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Statistical inference for time series such as curve estimation for time-
varying models or testing for existence of a change point have garnered sig-
nificant attention. However, these works are generally restricted to the as-
sumption of independence and/or stationarity at its best. The main obstacle is
that the existing Gaussian approximation results for nonstationary processes
only provide an existential proof, and thus they are difficult to apply. In this
paper, we provide two clear paths to construct such a Gaussian approximation
for nonstationary series. While the first one is theoretically more natural, the
second one is practically implementable. Our Gaussian approximation results
are applicable for a very large class of nonstationary time series, obtain opti-
mal rates and yet have good applicability. Building on such approximations,
we also show theoretical results for change-point detection and simultaneous
inference in presence of nonstationary errors. Finally, we substantiate our the-
oretical results with simulation studies and real data analysis.

1. Introduction. Statistical inference for time series is an important topic that has gar-
nered significant attention over the past several decades. There is a well-developed asymp-
totic theory of Gaussian approximation for stationary processes that in turn yields a solid
foundation for doing asymptotic inference. However, in practice, nonstationary time-series
processes are more ubiquitous, and unfortunately, similar Gaussian approximation tools for
nonstationary processes are either not sharp enough or difficult to apply. Our main goal in
this paper is to establish optimal KMT-type Gaussian approximations for nonstationary time
series that also provide an explicit construction strategy, and thus enable asymptotic inference
for such series.

We now discuss some motivations for theoretical development for nonstationary time se-
ries. Stationarity is an idealized assumption for any real-life series observed over a long pe-
riod of time. In the parlance of analyzing such long series, when parametric models are used,
typically this translates to systematic deviation of the parameters. Even without such a para-
metric guide, one can observe intrinsic changes in how the dependence evolves over time.
Apart from these, different external factors such as recession, war, politics, pandemic, etc.
affect time series and can introduce abrupt paradigm shifts. Such shifts could be of different
types—either a shift in mean, or shock events that change a process that was varying slowly
or in a more stationary way. The two approaches are captured in the literature of time-varying
models and change-point analyses, respectively.

The literature of time-varying models tries to address this issue by allowing model
parameters to vary smoothly over time; see [14, 32, 33, 48, 49, 61, 84, 105] among
others. The inference questions arise naturally while choosing a time-varying model in
contrast of a time-constant one. Such hypothesis testing frameworks are discussed in
[4, 12,18, 59, 69, 73, 79, 103, 104] and [60]. Moving from pointwise inference, [53, 95, 108]
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discussed obtaining more challenging simultaneous confidence bands. Such simultaneous in-
ference requires Gaussian approximation beyond the central limit theorem, and motivates
for KMT-type Gaussian approximations as spelled out in (1.1). The second approach—the
analysis of change points, originated in quality control literature [74, 75], but has since be-
come an integral part of a wide variety of fields, among them economics [78], finance [2],
climatology [85] and engineering [90]. Building on estimation techniques, these problems
discuss different types of inference problems such as the existence of change point or creat-
ing confidence bands for means of different pieces, etc. The test statistic for testing existence
of change points may be viewed as two-sample tests adjusted for the unknown break loca-
tion, thus leading to max-type procedures. Such tests also need a Gaussian approximation as
mentioned in (1.1) to provide correct cut-off. For some useful references on these, see [6]
and [19] among others. Structural break estimation can also be viewed as a model selection
problem; see [23, 65] and [87]. See also [5] and [50] for excellent reviews on change-point
inference literature.

However, in both of these paradigms, typically the error process is assumed to be station-
ary, and thus the techniques involved do not go beyond what we already know for stationary
series. In other words, the nonstationarity has generally been reflected only in the signal and
not in the noise process. This posits a challenging but a fundamental problem. The literature
on inference for nonstationary time series is sparse due to difficulty of obtaining a sharp,
explicit Gaussian approximation. The existing results are either not as sharp as those for
stationary processes, or are difficult to construct.

We now proceed to mathematically introduce the problem. For independent and identically
distributed X; with E(X;) =0, E(]X;|?) < oo, p > 2, Komlds, Major and Tusnady [55, 56]
obtained an optimal Gaussian approximation: for S; := 23:1 X,

(1.1) max [S; — B(E(S?))| = 0as.(Ta).

1<j<n

where E(SJZ.) = jEX %), B(-) is the standard Brownian motion and S, is constructed on a

richer space such that (S;);>1 =p (S{ )i>1, and the approximation rate 7, = nl/P is optimal
when only finite pth moment is assumed. Henceforth, throughout this paper, we will assume
p > 2 unless specified explicitly. The Gaussian approximation (1.1) substantially generalizes
the central limit theorem S,,//n = N (0, E(X %)), and it allows for a systematic study of
statistical properties of estimators based on independent data. The optimal rate of n'/? was
matched for a large class of stationary time series in the seminal work by Berkes, Liu and
Wau [9]. In the latter work, they assume the stationary causal representation for X;, and are
able to replace E(S7) = jE(X7) in (1.1) by jog, where 03, = 3,7 E(X0X;) is the long-
run variance of the time series. One can see that ago = lim,_ oo IE(S,%) /n, and thus §; being
approximated by a Gaussian process with variance i ogo makes intuitive sense from the idea
of preserving a second-order property. Unfortunately, for a nonstationary process, one does
not have the notion of such a long-run variance, and thus the existing Gaussian approximation
results are somewhat abstract and unclear.

To characterize the nonstationary process (X;), we view X; as outputs from a physical
system with the following causal representation:

(12) Xt:gt(ﬁ)v With-ﬁ:("'vgl‘*lagt),

where (g;);cz are i.i.d. inputs of this system and g, : R® — R are measurable functions.
A Gaussian approximation for such nonstationary processes was obtained by [96], with a
suboptimal rate and only for 2 < p < 4. On the other hand, for inferential procedures it is
important to establish an approximation for the process (S;)}_;. They did provide a regu-

larization G; = Y/_, £1% 7, where ¥; = Var(X% (E(Xg|F) — E(X¢|Fi—1))) and Z; are
J i=1“i k=i
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i.i.d. Gaussian; however, X;’s are not naturally estimable quantities. This result was improved
upon by [54], who obtained optimal rate n'/? rate for all p > 2. However, even their approx-
imating Gaussian process is not regularized as it only provides approximation for blocks of
partial sums, and not all §; as (1.1) does. Moreover, the variance of the approximating Gaus-
sian process was difficult to interpret and connect with that of the original process. Recently,
[68] used a local long-run covariance matrix as a proxy to the variance of the approximat-
ing Brownian motion. Their proof relies on martingale embedding strategy of [28] to bound
Wasserstein distance of the partial sums and their Gaussian analogues. Nonetheless, their rate
is suboptimal.

Keeping the main goal of regularizing the approximating Gaussian process, we note that
it is possible to preserve the second-order property without the notion of long-run vari-
ance if the approximating (of §;) Gaussian process can be written as G; = }_;; ¥; with

E(Siz) = }E(Giz). We start with one such approximation, which ensures this; in fact, we are
able to establish a Gaussian approximation that ensures Cov(X;, X ;) = Cov(Y;, Y;), which
entails E(Siz) = E(Giz). Assumption of Gaussianity is frequently used in many areas of statis-
tics where, as further specification, one puts a covariance structure on (X;). Our Gaussian
approximation provides theoretical validation that for the nonstationary process, one can still
obtain an approximating Gaussian process that matches the covariance at a modular level. To
the best of our knowledge, such covariance-matching Gaussian approximations, despite be-
ing quite natural for nonstationary processes, are rarely discussed in the literature. In particu-
lar, for a possible nonstationarity in covariance, such second-order preserving approximation
seems to be a first such result that additionally maintains optimal rate.

Our first result is applicable in situations where the practitioner knows the covariance struc-
ture of the observed processes. However, for general nonstationary processes with unknown
covariance structure, the practical implementation with this novel Gaussian approximation
remains somewhat challenging. Our second set of Gaussian approximation results first em-
bed the approximating Gaussian process in a Brownian motion with evolving variance and
then regularize the latter. As expected, the variance generally does not increase linearly as
it does in [9] for the stationary case. However, in our approximation S; is approximated by
a Brownian motion valued at E(SJZ-), which is same as (1.1). Unlike [68], the variance of

our approximating Gaussian process is simply E(Sl.z), which immediately suggests intuitive
estimators of that variance.

Next, we address the issue of estimating the variance of the approximating Gaussian pro-
cesses. We first derive a block version of our theoretical Gaussian approximation, which in
turn, yields a conditional Gaussian approximation where estimated block variances are used
to construct the variances of the approximating theoretical Gaussian process. We are able to
achieve n'/#*¢ rate here, which is nearly optimal when variances are to be estimated. This
also means that to achieve such results, assumptions on only slightly higher than 4th mo-
ments suffice. Here, we also reflect on an alternative estimation procedure, and show that
our “Block-based Running Variance (BRV)” estimate gives better rates for all p > 2. Finally,
we apply our results to three prominent inference problems, namely the inference problem
related to existence of change point, the simultaneous confidence bands for nonstationary
time series and asymptotic distribution of the wavelet coefficient process. As mentioned
above already, stationarity and/or Gaussianity were standard assumptions in all these liter-
ature throughout and this paper erases this barrier and establishes theoretical guarantees for
a much larger class of time series.

Our main contributions are summarized below.

e We obtain the sharp KMT-type Gaussian approximations of the order n'/? for nonstation-
ary time series with minimal conditions. In particular,
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— in our first result, we observe a novel Gaussian approximation, which matches the co-
variance structure. Despite being intuitively very natural for nonstationary processes,
ours is probably the first such approximation result in the literature.

— We also explore a second type of Gaussian approximation, which involves embedding a
Brownian motion much like [9] or [54]. Crucially, we recover the sharp n'/? rate modulo
a logarithmic factor without the lower bound assumption of block variance needed in
[54].

e We discuss estimation of the running variance of the approximating Brownian motion and
show consistency of such estimators using uniform deviation inequalities. Such maximal
deviation bounds for quadratic forms based on nonstationary processes may be of indepen-
dent interest.

e Finally, we show applications of such Gaussian approximation through the lens of three
prominent inference problems, namely the inference problem related to change point, the
simultaneous confidence bands for nonstationary time series and asymptotic distributions
of wavelet coefficient processes. As mentioned above already, stationarity and/or Gaussian-
ity were standard assumptions in all these literature throughout and this paper overcomes
these limitations to arrive at much more general results.

e We also provide some simulations to corroborate our Gaussian approximations and an
analysis of an interesting data set that highlights our applications.

1.1. Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2.2, we discuss a functional dependence measure that allows us to encode dependence
in a mathematically tractable way for a large class of nonstationary time series. We also
discuss other general assumptions there. Sections 2.3 and 2.4 discuss the two Gaussian ap-
proximations, which are the main theoretical contributions of our paper. Next, Section 3 is
used to describe the block-bootstrap Gaussian approximation and related results, featuring
a result on a novel deviation inequality for nonstationary quadratic forms. We discuss three
important inference problems in Section 4. The hypothesis testing related to test existence of
change point is discussed in Section 4.1. Subsequently, we discuss simultaneous confidence
bands for nonstationary time series, which is deferred to Section 4.2. Finally, the discus-
sion on wavelet coefficient process is deferred until Section 4.3. Next, we use Section 5 to
demonstrate through simulations that we achieve better approximations with the regulariza-
tion spelled out in theoretical results than the prototypical block-sum variance. We also show
extensive simulation results for the first two of the above mentioned applications. For space
constraint, some of these simulations are deferred to Appendix Section 12 [109]. Finally, we
show advantage of our theory and estimates by analyzing a recent archaeological data set in
Section 6. All the proofs are postponed to Appendix Sections 8, 9, 10 and 11.

1.2. Notation. For a random variable Y, write Y € £, p > 0, if |V, := E(Y PP <
oo. For L5 norm, write || - || = || - ||2. Throughout the text, we use C for constants that might
take different values in different lines unless otherwise specified. For two positive sequences
ay and by, if a, /b, — 0, write a, = o(by,). Write a,, < b,, or a, = O (b,) if a, < Cb,, for all
sufficiently large n and some constant C < oo. Similarly, for a sequence of random variables
(Xn)n>1 and a positive sequence yy, if X,,/y, — 0 in probability, we write X, = op(y,), and

if X,,/yy, is stochastically bounded, we write X,, = Op(y;,).

2. Gaussian approximation results. Before we proceed to discuss the Gaussian ap-
proximation results for a general class of nonstationary time series, we first provide a concise
introduction of similar results for independent random variables. Note that in principle such
Gaussian approximations for random variables (X;)7_, require a common, possibly enriched
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probability space (®., A., P.) on which the approximating Gaussian processes and random
variables (X})1<i<n =D (X;)1<i<n can be defined. In order for better readability, we omit
this technicality and simply state our results in terms of the original random variables X;’s.

2.1. Gaussian approximation for independent random variables. For i.i.d. random vari-
ables, the mentioned result (1.1) by [55, 56] represented the culmination of a series of results
on strong invariance principle starting from [29] and [27]. Subsequently, the seminal paper
by Sakhanenko [89] essentially generalized the KMT-type Gaussian approximation for in-
dependent but possibly not identically distributed random variables. The following theorem
follows easily from [89].

THEOREM 2.1. Let (X;)1<i<n be independent but possibly not identically distributed
random variables with E(X;) = 0 and for a p > 2, maxi<;<, || X;|l, = O(1), and there exists
y > 2 such that

2.1 > E[min{|X;|” /n?/?,|X;1*/n*P}] = o(1).

i=1
Then there exists a Brownian motion B(-) such that the following holds:

(2.2) [max |S; — B(E(S?))| = op(n'/?).

The readers can look into [99, 100] and [101] for a review of similar approximations for
independent but possibly nonidentically distributed random variables. For time series, [9]
represents the optimal result for stationary processes in this direction, while [54] shows an
optimal existential result for nonstationary multivariate processes. However, [54] does not
provide any result about the covariance structure of the approximating Gaussian processes,
apart from them having independent increments. However, in the search for an explicit co-
variance regularization of the Gaussian approximations, it is natural to conjecture that the
approximating Gaussian processes have the same second-order structure as that of the orig-
inal nonstationary process X;. To deal with such results, we need to characterize the depen-
dency setup of the wide class of the nonstationary processes that we consider in (1.2). This
structural premise is laid out in the next section.

2.2. Functional dependence measure for nonstationary processes. To deal with the de-
pendency structure of a nonstationary process, we employ the framework of functional de-
pendence measure [94]. We will work with (1.2), which is quite general and arises naturally
from writing the joint distribution of (X7y, ..., X,;) in terms of compositions of conditional
quantile functions of i.i.d. uniform random variables. With this system, given k > 0, a time
lag, we measure the dependence from how much the outputs X; of this system will change if
we replace the input information at time i — k with an i.i.d. copy ¢;_,. For p > 1, define the
uniform functional dependence

1
8 (k) := sup(EI X; — X; (i |")"/"
2.3) !
where X; (i~} = i (- Simk—1+ & g ikt 1o - -+ Ei)

is a coupled version of X;. We will assume E(X;) = 0. Note that (E|X; — X,-,{,-_k}|”)1/”
encapsulates the dependence of X; in ¢;_4. Since X; is a nonstationary process, the physi-
cal mechanism process g; is allowed to be different for every i. Thus, we have defined the
functional dependence measure in a uniform manner, by taking supremum over all i. This
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measure (2.3) is directly related to the data-generating mechanism, and we will express our
dependence condition in terms of

o0
(2.4) Oip=> 8,(k), i=0.
k=i

Observe that sup; || X; ||, < ©q,,. With this framework, we are able to conveniently propose
conditions on temporal dependence for the nonstationary time series models we will use.

2.3. Gaussian approximation maintaining covariance structure. As discussed in Sec-
tion 2.2, to state our Gaussian approximation result, we need to properly control the temporal
decay by putting mild assumptions on ®; ;. In particular, we will need that ©; , decays with
a polynomial rate.

CONDITION 2.1.  Consider (1.2). Suppose that ©,;, < oo for some p > 2. Assume there
exists A > 1 and constant C > 0 such that the uniform dependency-adjusted norm

(2.5) fip.a=sup(i +1)*0; , < C < 0.

i>0

Condition 2.1 is satisfied by a large class of processes. Some examples are mentioned in
Section 2.5. The assumption ® , < oo can be interpreted as the cumulative dependence of
(Xi)i>k on g being finite. If it fails, the process can be long-range dependent, and in such
cases the Brownian motion approximations of the partial sum processes may fail. Since the
process (X;); is nonstationary, in order to better control its distributional behavior, we need
a uniform integrability condition.

CONDITION 2.2. For the same p as in Condition 2.1, the series (|X;|P) satisfies the
truncated uniform integrability condition:

For any fixed a > 0, supE(|X;|"I{x,p>an}) = 0 as n — oo.
i

The classical uniform integrability condition for (|X;|”); is sup; E(| X;|’Ljx,p>k}) — O as
k — oo. Note that Condition 2.2 is weaker. To avoid degeneracy, we will also require a mild
nonsingularity condition on the block variance of the original process (X;).

CONDITION 2.3. For all sequences (m,) € N with m,, — 0o and m, < n, the process
(X;) satisfies that lim,_, oo Min|<j<p—m, | Xi + -+ Xitm, ||2 = 0.

This nonsingularity condition is a very natural one. A simple counterexample may be
given for the case where absence of such assumption entails failure of even the central limit
theorem. For ¢t € N, consider the process X; = &; — &;_1, and ¢; are i.i.d. non-Gaussian with
mean 0 and variance 6% > 0. Then forn € N, clearly S; =& —¢gg for 1 <i < n, and thus both
Condition 2.3 and central limit theorem S,, /|| S, || = N (0, 1) fails to hold. With this condition,
we begin by presenting a Gaussian approximation for the truncated partial sum process

1
(2.6) §P =) (X? —E(X?)) where X =T,1,(X;),i=1,...,n,
j=1

with Tp(w) = max{min{w, b}, —b}. The following is the first main result of this paper.
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THEOREM 2.2. Let p > 2. For the process (X;);, assume Conditions 2.2, 2.3 and 2.1
with

pP—p—-2+(p=2)/p*+10p+1 |
4p ’ }
Then there exists a Gaussian process Y; with Cov(Xs, X;) = Cov(Ys, Y;) such that

i
Si— Y Yj|=op(n'/?/logn).

j=1
In fact, there also exists a Gaussian process YfB, with Cov(Y, ?, Y,®) = COV(X?, X t@ ) such
that

2.7 A>Ag:= max{

(2.8) max

1<i<n

=op(n'/?).

i
Si—y Yy

j=1

(2.9) max

1<i<n

Here, it is important to note that, although (2.9) has a better rate than (2.8), the approx-
imating process has covariance structure matched with the truncated value of the original
process X;. However, we still present this result since it shows that theoretically it is possible
to achieve the optimal n!/? rate without the stronger nonsingularity condition as [54]. Prov-
ing such a result also necessitates novel techniques, which are different compared to both
[54] and [9].

Finally, if one were to assume the nonsingularity condition as written below, we show that
it is possible to achieve n'/? rate even with the approximating process matching covariances
exactly with the original (X;) process.

CONDITION 2.4. The series (X;) satisfies the following condition: There exists a constant
¢ > 0and lp € N such that for all | > lp, minj<j<p 41 | X; +---+ X4 ||2/l > c.

At the cost of making this extra assumption, we are also able to improve the decay rate
condition on ®; , from that in Theorem 2.2, matching exactly the optimal cut-off given in

[54].

THEOREM 2.3. Assume the process (X;);>1 satisfies Conditions 2.2, 2.4 and 2.1 with

p>—4+(p—2),/p*+20p+4 1}
8p )
Then there exists a Gaussian process (Y;) with Cov(Yy, Y;) := Cov(Xy, X;) such that

i
S; — Z Y;
=1

(2.10) A> Aj:= max{

(2.11) max

_ 1/p
fmax =op(n''?).

2.4. Gaussian approximation with independent increments. In addition to having a nat-
ural interpretation, the Gaussian approximations in the previous Section 2.3 also enjoy appli-
cability when information about the covariance structure of the original process is available,
such as for stationary processes [97] or processes from a defined parametric structure. How-
ever, for a general nonstationary processes, the precise correlation structure of X; process
may not be available and, therefore, simulating the Y; process becomes a challenge. There-
fore, it is important to investigate if we can further obtain a Gaussian approximation of the
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form (2.2), that is, involving Brownian motion with independent increments, where the in-
volved E(Sl.z) is estimable. The following two theorems address these issues and yield Gaus-
sian approximations with this desired structure. Our first result is analogous to Theorem 2.2.
However, in this result, we no longer require any nonsingularity condition, and yet we almost
recover the optimal 1!/ rate (up to a log factor). Again, we recover the exact optimal rate if
our Gaussian approximation involves the moments of the truncated process.

THEOREM 2.4. For the process (X;);>1, assume Conditions 2.2 and 2.1 with A > Ao;
see (2.7). Then there exists a Brownian motion B(-) such that

(2.12) max |S; — B(E(S®))| = op(n'/?).

l<j<n

Further, it holds that

(2.13) max [S; —B(E(S?))| = op(n'/?,/logn).

1<j<n

A similar remark to the one following Theorem 2.2 is in order. Note that, in Theorem 2.4,
again using the moments of the original process in the Gaussian approximation entails a
penalty of \/logn in our rate. However, it turns out that under the more stringent nonsingu-
larity condition of Theorem 2.3, we are not only able to recover the optimal rate of n'/? from
using the X; process itself, but also able to relax the decay rate.

THEOREM 2.5. Under conditions of Theorem 2.3, there exists a Brownian motion B(-)
such that
(2.14) max [S; — B(E(S?))| = op(n'/?).

1<j<n

REMARK 2.1. Necessity of the truncated uniform integrability Condition 2.2: We show

that the uniform integrability condition is necessary as otherwise the Gaussian approxima-
tion might fail. Let n > 2. Let X, X»,... be independent with P(X; = £( + HYry =
1/G@+ 1) and P(X; = +1)=1/2 — 1/(i + 1). Note that Condition 2.2 is violated since
maxi<;<p E[|X;|PI{|X;|? > n/2}] = 2. For the sake of contradiction, suppose the Gaussian
approximation (2.14) holds, which implies
2.15) max |X; — (B(E(S?) — B(E(S)))| = o(n'/?).
Since X;’s are independent, and maxj<;<, E(X iz) < 22/P 4 1 therefore by property of incre-
ments of Brownian motion, max;<; <, IB(E(5?)) — B(E(S? )| = Op((logn)'/?). Thus, if
one assumes that (2.15) is true, then we will have max;<;<, | X;| = 0]p(n1/p). Now we show
that the latter is false. Clearly, |X;| <n'/?/2 w.p. 1 ifi <n/2P — 1 and, therefore,

1/p n 1/p 2 n(l——)
P( max [X;|> —)=1— P(1x;) <" — S1-(1- 20T
1<i< 2 2 +1
== i=[n/2r V1 n
—1 _e22—p,2,

as n — 00. This contradiction shows that Theorem 2.5 fails to hold. This vouches for the ne-
cessity of our uniform integrability condition; clearly, the reason the Gaussian approximation
fails to hold in this example is due to Condition 2.2 not being satisfied. It can be noted that,
in this example, Theorem 2.1 does not apply; (2.1) can be verified to be violated in this case.
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2.5. Examples. We now show some examples of nonstationary time series, which sat-
isfy Condition 2.1. For t € Z, let ; = (..., &_1, &), where &; are i.i.d. random variables.
Consider the model

(2.16) X =g F), 1=<t=<n,

where 6; € I', a parameter space and g(-, /;) : ' — R is a progressively measurable func-
tion such that the process X;(0) = g (6, F;) is well-defined. We can view (2.16) as a general
modulated stationary process. Adak [1] and [106] considered the special case of multiplica-
tive modulated stationary processes with a linear form. Define the functional dependence
measures as

8y, (k) := sup| g(®. F;) — g0, Fr.yi—i)) |
fel’ P
2.17) X
= sup|g @r. Fo) = 8 6. Fr.io-w), = 8, ().

Thus, we only need to assume that ®£ p= Y rei 5; (k) satisfies Condition (2.1). We mention
a couple of examples from the general class of nonstationary processes satisfied by (2.16).

2.5.1. Cyclostationary process. Taking 6; = ¢; moq T in (2.16) for some period 7', and
{(f),},T:1 e I yields cyclostationary process. These can be thought of as generalizations of sta-
tionary processes, incorporating periodicity in its properties, and were introduced as a model
of communications systems in [7] and [35]. Apart from communication and signal detection,
cyclostationary processes have enjoyed wide use in econometrics [76], atmospheric sciences
[10] and across many other disciplines—the reader is encouraged to look into [36, 71] and the
references therein for an introduction and a comprehensive list of all its applications. Despite
this huge literature, there is no unified asymptotic distributional theory for the cyclostation-
ary processes. Our Gaussian approximation result allows a systematic study of asymptotic
distributions of statistics of such processes.

2.5.2. Locally stationary process. 1In (2.16), let I' = [0, 1]. Assume that g is stochastic
Lipschitz continuous for some constant L > 0 such that for all 6, 6’,

(2.18) le©, Fi) —g(0'. Fo)l, < Ll6 — 6.
Then the processes X; , := g(¢t/n, F;) are locally stationary in view of the approximation
1X¢n — Xt(9)||p <Lit/n—0| ift/ne@— A,0+ A) for some A > 0.

Dahlhaus [20, 21] introduced locally stationary processes in terms of a time-varying spec-
trum. Richter and Dahlhaus [86] provided a general asymptotic theory for such processes.
For further examples, see [102].

Consider the special case of locally stationary version of Volterra processes, defined as
follows:

: 1
(2.19) Xi= Y a<h,...,],~,;>s,_jl...st_j[.,

0 ji<<ji

where ¢;’s are 1.i.d. with mean 0, |legll, <00, p >2 and a ‘R x [0, 1] — R are called ith-
order Volterra kernels. Then elementary calculations show that for a constant ¢, depending
only on p,

2 2i
Sp(D)” = cplleolly Sl]:P Akl

(2.20) k
where A ;i = E 612<j1, s Jis —> < O0.
0<ji<--<jile{ji,-s i}
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2.6. Outline of the proof of theorems. Our proofs are quite involved and are given in
Sections 8 and 9. In particular, Theorems 2.2 and 2.4 are based on similar assumptions (in
fact Theorem 2.4 works with a weaker set of conditions), and in the same vein, Theorems
2.3 and 2.5 require exactly the same conditions. Therefore, these two pairs of theorems are
proven with each other. In particular, all the four theorems follow a general recipe of the proof
outlined below.

e Truncation: In Proposition 8.1, we truncate our process at level n'/? in order to exploit the
uniform integrability condition, which is necessary due to nonstationarity.

e m-dependence: In the second step, we use the m-dependence approximation in Propo-
sition 8.2 where m increases with n. This limits the arbitrary nonstationary dependency
structure to those only up to m lags, and enables us to treat our series much like a sta-
tionary time series. We provide an optimal choice of m so that the error rate of n!/? is
achieved.

e Blocking: Our blocking step in Proposition 8.3 is quite different from that in [54] as well
as [9]; we consider a two-step blocking, with an inner layer of blocks of size m being then
combined into an outer layer of blocks of size 3. This enables us to do the required math-
ematical manipulation to obtain an explicit form of the variance in terms of m-dependent
processes.

e Conditional and unconditional Gaussian approximation: With the blocking step as men-
tioned above, we condition on the shared £’s between the outer blocks (that occur at both
the boundaries of each block). This results in conditional independence, and thus we can
use [89]’s Theorem 1. Then we lift the conditioning random variables (the boundary &’s) by
taking another expectation over them, and apply the Theorem 1 from [89] again to obtain
the unconditional Gaussian approximation.

e Regularization of variance: From the variance in terms of m-dependent blocked processes
as mentioned above, in order to obtain the variance approximation in a practically usable
form as mentioned in the theorem, in this step we approximate it by IE((Si69 )?) or by vari-
ances of sum of blocks in terms of original random process.

e Final Gaussian approximation: In this final step, we connect the approximated variance
E((Si@ )2) to the new Gaussian process (Y;)?"_, (for Theorems 2.2 and 2.3), via Propositions
8.5 and 8.6, or to the final variance E(Siz) (for Theorems 2.4 and 2.5).

3. Estimating the variance of the approximating Gaussian process. In this section,
we address estimating the variance of the approximating process. It is well known in the time
series literature that Sl.2 is a poor estimate for IE(SIZ). The usual practice is to use a kernel
function or a particular weighing mechanism. Such methods have been used throughout the
literature to estimate spectral density matrices for one-dimensional or low-dimensional cases.
For stationary processes, we recommend works by Newey and West [72], Priestley [83] and
Liu and Wu [64] among others for a comprehensive review of research in this direction. As
a special case of kernel-based estimates, blocking techniques have been particularly popular
in this area. Carlstein [16] used nonoverlapping blocks to consistently estimate E(Siz) for a
stationary process. From a bootstrap perspective, Politis and Romano [80] use nonoverlap-
ping blocks of random sizes to define a “stationary bootstrap.” Using the “flat-top kernel”
methods of [81, 82] obtains O (n'/3) for the expected optimal block size for the stationary
bootstrap. For detailed discussion, readers are encouraged to look into Lahiri [58], which
combines ideas from [16, 17, 42] and many others to deduce various resampling schemes for
estimating the variance of a stationary process.

The blocking method has been quite popular in the literature as a proof technique for
obtaining optimal Gaussian approximations. See [54, 96] and [63] for relevant references.
Naturally, since the statements of our Theorems 2.2-2.5 do not involve any blocks, one may
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question if we can reach the optimal rate by expressing the variance directly in terms of
some blocking mechanism. In the next section, we will provide a result that answers the
above question in affirmative. The blocking mechanism we use is somewhat related to the
nonoverlapping block bootstrap (NBB) method proposed in Chapter 2 of [58]. We describe
the scheme in the following. Usually, the block length m is taken so as m — oo withm/n —
0. Define for 1 <a, k, j < [n/m],

amAn k k—1
By:= Y Xg Te=7 Ba+2) BuBayi:
i=(a—Dm+1 a=1 a=1

(3.1) .
Rj:=I{j/m¢N} > X

i=|j/mlm+1

Note that §; = Zﬁzl B, + Rj, where k = | j/m]. We shall estimate E(sz.) by the following
“Block-based Running Variance” (BRV) estimator 7; where

(3.2) T = TLj/mJ+R%+2BU/mJRj foralll<j<n

simultaneously. Since 7;’s may be negative, so instead of Brownian motion we use two-
sided Brownian motion. A two-sided Brownian motion is defined as W(z) = B (¢#)1;50 +
By(—1)1;-0, where B and B, are two independent standard Brownian motions starting at 0.
Next, we provide some theoretical properties of the BRV estimator 7;. In particular, we
bound the uniform deviation probability of 7;. Such a deviation inequality for nonstationary
processes is novel to the best of our knowledge. Thus, we state it as a standalone result.

3.1. A maximal quadratic large deviation bound. Quadratic large deviation bounds have
a long history that started with the seminal work by Hanson and Wright [43] and Hanson and
Wright [93]. See [88] for an extensive overview. These are popularly referred as Hanson—
Wright type inequalities in the literature. Subsequent work by [8, 52] and others established
moderate deviation principles for quadratic forms of stationary Gaussian processes. Mov-
ing beyond sub-Gaussianity, Xiao and Wu [97] and Zhang and Wu [102] generalized the
Hanson—Wright inequality for stationary process with finite polynomial moments and locally
stationary processes, respectively. In this section, we aim to (i) develop a maximal inequality,
that is, derive tail probability bounds for the maximal partial sum, and (ii) relax the station-
arity assumption by providing a result for the general nonstationary processes. Our proof is
similar to the Theorem 6.1 of [102]; however, it differs in a crucial step. Since we aim to
provide a maximal inequality, we use Borovkov’s version of Nagaev inequality [11], instead
of the usual bound of [70]. This, in particular, changes the treatment of a few important terms
in our proof compared to that in [102]. Moreover, we also tackle the case when 2 < p <4,
something that is usually absent from other Hanson—Wright type inequalities in the literature.

THEOREM 3.1. Let p > 2. Assume Condition 2.1 holds for ©;,. Let Q, =
D i<s<t<n st Xs X, with agy =0 if |s —t| > Dy, for some Dy < n, and sup |as ;| < 1. Denote

k
Ri=) (Vi —E(V)),
j=1
3-3) (kDy)An
where Vi = Z Z as Xs Xy, for 1 <k <[n/Dy,].

t=(k—1)Dp,+11<s<t
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Then there exists constants C, depending only on p such that for all x > 0,

P max Ry | >
(1§k§[n/Dn1| el _x)

(34) Cpx~P2nDP A 4, 2<p<4,

C,x2
CPX*P/ZnDrzz/ZfIMZ’A + Cp exp<__ 4 : ), p >4
nDniky 4

The proof is given in Appendix Section 10.1. We emphasize that to avoid notational cum-
bersomeness, in (3.4) we have used same notation C,, to denote multiple constants, each
depending solely on p.

REMARK 3.1. In view of (2.6), 8;‘?( J) < 68,(j) is satisfied by the functional dependence

measure of the truncated process. Therefore, Theorem 3.1 also holds for X replaced by
X% —EX9).

REMARK 3.2. The bound in Theorem 3.1 should be contrasted with the bound obtained
in Theorem 6 of [102]. In fact, our proof works for A > 1/2 — 1/g and matches their nonuni-
form bound for the corresponding case. A similar argument can be followed to yield a bound
for a process satisfying ), 4 < oo for some general A. In view of our maximal inequality
holding true for a general nonstationary process, Theorem 3.1 is a more general result than
those found in the literature.

3.2. Gaussian approximation rate with estimated variance. Theorem 3.1 is useful in ar-
riving at the estimation error of 7; as an estimate of E(Sl-z). To begin with, note that 7;/2
can be written in the form (3.3) with a;;, = 1/2 when s = ¢, and in general |a, ;| = 0 when
|s —t| > 2m and sup |a, ;| < 1. Thus, taking D, = 2m, Theorem 3.1 implies that

k
> (BF+2B;Bj —E[B} + 2Bij+1])‘ — Op (/212112
j=1

3.5 max
1<k<|n/m]

Moreover, by Lemma 8.2, max << |n/m| Elmaxi<x<m | Xmjt1+- -+ Xpjxl’1= O (mP/?).
Hence,

Li/m]
3.6) IIEzajn Ti — Z (B]2 + ZBJ'BJ-_H) = O]p(nmax{Z/P,l/Z}ml/Z)
<i< i

by Markov’s inequality. Note that (3.6) takes care of the stochastic error of 7; as an estimate
of E(S[z) for 1 <i < n. For the bias part, we need to control the order of the cross-product
terms E(B; B;) for i # j. The following lemma, whose proof we give in Section 10.2, is thus
necessitated.

LEMMA 3.1.  Let Condition 2.1 hold with A > 1. Then for B; as defined in (3.1), it holds
that

— X — 1-A
(3.7) lfknilfr)l(/mJ|E(BkBk+l)|—0(1), 15krrfurg;/milli_ZMUE(BZBk)l O(m' ).

Observe that (3.7) readily yields

Li/m)
(3.8) max E(S?) — > E(B}+2BjBj1)| = 0(nm™*).
<i< e

Now (3.5), (3.6) and (3.8) can be summarized into the following proposition.
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PROPOSITION 3.1.  Assume p > 2 and let Condition 2.1 hold for ©; ;, with A > 1. Recall
B; from (3.1), for a general m € N. Then the following holds:
(3.9) max | 7; — E(S?)| = Op(n™>2/P1/2 112 4 =4,
n

1<i<

In particular, with m < n®', where £y = min{1,2 —4/p}/(1 +2A), (3.9) implies
(3.10) max [W(75) — B (E(S7))| = Op+ (1"~ /logn),

where P* refers to the conditional distribution after observing X1, ..., X,,, and B (-) is the
same Brownian motion defining the positive half-line of W(-).

Our choice of m balances the bias (nm~%) and the stochastic error (n™a{2/p.1/2}1;,1/2)
together, and yields the rate in (3.10) by increment property of Brownian motions. However,
the approximation rate in (3.10) is worse than what we obtain in Section 2. But this also
means that one can only assume moments slightly higher than 4 and still achieve this rate.
More importantly, a natural question is if we can relax our decay condition in Theorem 2.4
when we are allowed to assume p finite moments but want to achieve this comparatively
large approximation rate. In other words, at the cost of the suboptimal rate, which anyway is
the best for the empirical version, can we allow decay rate A to be smaller? In what follows,
we answer this question in affirmative.

THEOREM 3.2. Let p > 2. Assume that the decay Condition 2.1 holds with A > 1. Fur-
ther grant the truncated uniform integrability Condition 2.2. Then there exists a Brownian
motion B(-) such that

(3.11) max |S; — B(E(S7))| = op(n!'~4V/? [logn).

1<j<n
REMARK 3.3. Note that in (3.11) we no longer need the lower bound (2.10).

3.3. Gaussian approximation without cross product blocks. Having explored the asymp-
totic properties of BRV estimator 7; as an estimate of IE(SZ.) for 1 < j <n, let us discuss a
natural variant of 7;. Interestingly, in 7; we have included the cross-product terms B; B; 1,
as opposed to another possible estimate 7;~, which can be defined without them:

Li/m] 5 s
=1

An application of Theorem 3.1 and (3.7) similar to that in Proposition 3.1 show 7, satisfies
<i<n

under Condition 2.1. The above bound is worse than (3.9) and it is minimized at m =< n®2,
¢ =min{l,2 —4/p}/3. Since A > 1, & < ¢ and, therefore,

(3.14) max [W(7;") = B(E(S?))| = Op- ("' =72 /logn).

Thus, the conditional version (3.10) using 7;~ is also worse.
Following the idea of the moving or overlapping block bootstrap method (cf. [57] and [62],
Zhou [107] and Mies and Steland [68]) consider the following estimate of E(Siz) by

i t 2
(3.15) 7?:2%( > xs).

t=m s=t—m+1
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A treatment similar to Proposition 3.1 shows that 7;0 satisfies (3.13) as well. Thus, 7; has the
best rate for estimating the variance of the Brownian motion among the three estimators dis-
cussed here. It should be noted that [68] analyzes a different variance for the approximating
Gaussian process (defined as a local long-range variance O’lici), and 7,;° has been proposed
in that context. However, we point out that for fast enough decay, their rate of Gaussian
approximation max<;<p |Sf — B(alici)l = op(n?/Gr=2 /logn) is suboptimal in 7.

4. Applications of Gaussian approximations. In this section, we are interested in ob-
taining Gaussian approximations of functionals of the form

n
W)= eqwi(t),
i=1
where w; (-) : [0, 1] — R are weight functions and (e;)1<; <, are real-valued, mean-zero, pos-
sibly nonstationary processes. Such quantities are ubiquitous in various statistics of change
point estimation, wavelet transform and forming a simultaneous confidence band, among oth-

ers. One can employ (2.13) of Theorem 2.4 to deal with such quantities. A similar treatment
is included in [95]. Let

@) W20 = 3w (BE(S) - BE(SL,)

be the Gaussian process that we want to use to approximate W (¢), where S; = Z;Zl ej. Let

n
(4.2) Q= sup |w1(t)|+Z|wi(t)—wi—1(t)|}
1€(0,1) i—
be the maximum variation of the weights w; (¢). Then
4.3 W) —W(r)| < S — B(E(S?))| = @ r [logn).
(4.3) ,:(‘3?1)| () (O] < 2 max |S; — BE(S))| = Quop(n /7 y/logn)

In the following, we detail three applications—testing for change point, simultaneous confi-
dence band building and wavelet transform—using the above analysis. Each of these analyses
requires providing a rate of €2, depending on certain conditions.

4.1. Change-point detection. Assume X; =u; +Z;,i =1,...,n, where (Z;) is a mean
zero nonstationary process. We want to test for the existence of change point in means, that
is, we want to test for Hy : ; = uo for all i versus the alternative hypothesis,

4.4) Hy:pi=po+38I{i >7} holdsforsome 1 <t <nand$#0.

We propose a CUSUM-based testing procedure with test statistic

>0 = B[/,

i<nt

4.5) U, := max
re(0,1)

where we reject our null hypothesis if U, is larger than some suitable cut-off value. Under
the null hypothesis, we can write U, = max;c(,1) |Un,/|, where U, ; := >7_, w;(t)Z; and
the weights w; (1) = ((1 — 1/n)I{i <nt} — (1/n)I{i > nt})//n. Let

n
V, = tg(l&)%) Var where V, ; := ; w; (t)(IB(E(SiZ)) — IB%(E(SiZ_l))).

By (4.3), we have |U,, — V,,| = op(1) since Q, = (2 — 1/n)//n and Q,n'/?/logn — 0.
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4.2. Simultaneous confidence band. In this section, we discuss construction of simulta-
neous confidence band for a time-varying signal-plus-noise model with possibly irregularly
spaced observed data and possibly nonstationary noise. Let 0 =19 <t <th < -+ <ty <
ty < tp4+1 =1 be an n-length grid on [0, 1]. Consider

(4.6) Xi=ut)+27Z;, i=1,...,n,

where () € C3[0, 1]. The case #; = i /n has been thoroughly analyzed in the literature for
stationary and i.i.d. setup, such as [13, 30] and [95]. Here, we let t; = F*I(i/n), where
F() = fé f(u) du for some density f € C3[0, 1]. We will estimate the trend function from
observed data (X;) using the local linear estimate, and denote the result by /5, (), where &,
is the bandwidth parameter. Define

n

4.7 Si) ="t —t) K ((t —t;)/ hn).

i=1
Theorem 4.1 below provides a Gaussian approximation for the local linear estimate
1 — ti) S2(t) — (t —1;)51(1)
hn / $2(1)So(r) = S7(1)

Assume that K is a smooth symmetric kernel with bounded support [—w, w], satisfying

(4.8) fin, (1) == wp, (t,)X; where wy, (t,i) = K(

i=1

/ Wi (u; 8) du = O(5)
R

as § — 0, where Wg (u; 8) = sup{|K (y) — K(u)| : |y —u| < §}.

4.9)

THEOREM 4.1. Assume u, f € C310, 1] and, for some constants C1,Cy > 0, C; <
f(@) < Cy forall t €0, 1]. Then under the assumptions of Theorem 2.4 for Z;, there exists
Brownian motion B(-) such that with Qp, (t) = >_I'_; wp, (t,1)Y;, where Y; = IB%(E(S?)) —
B(E(Siz_l)), the following is true:

(4.10) sup |, (1) — () = B B (1) — Qn, ()| = op(hy, 'n'/7~ 1 flogn),

telwhy,,1—wh,]

for any h,, — 0 satisfying hi = 0n'/'P~YY and nh, — oo with B = fuzK(u) du/?2.

PROOF. We apply Theorem 2.4 to (Z;);_,. Note that Qj,(¢) is obtained by fitting the
same local linear regression with bandwidth £, to (Y;)}'_,. By the argument in Theorem 3.1
in [311, E[fin, ()] — n(@) = k2" () + O(h2 +n~'h;1). Then (4.10) follows by applying
(4.3) to fun, (t) — E[fin, (t)] — Qpn, (t) and noting that 2, = O(1/(nh,)) using Lemma 11.1
and C; < f(1) <C. U

4.2.1. Bias correction. Using (4.10) to construct simultaneous confidence band requires
estimation of " (¢). Following [44], we use the jackknife-based bias corrected estimator

@.11) i, (0) = 242, (1) — Py, 5(0).

Using (4.11) is asymptotically equivalent to using the kernel K*(x) = 2K (x) — K (x//2)/
V2 see [95, 108] and [53] among others. Based on (4.11), one can observe E[p, (t)] —
w(t) = O(h,3, + n_lh;I). Thus, one can get rid of the h%u”(t) term from the left-hand side
of the (4.11) to obtain

(4.12) sup  |fin, (t:) — p(t;) — On, (t)| = op(h, 'n'/P~! [logn).

te[why,,1—why,]
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4.2.2. Choice of bandwidth h,. Since our Gaussian approximation Theorem 2.4 holds
with n1/4 rate for p >4, A > A, for this subsection, assume p = 4. Ignoring the log factors,
we obtain a rate of Op(n—3/4 / hy) from (4.10), which readily allows a large range of A,,:

(4.13) n3% < p, <n316,

In particular, (4.13) allows for 4, =< n~'/3, which is the mean-square error optimal band-

width. As equation (4.12) suggests, th is a good simultaneous approximation for fij, —
in distribution. Therefore, for our bootstrap algorithm, th is generated based on (Y;), which
is simulated from our Gaussian approximation where we estimate E(Siz) by 7;’s formed by Z;
as in (3.1). Using this, for 0 < o < I, we can calculate g;—q, the empirical (1 — «)-th quantile
of maxj<j<n |Qpn,(i/n)|. Thus, given significance level «, the simultaneous confidence level
for £ (-) can be constructed as

(4.14) [in, (1) = q1-a> ftn, () + q1-a], 1 €[0,1].

4.3. Wavelet coefficient process. Wavelet transform is a way of representing a time se-
ries locally both in time and frequency windows. Mathematically speaking, wavelength co-
efficients are simply the coefficients when the signal (X;)1<;<, is decomposed in terms of
some orthonormal basis of L?(R). The simplest discrete wavelet transform used is called the
Haar transform [41]. Assume the signal length is n = 2*. Then the jth level Haar wavelet
coefficients with j <k are

2J
W= Zhj,lxzjz—l—i—lv
(4.15) =
| _0-i2 if1 <] <2i]
= k_] i] — H i1 "
t=1,...,2°7/, where hj !Z—J/Z if2/=! <1 <2/,

Donoho [26] used wavelet methods to perform nonparametric signal estimation via soft
thresholding; however, their threshold value crucially depends on the assumptions of the noise
process being i.i.d. Gaussian. Johnstone and Silverman [51] and von Sachs and MacGibbon
[92] extended the results for correlated Gaussian and locally stationary noise processes, re-
spectively. Recently, [67] considered locally stationary wavelet processes as the noise pro-
cesses for estimation of signal. Stationarity assumption also features crucially in the wavelet
variance estimation mechanism of Percival and Mondal [77]. Here, we allow the signal
(Xi)1<i<n to be possibly nonstationary, and focus on applying our Theorem 2.4 to provide
a Gaussian approximation result for the wavelet coefficient process W; ;. Note that W; ; can
be written as >/ w; (j, 1) X;, where w; (j, 1) =h; 5j,_; 4. Let

We, = 3w O (B(E(S?) ~ BE(SE 1)
i=1

With ,, as defined as in (4.2), it can be easily seen that 2, = 0((2~//%). Thus, using (4.3),
we get

(4.16) max max |W;, — W?,|=op(27/?n'/? [logn).

Jx<j<kl1<t<n/2J

To ensure a uniform Gaussian approximation, we require the highest resolution level j, to
satisfy

2 /1 1
4.17) Jx — —(— logn + - loglogn) — 0.
log2\ p 2
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In particular, it holds if j, > clogn for some constant ¢ > 2/(plog?2). Similar analysis can
be performed for the more general Daubechies wavelet filters (Daubechies [22]), with better
smoothness properties. The uniform Gaussian approximation (4.16) allows an asymptotic
distributional theory for statistics based on wavelet transforms of nonstationary processes.

S. Simulation. This section presents a simulation study for some of our results in Sec-
tions 2, 3 and 4 while some more are postponed to the Appendix Section 12. Our aims are
as follows. In Section 5.1, we start off by investigating the accuracy of the two kinds of
theoretical Gaussian approximations in Sections 2.3 and 2.4. We postpone inspecting the ac-
curacy of our bootstrap Gaussian approximations for finite sample to Appendix Section 12.1.
In particular, in Section 3.3, having argued that excluding the cross-product terms results in
a worse rate and a less accurate approximation compared to (3.10), we compare their finite
sample accuracy for some simple cases. Moving on to showing simulation-based evidences
for our applications, in Section 5.2, we explore the empirical coverage of our simultaneous
confidence band procedure discussed in Section 4.2 under different settings. We again defer
analysing the performance of the CUSUM-based testing procedure for existence of change-
point, as discussed in Section 4.1 to Appendix Section 12.3.

5.1. Empirical accuracy of theoretical Gaussian approximations. Consider two models:
5.1. Model 5.1: X; =0X;_1 +¢&,0 €{0.9,—-0.9}.
5.2. Model 5.2: X; =6;X;—1+¢&,0,=0ift <n/2,6, =—0 if t >n/2,0 € {0.9, —0.9}.

We will start off by letting & Hig 14/+/2 for both of the models. Observe that, with N (0, 1)
innovations, (X,;);_, is already a Gaussian process for both Models 5.1 and 5.2 and, therefore,
the approximation error is trivially zero. This motivates the use of some other mean-zero
error for this model. We will initially consider a small sample of size n = 100. For each of
the setups, we will compare the quantiles of the following three random variables:
i
Ux := max S;, Uy = max B(E(S?)), U= max ) Y;,
1<i<n 1<i<n lflfnj:l

where (¥;)}_, is a centered Gaussian process with same covariance structure as (X;);_,. The
true quantiles are estimated by sample quantiles based on 10° repetitions. Figures 1 and 2 de-
pict the QQ-plots of U; and U, against Uy. Clearly, when compared with U7, which involves
Brownian motion, our Gaussian approximation of Section 2.3 maintaining covariance struc-
ture, performs much better for such a small sample size n = 100. However, as we increase n,
both the approximations being theoretically valid with optimal rate of convergence, their per-
formances become comparable. To show this empirically, we consider two more complicated
nonstationary models.

5.3. Let w; =0.75,...,—-0.75,...,0.75, ..., =0.75, ..., wp = (sin(Sﬂt/n));’Zl, and
N e M —— ———— — e
n/4 n/4 n/4 n/4

X =6:X:—1+¢, 0; = 0wy, Xo=0, ie{l,2},6e{-0.8,0.8]}.

5.4. X; =sin(Y;), where Y; ~ Model 5.3.

To further show the efficacy of our approximation, we consider a skewed error for Model 5.3
with i.i.d. X12 — 1 errors. We consider i.i.d. N (0, 1) innovations for Model 5.4. Note that due
to the sin transformation, Model 5.4 is no longer Gaussian. The corresponding QQ-plots are
shown in Figures 3 and 4. It can be seen that both Gaussian approximations show excellent
accuracy for a somewhat increased sample size n = 200. In fact, in some of the setups, the
more natural Gaussian approximation retains an advantage over the Gaussian approximation
involving the Brownian motion.
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F1G. 1. Comparison of theoretical quantiles with the two kinds of Gaussian approximation X1, ..., X, ~
Model 5.1 with t4 innovations: with independent increments, and with the approximation maintaining covari-
ance structure.

5.2. Simulation for simultaneous confidence bands. In this subsection, we will explore
the empirical coverage probabilities for our 95% SCBs constructed as in (4.14). We will use
the jackknife-based bias corrected version of the local linear estimate, as in (4.11). We gen-
erate data from the model (4.6) with p () = 0.5cos(2rt — 0.7) + 0.3 exp(—¢), with t; =i /n
fori =1,...,n. We consider the two models (5.3) and (5.4) with innovations &, ~ tg+/2/3
for our error generating process Z;, and consider the two weighing schemes for each model
with 6 € {—0.8, —0.4, 0.4, 0.8} in (5.3). We will estimate the mean curve using the Epanech-
nikov kernel K (x) = %(1 — xH)I{|x| < 1}. For each of these models, we consider data of
sizes n = 600 and 800, and bandwidths /#, = 0.11,0.13 and 0.15. For each such setting, we
perform 1000 replications each with 500 bootstrap samples of size n each. Following our
theoretical result in Theorem 4.1 as well as the discussion at Section 3.2.5 of [31], the vari-
ance of local linear estimator is comparatively high on the boundary points, which affects
coverage. Thus, we report as empirical coverage the percentage of times the estimated SCB

theta=0.9, Nn=100 , w= (1,..,-1,..) theta=-0.9, n=200 , w= (1,..,-1,..)

300 -

200-

Quantiles from Gaussian Approximation
Quantiles from Gaussian Approximation

100 200 300 o 100 200 300

[}

Quantiles of max S; Quantiles of max S;
« Independentincrements (U,;) = Covariance structure maintained (U3)
FI1G. 2. Comparison of theoretical quantiles with the two kinds of Gaussian approximation X1, ..., X, ~
Model 5.2 with t4 innovations: with independent increments, and with the approximation maintaining covari-
ance structure.
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Fi1G. 3. Comparison of theoretical quantiles with the two kinds of Gaussian approximation X1{,..., X, ~
Model 5.3 with )(12 — 1 innovations: with independent increments, and with the approximation maintaining co-
variance structure.

contains the true w(¢) curve in the interval [0.05, 0.95]. Generally speaking, the coverage
probabilities in Tables 1 and 2 are reasonably close to the nominal level 0.95. Moreover, the
bandwidths do not seem to have too large an effect on the coverage probability.

6. Real data application: Analysis of Lake Chichancanab sediment density data.
The Maya civilization, arguably one of the most important pre-Columbian mesoamerican
civilizations, underwent a collapse during the last classical period of their history, circa
900-1100 AD [3, 24, 38, 98]. A severe drought has been hinted at as a primary reason behind
this collapse [34, 40, 91], despite the Mayans primarily inhabiting a seasonally dry tropi-
cal forest [39]. Drought has also been explored as a possible cause of a comparatively less
studied, preclassical Maya collapse in 150-200 AD [37]. [45-47] analyzed the sediment core
density data set from the Lake Chichancanab in the Yucatan peninsula to analyze the onset

theta=0.8, n=200 , w= (0.75,..,-0.75,..,0.75,..,-0.75)

theta=-0.8, n=200 , w= (0.75,..,-0.75,..,0.75,..,-0.75)

0 10 20 30
Quantiles of max S

theta=-0.8, n=200 , w= sin(8 * pi* t/n)

0 10 20 30 40
Quantiles of max S;

theta=0.8, n=200 , w= sin(8 * pi* t/n)

0 10 20 30 40
Quantiles of max S;

Quantiles from Gaussian Approximation Quantiles from Gaussian Approximation
Quantiles from Gaussian Approximation Quantiles from Gaussian Approximation

Quantiles of max S;

+ Independentincrements (U;) ¢ Covariance structure maintained (U,)

FI1G. 4. Comparison of theoretical quantiles with the two kinds of Gaussian approximation X1{,..., X, ~
Model 5.4 with N (0, 1) innovations: with independent increments, and with the approximation maintaining co-
variance structure.
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TABLE 1
Empirical coverage probabilities of SCB of X; from Model (4.6) where Z; ~ Model 5.3 with normalized tg error

Weights: w =
0.75,...,-0.75,...,0.75, ..., —=0.75,...) Weights: w = sin(877/n)
n hy, §=-08 6=-04 6=04 06=08 6=-08 606=—-04 6=04 60=0.8
600 0.11 0.922 0.949 0.929 0.913 0.930 0.951 0.959 0.916
0.13 0.946 0.952 0.951 0.938 0.951 0.956 0.963 0.950
0.15 0.950 0.963 0.951 0.950 0.956 0.964 0.964 0.959
800  0.11 0.948 0.963 0.954 0.932 0.952 0.962 0.951 0.952
0.13 0.954 0.963 0.960 0.956 0.958 0.966 0.958 0.962
0.15 0.955 0.965 0.965 0.953 0.959 0.966 0.971 0.970

pattern of droughts during the Maya civilization. An age-depth model of radiocarbon dating
is used to estimate the calendar age of depth of each sediment. The total number of data
points is n = 564, and the corresponding years range from 858 BC to 1994 AD.

We first test the existence of a change point for this data set as described in Section 4.1.
For this, we choose m = 20. The p-value of our test ¥,,; comes out to be 0.09, and thus we
fail to reject nonexistence of a change point. Gill [37] posited that between 800 and 1000
AD, the Yucatan peninsula was hit by a massive drought, triggering the Mayan collapse.
However, in light of our findings, such a hypothesis seems unlikely. Next, we move on to
building a simultaneous confidence band as in (4.14), which we will subsequently use to
test the existence of certain trend. For the local linear estimates (Figures 5b), we select h =
0.1. The residual plots 5a of X; — ji(#;) where fi1, is the locally linear estimate, suggest
that the error process is indeed nonstationary. Hodell, Brenner and Curtis [45] concluded
that the Yucatan peninsula experienced two drought cycles of period 208 and 50 years. This
hypothesis has been very influential in shaping academic discussion not only around classical
Mayan collapse [66, 91] but also in dialogues involving climate change [25]. In order to test
this hypothesis, we fit the following trend function to our data:

(6.1) w(t) = aot +oq’ fs2mt0y) +ar” fs(2m16y),

where 6; = 208/N and 6, = 50/N with N=range of the years in observation, and fs(x) =
(sin(x), cos(x))T. Figure 5b shows that based on our 95% SCB, we cannot accept the trend of
(6.1). Carleton [15] argued that [45, 46] used interpolation to turn the irregularly spaced data-
points into a regularly spaced one before applying their methods, and the obtained periodicity
might have been the superficial result of such method.

TABLE 2
Empirical coverage probabilities of SCB of X; from Model (4.6) where Z; ~ Model 5.4 with tg error

Weights: w = ) )
0.75,...,—0.75,...,0.75, ..., —0.75,...) Weights: w = sin(877/n)
n hy §=-08 6=-04 6=04 06=08 6=-08 6=—-04 6=04 0=0.38
600 0.11 0.940 0.951 0.943 0.946 0.941 0.954 0.958 0.938
0.13 0.957 0.951 0.947 0.951 0.953 0.951 0.962 0.950
0.15 0.950 0.962 0.954 0.942 0.959 0.959 0.958 0.957
800  0.11 0.943 0.967 0.956 0.941 0.953 0.959 0.971 0.938
0.13 0.953 0.961 0.967 0.953 0.956 0.958 0.961 0.952

0.15 0.946 0.965 0.968 0.949 0.966 0.958 0.959 0.963
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Residual Plot after fitting trend 95% SCB and fitted trend
’ [

'(
W | \\ M | /ﬂ’

‘ /
‘4 Mﬂ“ LM”M ‘r“‘w s \/\ ‘h'

14 16

diment core density
12

residual from sediment core density
00

‘ Puaihgodth v i 'M M L LMA) W/ i ot

02
L

(@) (b)

FIG. 5. (a) Plot of the residual X; — [i;. (b) 95% SCB in blue and the fitted local linear estimate in red. The
fitted line (6.1) is in dashed green.

7. Discussion. This paper develops an optimal Gaussian approximation for nonstation-
ary univariate time series, that besides being optimal, also provides a clear instructive way as
to how one can construct such approximations for practical applications. Our results match
the best possible rates from other literature on nonstationary time series [9, 54-56], etc. with
relaxed assumptions.

Our first result is an approximation result that preserves the population second-order prop-
erties in the approximating Gaussian analogue. Our second, and probably more practically
usable result states that the approximating Gaussian process can be embedded in a Brownian
motion with evolving variances. A major difficulty in constructing approximating Gaussian
processes was the nonavailability of the notion of a long-run covariance, and our paper settles
this question while maintaining the sharp rate. This work lays out an asymptotic framework,
which can be used in many areas of nonstationary time series, such as complex nonlinear and
nonstationary econometric models with smooth or abrupt changes. Moreover, one can fur-
ther explore beyond just temporal dependence and wish to obtain similar results for complex
spatial, spatiotemporal or tensor processes where nonstationarity is quite intrinsic.
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Supplement to ‘“Gaussian approximation for nonstationary time series with opti-
mal rate and explicit construction” (DOI: 10.1214/24-A0S2436SUPP; .pdf). Contains all
proofs in Sections 8, 9, 10 and 11, and some additional simulation results in Section 12.
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