parameters= 61, ...,0,, A = 10
2: while 04, ..., 0, has not converged do

3:  foreach (X,D) € (I,D) do

4: compare_var =V

S: Sample real data v ~ D following the distribution P, with intervention X.

6.

7

8

x < X.walues [/ X=(keys,values)
v = RunGAN(G, G, X, compare_var, )
: Ve =evh + (1 —evi
9 Lu=Du,(v]) — Du (v2) # A(IVe, Du, (%), — 1)?

10: Gioss = Gloss + ij_ (Vi)
11: Wy = Adam(viﬂriz;nzl LDsz-T?avBlvBQ)

12:  for6 € 604,...6, do
13: 0= Adam(Ve — Gloss, 0, a751752)
14: Return: 64,...6,

Here, for intervention do(X = z), X € 1, G®)(z,u) are generated samples and v ~ P? are real £q or Lo samples. We
train our models by iterating over all datasets and learn £, and £, distributions (line 3). We produce generated interventional
samples by intervening on the corresponding node of our architecture. For this purpose, we call Algorithm 9 RunGAN(), at
line 7. We compare the generated samples with the input £, or £, datasets. For each different combination of the intervened
variables x, D, will have different losses, L x—, from each discriminator (line 9). At line 10, we calculate and accumulate
the generator loss over each dataset. If we have V7, ..., V,, € V, then we update each variable’s model weights based on the
accumulated loss (line 13). This will ensure that after convergence, Modular-DCM models will learn distributions of all
the available datasets and according to Theorem C.3, it will be able to produce samples from same or higher causal layers
queries that are identifiable from these input distributions. Following this approach, Modular-DCM Training in Algorithm 2,
will find a DCM solution that matches to all the input distributions, mimicking the true SCM. Finally, we describe sampling
method for Modular-DCM after training convergence in Appendix C.1.

Proposition C.6. Let My be the true SCM and Algorithm 2: Modular-DCM Training converges after being trained on
datasets: D = {D;};, outputs the DCM M. If for any causal query K a4, (V) identifiable from D then Ky, (V) = Kpa2(V)

Proof. Let My = (G = (V,&),N,U, F,P(.)) be the true SCM and My = (G,N",U’', F',Q(.)) be the deep causal
generative model represented by Modular-DCM. Modular-DCM Training converges implies that Q;(V) = P;(V), Vi € [m)]
for all input distributions. Therefore, according to Theorem C.3, Modular-DCM is capable of producing samples from
correct interventional distributions that are identifiable from the input distributions. O

C.4. Non-Markovianity

Note that, one can convert a non-Markovian causal model M to a semi-Markovian causal model M5 by taking the common
confounder among the observed variables and splitting it into new confounders for each pair. Now, for a causal query to
be unidentifiable in a semi-Markovian model M, we can apply the Identification algorithm (Shpitser & Pearl, 2008) and
check if there exists a hedge. The unidentifiability of the causal query does not depend on the confounder distribution. Thus,
if the causal query is unidentifiable in the transformed semi-Markovian model M, it will be unidentifiable in the original
non-Markovian model M, as well.

Besides Semi-Markovian, Theorem 4.2 and Theorem C.3 holds for Non-Markovian models, with latents appearing anywhere
in the graph and thus can be learned by Modular-DCM training. (Jaber et al., 2019) performs causal effect identification on
equivalence class of causal diagrams, a partial ancestral graph (PAG) that can be learned from observational data. Therefore,
we can apply their method to check if an interventional query is identifiable from observational data in a Non-Markovian
causal model and express the query in terms of observations and obtain the same result as Theorem C.3. We aim to explore
these directions in more detail in our future work.

D. Appendix: Modular-DCM Modular Training

D.1. Tian’s Factorization for Modular Training

In Figure 8(a), We apply Tian’s factorization (Tian & Pearl, 2002) to get,
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m Oz} @'@»@@H@?@
@D J@\(g@ ©_®

(a)

Figure 8. (a) Causal graph G, (b) Hw—graph, (c) H?-graph

P(v) = P(z1,22|do(21))P(21, 22, z3|do(z1)) )
We need to match the following distributions with the DCM.

P(z1,22]|do(21)) = Q(x1, 22|do(21))

5
P(Zl7 22, 23‘(10(:61)) = Q(Zla 22, Z3|d0(x1))
With modular training, we matched the following alternative distributions:
P(21722,2’3|£L'1) :Q(21722,23|d0($1)) (6)
P(xy,29, 21, 23) = Q(x1, 72, 21, 23)
Now, for the graph in Figure 8(a),
P(x1,x9, 21, 22, 23) = P(x1,x2|d0(21)) X P(21, 22, z3|do(z1)
P(xy,22, 21, 23) o
=———" " 7 = xP C-fact t f P
Por. 23ldo(r1) (21,29, z3]21)  [C-factorization of P(x1, 2, 21, 23)]
P($1,I2721,23) .
= ———— "1 2 % P(z1,29,23|x1) [Do-calculus rule-2 applies]
P(z1,z3|x1) D
P(xy1, 22,21, 23)

= X P(z1, 20, z3|x
222 P(Zl,ZQ,Zg‘.Tl) ( 1, ~2, 3‘ 1)

_ Q($1,$2,Zl723)
Zzg Qﬂh (217 22 Z3)

= Q(x1,2,21,22) [We can follow the same above steps as P(.) for Q(.)]

X Qu,(21,22,23) [According to Equation 6]

Therefore, if we match the distributions in Equation 6 with the DCM, it will match P()V) as well.

D.2. Modular Training for Interventional Dataset

D.2.1. MODULAR TRAINING BASICS

Suppose, for the graph in Figure 9, we have two datasets D? ~ P(V) and D** ~ Py (V), i.e., intervention set Z = {(), Z; }.
Joint distributions in both dataset factorize like below:
P(’U) = PZl (3?1, xQ)Pih (21, 22, ZS)
P.() = (25)Po (22)

P, (z1,22)P
P, (1’1, x2) Py, (22, 23)[Since Z5, Z3 independent in G- - graph] ®)
( )

= P,, (x1,22) Py, -, (22, z3)[Ignores intervention using do calculus rule-2]

We change the c-factors for P,, (V') to keep the variables in each c-factor same in all distributions. This factorization
suggests that to match P (V) and Pz, (V) we have to match each of the c-factors using D? and D*' datasets. In Fig-
ure 2a graph G, Py, (21, 22,23) = P(21, 22, 23|w1) since do-calculus rule-2 applies. And in G5, P(23)P,(22) can be
combined into Py, ., (#2,23). Thus we can use these distributions to train part of the DCM: Gz,,Gz,, Gz, to learn
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both Q(z1, 22, 23|do(z1)) and Q(z2, z5|do(x1, 21)). However, P(z1, x3]|do(21)) # P(x1,x2|z1) in P(V). But we have
access to P, (V). Thus, we can train G,, Gx, with only dataset D%t ~ P, (V) (instead of both D? DZ1) and learn
Q(x1,x2|do(z1)). This will ensure the DCM has matched both P(V) and P,, (V) distribution.

Thus, we search proxy distributions to each c-factor corresponding to both P()) and Pz, (V') dataset, to train the mechanisms
in a c-component Y. For each of the c-factors corresponding to Y in P(V) and P,, (V'), we search for two ancestor sets
Ap, Az, inboth P(V) and P,, (V') datasets such that the parent set Pa(Y U Ap) satisfies rule-2 for the joint Y U Ay and
Pa(Y U Ag,) satisfies rule-2 for the joint Y U Ay, with do(Z;) intervention.

We update Definition 4.4as modularity condition-I for multiple interventional datasets as below:

Definition D.1 (Modularity condition-I). Given a causal graph G, an intervention I € 7 and a c-component variable set Y, a
set A C Ang(Y)\'Y is said to satisfy the modularity condition if it is the smallest set that satisfies P(Y U X|do(Pa(Y U
X)),do(I)) = P(Y UX|Pa(Y UX),do(])), i.e., do-calculus rule-2 (Pearl, 1995) applies.

@“@’q@ @ ©
S oo

Match Match

Dataset: Step (2/3): P(Z\,Z5, Z31do(X1)) | sien (3/3):
i : P(X,, X, |do(Z
D~ [PV), Py ()| TrainZuZels | = (Zy, Zy. Z31do(X1)) Train x,, X, —(le 2)'( "(d 1>Z>
§t69(123)3 Or, use pretrained | &P(Z,, Z3|do(Z,)) = 0(X1, X3|do(Z))
| BuldHgraph: | 7.2z = 0(Zy. Z;1d0(Z)))

b@»b—@@

Figure 9. Modular training on H-graph: Hy : [Z1, Z2, Z3] — Hs : [ X1, X2] with dataset D ~ P(V).

Unlike before, we have access to P,, ()) and we can use that to match P, (x1, z2) in both cases. To match the £; and
L, joint distributions according to (8), we train each c-component one by one. For each c-component, we identify the
modularity conditions of all c-factors P,,yyur(Y), VI € T and use them to train Y. We train the mechanisms in Y to
learn an alternative to each c-factor Pp,q(y)u 1(Y), VI € Z. For some ancestor set Ay, the alternative distribution is in the
form P(Y U A;|do(Pa(Y U Ay)),do(I)) which should be equivalent to P(Y U A|Pa(Y U A),do(I)). We will find an
A; from the D?, VI € T such that we do not require Pa(Y U A) to be intervened on.

Now, to match P(Y U A|Pa(Y UA),do(I)) = Q(Y U A|do(Pa(Y U A)),do(I)) with our generative models, we pick
the observations of Pa(Y U A) from D! dataset and intervene in our DCM with those values besides intervening on G;.
Since we do not need generated samples for Pa(Y U .A) from DCM, rather their observations from the given D! dataset,
we do not require them to be trained beforehand. However, the order in which we train c-components matters and we follow
the partial order found for P()) dataset even thought we train with multiple datasets.

For example, in Figure 2a, we have two graphs G and Gz~ We follow G’s training order for both graphs to train the
c-components, i.e., [(Gz,,Gz,,Gz,] = [Gx,,Gx,]. Here for the c-component Y = {Z1, Z3, Z3}, we match P(V)
c-factor Py, (21, 22, 23) and P, (V) c-factor P, ., (22, z3) thus have to find alternative distribution for them. We find the
smallest ancestor set Ap, Ay, for these c-factors in both D? and D%' datasets. Ay = () satisfies modularity condition
for P(V) c-factor and their Pa(Y U A) = {X;1}. Az, = 0 satisfies modularity condition for P,, (V) c-factor and their
Pa(YUA) = 0. Atstep (2/3) in Figure 2a, We do not need G x, to be pre-trained. [Gz, , Gz,, Gz,] converges by matching
both P(Zl, 22, Zg|.’L‘1) = le (2’1, 22, 23) and f)a;hz1 (22, 2’3) = le’zl (22, Zg).
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Algorithm 3 TrainModule(G, G, H., A, D)

1: Input: DCM G, Graph G(V, &), h-node H., Ancestor set .4, Data D, Params 6, A = 10
2: while 85, has not converged do

3:  for each (A;, X;, D;) € (A,D) do

4: Vi, =H,UA; UPa(H.UA)UX;
5: Initialize critic Dy,

6: fort =1,...,m {m samples} do

7: Sample real data vy ~ D;

8: x" < get_intv_values(X;, D;)

9: v = RunGAN(G, x", V;., 0x,)

10: Ve =evh+ (1 —e)vi

1 LY =Dy, (vE) = Do, (vE) # A([| Ve, Du, (V)| — 1)°
12: w; = Adam(V ., % >y Ll(-t), w;)
13: Gloss = Gloss + % Z;n:1 _]D)'wi (Vé)

14:  for 6 € 0y, {All hnode mechanisms} do
15: 0 = Adam(V¢Gioss, 0)
16: Return: 64,...0,

Algorithm 4 IsRule2(Y, X, I = () (by default))

: Input: Variable sets Y and X, Intervention /.

: Return:

if P(Y U X|do(Pa(Y U X)),do(I)) = P(Y UX|Pa(Y U X),do(])) then
Return:1

else
Return:0

AR A

Now, we train mechanisms of the next c-component [Gx, , Gx,] in our training order (step 3/3). We have to match P(V)
c-factor P,, (x1,22) and Py, (V) c-factor P,, (x1,z2). Ancestor set Ay = {Z1, Z3} satisfies the modularity condition for
Y = {X1, X} with P(V) dataset but Az, = 0 a smaller set, satisfies the modularity condition for same c-factor with
P,, (V) dataset. Also, P,, (V) c-factor is P,, (x1,x2). Thus if we train [Gx, , Gx,] with only Py, (V) dataset, it will learn
both c-factors and converge with P, (21, z2) = @, (x1, z2). Since we have matched all the c-factors, our DCM will match
both P(V) and Pz, (V) distributions. During training of [Gx, , Gx,|, we had .A = () for both observation and interventional
c-factors. Therefore, we do not need any pre-trained mechanisms, rather we can directly use the observations from Pz, (V)
dataset as parent values. We define 7{’-graph for each I € T as below:

Definition D.2 (H'-graph). For a post-interventional graph G7, let the set of c-components in G be C = {C1,...C}.
Choose a partition { H{ }); of C such that the H#’-graph H' = (Viy1, E31), defined as follows, is acyclic: Vyr = {H} }i
and for any s,t, H — H] € Ey, iff P(H}|do(pa(HF) N HL)) # P(H] |pa(H]) N HI), i.e., do-calculus rule-2 does
not hold. Note that one can always choose a partition of C to ensure H is acylic: The ! graph with a single node H{ = C
in G7. Even though H! for different I might have different partial order, during training, every H' follows the partial order
of H". Since its partial order is valid for other H-graphs as well (Proposition D.14).

Here, H' is the H-graph constructed from G7, for I € 7 where 7 is the intervention set. #H" is the #-graph constructed
from G for observational training. H} := k-th h-node in the %’ graph. During H’-graphs construction, we resolve cycles
by combining c-components on that cycle into a single h-node. Please check example in Figure 16. After merging all such
cycles, H VI € T will become directed acyclic graphs. The partial order of this graph will indicate the training order that
we can follow to train all variables in GG. For example in Figure 9, two given datasets D; and D,, imply two different graphs
G and Gz, respectively. [Z3] — [Z1, Zo] — [X1, Xo] is a valid training order for H,, we follow the same order as #°.
We follow : [Zl, ZQ, Zg] — [Xl, XQ]

We run the subroutine Contruct-7{’-graph() in Algorithm 5 to build #-graphs. We check the edge condition at line 7 and
merge cycles at line 7 if any. In Figure 2a step (1/3), we build the H-graph H; : [Z1, Z2, Z3) — Hs : [ X1, X3] for G.

D.2.2. TRAINING PROCESS OF MODULAR MODULAR-DCM

We construct the H!-graph for each I € Z at Algorithm 6 line 6. Next, we train each h-node H g of H?, according to its
partial order 7. Since we follow the partial order of H?-graph, we remove the superscript to address the hnode. Next, we
match alternative distributions for P;()V) c-factors that correspond to the c-components in Hy. (lines 6-6) We initialize a set
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Algorithm 5 Construct-#!-graph(G, )

: Input: Causal Graph G, Intervention set, 7
: foreach I € 7 do
C < get_ccomponents(G7)
Construct graph H' by creating nodes H. ]I as H JI =C;,VC;eC
: foreach I € Z do
for each H!, H} € H' such that H! # H{ do
if P(H{|do(pa(H{) N H{)) # P(H{|pa(H{) N H{) then
H!.add(H! — H])
: H' <« merge(H’, cyc) Veye € Cycles(H)
10: for each I € 7 do
11:  for each HJ0 e H’ do

12: HJ =J H{ suchthat V(H}) C V(H?)  [All variables in H} h-node is contained in H? h-node.]
k

A A

hd

13: Return: {H' : I € T}

Algorithm 6 Modular Training-I(G, Z, D)

1: Input: Causal Graph G, Intervention set Z, Dataset D.
2: Initialize DCM G
3: ‘H' « Construct-H-graphs(G, T)
4: for each Hy, € H” in partial order do
50 Ag <+ V /Mnitialize with all nodes
6: foreach S C Ang(Hy) do
7 if IsRule2(Hy, S,0) =1
and |S| < |Ay| then

8: Ag + S
9: foreachl € 7N Hy do
10: Ar <V //Initialize with all nodes
11: for each S C AnGT(Hk) do
12: if IsRule2(Hy, S, I) =1
and |S| < |A;| then
13: A+ S
14:  Gpg, < TrainModule(Gg, ,G, Hi, A, D)
15: Return: G

Ar ={V:V C Ang_(Hy)},VI € T to keep track of the joint distribution we need to match to train each h-node H}, from
DT datasets. We iterate over each intervention and search for the smallest set of ancestors .A; in G such that A satisfies
the modularity condition for Hj, in D! dataset tested by Algorithm 4: IsRule2(.) (line 6)

Ar,VI € T implies a set of joint distributions in Equation 9, which is sufficient for training the current h-node H}, to learn
the c-factors Pp,c,)ur(Ci),VC; € Hy, VI € T.

Q(HkU.AI|do(pa(Hk U A[)),dO(I)) = P(Hk U A1|pa(Hk U .A[),dO(I)),in Gj, VI el.

©)
Training: Hy, Pre-trained: Ay, From D dataset: pa(Hj, U Ay), Intervened: do(7)

Training H}, with the Ay found at this step, is sufficient to learn the c-factors Pp,(c,) (C;),VYC; € Hy. Similarly, if we have
an interventional dataset with I € H;. i.e., the intervened variable lies in the current h-node, we have to match c-factors
Ppac,yur(Ci),YC; € Hy. To find alternatives to these c-factors, we look for the ancestor set Az in the DT dataset. For
each Ay, we train Hj, to match the interventional joint distribution in Equation 9. We ignore intervention on any descendants
of Hj, since the intervention will not affect c-factors differently than the c-factor in the D? observational dataset.

D.2.3. LEARN P(V)-FACTORS FROM INTERVENTIONAL DATASETS

When we need the alternative distribution for P()) c-factor, we search for the smallest ancestor set in D? dataset. However,
when we have a dataset D! with I € Ang(H ]@ ), we can search for an ancestor set in Ang_(Hy) and train on D’ to match a

distribution that would be a proxy to P()V) c-factor. This is possible because when we factorize P;(V) for I € Ang(HJQ)),
the c-factors corresponding to the descendant c-components of I are similar to P()) c-factors of the same c-components.
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We update Theorem 4.5 for interventional datasets as below.

Theorem D.3. Let My = (G = (V,E),N,U,F,P(.)) be the true SCM and My = (G, N, U, F',Q(.)) be the
DCM. Suppose Algorithm 6: Modular-DCM Modular Training-I on observational and interventional datasets DT ~
P;(V),VI € T converges for each h-node in the H"-graph constructed from G = (V, €) and DCM induces the distribution
Qr(V),VYI € L. Then, we have i) Pr (V') = Q(V'), and ii) for any interventional causal query K a1, (V) that is identifiable
from DI VI € T, we have Ky, (V) = K2 (V).

We provide the proof in Appendix D.6.

D.3. Training following the 7{-graph

Modular-DCM utilizes conditional generative models such as diffusion models and Wasserstein GAN with penalized
gradients (Gulrajani et al., 2017) for adversarial training on £, and £, datasets in Algorithm 3. G is the DCM, a set of
generators and {ID,,, } are a set of critics for each intervention dataset. Here, for intervention do(X = x), X € I, G(*)(z,u)
are generated samples and v ~ [P}, are real £ or £, samples. We train our models by iterating over all datasets and learn £,
and L, distributions (lines 3-3). We produce fake interventional samples at line 3 by intervening on the corresponding
node of our architecture with Algorithm 9 RunGAN(). Each critic D, will obtain different losses, L x—, by comparing
the generated samples with different true datasets (line 3). Finally, at line 3, we update each variable’s model weights
located at the current hnode based on the accumulated generated loss over each dataset at line 3. After calling Algorithm 3:
TrainModule() for each of the h-nodes according to the partial order of ”H@—graph, Modular-DCM will find a DCM
equivalent to the true SCM that matches all dataset distributions. According to, Theorem C.3, it will be able to produce
correct L1, Lo samples identifiable from these input distributions (Appendix C.1).

D.4. Essential Theoretical Statements Required for Distributions Matching by Modular-DCM Modular Training

In this section and the following section, we prove some theoretical statements required for our algorithm. Figure 10,
illustrates the statements we have to prove and the route we have to follow.

In proposition D.6, we prove the property of a sub-graph having the same set of c-components although we intervene on their
parents outside that sub-graph. We use this proposition in Lemma D.7 to show that we can apply c-component factorization
for any sub-graph under appropriate intervention. Therefore, in Corollary D.8, we can show that c-component factorization
can be applied for h-nodes of the H-graph as well.

We build the above theoretical ground and utilize the statements in section D.5. We show that c-factorization works for
the H-graph and Modular Training on h-nodes matches those c-factors. Thus, Modular-DCM will be able to match i) the
observational joint distribution P (V) after training on observational data (Proposition D.12) ii) the observational joint distri-
bution P()) after training on partial observational data and interventional data (Proposition D.13) and iii) the interventional
joint distribution P;(V),VI € T after training on observational data and interventional data. (Proposition D.15). The last
proposition requires the proof that for all intervention I € Z, the generated 7! graphs follows the same partial order.

Modular-DCM modular training can now match P()) and P;(V),VI € T according to Proposition D.13 and Proposi-
tion D.15. We can now apply Theorem C.3 to say that Modular-DCM modular training can sample from identifiable
interventional distributions after training on D ~ P(V'). Finally, Theorem D.17 for observational case is a direct application
of Proposition D.12 and TheoremD. 16 while Theorem D.18 for interventional case is a direct application of Proposition D.13,
Theorem D.15 and Theorem D.16.

We start with some definitions that would be required during our proofs.

Definition D.4 (Intervention Set, 7). Intervention Set, Z represents the set of all available interventional variables such that
after performing intervention I € Z on G, we observe G. Z includes I = (), which refers to “no intervention” and implies
the original graph G and the observational data P()).

Definition D.5 (Sub-graph, (G7)v). Let Gy be a sub-graph of G containing nodes in V" and all arrows between such nodes.
(G7)v refers to the sub-graph of G5 containing nodes in V" only, such that variable I is intervened on i.e., all incoming
edges to I is cut off.

Proposition D.6. Let V € VI € T be some arbitrary variable sets. The set of c-components formed from a sub-graph
(G7)v with intervention I is not affected by additional interventions on their parents from outside of the sub-graph. Formally,
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Proposition D.12
Matches P(V) by
Mod-Training on

D~P(V)
L D.7 Proposition D.13 Theorem D.17
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Figure 10. Flowchart of proofs

(GW)V and (G7)v has the same set of c-components.

Proof. Let C((G7)v) be the c-components which consists of nodes of V' in graph (G7)v . In sub-graph (Gm)v, no

extra intervention is being done on any node in V' rather only on Pa (V') where V and Pa(V") are two disjoint sets. Therefore,
the c-components can be produced from this sub-graph will be same as for G7. i.e., C(G VW) = C(Gy). O

Lemma D.7. Let V' be a set called focus-set. V' and intervention I be arbitrary subsets of observable variables V and
{C;}i be the set of c-components in Gy. Let {Pa(V') U T} be a set called action-set. and S be a set called remain-set,
defined as S = V\{V' U Pa(V') U I}, S(i) as S(i) = S NC; i.e, some part of the remain-set that are located in
c-component C;. Thus, S = |JS(i). We also define active c-components C;" as C;t == C; \ {S(i) U Pa(V') U I} ie,

K3
the variables in focus-set that are located in c-component C;. Given these sets, Tian’s factorization can be applied to a
sub-graph under proper intervention. Formally, we can factorize as below:

PPa(V’)UI(V/) = pra(cj)u(cj)

Proof Sketch. Similar to the original c-factorization formula P(V) = [, Ppa(c,)(Cs), we can factorize as Ppqyyur (V) =
II; Pra(c,yupa(vryur(Ci). Next, we can marginalize out unnecessary variables S located outside of V' from both sides
of this expression. The left hand side of the expression is then Ppg,y/yu(V') that is what we need. For the right
hand side, we can distribute the marginalization ) 4 among all terms and obtain [], >~ S() Ppacyupa(viur (Cs) from
> s II; Pra(ciyupa(vyur(Ci). Finally for each product term Ppg(c,)upa(v)ur(Ci), we remove S(i) from C; to obtain
C;“ and drop non parent interventions following do-calculus rule-3. This final right hand side expression becomes,
IL Ppacyu +(CF). We provide the detailed proof below. O

Proof. (GW)V’ and (G7)y have the same c-components according to Proposition D.6. According to Tian’s
factorization for causal effect identification (Tian & Pearl, 2002), we know that

Ppovnyur(V) = H Ppacyupaviyur(Ci)

?

[letn = Pa(V') U I, i.e., action-set]
= Py(n) x B,V \ 1ln) = [] Pratc,yun(C:) (10)

— PO\ {Pa(V) UT}) = [ Pracyon(C)
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We ignore conditioning on action-set 7 = Pa(V") U I since we are intervening on it. Now, we have a joint distribution of
focus-set and remain-set with action-set as an intervention.

= P,(V'US) = HPPa(Ci)U'r](Ci)

[Here, S == V\{V'UPa(V')UT} = V\{Pa(VYUI} =V'US)|

= > _P,(V'US) =D ][ Praciyun(Ci) (11)
S S i

= Y P,(V'US) =]]D_ Praciyun(Ci)
S i S(i)

[Since, S(i) = SN Csand V(i,j),i # j,C; NC; =0 = S; NS; =0]

Here, V;, S(i) are disjoint partitions of the variable set .S and contained in only c-component C;, i.e, S(i) = S N C;.
Since V; j, C; N C; = 0, this implies that S; N .S; = () would occur as well. Intuitively, remain-sets located in different
c-components do not intersect. Therefore, each of the probability terms at R.H.S, Pp,(c,)uy, (Cs) is only a function of S(4)
instead of whole S. This gives us the opportunity to push the marginalization of S(7) inside the product and marginalize the
probability term. After marginalizing S(i) from the joint, we define rest of the variables as active c-components C;'. The
following Figure 11 helps to visualize all the sets.

Action-set
C-component \4
NN
Active C C)
C—component\ ! a(V'
C1+ C2+
Remain-set i
i\b
Vl
b
Focus-set — | Cs* C'
a(Vv'
C3 C4

Figure 11. Visualization of focus-sets, action-sets, and remain-sets

We continue the derivation as follows:

= Ppovyur(V') = HPPa(Ci)UPa(V’)UI(C;r)
[Here, C;" = C; \ S(i), i.e., active c-component: focus-set elements located in C;]
(12)

= HPpa(cj)uzu{Pa(ci)\Pa(cj)}upa(w)(O;r)
= [[ Pxuz(C)") [Let, X = Pa(C;")UTand Z = {Pa(C;) U Pa(V')} \ X]
Here, we have variable set C’j’ in the joint distribution. Now, if we intervene on the parents Pa(C’i'|r ) and I, rest of the

intervention which is outside Cj becomes ineffective. Therefore, we have X = Pa(C;r ) U I, the intervention which shilds
the rest of the interventions, Z = { Pa(C;) U Pa(V’)} \ X. Therefore, we can apply do-calculus rule 3 on Z and remove
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those interventions. Finally,

= Ppovryur(V') = H PPa(C:r)UI(Ci—F) [We apply Rule 3 since C; I Z|X¢_] (13)

Corollary D.8, suggests that Tian’s factorization can be applied on the h-nodes of H! € .

Corollary D.8. Consider a causal graph G. Let {C;};c[y) be the c-components of G. For some intervention target 1, let
HT = (Vyy1, Ey1) be the h-graph constructed by Algorithm 5 where Vi1 = {H,ﬁ}k Suppose H,f is some node in H'. We
have that H] = {Ci}ieT,j for some T C [t]. With slight abuse of notation we use H} interchangeably with the set of nodes
that are in H ,g . Then,

Pooanyor(HE) = 11 Praccour(C:) (14)
1€[t]
Proof. Let, V' = H ,g , Cj‘ = C; \ 0 = C;. Then, this corollary is direct application of Lemma D.7. O

Proposition D.12
Matches P(V) by
Mod-Training on

D~P(V)
Lemma D.7 Proposition D.13 Theorem D.17
Proposition D.6 Fe 2 oG Corollary D.8 D> Matches P(V) by Convergence
Graphs containing ocAustise o P h-nodes to Mod-Training on & ID with D~P(V)
same c-components cHve c-components D~P(V), Pi(V)
c-components @
Theorem D.16
Ly Ly

Identification Theorem D.18

P ition D Proposition D.15 ~u ¢
roposition D.14 Matches P(V) & Py(V) onvergence

H—graph‘s have by Mod-Tratning on & ID with
same partial order D~P(V), P(V) D~P(V), Py(V)

Figure 12. Flowchart of proofs

D.5. Theoretical Proofs of Distributions Matching by Modular-DCM Modular Training

We provide Definition D.2: H!-graph here again.

Definition D.9 (#{!-graph). For a post-interventional graph G7, let the set of c-components in Gy be C = {C,...Cy}.
Choose a partition { H{ }) of C such that the H#!-graph H! = (Viy1, Ey1), defined as follows, is acyclic: Vyr = {HL}
and for any s, t, H! — H] € Ey;, iff P(H}|do(pa(HF) N HL)) # P(H]|pa(H}) N H!), i.e., do-calculus rule-2 does
not hold. Note that one can always choose a partition of C to ensure H? is acylic: The #! graph with a single node H{ = C
in G7. Even though ! for different I might have different partial order, during training, every ' follows the partial order
of H". Since its partial order is valid for other H-graphs as well.

Training order, 7: We define a training order, 7 = {00, ..., 0, } where 0; = {Hy. },. It Hl — H]  H] € 0;,H] €0,
then 7 < j.

Definition D.10 (Notation for distributions). ()(.) is the observational distribution induced by the deep causal SCM. P(.) is
the true (observational/interventional) distribution. With a slight abuse of notation, if we have P(V) and intervention I, then
P;(V) indicates P;(V \ I). Algorithm 6 is said to have converged if training attains zero loss every time line 6 is visited.
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Definition D.11 (Ancestor set A; in G7). Let parents of a variable set V be Pa(V) = |J Pa(V)\ V. Now, for some
vev

h-node H} € H!-graph, we define A; := the minimal subset of ancestors exists in the causal graph G with intervention I
such that the following holds,

p(H} U Ajldo(pa(H, U Ar)),do(I) = p(H,, U A;|pa(H} U Ar),do(I)) (15)

For training any h-node in the training order 7 = {0y, ...,0m}, i.e., H ,g € 05,0 < j < m, if only observational data is
available, i.e., I = (), we search for an ancestor set Ay such that Ay satisfies modularity condition for H 2 :

P(H} U Ag|do(pa(H} U Ay)) = P(H} U Ag|pa(H} U Ap)) (16)

Similarly, for I € Ang(H, ,g ), i.e., intervention on ancestors, we can learn Ppa( HV’)(H ,‘3) from available interventional
k

datasets since H, ,{ =H 2 , i.e., contains the same c-factors, according to H!-graphs construction. These c-factor distributions
are identifiable from P; (V') as they can be calculated from the c-factorization of P;(V'). Thus we have,

Poagarry(HE) = Pyg(poy (HY) (17)

Therefore, to utilize ancestor interventional datasets, We search for smallest ancestor set A; C AnGT(H ,ﬁ ) in G7 such that
do-calculus rule-2 applies,

P(HL U Ag|do(pa(HE U Ap)),do(I)) = P(HE U Af|pa(HE U Ap),do(I)) (18)

Then we can train the mechanisms in /7 2 to learn the P()) c-factors by matching the following alternative distribution from
D! dataset,

P(H} U Arlpa(HE U Ap),do(1)) = Q(HL U Ar|do(pa(HY U Ar)), do(I))

’ (19)
= P(H{ UA;|do(pa(H} U Ap)),do(I) = Q(H{ U Af|do(pa(H} U Ap)),do(I))
Matching the alternative distributions with D! will imply that we match P()) c-factor as well. Formally:
Qpaty(Hit) = Poa(un) (Hy)
P ( k) p ( k) (20)

Qpa(H,g)(Hzg) = Ppa(Hg)(ng:))

D.5.1. MATCHING OBSERVATIONAL DISTRIBUTIONS WITH MODULAR TRAINING ON D ~ P(V)

Now, we provide the theoretical proof of the correctness of Modular-DCM Modular Training matching observational
distribution by training on observational dataset D”. Since, we have access to only observational data we remove the
intervention-indicating superscript/subscript and address #? as #, ancestor set A; as A and dataset D? as D.

Proposition D.12. Suppose Algorithm 1: Modular-DCM Modular Training converges for each h-node in H®-graph
constructed from G = (V,E). Suppose the observational distribution induced by the deep causal model is Q(V) after
training on data sets D ~ P(V). Then,

PV)=Q(V) 21)

Proof Sketch. After expressing the observational distribution P(V') as c-factorization expression, we can combine multiple
c-factors located in the same h-node as  [[ Ppu(c;)(Ci) = Ppa(u,)(H,,) according to Corollary D.8. Therefore, if
C;eH I

we can match Pp,m, ) (H},), Vk, this will ensure that we have matched all c-factors Ppy(c,)(Ci), Vi and as a result P(V)
as well. For the h-nodes which does not have any parents (i.e., root nodes) in the H-graph, we know Pp Hk)(H e) =
P(H, |Pa(H,)) due to the construction of H-graph. Therefore, Modular-DCM trains mechanism in those h-nodes by
matching P(H, |Pa(H,)) = Qpa(Hk)(Hk).

For the h-nodes which are not root h-nodes in the #-graph, we match Py, (m, ) (H,,) by matching an alternative distribution
P(H}y U Aldo(Pa(Hy U A))). This alternative distribution factorizes as P(Hy U A|do(Pa(Hy U A))) = Ppoa,) (Hg) *
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11 11 Ppa(CJr)(C ). Therefore, Pp,m,)(Hy) = I;T(Hku“%ld(’u;“(flku“‘(‘gi) The numerator is already matched as
HSEAC;QH HsRActcn, Pa(c})

that is the alternative distribution we have matched while training h node Hj.. As we are following the topological order of
the H-graph, the denominator is matched while training the ancestor h-nodes of Hj,. Therefore, Modular-DCM modular

training matches Ppqm, ) (Hy), Vk and thus P(V') = Q(V'). We provide the detailed proof below. O

Proof. According to Tian’s factorization we can factorize the joint distributions into c-factors as follows:

PV)=PH) =[] T Pracc)(C) (22)

HieH C;€Hy,

We can divide the set of c-components C = {C1, ... C,} into disjoint partitions or h-nodes as H, = {C;};c1, for some
T}, C [t]. Following Corollary D.8, we can combine the c-factors in each partitions and rewrite it as:
IT TI Precco(Co) = Poagay) (Ho) X Poar,) (Hy) X .. X Poagar, ) (H,) 23)
HpeH C;eH,,

Now, we prove that we match each of these terms according to the training order 7.

For any root h-nodes H,, € o :
Due to the construction of H graphs in Algorithm 5, the following is true for any root nodes, H, € oq.

P(Hy|Pa(Hy)) = Ppan,)(Hy,) (24)

Modular-DCM training convergence for the DCM in H, € 0. (Algorithm 1, line 1) ensures that the following matches:

P(Hy|Pa(Hy)) = QPa(Hk)(Hk)

(25)
= Ppan,)(Hy,) = Qpa(n,)(Hy)

Since, Equation 24 is true, observational data is sufficient for training the mechanisms in H,, € o¢. Thus, we do not need to

train on interventional data.

For the h-node 1, € 0 :

Now we show that we can train mechanisms in H,, by matching P()) c-factors with D ~ P(V) data set. Let us assume,
JA C o¢ such that A = An(Hj),i.e., ancestors set of Hj, in the H-graph that we have already trained with available D
dataset. To apply Lemma D.7 in causal graph G, consider V' = H}, U A as the focus-set, Pa(V") as the action-set. Thus,
active c-components: C’;T =0;nV’

Then we get the following:

P(H, U Aldo(Pa(H,UA)) = [ Poacn(@)x [[ ]I Ppycn(C )

CieH, HSG{A}0+CH

[Here, 1st term is the factorization of the current h-node 26)
and 2nd term is the factorization of the ancestors set.]

= P(H; U Aldo(Pa(Hy U A))) = Ppam,y(Hi) + [[ 1 Ppqc)(C ')
Hs€ACFCcHg

Here according to Corollary D.8, we combine the c-factors P, (¢, (C;) for c-components in Hy, to form P,q g,y (H). We
continue the derivation as follows:

P(H, U Aldo(Pa(H, U.A)))
I I Proer(C)

HseA C;FQHS
Q(H, U Aldo(Pa(H, U A)))
I1 I1 QPa(C*)( )

Hs€eAcCtCHg

— PPa(Hk)(Hk) =

27

= Ppaom,)(Hy) =
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Here the R.H.S numerator follows from previous line according to Equation 19. For the denominator at R.H.S, VHs € A,
we have already matched P(HgU.A|do(pa(HgU.A))), during training of A = An(H},) h-nodes. According to Lemma D.7,
matching these distribution is sufficient to match the distribution at R.H.S denominator. Therefore, our DCM will produce
the same distribution as well. This implies that from Equation 27 we get,

Ppa(n,)(Hy) = Qpa, ) (Hy,)

28
= Ppan,)(Hy) = Qpa(m,)(H,)  [According to Equation 17] 28

Similarly, we train each h-node following the training order 7~ and match the distribution in Equation 23. This finally shows
that,

P(V) = H Ppa(Hj)(Hj) = H Qpa(Hj)(Hj) = Q(V) (29)

Jj<n i<n

O

D.5.2. MATCHING OBSERVATIONAL DISTRIBUTIONS WITH MODULAR TRAINING ON D ~ P;(V),VI € T

Now, we provide the theoretical proof of the correctness of Modular-DCM Modular Training matching observational
distribution from multiple datasets D! VI € .

Notations: When we consider multiple interventions I € 7, we add I as subscript to each notation to indicate the
intervention that notation correspond to. The following notations are mainly used in Proposition D.13, Proposition D.14 and
Proposition D.15.

o D!: the interventional dataset collected with intervention on node 1.

L]

Pr(V),Q;(V): the interventional joint distribution after intervening on node I representing respectively the real data
and the generated data produced from the Modular-DCM DCM.

» G and H!: the causal graph and the H-graph after do(I) intervention. H" or only #H implies the H-graph for the
original causal graph.

* H{: the k-th hnode in the H!-graph.

e Aj: the ancestor set in G j-graph, required to construct the alternative distribution for the c-component in consideration.
Thus, Ay or only A refers to the observational case.

* 09, 01: the root hnodes and the non-root hnodes in the H-graph in consideration.

Proposition D.13. Suppose Algorithm 6: Modular-DCM Modular Training converges for each h-node in H"-graph
constructed from G = (V,E). Suppose the observational distribution induced by the deep causal model is Q(V) after
training on data sets D' VI € T. Then,

P(V) =Q() (30)

Proof Sketch. The proof of this Proposition follows the same route as Proposition D.12. In both cases, Modular-DCM
matches the observational distribution P(V'). The only difference between the two setups is that Modular-DCM has access
to multiple interventional datasets in this setup which enables matching observational distribution efficiently by utilizing
a smaller ancestor set with the joint. An important fact is that even if we have access to do(I),VI € T datasets and we
construct multiple /-graphs, we still follow the topological order of 7?-graph, i.e, H-graph with no intervention. This is
valid according to Proposition D.14 since a topological order of #” works for all #!-graphs even though ' are sparser.
Also, any node in H ,f contains the same set of nodes as in H g for all &.

We can consider any h-node to be either a root h-node or a non-root h-node. Since for the root h-nodes, the ancestor set is
empty, we follow the same approach as the observational case and the proof of correctness follows from Proposition D.12.
Now, suppose a h-node is not a root node and intervention I is not located inside it. To match the alternative distribution,
instead of searching for the ancestor set in only H?-graph created for observational data, Modular-DCM looks at all H'-
graphs created based on intervention I and chooses the smallest ancestor set. We assume that a smaller ancestor set will make
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it easy to match the corresponding alternative distribution. More precisely, instead of matching P(Hj U Ag|do(Pa(H U
Ag))) from observational H-graph, Modular-DCM matches P(H}, U Ar|do(Pa(Hy U Ar)),do(I)) where A is smallest
across all H!-graphs. Since intervention [ is not located inside the h-node, P(Hy U A;|do(Pa(Hy U A;z)),do(I)) =
P(Hy, U Af|Pa(Hy, U Aj), I), i.e, the interventional alternative distribution is same as an observational conditional
distribution. Thus, we train on the interventional dataset to match P, ) (HI) which is equivalent to Py H@)( ) for
h-nodes that contain no intervention.

Following the above approach, to match P, HY) (H?) for all h-nodes will eventually match P(V). The rest follows the
same proof as Proposition D.12. We provide the detalled proof below. O

Proof. According to Tian’s factorization we can factorize the joint distributions into c-factors as follows:

P(V) = = I II Pucn(© 31)

HPeHY C;eH!?

We can divide the set of c-components C = {C1, ... C;} into disjoint partitions or h-nodes as H ,? = {C;}ier, for some
Ty, C [t]. Following Corollary D.8, we can combine the c-factors in each partitions and rewrite it as:

IT  II Prac(C) = Praga) (HE) X Pooargy (HY) X - X Pyauag) (Hy) (32)
HPeHY C;eH)

Now, we prove that we match each of these terms according to the training order 7.

For any root h-nodes /! ¢ oy :

Due to the construction of H” graphs in Algorithm 5, the following is true for any root nodes, H ,? € 0p.
P(H{|Pa(H})) = Ppypy) (H}) (33)
Modular-DCM training convergence for the DCM in H ,Z) € 0. (Algorithm 6, line 6) ensures that the following matches:

P(HY|Pa(HY)) = Qpyqro (HY)

0 0 (34)
== PPa(Hg)(Hk) = QPa(Hg)(Hk)

Since, Equation 33 is true, observational data is sufficient for training the mechanisms in H,? € 0g. Thus, we do not need to
train on interventional data.

For the h-node I ,? €0y

Now we show that we can train mechanisms in H,? by matching P(V) c-factors with either £, or Lo datasets. Let us
assume, A7 C oq such that A; = ATLGT(H ,g ),i.e., ancestors set of H ,ﬁ in the H! -graph that we have already trained with
available D' dataset. To apply Lemma D.7 in G with |I| > 0, consider V' = H] U A; as the focus-set, { Pa(V') U I} as
the action-set. Thus, active c-components: C;r =C;N %4

Then we get the following:

P +
(H{{ U A;|do(Pa(H{ U Ay)), = ] Pacn@x I 11 Ppoctyor(Cy)
C;eH] Hie{Ar} CfCHL
[Here, 1st term is the factorization of the current h-node

. L (35)
and 2nd term is the factorization of the ancestors set.]

= P(ngU‘AI|dO(Pa(HI£UAI))7dO(I)) Ppa(HI Hk H H PPa(C+)UI C )
HieA; CclcH]
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Here according to Corollary D.8, we combine the c-factors Py, (¢, (C;) for c-components in H; to form Poauny(H ). We
continue the derivation as follows:
P(HL U Ay|do(Pa(H] U Ay)),do(I))

[1 I1 PPa(C*)U[(C;‘F)
HLeAr ¢f CHE !

Q(HI U Aldo(Pa(H! U A)),do(I))
[T II Qpa(cj)uf(cf)

HieA;clcH]

= PPa(H,é)(ng) =

(36)

e PPa(Hg)(ng) =

Here the R.H.S numerator follows from previous line according to Equation 19. For the denominator at R.H.S, the
intervention is an ancestor of the current hnode, i.e., I € {An(H})\ H{}. Now, VHL € A;, we have already matched
P(HL U Ar|do(pa(HE U Ar)),do(I)), during training of A; = An(H{) h-nodes. According to Lemma D.7, matching
these distribution is sufficient to match the distribution at R.H.S denominator. Therefore, our DCM will produce the same
distribution as well. This implies that from Equation 36 we get,

Ppa(H,ﬁ)(ng) = Qpa(Hé)(ng) 37)
= Ppa(Hg) (HY) = Qpa(Hg)(Hg) [According to Equation 17]

Similarly, we train each h-node following the training order 7 and match the distribution in Equation 32. This finally shows
that,

PV) = H Ppa(H?)(H?) = H Qpa(H?)(HJQ) =Q(V) (38)
ji<n i<n

O
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Figure 13. Flowchart of proofs

D.5.3. MATCHING INTERVENTIONAL DISTRIBUTIONS WITH MODULAR TRAINING OND ~ P;(V),VI € T

Before showing our algorithm correctness with both observational and interventional data, we first discuss the DAG property
of H-graphs. Please check the notations in the previous section defined for multiple interventions.

Proposition D.14. Any H-graph constructed according to Definition D.2 is a directed acyclic graph (DAG) and a common
partial order T, exists for all H!-graphs, VI € T.

Proof. We construct the H-graphs following Algorithm 5. By checking the modularity condition we add edges between
any two h-nodes. However, if we find a cycle H JI JH ,g — ...~ H JI , then we combine all h-nodes in the cycle and form a
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new h-node in . This new h-node contains the union of all outgoing edges to other h-nodes. Therefore, at the end of the
algorithm, the final 7{-graph, 7! will always be a directed acyclic graph. Note that one can always choose a partition of the
c-components C to ensure H? is acylic: The H! graph with a single node H{ = C.

Next in Algorithm 6, training is performed according to the partial order of 7? which corresponds to the original graph G
without any intervention. This is the most dense #-graph and thus imposes the most restrictions in terms of the training
order. Let I be an intervention set. For any intervention I, suppose ! -graph is obtained from G7 and [ is located in H 2
h-node of H?-graph obtained from G. The only difference between H? and %! is that the h-node H ,‘f might be split into
multiple new h-nodes in H! and some edges with other h-nodes that were present in 7%, might be removed in #”.

However, according to Algorithm 6, we do not split these new h-nodes rather bind them together to form A ,g that contain the
same nodes as H ,? Therefore, no new edge is being added among other h-nodes. This implies that the partial order of 77 is
also valid for H'. After intervention no new edges are added to the constructed #-graphs, thus we can safely claim that,

Ang(H}) C Ang(H)VI € T (39)

Since all H-graphs are DAGs and the above condition holds, any valid partial order for 7 is also a valid partial order for all
H!,VI € T, i.., they have a common valid partial order.

O

In general, for I € H ,g i.e., when the intervention is inside H. ,g , we utilize interventional datasets and search for minimum
size variable set A; C AnGT(H ,g ) in G7 such that do-calculus rule-2 satisfies,

P(H} U Arlpa(H{ U Ar),do(I)) = P(H{ U A;|do(pa(H} U Ap)),do(1)) (40)
Then we can train the mechanisms in H ,g to match the following distribution,

P(Hi U Arlpa(Hj; U Ar),do(1)) = Q(Hj, U Aq|do(pa(Hj, U Ap)), do(1))

’ (41)
= P(H} U A;ldo(pa(H{ U Ap)),do(I) = Q(H{ U Ar|do(pa(Hi U Ar)),do(I))
Proposition D.15. Suppose Algorithm 6: Modular-DCM Modular Training converges for each h-node in H"-graph
constructed from G = (V, E). Suppose the interventional distribution induced by the deep causal model is Q1(V') after
training on data sets D!, VI € T. then,

Pr(V)=Qr(V) (42)

Proof Sketch. The proof of this Proposition follows the same route as Proposition D.12. However, we have now access
to both observational and interventional datasets and Modular-DCM is trained on all these datasets modularly to match
every interventional joint distribution. An important fact is that even if we have access to do(I), VI € Z datasets and we
construct multiple #-graphs, we still follow the topological order of 7?-graph, i.e, H-graph with no intervention. This is
valid according to Proposition D.14 since a topological order of H? works for all 7! -graphs even though 7! are sparser.
Also, any node in H} contains the same set of nodes as in H ,? for all k.

Tian’s factorization allows us to express the interventional joint distribution P;(V') in terms of multiple c-factors. We
divide the c-components corresponding to these c-factors into two sets. Set-1: the c-component containing the intervention
and the c-components in the same h-node. Set-2: the rest of the c-components without any intervention. We combine
the c-factors in both sets as H} and H}, € {H!\ H!} . Therefore, according to Corollary D.8, P;(V) can be written
as: Ppocyur(Ci) x ]1 Il Pra,)(Ci) = Ppa(H,ﬁ)UI(ng) X 11 Ppa(Hlf,)(ng/)‘ During the modular
HleH! C,eH} HI e{HI\H{} '
training with interventional datasets, Modular-DCM matches each of these c-factors and thus matches the interventional
joint distribution.

We can consider any h-node H,g as H,g € oy, 1.e., to be either a root h-node of HT or H,g € o1 1.e., to be a non-root h-node
of H!. For both of these cases, we follow the same approach as the observational case except the fact that we consider
h-nodes in the 4! graph (but the same topological order as "), the ancestor set A; in G and the do(I) dataset while
matching the interventional distribution for h-nodes. Now, for I ,{ € 0y, by the construction of the H! graph, we can say

28



Modular Learning of Deep Causal Generative Models for High-dimensional Causal Inference

P(HE|Pa(H}),do(I)) = Ppa(Hé)UI(H,g). Thus, we match Ppa(Hé)UI(H,g) by training the DCM mechanisms in H/ by
matching P(H!| Pa(HY), do(1)) = Q pagsrryor (HL).

For h-nodes H ,5 € o1, we perform modular training to train these mechanisms by matching an alternative interventional joint

distribution P(H} U A|do(Pa(H{ U A)),do(I)) with the do(I) interventional data. This alternative distribution can be

expressed as: P, prryur(H, Dx 11 I[I Py, ) (C}). Here the first term correspond to the distribution involving
HL€A CheH]

the current h-node H} we are training. The second term corresponds to the partial c-factors located in the ancestors A;.

They are partial Cj because A; are ancestors of H ,g in G5 satisfying the modularity condition D.1 and not necessarily

P(HUA[|do(Pa(HUA;)), do(I)) e

I1 I 1 + (C )
Pa(C])
ngAI c+CH1

match the numerator at the current training step. Since we follow the topological order of the H graph, the denominator
distributions are matched while training the ancestor h-nodes mechanisms in H!. Therefore, Modular-DCM DCM can
match the interventional distribution Pp g1y (H}). More precisely, Q po(1yur (H{) = Ppacuiyor (Hj)-

containing the full c-component C;. We can equivalently write: Pp HI)U [(HE) =

Modular-DCM follows the topological order of #? and trains all mechanisms in any H g While training the k-th h-
node, Modular-DCM enforces the mechanisms in the h-node to learn all interventional distribution Pp, HI)UI (Hl),VI €
Z. Therefore, after training the last node in the topological order, Modular-DCM modular training matches the joint
interventional distribution P;(V'). We provide the detailed proof below.

O

Proof. Suppose, intervention I belongs to a specific c-component C;, i.e., I € C;. According to Tian’s factorization, we
can factorize the do(I) interventional joint distributions for G causal graph, into c-factors as follows:

Pr(V)=Pi(H") = Ppacyur(C) x [ T Pratci(Cir) (43)

HleH! C,eH}

The difference between the c-factorization for P(V') and P;(V') is that when intervention [ is located inside c-component
Ci, we have P, (¢, ur(C;) instead of P, (c,)(C;). We can divide c-components C = {C1, ... C} into disjoint partitions
or h-nodes as H? = {C;};cr, for some Ty, C [t].

Let, the c-component C; that contains intervention I belong to hnode H. Ije,C, e H ,g . Following Corollary D.8, we can
combine the c-factors in each partitions and rewrite R.H.S of Equation 43 as:

Ppa(C )UI H H Ppa(C ’) ) - Ppa(Hé)UI(ng) X H Ppa(Hé,)(HIg’) (44)
€Ml CyeH! Hl, e{H\H[}

Now, we prove that we match each of these terms in Equation 44 according to the training order 7.
For any root h-nodes H} € o:

Due to the construction of H! graphs in Algorithm 5, the following is true for any root nodes, Hf € oy.
Pr(Hg|Pa(H)) = Ppogapyor (Hi) (45)

Modular-DCM training convergence for the mechanisms in H} € 0. Algorithm 6, line 6 ensures that the following
matches:

Pr(Hi|Pa(Hy)) = QPa(H,{)ul(Hig) 46)
= PPa(H,g)UI(ng) = QPa(Hé)UI(ng)
For the h-node H} € o, with I € H}:

Now we show that we can train mechanisms in H ,g by matching P;(V) c-factors with £ and £, datasets. Let us assume,
JA; C o such that A; = Ang_(H, ,g ), i.e., ancestors of H ,g in the H-graph that we have already trained with available
D7 dataset, VI € T.
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To apply Lemma D.7 in G7 with |I| > 0, consider V' = H] U A; as the focus-set, { Pa(V’) U I'} as the action-set. Thus,
active c-components: Cj+ = C; NV'. We apply the lemma as below:

P(Hj U Af|do(Pa(H[ U Arp)), = I Pucour@)x TT 11 Ppo(cy( i) (47)

CieHj HleA; CcheH]

Here, the 1st term is the factorization of the current h-node and the 2nd term is the factorization of the ancestors set. The
intervened variable [ is located in the current h-node H}. Therefore, the factorized c-components, i.e., C; € H} has I as
intervention along with their parent intervention. The above equation implies:

P(ng U AI|dO(Pa(HI£ U Al))) dO(I)) pa(HI)UI Hk H H PPa(CJr ) (48)
HLeA; CfeHE

According to Corollary D.8, we combine the c-factors Py, ¢, )ur(C;) for c-components in H] to form P, pa(HI)U (H{). We
continue the derivation as follows:

P(H{ U A;|do(Pa(H} U Ar)),do(1))
I1 I1 PPa(C;r)(O;_)

H{€A; CfCHL
Q(HL U Aj|do(Pa(H] U Ap)),do(I))
[1 I1 Qpa(c+)( )

HleA; c+ cHL

= PPa(H,i)UI(HIg) =

(49)

= PPa(H,g)uI(ng) =

Here the R.H.S numerator follows from previous line according to Equation 41 since training has converged for the current h-
node. For the R.H.S, denominator, VHY € A appear before H} in the partial order. When we trained h-nodes H. € A; on
P(V) and P;(V) datasets, we matched the joint distribution P(H% U A;|do(pa(HEL U Af)), do(I)),VHL € A;. According
to Lemma D.7, matching these distribution is sufficient to match the distribution at the R.H.S denominator. Therefore, our
DCM will produce the same distribution as well. This implies that from Equation 49 we get,

Ppa(H]{.)UI(HIg) = Qpa(Hg)UI(Hig) (50)

Similarly, we train each h-node following the training order 7 and match the distribution in Equation 44. We train the
c-factor that contains interventions with our available interventional dataset and the c-factors that do not include any
interventions can be trained with P(V') dataset. This finally shows that,

PI(V) :Ppa(Hé)UI(ng) X H Ppa(Hi,)(HkI‘/)
HI e{HI\H]}

:Qpa(H,{)UI(ng) X H Qpa(H,ﬁ,)(ng’) (51)

Hl, e{H\H[}

=Q1(V)
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D.6. Identifiability of Algorithm 6:Modular-DCM Modular Training

Theorem D.16. Let M be the true SCM and Algorithm 6: Modular-DCM Modular Training converge for each h-node
in H constructed from G = (V, £) after training on data sets D = {D! }yre7 and output the DCM M. Then for any Lo
causal query KCpq, (V), identifiable from D, Kq, (V) = Ka2(V) holds.

Proof. Let M1 = (G = (V,&),N,U, F,P(.)) be the true SCM and My = (G,N',U’', F’',Q(.)) be the deep causal
generative model represented by Modular-DCM. For any Hy € H', I € T, we observe the joint distribution P(H} U AT U
Pa(H} UAT),do(I)) in the input D datasets. Thus we can train all the mechanisms in the current h-node H; by matching
the following distribution from the partially observable datasets:

P(HL U Aflpa(HL U Ap),do(1)) = Q(H} U Af|do(pa(H} U Ar)),do(I)) (52)

Now, as we are following a valid partial order of the #?-graph to train the h-nodes, we train the mechanisms of each
h-node to match the input distribution only once and do not update it again anytime during the training of rest of the
network. As we move to the next h-node of the partial order for training, we can keep the weights of the Ancestor h-nodes
fixed and only train the current one and can successfully match the joint distribution in Equation 52. In the same manner,
we would be able to match the distributions for each h-node and reach convergence for each of them. Modular-DCM
Training convergence implies that Q; (V) = P;(V),VI € 7 i.e., for all input dataset distributions. Therefore, according to
Theorem C.3, Modular-DCM is capable of producing samples from correct interventional that are identifiable from the input
distributions. O

Theorem D.17. Suppose Algorithm 1: Modular-DCM Modular Training converges for each h-node in the H-graph
constructed from G = (V, £) and after training on observational dataset D ~ P(V), the observational distribution induced
by the DCM is Q(V'). Then, we have i)P(V') = Q(V'), and ii) for any Lo causal query K aq, (V) that is identifiable from
D, we have K, (V) = Ka2(V)

Proof. Theorem 4.5 is restated here. The first part of the theorem is proved in Proposition D.12. The second part can be
proved with Theorem D.16. O

Theorem D.18. Suppose Algorithm 6: Modular-DCM Modular Training converges for each h-node in the H-graph
constructed from G = (V,€) and after training on observational and interventional datasets D ~ Pr(V)VI € I, the
distribution induced by the DCM is Q1 (V),VI € Z. Then, we have i)P;(V) = Q1(V), and ii) for any Lo causal query
K, (V) that is identifiable from D! VI € T, we have K, (V) = Kaa(V)

Proof. The first part of the theorem is proved in Proposition D.13 and Proposition D.15. Then it is a direct implication of
Theorem D.16, This theorem is equivalent to Theorem 4.5 if we consider Z = {0}. O

31



Modular Learning of Deep Causal Generative Models for High-dimensional Causal Inference

Proposition D.12
Matches P(V) by
Mod-Training on

D~P(V)
S Proposition D.13 Theorem D.17
Proposition D.6 5 5 t Corollary D.8 D Matches P(V) by Convergence
Graphs containing oc;:stisee ° P| hnodesto Mod-Training on & ID with D~P(V)
same c-components M c-components D~P(V), Py(V)
c-components
Theorem D.16
Ly Ly

Identification

Proposition D.15 Theorem D.18

Proposition D.14 Convergence
Matches P(V) & Pi(V
H-graphs have (V) &P(V) & ID with

by Mod-Traini
same partial order UGG S D~P(V), Py(V)

D~P(V), P(V)

Figure 15. Flowchart of proofs

E. Modular Training on Different Graphs
E.1. Modular Training Example

H® -graph H17 -graph

Hy
@ do(17)
He
Hg | €8 56 2 H,
Ho | @ Ho | @
@) (b)

Figure 16. H"-graph and H'"-graph construction

In Figure 16, we construct the ”-graph as below. We describe the H-graph edges (thick blue edges) and the backdoor path
(thin black edges) responsible for those edges.

Hig— Hyp:3+2+1

Hy — Hs : 14 <+ 8 <+ 11 <+ 10 «+ 16,

Hy — Hg : 17 < 9 + 19,

Hys — H7 : 23+ 14 + 15 + 27,

Hg — H7 : 25+ 17+ 27
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In Figure 16, we construct the H'7-graph as below:

Hig— Hyp:3+2+1

Hy — Hs : 14 + 8 + 11 + 10 + 16,

Hs — H7:23 14 < 15 «+ 27,

Now, notice that due to do(17), H}" gets splitted into two new h-nodes, [18,19] and [20,21,22] with a new edge
[20,21,22] — [18,19]. However, according to our H-graph construction algorithm, we keep these two new h-nodes
of H'” combined inside Hi" same as #H"-graph. Therefore, %? and H'7’s common partial order does not change.

For training H. ? node: {23, 24, 25, 26, 27}, we match the following distribution found by applying do-calculus rule 2.
P(23,24,25,26,27,14,15,16,17,18,19,22,5,6,7,8,9, 10, 11, |[do(2, 12, 13, 28,29, 4)) (53)

In Figure 16(a), joints are shown as red nodes and their parents as green nodes. However, consider, we have both
observational and interventional datasets from P (V) and P(V|do(17)) and we have already trained all the ancestor h-nodes
of H37. Then we can train the mechanisms that lie in HY to learn both observational and interventional distribution by
matching a smaller joint distribution compared to Equation 53:

P(23,24,25,26,27,8,10,11, 14,15, 16|do(12, 28,29, 5, 17)) (54)

In Figure 16(b), joints are shown as red nodes and their parents as green nodes. We see that the number of red nodes is less
for H'" graph compared to ? graph when we were matching the mechanisms in h-node, H 9

F. Experimental Analysis

In this section, we provide implementation details and algorithm procedures of our Modular-DCM training.

F.1. Training Details and Compute

We performed our experiments on a machine with an RTX-3090 GPU. The experiments took 1-4 hours to complete. We
ran each experiment for 300 epochs. We repeated each experiment multiple times to observe the consistent behavior. Our
datasets contained 20 — 40K samples, and the batch_size was 200, and we used the ADAM optimizer. For evaluation, we
generated 20k fake samples after a few epochs and calculated the target distributions from these 20k fake samples and 20k
real samples. We calculated TVD and KL distance between the real and the learned distributions. For Wassertein GAN
with gradient penalty, we used LAMBDA_GP=10. We had learning_rate = 5 * 1le — 4. We used Gumbel-softmax with a
temperature starting from 1 and decreasing it until 0.1. We used different architectures for different experiments since each
experiment dealt with different data types: low-dimensional discrete variables and images. Details are provided in the code.
For low-dimensional variables, we used two layers with 256 units per layer and with BatchNorm and ReL.U between each
layer. Please check our code for architectures of other neural networks such as encoders and image generators

F.2. Complexity Evaluation

Suppose, a causal graph has N variables. Without modularization, we have to match the joint distribution containing N
(might be large) number of low and high dimensional variables in a single training phase. Matching that joint distribution
with deep-learning models, and a complicated confounded causal structure could be difficult since we are attempting to
minimize a very complicated loss function for a very large neural network. Our proposed method allows us to reduce the
complexity of this problem tremendously by modularizing the training process to c-components. The size of a c-component
is generally a lot smaller than the whole graph. Thus, even though we have to train mechanisms in a c-component together
and match a joint distribution involving high and low dimensional variables, the complexity will be much lower. Without
our approach, there is no existing work that can modularize and simplify the training process for a causal graph with latents.

To achieve a deep causal generative model (DCM), given a causal graph of N nodes, it is required to train /N neural networks.
However, our nearest benchmark NCM, trains all N networks together at the same time. While our method trains only the
networks that belong to a single h-node. Thus, during a training phase, the maximum number of networks NCM has to train
together is O(N) and in our case, it is O(|Largest h-node|) which is in most cases O(|Largest c-component| ).
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F.3. Image Mediator Experiment

In this section, we provide additional information about the experiment described in Section 5.1. The front-door graph has
been instrumental for a long time in the causal inference literature. However, it was not shown before that modular training
with high dimensional data was possible, even in the front door graph. This is why we demonstrate the utility of our work
on this graph.

Frontdoor image mediator experiment
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ncmP(A|do(D=0))
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Figure 17. Modular Training on frontdoor causal graph with training order: {I} — {D, A}

We have domain D = [0, 1], Image size=3 x 32 x 32 and C' = [0, 1, 2]. Let Uy, €1, e, e3 are randomly generate exogenous
noise. D = Uy + e1, Image = fo(D,e2), A = f3(Image,es,Up). f2 is a function which takes D and ey as input and
produces different colored images showing D digit in it. f3 is a classifier with random weights that takes Uy, e3 and
Image as input and produces A such a way that | P(A|do(D = 0)) — P(A|D = 0)|, |P(A|do(D = 1)) — P(A|do(D =
0))|and|P(A|D = 1) — P(A|D = 0)] is enough distant. The digit color can be considered as exogenous noise. The target
is to make sure that the backdoor edge D <+ A and the causal path from D to A is active. Since we have access to Uy as
part of the ground truth, we can calculate the true value of P(A|do(D)) with the backdoor criterion (Pearl, 1993):

P(Aldo(D)) = | P(A|D,Uo)P(D|Uo)
Ug
During training, Uy is unobserved but still, the query is identifiable with the front door criterion (Pearl, 2009). Image is a
mediator here.

P(A|do(D)) = /1 P(Image|D) Y P(A|D', Image)P(D')
mage D’

However, this inference is not possible with the identification algorithm since it requires image distribution. But Modular-

DCM can achieve that by producing Image samples instead of learning the explicit distribution. If we can train all
mechanisms in the Modular-DCM DCM to match P(D, A, I'), we can produce correct samples from P(A|do(D)). We
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Figure 18. Modular-DCM converges with pre-trained model on COVIDx CXR-3 dataset.

construct the Modular-DCM architecture with a neural network G p having fully connected layers to produce D, a deep
convolution GAN Gy to generate images, and a classifier G 4 to classify MNIST images into variable A such that D and
A are confounded. Now, for this graph, the corresponding H-graph is [I] — [D, A]. Thus, we first train G; by matching
P(I|D). Next, to train Gp and G 4, we should match the joint distribution P(D, A, I) since {I} is ancestor set .A for
c-component { D, A}. GAN convergence becomes difficult using the joint distribution loss since the losses generated by low
and high dimensional variables are not easily comparable and it is non-trivial to find a correct re-weighting of such different
loss terms. To the best of our knowledge, no current causal effect estimation algorithm can address this problem since there
is no estimator that does not contain explicit image distribution, which is practically impossible to estimate. To deal with
this problem, we map samples of I to a low-dimensional representation, RI with a trained encoder and match P(D, RI, A)
instead of P(D, I'mage, A).

Note that, we use the mechanism training order [I] — [D, A] specified by the H-graph (Algorithm 7) to match the joint
distribution P(D, Image, A). It is not feasible to follow any other sequential training order such as [D] — [Image] — [A]
as training them sequentially with individual losses can not hold the dependence in D <> A. We compare our performance
with NCM in Figure 17. We implemented NCM on our architectures as it could not be directly used for images. For
estimating the FID scores, we generated 2050 samples from each method and calculated the FID score compared to the
original images using a method proposed in (Seitzer, 2020).

F.4. MNIST Diamond Graph

Here we discuss the data generating process of the MNIST diamond graph. We have considered matching the joint
distribution for the following diamond graph. I; — Digit — Is — Color;I; <> Color <> Digit. Here I; and I are
image nodes and the rest are discrete. I, Digit, Color belong to the same c-component. To generate semi-synthetic data
for this graph, we first uniformly sample U; and Uy where I1 < U; — Digit and Digit < Uy — Color. Next, we set
15 .color according to U;. Then we pick a digit image from the MNIST dataset of I;.digit and color it with I;.color. Next
we generate values for Digit consistent with [;.digit while adding some confounding variable U,. We pick another MNIST
image with Digit and color it with some random color. Finally we set the value of C'olor with I5.color and Us.

F.5. Performance on Real-world COVIDx CXR-3 Dataset
F.5.1. REAL-WORLD COVIDX CXR-3 DATASET

To demonstrate the convergence behavior of Modular-DCM on real high-dimensional datasets, we conduct a case study with
the COVIDx CXR-3 (Wang et al., 2020) dataset in this section. This dataset contains 30,000 chest X-ray images (Xray)
with Covid (C) and pneumonia (V) labels from over 16,600 patients located in 51 countries. Even though there is no
ground truth causal graph associated with this dataset, we consider the same motivational setup we discussed in Figure 1a:
C — Xray — N,C < N. We assume the graph to be consistent with the dataset since it does not impose conditional
independence restrictions on the joint distribution P(C, Xray, N). Therefore, we expect our modular training algorithm to
correctly match the observational joint distribution. We discuss the reasoning behind each edge in Appendix F.5. We aim to
learn that if a patient is randomly picked and intervened with Covid (hypothetically), how likely will they be diagnosed
with pneumonia, i.e., P(N|do(C))? To match the joint distribution P(C, Xray, N), we follow the modular training order:
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[Gxray] = [Gc, Gn]. Instead of training G x4, from scratch, we use a pre-trained model (Giorgio Carbone, 2023) that
can be utilized to produce Xray images corresponding to C' € [0, 1] input. Next, we train G¢ and Gy together since they
belong to the same c-component. Since the joint distribution contains both low and high-dimensional variables, we map
Xray to a low-dimensional representation Rxray with an encoder and match P(C, Rxray, N).

Evaluation: Figure 18b shows images for the original dataset (left) and output images (right) from the pre-trained model.
In Figure 18c, we plot the total variation distance (TVD) of P(C), P(N), P(N|C), P(N,C). We observe that TVD
for all distributions is decreasing. The average treatment effect, i.e., the difference between E[P(N|do(C = 1))] and
E[P(N|do(C = 0))] is in [0.05, 0.08] after convergence. This implies that intervention with Covid increases the likelihood
of being diagnosed with Pneumonia. However, these results are based on this specific COVIDx CXR-3 dataset and should
not be used to make medical inferences without expert opinion.

F.5.2. DETAILED DISCUSSION ON CovIDX CXR-3

In this section, we provide some more results of our experiment on COVIDx CXR-3 dataset (Wang et al., 2020). This
dataset contains 30,000 chest X-ray images with Covid (C') and pneumonia (V) labels from over 16,600 patients located
in 51 countries. The X-ray images are of healthy patients (C' = 0, N = 0), patients with non-Covid pneumonia (C' =
0, N = 1), and patients with Covid pneumonia (C' = 1, N = 1). X-ray images corresponding to COVID non-pneumonia
(C =1, N = 0) are not present in this dataset as according to health experts those images do not contain enough signal for
pneumonia detection. However, to make the GAN training more smooth we replaced a few (C' = 1, N = 1) real samples
with (C' =1, N = 0) dummy samples. We also normalized the X-ray images before training.

Note that the causal effect estimates obtained via this graph may not reflect the true causal effect since the ground truth
graph is unknown and there may be other violations of assumptions such as distribution shift and selection bias. In order
to demonstrate the convergence behavior of Modular-DCM on real high-dimensional datasets, we consider the causal
graph shown in Figure 18a. However, observe that this graph does not impose conditional independence restrictions on the
joint distribution P(C, Xray, N). If our mentioned assumptions (including no selection bias, etc.) are correct, we expect
Modular-DCM to correctly sample from interventional distribution after training by Theorem 4.5. Therefore, we expect our
modular training algorithm to correctly match the observational joint distribution.

Our reasoning for using this causal graph is as follows: we can assume that Covid symptoms determine the X-ray features
and the pneumonia diagnosis is made based on the X-rays. Thus we can add direct edges between these variables. A
patient’s location is hidden and acts as a confounder because a person’s socio-economic and health conditions in a specific
location might affect both the likelihood of getting Covid and being properly diagnosed with Pneumonia by local health
care. The X-ray images are done by chest radiography imaging examination. Due to the standardization of equipment, we
assume the difference in X-ray data across hospital locations is minor and can be ignored. Thus, Location 4 Xraylmages.

To obtain the low dimensional representation of both real and fake X-ray images, we used a Covid conditional trained
encoder. Instead of training G x.q, from scratch, we use a pre-trained model (Giorgio Carbone, 2023) that can be utilized to
produce Xray images corresponding to C' € [0, 1] input. Note that, this pre-trained model takes value 0 for Covid, 1 for
normal, and 2 for Pneumonia as input and produces the corresponding images. If a fake Covid sample indicates Covid=1,
we map it to the O input of the pre-trained GAN. If a fake Covid sample indicates Covid=0, this might be either mapped to 1
(normal) or 2 (Pneumonia). Instead of randomly selecting the value, we use the real Pneumonia sample to decide this (either
1 or 2). After that, we produce X-ray images according to the decided input values. Since we are using the GAN-generated
fake samples for Covid=1, the computational graph for auto grad is not broken. Rather the mentioned modification can be
considered as a re-parameterization trick.

F.6. Invariant Prediction on CelebA-HQ

To reflect the distribution shift in P(Sex), we divide image samples from the CelebA-HQ dataset into train and test domains
as the table in Figure 5 and the actual number of samples are given in Table 1. In the test domain, P(Sex) changes while
P(Eyeglass) stays fixed.

The prediction of Eyeglass from I'mage is done by learning the probability distribution P(Sex|Image). Note that,
we would like the prediction of Eyeglass to be independent of Sex and Domain. This might not work if we learn
P(Eyeglass|Image) or P(Eyeglass|Image, Sex) since conditioning will make the prediction depend on Domain.
Thus, we train Intervention classifier on D[Eyeglass, Image] ~ P(Eyeglass, Image|do(Sex)) following the
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Figure 19. Total variation distance plots show Modular-DCM converges on COVIDx CXR-3 dataset. (consecutive 20 epochs were
averaged)
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Figure 20. Real images from dataset vs pre-trained GAN generated images

approach suggested in (Subbaswamy et al., 2019).

Since { E'yeglass, Sex} and {Image} belong to different c-components, we can train models G gyegiass; Gses together
and use a pre-trained model for G;. Therefore, we only have to train G4 and Gg. We utilize Modular-DCM’s ability to
incorporate a pre-trained image generation model, InterFaceGAN (Shen et al., 2020) which can generate impressive human
faces in its causal generative models. We generate 10k samples of [Eyeglass’, Image'] ~ P(Eyeglass, Image|do(Sex)).
Intervention on Sex attribute will make E'yeglass independent from both Sex and Domain. Finally, the prediction would
be independent of the distribution shift in P(Sex|Domain).

We used the InterFaceGAN that uses pre-trained StyleGAN from the repository: https://github.com/genforce/
interfacegan. To filter incorrect images, we used a pre-trained classifier to from this repository: https:
//github.com/clementapa/CelebFaces_Attributes_Classification to filter the inconsistent images
generated from InterFaceGAN.

Table 1. Number of samples in training and test dataset

Train
Eyeglass=0 | Eyeglass=1
Sex=0 3200 100
Sex=1 1000 1080
Test
Sex=0 400 180
Sex=1 600 100
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Figure 21. Image samples generated by InterFaceGAN for P(Image|Sex, Eyeglass = 1)

Figure 22. Image samples for P(Image|Eyeglass = 1) from the CelebA-HQ dataset. We observed P(Sex = 1|Eyeglass = 1) is
around 0.91 implying that in the training data, there is a high correlation between Sex=Male and wearing eyeglass.
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F.7. Asia/Lung Cancer Dataset
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Figure 23. Modular Training on Asia Dataset

Asia Dataset. We evaluate our algorithm performance on ASIA Dataset from bnlearn repository (Scutari & Denis, 2021).
The purpose of this experiment is to show that modular training can learn the joint distribution of the Asia dataset formed as
semi-Markovian and correctly produces samples from identifiable £, distributions. To check the effectiveness of Modular-
DCM for a semi-Markovian causal model, we hide ”smoke” and ”bronc” variables in the observational dataset as shown
in Figure 23a. This action gives us a causal graph with a latent confounder between the ”lung” and the ’dysp” variables.
The H graph nodes are indicated by the square box containing the variables. According to the algorithm, all 7{-nodes are
disconnected except [either] — [lung, dysp]. Therefore, we first start training the mechanisms of asia, tub, either, xray
and then separately but in parallel train the mechanisms of lung, dysp. Here we can also use pre-trained either while
we train lung, dysp to match the distribution P(lung, dysp, either|tub). For evaluation, we generated samples from
P(dysp|do(lung)) and P(dysp|do(either)) distributions from Modular-DCM. We can calculated P(dysp|do(lung)) with
front-door adjustment and P(dysp|do(either)) with back-door adjustment using the real dataset samples. In Figure 23b, 23c,
we can see that our partial training is working well with all of the distributions converging to low TVD and KL loss.

F.8. Real-world: Sachs Protein Dataset

For completeness, we test both Modular-DCM and NCM performance on a low-dimensional real-world Sachs dataset (Sachs
et al., 2005), which contains a protein signaling causal graph and is given in Figure 24a. The goal is to illustrate
Modular-DCM’s capability of utilizing multiple partial £, Lo datasets. We considered the observational dataset D ~
P(PKA, Mek, Erk, Akt) and the interventional dataset Dy ~ P(Mek|do(PK A = 2)). The interventional dataset with
PK A = 2is chosen since it has a large number of samples. Here we intentionally hide variable P K C and considered it as
a confounder. Hence, P(Mek|do(PK A = 2)), P(Akt|do(PK A = 2) and P(Erk|do(PK A = 2)) are non-identifiable
from only P(V'). According to Corollary C.5, P(V'), P(Mek|do(PK A = 2)) make these distributions identifiable. More
precisely, if we have access to P(V') and Ppg 4 (Mek) only, then its sufficient to identify, Ppx 4 (Mek, Erk, Akt). We
have datasets Dy, D5 that are sampled from P(V'), P(Mek|do(PK A = 2)) for training. If we convert the Sachs graph
into the train graph H in Figure 24a, we see that for only the interventional dataset, we have to train the mechanism of Mek.
This is because other variables except Mek belong to different hnodes or training components. Here,

PPKA(MBk, Erk, Akt)
= PPKA(Mek)PpKA(E’I“k|M@kj)PPKA(Ak‘t'ETk, Mek) (55)
= Ppra(Mek)P(Erk|Mek, PK A)P(Akt|PK A, Erk, Mek)

Therefore, we train Modular-DCM i.e., the DCM to match both P(V') and P(Mek|do(PK A)). We i) first train G, =
[Gpia,Gprer] with both Dy and Da, i) next, train Gy, v, = [Ggrk, Gagt] with only D;. In Figure 24b and 24c,
Modular-DCM converges by training on both P(V') and P(Mek|do(PK A = 2)) datasets. We compared the distributions
P(Akt|do(PKA = 2) and P(Erk|do(PK A = 2)) implicit in Modular-DCM generated samples with the Sachs £,-dataset
distributions and observed them matching with low TVD and KL loss. Even though, we dont observe Erk and Akt in
D5, with modular training, we can still train the mechanisms with P(V') and sample correctly from their £5- distributions.
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Figure 24. Benchmark and Real-world datasets

This reflects the transportability of Modular-DCM. During Modular-DCM training, we can use pre-trained models of
{PKA, Mek},{Akt} or { Erk} since they are located in different hnodes.

Sachs dataset performance comparison with NCM: In Figure 24d and Figure 24e, we compare and show the convergence
of both Modular-DCM and NCM with respect to total variation distance and KL-divergence. We observe that for low-
dimensional variables, we perform similarly to DCM or better in some cases. However, they do not have the ability to
utilize pre-trained models like we do. Besides, unlike NCM, we do not need to run the algorithm again and again for each
identifiable queries. Thus, when queries are identifiable, our algorithm can be utilized as an efficient method to train on
datasets involving low-dimensional variables.

G. Algorithms & Pseudo-codes

Algorithm 7 Construct_Hgraph(G)

: Input: Causal Graph G

1 C  get_ccomponents(G)

: Create nodes Hy, = Ci in H,VC), € C

: for each H,, H; € H such that s # t do

if P(H;|do(pa(H:) N Hy))

76 P(Ht|pa(Ht) N HS) then
H.add(Hs — Hy)

7: H < Merge(H, cyc), Veye € Cycles(H)

8: Return: H

DN W =

a
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Algorithm 8 isIdentifiable(G, Z, query)

1: Imput: Causal Graph G = (V, £), Interventions = I, Causal query distribution= query
2: if type(query)=Interventional then
3:  Return Run_ID(G, query) or hasSurrogates(G, query, I)

Algorithm 9 RunGAN(G, G, Vi, I, N)

1: Imput:Causal Graph G = (V, £), DCM G, target variable set Vi, Intervention I, Pre-defined noise N.
2: for V;,V; € Vk such thati < j do

3: if V;, V; has latent confounder then

4 z ~ p(2)

5 conf[Vi] < Append(conf[Vi], z)

6: conf[V;] < Append(conf[V;],z) I/ Assigning same confounding noise [fix for multiple confounders]
7: for V; € Vi in causal graph,G topological order do

8: if V; € I.keys() then

9: v; = I[V;] /] Assigning intervened value

10:  else

11: par = get_parents(V;, Q)

12: if V; € N.keys() then

13: exos, con f, gumbel = N[V]

14: else

15: exos ~ p(z)

16: conf = conf[Vi]

17: gumbel = (. //New Gumbel noise will be assigned during forward pass
18: v; = Go, (exos, conf, gumbel, Vpar)

19: ¥« Append(¥,v;)
20: Return Samples v or Fail

Algorithm 10 Evaulate GAN(G, G, Z, query)

: Input:Causal Graph G = (V, £), DCM= G, Available Interventions = Z, Causal query distribution=query
. if isldentifiable(G, Z, query) = False then

Return: Fail

. if type(query)= observation then

Y = Extract(query)

samples < RunGAN(G, G, [Y], 0, 0)

: else if type(query)= Intervention then

Y, (X, z) := Extract(query)

samples < RunGAN(G, G, [Y],{X : z},0)

: Return samples

SVRIDINE RN

—

41



