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Abstract—This extended abstract presents the Task-
Parameter Nexus (TPN), a learning-based approach to the
online determination of the (near-)optimal control parameters
of model-based controllers (MBCs) for trajectory tracking
tasks. In TPN, a deep neural network is introduced to generate
the control parameters for any given trajectory at runtime. To
train this network, we introduce a systematic approach to build
the training dataset so that this dataset is rich enough to cover
a wide range of trajectories to be tracked. For each trajectory
in the bank, we autotune the optimal control parameters offline
and use them as labels. With this dataset, the TPN is trained and
evaluated on the quadrotor platform. It is shown in simulation
experiments that the TPN can predict near-optimal control
parameters for a spectrum of tracking tasks, demonstrating
its robust generalization capabilities.

I. INTRODUCTION

The recent advancement in large foundational mod-
els [1] has improved robots’ understanding of their environ-
ment [2] and making interactions with humans more natural
and effective [3]. This progress is largely due to the avail-
ability of large-scale datasets and the ability to learn patterns
from vast amounts of visual and textual information, enabling
these models to generalize well across different contexts and
scenarios [4]. However, limited generalization capability in
the domain of planning and control has been reported [4]
due to relatively scarce data available for the large models
to capture. In addition, even if a large foundation model
generalizes well at the level of motion planning, the low-level
control (which often follows the model-based design and
requires task-specific tuning [5]) may not generalize equally
well in terms of the control performance, especially when
the tasks are not predefined. These observations lead to a
challenging question: Given a task which could be new and
not predefined, how can we online determine the associated
optimal or near-optimal control parameters in a predefined
model-based control structure?

This extended abstract introduces such a tool that enables
the system to learn the control parameters when operating
different tasks. For the purposes of illustration, we consider
a quadrotor platform where a rask is defined as tracking a
trajectory. Different tasks imply different trajectories with
various motion characteristics that the quadrotor needs to
track, where one single set of control parameters cannot cater
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Fig. 1: An illustration of the TPN when applied to a model-
based controller for tracking a reference trajectory online.

to different tasks uniformly well. For instance, consider a
PD-type controller for a quadrotor’s translational control. If
the task requires the quadrotor to hover, then there exists
an optimal set of control parameters where the D-gain is
dominant: it will allow for sufficient damping so that the
quadrotor can hover steadily when it is perturbed. On the
contrary, if the task needs the quadrotor to track an aggressive
trajectory (high speed or sharp turns), the optimal set of
parameters will have a reduced D-gain and raised P-gain (as
compared with those for the hover task) for sufficient agility
and responsiveness to the fast-changing reference. Since each
trajectory to be tracked is potentially associated with a set of
optimal control parameters, there exists a nontrivial mapping
from tasks to control parameters. We develop a deep neural
network, called Task-Parameter Nexus (TPN), together with
the training dataset, to approximate this mapping, as shown
in Fig. 1. Arbitrarily given a reference trajectory, the TPN
predicts the (near-)optimal control parameters of a model-
based controller (MBC) for tracking purpose.

II. METHODOLOGY AND PRELIMINARY RESULTS

To train the TPN, we first create a trajectory bank that
includes trajectory pieces with various motion characteristics,
categorized by speed and curvature. Note that different
speeds and curvatures represent different levels of difficulty
in tracking the translational and rotational motions, respec-
tively. By changing the speed and curvature (Fig. 2A), the
trajectory bank can be enriched to cover a wide range of
trajectory pieces the quadrotor may encounter (Fig. 2B).
Given the trajectory pieces in the bank, we obtain the expert
parameters using batch DiffTune [6]-[8] (Fig. 2C). With the
dataset of tasks and expert parameters, we train the TPN in
a supervised manner (Fig. 2D). Note that the last layer of
the TPN is regulated to output the parameters in the set of
stabilizing parameters, which can be determined theoretically



Dataset generation

A Categories of trajectories B
speeds

under category S;C,

Parent trajectory pieces

e

curvatures

AN
/1

C

Expert param.
0 (Tbatch)

SRR su-

Task batches, Thatch

Perturb waypoints
—

([ Model training

0

Tasks from all categories
and associated expert
parameters

v

Train the TPN via
supervised learning

é
sEln Bl

— <

\ e £

o

TPN
Salss | N
[
J

Fig. 2: Illustration of the dataset generation and model training. A: Categorize the trajectory bank by speed and curvature.
B: Generate parent trajectory pieces by sampling waypoints according to the designated speed and curvature and generate
smooth trajectories using the minimum snap algorithm. C: Randomize trajectory pieces and use batch Difftune over batches
of child pieces to obtain the expert (optimal) parameters. D: Train the TPN using labeled data generated in A—C.

or empirically. For example, one can use RAYEN [9] as the
last layer if the set is convex. Leveraging the generalization
capability of deep neural networks, the TPN can possibly
infer appropriate parameters for unseen testing tasks.

When the TPN is deployed online, we first divide the to-
be-tracked target trajectory into pieces that match the length
of the tasks in the training dataset. So the target trajectory is
a collection of sequentially connected trajectory pieces. At
runtime, the TPN predicts the control parameters based on
each trajectory piece, and the predicted parameter will be
loaded to the controller over the time interval corresponding
to this piece. The online procedure is illustrated in Fig. 1.

TABLE I: Tracking RMSE achieved by expert parameters, TPN
parameters, and untrained parameters over unseen tasks. Unit: [m]

Category Expert TPN Untrained
S1C5 0.180+0.036 0.181+0.036  0.249+0.064
S1Cs 0.182+0.038 0.18340.038  0.268+0.069
S2C5 0.207+0.059  0.197+0.057 0.531+0.089
S4Cy 0.181+0.037 0.18340.038  0.268+0.069
S4Co 0.219+0.070  0.24540.074  0.926+0.099
S4Cs 0.218+0.072 0.24540.079  1.061+0.097
S5C1 0.2104+0.060 0.252+0.061  0.532+0.090
SsC1 0.2064+0.060 0.257+0.065 0.609+0.097

We have validated the TPN in simulation experiments and
compared TPN-produced parameters with expert parameters
over the tasks (trajectories) under 8 categories that are not
covered in the trajectory bank. The results are shown in
Table I, in which the TPN’s performance, in terms of tracking
RMSE, is suboptimal to that of expert parameters under
the same categories. Note that the untrained parameters
(a single set of stabilizing parameters that were used to
initialize the batch auto-tuning) show much worse tracking

performance than both the expert and TPN parameters. The
overall comparison demonstrates that the TPN enjoys robust
generalization capabilities to new tasks.

III. ONGOING AND FUTURE WORK

We will demonstrate the capability of the TPN on a real
quadrotor and develop theoretical support on the generality
of the TPN. Extensions of the current setting to different
systems will also be explored, such as legged robots.
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