
Published in Transactions on Machine Learning Research (11/2024)

Towards Size-Independent Generalization Bounds for Deep

Operator Nets

Pulkit Gopalani∗ gopalani@umich.edu

Department of Computer Science & Engineering

University of Michigan

Sayar Karmakar sayarkarmakar@ufl.edu

Department of Statistics

University of Florida

Dibyakanti Kumar dibyakanti.kumar@postgrad.manchester.ac.uk

Department of Computer Science

The University of Manchester

Anirbit Mukherjee anirbit.mukherjee@manchester.ac.uk

Department of Computer Science

The University of Manchester

Reviewed on OpenReview: https: // openreview. net/ forum? id= 21kO0u6LN0& noteId= 21kO0u6LN0

Abstract

In recent times machine learning methods have made significant advances in becoming a
useful tool for analyzing physical systems. A particularly active area in this theme has been
“physics-informed machine learning” which focuses on using neural nets for numerically
solving differential equations. In this work, we aim to advance the theory of measuring out-
of-sample error while training DeepONets – which is among the most versatile ways to solve
P.D.E systems in one-shot. Firstly, for a class of DeepONets, we prove a bound on their
Rademacher complexity which does not explicitly scale with the width of the nets involved.
Secondly, we use this to show how the Huber loss can be chosen so that for these DeepONet
classes generalization error bounds can be obtained that have no explicit dependence on the
size of the nets. The effective capacity measure for DeepONets that we thus derive is also
shown to correlate with the behavior of generalization error in experiments.

1 Introduction

Deep learning has recently emerged as a competitive way to solve partial differential equations (P.D.Es)
numerically. We note that the idea of using nets to solve P.D.Es dates back many decades Lagaris et al.
(1998) Broomhead & Lowe (1988). In recent times this idea has gained significant momentum and “AI for
Science” Karniadakis et al. (2021) has emerged as a distinctive direction of research. Some of the methods
at play for solving P.D.Es neurally E et al. (2021) are the Physics Informed Neural Networks (PINNs)
paradigm Raissi et al. (2019) Lawal et al. (2022), “Deep Ritz Method” (DRM) Yu et al. (2018), “Deep
Galerkin Method” (DGM) Sirignano & Spiliopoulos (2018) and many further variations that have been
developed of these ideas, Kaiser et al. (2021); Erichson et al. (2019); Wandel et al. (2021); Li et al. (2022);
Salvi et al. (2022).

These different data-driven methods of solving the P.D.Es can broadly be classified into two kinds, (1) ones
which train a single neural net to solve a specific P.D.E. and (2) operator methods – which train multiple
nets in tandem to be able to solve in “one shot” a family of differential equations, with a fixed differential

∗This work was done when the author was at the Department of Electrical Engineering, Indian Institute of Technology
Kanpur (IIT Kanpur), India.
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operator and different “source / forcing” functions. The operator net was initiated in Chen & Chen (1995)
and its most popular deep net version, the DeepONet, was introduced in Lu et al. (2021). An unsupervised
form of this idea was introduced in Wang et al. (2021). We note that the operator methods are particularly
useful in the supervised setup when the underlying physics is not known – as is the setup in this work – and
state-of-the-art approaches of this type, can be seen in works like Raonić et al. (2023).

As an explicit example of using DeepONet in the supervised setup, consider solving a pendulum O.D.E.,
d(y,v)

dt
= (v,−k ⋅ sin(y) + f(t)) ∈ R2 for different forcing functions f(t). Then using sample measurements of

valid (f, y) tuples, a DeepONet setup can be trained only once, and then repeatedly be used for inference
on new forcing functions f to estimate their corresponding solutions y. This approach is fundamentally
unlike traditional numerical methods where one needs to run the optimization algorithm afresh for every
new source function. In a recent study Lu et al. (2022), the authors showed how the DeepONet setup – that
we focus on in this work – has significant advantages over other competing neural operators, like the FNO
Li et al. (2020), in solving various differential equations of popular industrial use.

As a testament to the foundational nature of the idea, we note that over the last couple of years, several
variants of DeepONets have been introduced, like, Tripura & Chakraborty (2023); Goswami et al. (2022a);
Zhang et al. (2022); Hadorn (2022-03-16); Park et al. (2023); de Sousa Almeida et al. (2023); Tan & Chen
(2022); Xu et al. (2023); Lin et al. (2023). Different implementations of neural operators have been demon-
strated to be useful for various scientific applications, like for predicting crack shapes in brittle materials
Goswami et al. (2022b), for fluid flow in porous materials Choubineh et al. (2023), for simulating plasmas
Gopakumar & Samaddar (2020), for seismic wave propagation Lehmann et al. (2023), for weather modeling
Kurth et al. (2023) etc.

In light of this burgeoning number of applications, we posit that it becomes critical that the out-of-sample
performance of neural operators be mathematically understood. Towards this goal, in this work, we prove
that the generalization error of one of the most versatile forms of operator learning i.e DeepONets, can
become independent of the number of training parameters. We note that this is a significant improvement
over the best known generalization bounds for DeepONets, Theorem 5.3 in Lanthaler et al. (2022), which
grow exponentially in the number of parameters. We are able to obtain this insight via analyzing the
Rademacher complexity of DeepONets. That we can recover here the usual neural net like generalization
bound of the form a capacity measure√

sample−size
is particularly interesting because in here the predictor, the DeepONet, is

a non-Lipschitz function, while nets are Lipschitz functions and that is critical to how the standard analysis
is carried out for obtaining generalization error bounds.

Motivations for Understanding Rademacher Complexity We recall that typically there is a vast lack
of information about the distribution of the obtained models in any stochastic training setup. Corresponding
to a stochastic training algorithm, say ALG, that is using a m− sized dataset Sm to search over a class of
predictorsH, there is scarce mathematical control possible over the distribution of its output random variable
– the random predictor thus obtained, say ALG(Sm,H). Hence there is an almost insurmountable challenge
in being able to control the quantity we would ideally like to bound, the out-of-sample risk of the obtained
predictor i.e. R (ℓ ○ALG(Sm,H)) - where R denotes the expectation w.r.t the true data distribution, say
D, of a loss ℓ evaluated on the predictor ALG(Sm,H).
The fundamental idea that takes us beyond this conundrum is to relax our goals from aiming to control
the above to aiming to control only the data averaged worst (over all possible predictors) “generalization
gap” between the population and the empirical risk i.e, ESm∼D

m [suph∈H (R̂m(ℓ ○ h) −R(ℓ ○ h))] – where

corresponding to a choice of loss ℓ, R̂m(ℓ ○ h) is the empirical estimate over the data sample Sm of the
risk of h and R(ℓ ○ h) is the population risk of h over the data distribution D. The importance of the
statistical quantity, Rademacher complexity Bartlett & Mendelson (2001) of the function class ℓ ○ H i.e.
Ez1,...,zm∼D

m (Eϵ [suph∈H
1
m 3m

i=1 ϵiℓ ○ h(zi)]) (where ϵi ∼ ±1 are Bernoulli random variables) stems from the
fact that it is what bounds this aforementioned measure of the generalization gap.

It is to be noted that trying to control the above frees us from the specifics of any particular M.L. training
algorithm being used (of which there is a myriad of heuristically good options) to find arginfh∈HR(ℓ ○ h).
But on the other hand, by analyzing the Rademacher complexity we gain insight into how the choice of the
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hypothesis class H, the choice of the loss ℓ, and the data distribution D interact to determine the ability to
find arginfh∈HR(ℓ○h) via empirical estimates. Suppose that there exists some constant C(H,D)— a capacity

measure — such that ESm∼D
m [suph∈H (R̂m(ℓ ○ h) −R(ℓ ○ h))] is upper-bounded by 2⋅C(H,D)√

n
, then one can

conclude that while training with n ≥ (2⋅C(H,D)
ϵ
)2 samples the data-averaged worst-case generalization error

for the predictor obtained is at most ϵ, for any arbitrarily small ϵ > 0. This motivates one of the uses of
Rademacher complexity i.e to provide such estimates on the number of samples required to achieve a target
test accuracy. In particular, in cases where this capacity does not scale with the number of parameters in the
hypothesis class H, one may begin to explain why certain over-parameterized models might be good spaces
for the learning task. Such understanding becomes immensely helpful when H is very complicated, as is the
focus here, that of H being made of DeepONets. In Section 2, we review some of the recent advances in the
Rademacher analysis of neural networks.

We crucially note (Theorem 4.13, Ma (2021)) that any condition on m, ℓ,H and D that makes Rademacher
complexity small is a condition which when true it becomes reasonable to expect that the empirical and the
population risk could also be close for any predictor in the class H.

In this work, we will compute the Rademacher complexity of appropriate classes of DeepONets and use it to
give the first-of-its-kind bound on their generalization error which does not explicitly scale with the number
of parameters. Generalization bounds that do not scale with the size of the nets can be seen as a step towards
explaining the success of overparameterized architectures for that learning task. Further, our experiments
will demonstrate that the complexity measures of DeepONets as found by our Rademacher analysis indeed
correlate to the true generalization gap, over varying sizes of the training data.

1.1 Overview of Training DeepONets & Our Main Results

Following Lu et al. (2021), we refer to the schematic in Fig.1 below for the DeepONet architecture,

Figure 1: A Sketch of the DeepONet ( “DON”) Architecture

In the above diagram, the Branch Network and the Trunk Network are neural nets with a common output
dimension. xB(f) ∈ R

d1 , the input to the branch net is an “encoded” version of a function f i.e. a
discretization of f onto a d1−sized grid of “sensor points” in its input domain. xT ∈ R

d2 is the trunk input.
If the activation is Ã at all layers and the branch net and the trunk net’s layers are named Bk, k = 1, 2, . . . , qB

and Tk, k = 1, 2, . . . , qT respectively, then the above architecture implements the map,

R
d1 ×R

d2
∋ (xB(f), xT )↦ DeepONet(xB(f), xT ) ∶=

⎛⎝BqB
(Ã(BqB−1(. . . Ã(B1(xB(f))) . . .)))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=fB(xB(f))

⎞⎠
⊺⎛⎝TqT

(Ã(TqT−1(. . . Ã(T1(xT )) . . .)))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=fT (xT )

⎞⎠ (1)

In above the number of rows of the matrix BqB
and TqT

need to be the same for the inner-product to be
defined. For a concrete example of using the above architecture, consider the task of solving the pendulum

O.D.E from the previous section, d(y,v)
dt
= (v,−k ⋅ sin(y) + f(t)) ∈ R2. For a fixed initial condition, here the

training/test data sets would be 3−tuples of the form, (xB(f), xT , y) where y ∈ R is the angular position of
the pendulum at time t = Ä for the forcing function f . Typically y is a standard O.D.E. solver’s approximate
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solution. Given m such training data samples, the ℓ2 empirical loss would be,

L ∶=
1

2m

m

∑
i=1

(yi −DeepONet(xB(fi), Äi))2 = 1

2m

m

∑
i=1

(G(fi, Äi) −DeepONet(xB(fi), Äi))2 . (2)

In above G is the solution operator for this O.D.E. that the O.D.E. solver can be imagined to be simulating.
The rationale for this loss function above originates from the universal approximation property of DeepONets
which we have reviewed as Theorem C.1. Going beyond such approximation theorems, we state the results
that we prove here about the risk bounds in this novel learning setup.

Theorem (Informal Statement of Theorem 4.1). Consider a class of DeepONets, with absolute value acti-
vation, whose branch and trunk networks are both of depth n (i.e. qB = qT = n in equation 1) and suppose
that the squared norms of the inputs to them are bounded in expectation by Mx,B and Mx,T respectively.
Then the average Rademacher complexity, for training with samples of size m, is bounded by,

O
⎛⎝2n−1Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠Mx,BMx,T

⎞⎠ (3)

where the constants Cn,n−1 and C−k,−k, k = 2, 3, . . . , n−1 are defined so that the weight matrices of the Branch
Network and the Trunk Network of all the DeepONets in the class satisfy the following bounds,

b−1

∑
k1=1

t−1

∑
k2=1

RRRRRRRRRRR[
p

∑
j=1

(Bn,jT ⊺n,j)]
k1,k2

RRRRRRRRRRR ⋅ ∥Bn−1,k1
∥ ⋅ ∥Tn−1,k2

∥ = Cn,n−1,

sup
(v,w)

b−k

∑
j1=1

t−k

∑
j2=1

∣(vw⊺)j1,j2
∣ ⋅ ∥Bn−k,j1

∥∥Tn−k,j2
∥ = C−k,−k ∀k = 2, . . . , n − 1, (4)

where in each sum, above v, w are on the unit spheres of the same dimensionality as the number of rows
in Bn−k and Tn−k respectively and b−k, t−k represent the number of rows in the weight matrices Bn−k and
Tn−k respectively. (For any branch weight matrix say Bp, in above we have denoted its j-th row as Bp,j and
similarly for the trunk.)

Towards making the above measures computationally more tractable, in Appendix J we have shown that
∀k = 2, . . . , n − 1 one can choose an upperbound C̃−k,−k in place of C−k,−k where,

C̃−k,−k = ∥X∥ for X ∈ Rb−k×t−k with Xj1,j2
∶= ∥Bn−k,j1

∥ ⋅ ∥Tn−k,j2
∥ (5)

In Section 4.3, we undertake an empirical study on a particular component of the generalization bound,
represented as

Cn,n−1√
m

, (∏n−1
j=2 C̃−j,−j), in relation to the generalization gap to assess the correlation between

these factors.

Having proven the key theorem above, the following generalization bound with a modified loss function for
DeepONets follows via standard arguments about Rademacher complexity,

Theorem (Informal Statement of Theorem 4.2). Considering the same class of DeepONets as in Theo-

rem and using the Huber loss ℓH,¶(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
1
2
x2 for ∣x∣ ≤ ¶

¶ ⋅ (∣x∣ − 1
2
¶) for ∣x∣ > ¶

with ¶ = (1
2
)n−1

as the loss function.

The expectation over data of the supremum of the generalization error over the above class of DeepONets
can then be bounded by,

O
⎛⎝Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T

⎞⎠
where Cn,n−1 and C−j,−j are the constants defined in Theorem .

To the best of our knowledge, there is no general principle which determines when the worst case general-
ization gap of a learning scenario scales like C√

m
for some “capacity” function C which is entirely determined

by the data distribution and the norms of the parameters allowed in the predictor class. We recall that this
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is the familiar form of this bound from calculations done with neural nets, as reviewed in Appendix 2. We
posit that the reappearance of this form of the bound for DeepONets could not have been taken for granted
without the involved calculation as done here to prove the above theorem.

Secondly, we note that there is no explicit dependence on the widths of the DeepONet of the effective
capacity measure of C obtained above, once the depth has been fixed. In line with how terminology was
developed for standard neural nets, as reviewed in Section 2, we can say that thus we have obtained size-
independent generalization bounds - even for DeepONets and also while not making any assumptions on the
target operator G - an instance of which was seen in equation 2.

Lastly, we note that in Pestourie et al. (2023), the authors had recently demonstrated empirically the
effectiveness of using Huber loss for training neural networks to solve P.D.Es. Albeit for a different setup,
that of solving P.D.E. systems, via the above theorem, we provide a theoretical justification for why Huber
losses could be well suited for such tasks, and in here we are also able to derive a good value of ¶ –while this
hyperparameter choice in Pestourie et al. (2023) was not grounded in any theory.

In Appendix B we give an experimental study of how lowering the value of ¶ indeed helps lower both the
generalization error as well as the test error. Further, we will give experimental evidence (Figures 2 and 6)
that the capacity function derived above indeed has high correlation with the variations in the generalization
error over different experiments at different training data size.

In light of the above, we note the following practical applicability and qualitative significance of our bounds
on the Rademacher complexity and generalization error of DeepONets.

Choosing the Loss Function Theorem 4.2 suggests that training on the Huber loss function could lead
to better generalization. We give a performance demonstration in Appendix A for Huber loss function at
¶ = 1

2n−1 for DeepONets using tanh activation (although our above theorem does not capture this choice of
activation) and we note that it gives 2 orders of magnitude lower test error than for the same experiment
using ℓ2 loss.

Additionally, note that, DeepONets without biases and with positive homogeneous activation, are invariant
to the scaling of the branch net’s layers, Bk,and trunk net’s layers, Tk, by any µk and ¼k > 0 respectively
∀k s.t ∏k(µk ⋅¼k) = 1. This is a larger symmetry than for usual nets but our complexity measure mentioned

above is also invariant under this combined scaling. This can be seen as being strongly suggestive of our
result being a step in the right direction.

Explaining Overparameterization Since our generalization error bound has no explicit dependence on
the width or the depth (or the number of parameters), it constitutes a step towards explaining the benefits
of overparameterization in this new setup.

2 Related Works

Over the past few years, many novel generalization bounds for standard neural nets have been established.
Many of these works have computed bounds on Rademacher complexity for various classes of nets, to
show how different norm combinations of the involved weight matrices affect generalization performance,
Sellke (2024), Golowich et al. (2018), Bartlett et al. (2017), Neyshabur et al. (2015). For shallow neural
nets such methods have also been useful in explaining the benefits of dropout Arora et al. (2021) and
overparameterization Neyshabur et al. (2019). However, for state-of-the-art neural nets, other approaches
Dziugaite & Roy (2017), Arora et al. (2018), Neyshabur et al. (2018), Mukherjee (2021) have sometimes
given tighter bounds while using bounding expressions that are computationally very expensive. A thorough
discussion of the reach and limitations of these various bounds can be found in Nagarajan (2021).

In Kumar & Mukherjee (2024), the authors investigate the behavior of the ℓ2-distance between the true
solution and the PINN surrogate, building on the work of Mishra & Molinaro (2023). While the study
establishes an upper bound on the ℓ2-distance, this result alone is insufficient to guarantee successful training.
For training to be effective, it is also necessary to demonstrate that the empirical risk converges to the
population risk, which can be ensured using Rademacher complexity-based bounds.
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2.1 Comparison to Lanthaler et al. (2022)

Firstly, we note that none of the theorems presented here depend on the results in Lanthaler et al. (2022).
The proof strategies are entirely independent. Secondly, to the best of our knowledge, Theorem 5.3 in
Lanthaler et al. (2022) is the only existing result on generalization error bounds for DeepONets. However,
their bound has an explicit dependence on the total number of parameters (the parameter d¹ there) in the
DeepONet. Such a bound is not expected to explain the benefits of overparameterization, which is one of
the key features of modern deep learning (Dar et al., 2021; Yang et al., 2020).

We note that for usual implementations for DeepONets, where depths are typically small and the layers
are wide, for a class of DeepONets at any fixed value of our complexity measure i.e. Cn,n−1 (∏n−1

j=2 C−j,−j), a
generalization error bound based on our Rademacher complexity bound in Theorem 4.1 will be smaller than
the one in Lanthaler et al. (2022) that scales with the total number of parameters.

Further, as pointed out in our second main result, Theorem 4.2, our Rademacher bound lends itself to an
entirely size-independent generalization bound when the loss is chosen as a certain Huber loss.

Notation Given any U ⊂ Rn, denote as L2(U) the set of all functions f ∶ U → R s.t ∫U f2(x)dµ (x) <∞
where µ is the standard Lebesgue measure on R

n. And we denote as C(U), the set of all real valued
continuous functions on U . The unit sphere in R

k is denoted by Sk−1 ∶= {x ∈ Rk ∣ ∥x∥2 = 1} . For any matrix

A, ∥A∥ = supv≠0
∥Av∥

2∥v∥
2

denotes its spectral norm. For any bounded set S ⊂ Rn, U(S) denotes the uniform

distribution over that set S.

3 The Mathematical Setup

Firstly, we recall the definition of the general DeepONet architecture from Lu et al. (2021), which will be
our focus in this work.

Definition 1 (A DeepONet (Version 1)). We continue in the setup specified in equation 1. Further, let
p be the common output dimension of qB depth “branch net” fB and the qT depth “trunk net” fT .

When required to emphasize some constraint on the weights of a DeepONet, we will denote
DeepONet(xB , xT ) by DeepONetw(xB , xT ), where w collectively stands for all the weight matrices in
branch and trunk networks.

Corresponding to the DeepONets defined above we define the following width parameters for the different
weight matrices.

Definition 2. (Width Parameters for DeepONets)

• For k = 1, . . . , qB − 1 and ℓ = 1, . . . , qT − 1, define b−k and t−ℓ to be the number of rows in the weight
matrices BqB−k and TqT−ℓ respectively.

• In the setup of Definition 1, we define the functions f ′B and f ′T s.t given any m inputs to a DeepONet

as, {(xB,i, xT,i) ∣ i = 1, . . . , m} we have the following equalities,

fB(xB,i) =BqB
Ã1 (BqB−1f ′B(xB,i)) , fT (xT,i) = TqT

Ã2 (TqT−1f ′T (xT,i)) . (6)

Next, we define a certain smoothness condition that we need for the activation functions used.

Assumption 1. Let ϕP , ϕQ ∶ R → R be the activation functions for the branch net and the trunk net
such that #L > 0 s.t for any two sets of functions valued in R, say P and Q, ∀(p, q), (p′, q′) ∈ P ×Q and
∀(x, y) ∈ Domain(P) ×Domain(Q), the following inequality holds,

∣ϕP (p(x))ϕQ(q(y)) − ϕP (p′(x))ϕQ(q′(y))∣ ≤ L∣p(x)q(y) − p′(x)q′(y)∣. (7)

Our main results work under the above assumption and hence in particular, our results apply to the absolute
value map, R ∋ x↦ ∣x∣ ∈ R, being the activation function in both the branch and the trunk net. In Appendix
I we will indicate why this is sufficient to also capture DeepONets with ReLU activations and being trained
on bounded data.
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Towards formalizing the setup of the loss functions and the training data for training DeepONets we recall
the definition of the Huber loss Huber (1964).

Definition 3 (Huber Loss). For some ¶ ≥ 0 the Huber loss is defined as

ℓH,¶(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
1
2
x2 for ∣x∣ ≤ ¶

¶ ⋅ (∣x∣ − 1
2
¶) for ∣x∣ > ¶

Corresponding to a choice of any univariate loss function (ℓ), like Huber loss as above, we define the DeepONet
training loss as follows.

Definition 4 (A Loss Function for DeepONets). Given D ⊂ R
d, a compact set with boundary, we define

a function class of allowed forcing functions F ⊂ C(D). Further, we consider DeepONet maps as given in
Definition 1, mapping as DeepONet ∶ Rd1 ×R

d2
→ R and consider an instance of the training data given as,

{(fi, xT,i) ∈ F ×Rd2 ∣ i = 1, . . . ,S}.
Then, for an operator G ∶ C(D) → Hs(U) where Hs(U) is the L2-based Sobolev space for some s > 0, the
corresponding DeepONet loss function is given by,

L =
1

m

m

∑
i=1

ℓ(G(fi)(xT,i) −DeepONet(xB,i, xT,i)). (8)

where ℓ is some loss function. Here we assume a fixed grid of size d1 on which the function fi gets discretized,
to get xB,i ∈ R

d1 .

As the DeepONet function varies, corresponding to it a class of loss functions gets defined via the above
equation. This class of DeepONets can be seen as being parameterized by the different choices of weights
on the chosen architecture.

Also, it can be seen that the loss function in the experiment described in Section 1.1 was a special case of

the loss in equation 8 for ℓ(x) = x2

2
, the squared loss – and if we assume that the numerical solver exactly

solved the forced pendulum O.D.E.

Next, we recall the definition of a key statistical quantity, Rademacher complexity, from Bartlett & Mendelson
(2001), which we focus on as our chosen way to measure generalization error for DeepONets.

Definition 5 (Empirical and Average Rademacher complexity). For a function class K, suppose
being given a m−sized data-set of points {xi ∣ i = 1, . . . , m} in the domain of the elements in K.
For ϵi ∼ ±1 with equal probability, the corresponding empirical Rademacher complexity is given by
R̂m(K) = Eϵ [supk∈K

1
m 3m

i=1 ϵik(xi)] . If the elements of this data-set above are sampled from a distribution
P , then the average Rademacher complexity is given by,

Rm(K) = Ex1,...,xm∼P (Eϵ [sup
k∈K

1

m

m

∑
i=1

ϵik(xi)]) (9)

The crux of our mathematical analysis will be to uncover a recursive structure between the Rademacher
complexity of DeepONets and certain DeepONets of one depth lower in the branch and the trunk network,
and which would always have one-dimensional outputs for the branch and the trunk and which share weights
with the original DeepONet in the corresponding layers.

4 Results

Our central result about Rademacher complexity of DeepONets will be stated in Theorem 4.1 of Section 4.1
and consequent to that our result about bounding the generalization error of DeepONets will be stated in
Theorem 4.2 of Section 4.2. In Section 4.3, we present an empirical study of our bound on Rademacher
complexity for a DeepONet trained to solve the Burgers’ P.D.E.

7
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4.1 First Main Result : Rademacher Complexity of DeepONets

In the result below we will see how for a certain class of activations, we can get a bound on the Rademacher
complexity of DeepONets which does not scale with the width of the nets for the branch and the trunk nets
being of arbitrary equal depths.

Theorem 4.1 (Rademacher Complexity of Special Symmetric DeepONets). We consider a special
case of DeepONets as given in Definition 1, with (a) qB = qT = n, and (b) Ã1, Ã2 satisfies Assumption 1 for
some constant L > 0, and they are positively homogeneous. Further, let b−i and t−i be the number of rows
of the weight matrices Bn−i and Tn−i respectively, as in Definition 2, for i ≥ 1 and recall from Definition 1
that p is the number of rows of Bn and Tn. Then given a class of DeepONet maps as above, we define the
following n−1 constants, Cn,n−1 > 0 and C−k,−k > 0, k = 2, . . . , n−1, such that for Sk ∶= Sb−k−1

×St−k−1, all the
DeepONet maps in the class satisfy the following bounds,

b−1

∑
k1=1

t−1

∑
k2=1

∥Bn−1,k1
∥ ⋅ ∥Tn−1,k2

∥ ⋅ RRRRRRRRRRR[
p

∑
j=1

(Bn,jT ⊺n,j)]
k1,k2

RRRRRRRRRRR ≤ Cn,n−1,

sup
(v,w) ∈Sk

b−k

∑
j1=1

t−k

∑
j2=1

∣(vw⊺)j1,j2
∣∥Bn−k,j1

∥∥Tn−k,j2
∥ ≤ C−k,−k, ∀k = 2, . . . , n − 1.

Then given training data as in Definition 4, the empirical Rademacher complexity of this class is bounded
as,

R̂m ≤
(2L)n−1Cn,n−1

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠
¿ÁÁÀm

∑
i=1

∥xB,i∥22∥xT,i∥22.

Further assuming that the input distribution over F × Rd2 induces marginals distributions s.t E [∥xB∥22] ≤
M2

x,B ,E [∥xT ∥22] ≤M2
x,T , we have the average Rademacher complexity of the same class bounded as,

Rm ≤
(2L)n−1Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T .

The proof for the above is outlined in Section 6. For Ã1(x) = Ã2(x) = ∣x∣ i.e. for DeepONets with absolute
value activations, we have L = 1 and hence the subsequent simplification also happens in the result in
Theorem 4.1.

Now we have all the necessary setup to state the final result on generalization bound for DeepONets.

4.2 Second Main Result : Size-Independent Generalization Error Bound for DeepONets Trained via a
Huber Loss on Unbounded Data

Theorem 4.2 (Generalization Error Bound for DeepONet). We continue with the setup of the DeepONets
as in Theorem 4.1 but with Ã1(x) = Ã2(x) = ∣x∣. For an operator G ∶ C(D) → Hs(U) where Hs(U) is the
L2-based Sobolev space for some s > 0, a class of forcing functions F ⊂ C(D) andW a set of possible weights
w for DeepONets (denoted as DeepONetw), we define the function class H as,

H ∶= {(f, xT )↦ G(f)(xT ) −DeepONetw(xB(f), xT ) ∣w ∈W , (f, xT ) ∈ F ×Rd2 ,

G(f)(xT ), DeepONetw(xB(f), xT ) ∈ R}
Then for Huber loss ℓH,¶(⋅) as in Definition 3 with ¶ = (1

2
)n−1

where n is the depth of the branch and the
trunk nets we have the following generalization bound,

E{(fi,xT,i)iid
∼ D ∣i=1...m} [ sup

w∈W

[ 1

m

m

∑
i=1

ℓH,¶(h(fi, xT,i)) −E(f,xT )∼D [ℓH,¶(h(f, xT ))]]] (10)

≤
2Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T

where Cn,n−1 and C−j,−j are the constants as defined in Theorem 4.1, and D is a distribution over F ×Rd2
.

8
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The proof for the above theorem is given in Section 6.

4.3 An Experimental Exploration of the Proven Rademacher Complexity Bound for DeepONets

In the following sections, we present an experimental study on the complexity bounds for the Burgers’ and
2D-Heat PDEs in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Burgers’ PDE

Here, we consider the following specification of the Burgers’ P.D.E. with periodic boundary conditions,

∂s

∂t
+ s

∂s

∂x
= »

∂2s

∂x2
, (x, t) ∈ [−Ã, Ã] × [0, T]

s(x − Ã, t) = s(x + Ã, t), s(x, 0) = u(x)
where, » > 0 denotes the fluid viscosity, for our experiments we choose » = 0.01, and u(x) is a 2Ã-periodic
initial condition with zero mean i.e. ∫ Ã

−Ã u(x)dx = 0 and T ∈ R.

Hence it follows that the solution operator of Definition 4 corresponding to the above maps the initial
condition u to the solution to the Burgers’ P.D.E., s. Hence, we will approximate the implicit solution
operator G with a DeepONet G̃ — which for this case would be a map as follows,

R
m
×R

2
→ R, (v, y)↦ G̃(v, y) ∶= q

∑
k=1

NB,k(v) ⋅NT,k(y)
where NB and NT are any two neural nets mapping R

m
→ R

q and R
2
→ R

q respectively - the Branch
net and the Trunk net. In above, q, the common output dimension of the branch and the trunk net is a
hyperparameter for the experiment.

The data required to set up the training for the above map G̃ can be summarized as a 3−tuple of tensors,(utraining, ytraining, straining) of dimensions and descriptions as given below.

• utraining ∈ R
Ntraining×m are evaluations of the Ntraining number of input functions at the m sensors.

We denote the ith row of the above as, [ui(x1), ui(x2), . . . , ui(xm)] ∀i ∈ {1, . . . , Ntraining}
• ytraining ∈ R

Ntraining×Ptraining×2 are the Ptraining uniformly sampled collocation points in R
2 correspond-

ing to each of the Ntraining number of input functions. And ∀i ∈ {1, . . . , Ntraining}, we denote the

sampled points as {(xi,j, ti,j) ∣ j = 1, . . . , Ptraining} uniform
∼ ([−Ã, Ã] × [0, T ])Ptraining

• straining ∈ R
Ntraining× Ptraining are the values of the numerical solution of the P.D.E. at the respective

collocation points. And the (i, j)th
−entry of this would be denoted as si(xi,j, ti,j).

In terms of the above training data, the corresponding training loss (Definition 4) is,

LTraining(¹) = 1

NtrainingPtraining

Ntraining

∑
i=1

Ptraining

∑
j=1

ℓ (si(xi,j, ti,j)
−

q

∑
k=1

NB,k(ui(x1), ui(x2), . . . , ui(xm)) ⋅NT,k(xi,j, ti,j)) (11)

whereby in our experiments ℓ is either chosen as the ℓ2 loss or the Huber loss and ¹ denotes the vector of all
trainable parameters over both the nets. Similarly as above the test loss LTest would be defined corresponding
to a random sampling of Ntest input functions and Ptest points in the domain of the P.D.E. where the true
solution is known corresponding to each of these test input functions. For our experiments, we fixed Ntraining

to 400 and Ptraining is chosen to be the following set of values {300, 400, 500, 750, 1000, 1500, 2000}.
Further, for our experiments, we sampled the input functions ui by sampling functions of the form,
ui(x) = 3N

n=1 cn sin((n + 1)x), where the coefficients were sampled as, cn ∼ N (0, A2), with A and N being

9
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arbitrarily chosen constants. This way of sampling ensures that the functions chosen are all 2Ã-periodic and
will have zero mean in the interval [−Ã, Ã] - as required in our setup.

In this section, we demonstrate our Rademacher complexity bound by training DeepONets on the above loss
function and measuring the generalization gap of the trained DeepONet obtained and computing for this
trained DeepONet an upperbound on the essential part of our Rademacher bound (i.e.

Cn,n−1√
m
(∏n−1

j=2 C̃−j,−j)
where C̃−k,k is as defined in equation 5). Then we vary the number of training data (i.e. Ntraining ×Ptraining)
and show that the two numbers computed above are significantly correlated as this training hyperparameter
is varied. We use branch and trunk nets each of which are of depth 3 and width 100.

The correlation plots shown in Figures 2a and 2b, correspond to training on the Huber loss function, with
two different values of ¶ - and the former corresponds to the special value of ¶ = 1

4
where the size-independent

generalization bound in Theorem 4.2 clicks for this setup.

In Figure 6 of Appendix, we repeat the same experiments but for the ℓ2 loss function and show that the
required correlation persists even with this loss which is outside the scope of Theorem 4.2.

(a) δ=0.25, correlation = 0.857 (b) δ=0.4, correlation = 0.791

Figure 2: The above plot shows the behaviour of the measured generalization error with respect to
C3,2 C̃−2,−2√

m

for training DeepONets, to solve the Burgers’ PDE, with empirical loss as given in equation 11, specialized
to the Huber loss (Definition 3) for the stated values of ¶ and for the branch and the trunk nets being of
depth 3. Each point is labelled by the number of training data used in that experiment.

4.3.2 Heat PDE

Here, we consider the following specification of the 2D-Heat P.D.E. (Altaisan, 2024),

∂u

∂t
= »∇2u = »(∂2u

∂x2
+

∂2u

∂y2
), (x, y) ∈D, t ∈ [0, T ]

u(x, y, t) = 0, (x, y) ∈ ∂D, u(x, y, 0) = f(x, y), (x, y) ∈D

where, D is the 2-dimensional square [0, 1]× [0, 1], » > 0 denotes the thermal diffusivity, for our experiments
we choose » = 1, and f(x, y) is a 2Ã-periodic initial condition and T ∈ R.

In this case, the solution operator of Definition 4 corresponding to the above maps the initial condition f

to the solution to the Heat P.D.E, s. Hence, we will approximate the implicit solution operator G with a
DeepONet G̃ — which for this case would be a map as follows,

R
m
×R

3
→ R, (v, y)↦ G̃(v, y) ∶= q

∑
k=1

NB,k(v) ⋅NT,k(y)
where NB and NT are any two neural nets mapping R

m
→ R

q and R
3
→ R

q respectively - the Branch
net and the Trunk net. In above, q, the common output dimension of the branch and the trunk net is a
hyperparameter for the experiment. We have chosen q = 128 and m = 100 for our experiments.

10
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The data required to set up the training for the above map G̃ can be summarized as a 3−tuple of tensors,(ftraining, ptraining, utraining) of dimensions and descriptions as given below.

• ftraining ∈ R
Ntraining×m are evaluations of the Ntraining number of input functions at the m sensors.

We denote the ith row of the above as, [fi(x1, y1), fi(x2, y2), . . . , fi(xm, ym)] ∀i ∈ {1, . . . , Ntraining}
• ptraining ∈ R

Ntraining×Ptraining×3 are Ptraining uniformly sampled collocation points in R
3 corresponding

to each of the Ntraining number of input functions. And ∀i ∈ {1, . . . , Ntraining}, we denote the sampled

points as {(xi,j, yi,j, ti,j) ∣ j = 1, . . . , Ptraining} uniform
∼ ([0, 1] × [0, 1] × [0, T ])Ptraining

• utraining ∈ R
Ntraining× Ptraining are the values of the numerical solution of the P.D.E. at the respective

collocation points. And the (i, j)th
−entry of this would be denoted as ui(xi,j, yi,j, ti,j).

In terms of the above training data, the corresponding training loss (Definition 4) is,

LTraining(¹) = 1

NtrainingPtraining

Ntraining

∑
i=1

Ptraining

∑
j=1

ℓ (ui(xi,j, yi,j, ti,j)
−

q

∑
k=1

NB,k(fi(x1, y1), fi(x2, y2), . . . , fi(xm, ym)) ⋅NT,k(xi,j, yi,j, ti,j)) (12)

whereby in our experiments ℓ is either chosen as the ℓ2 loss or the Huber loss and ¹ denotes the vector
of all trainable parameters over both the nets. Similarly as above the test loss LTest would be defined
corresponding to a random sampling of Ntest input functions and Ptest points in the domain of the P.D.E.
where the true solution is known corresponding to each of these test input functions. For our experiments,
we fixed Ntraining to 64 and Ptraining is chosen to be the following set of values {26, 36, . . . , 76}.
Further, for our experiments, we sampled the input functions fi by sampling functions of the form,

fi(x, y) = [3N
m=1 cmsin(mÃx

x0
)] ⋅ [3N

n=1 dnsin(nÃy

y0
)], where the coefficients were sampled as, cm, dn ∼

U([100, 200]), with N is fixed to 2. This way of sampling ensures that the functions chosen are all
2Ã-periodic and we know the exact analytical solution for these initial conditions to be u(x, y, t) =
3N

m=13N
n−1 Amn sin(mÃx

x0
) sin(nÃy

y0
) e
−Ã2(m2

x2
0

+
n2

y2
0

)t
, where N = 2, Amn = cm dn and x0, y0 = 1. This exactness

leads to a more controlled measure of the test error than in the previous setup.

Here, we demonstrate our Rademacher complexity bound by training DeepONets on the above loss function
and measuring the generalization gap of the trained DeepONet obtained and computing for this trained
DeepONet an upper-bound on the essential part of our Rademacher bound (i.e.

Cn,n−1√
m
(∏n−1

j=2 C̃−j,−j) where

C̃−k,k is as defined in equation 5). Then we vary the number of training data (i.e. Ntraining × Ptraining) and
show that the two numbers computed above are significantly correlated as this training hyperparameter is
varied. We use branch and trunk nets each of which are of depth 3 and width 128.

The correlation plots shown in Figures 3a and 3b, correspond to training on the Huber loss function, with
two different values of ¶ - and the former corresponds to the special value of ¶ = 1

4
where the size-independent

generalization bound in Theorem 4.2 clicks for this setup.

Going beyond the ambit of the Rademacher bound proven, in Figure 7 in Appendix M, we present the plots
demonstrating the solution of the Heat P.D.E. during training with ℓ2 and Huber loss, while allowing for
ReLU activation and biases in the layers. It can be seen that Huber loss demonstrates noticeably better
performance compared to ℓ2 loss.

5 Discussion

The most immediate research direction that is being suggested by our generalization error bound is to explore
if the advantages shown here for Huber loss can make DeepONets competitive with CNO (Raonić et al.,
2023).

11



Published in Transactions on Machine Learning Research (11/2024)

(a) δ=0.25, correlation = 0.669 (b) δ=0.4, correlation = 0.717

Figure 3: The above plot shows the behaviour of the measured generalization error with respect to
C3,2 C̃−2,−2√

m

for training DeepONets, to solve the 2D-Heat PDE, with empirical loss as given in equation 12, specialized
to the Huber loss (Definition 3) for the stated values of ¶ and for the branch and the trunk nets being of
depth 3. Each point is labelled by the number of training data used in that experiment.

Further, in Wang et al. (2021), an unsupervised variation of the loss function of a DeepONet was shown
to give better performance. In Goswami et al. (2022b), authors employ a variational framework for solv-
ing differential equations using DeepONets, through a novel loss function. Understanding precisely when
these variations in the loss function used give advantages over the basic DeepONet loss is yet another in-
teresting direction for future research - and the path towards such goals could be to explore if the methods
demonstrated here for computation of generalization bounds can be used for these novel setups too.

Also, it would be fruitful to understand how the generalization bounds obtained in this work can be modified
to cater to the variations of the DeepONet architecture (Kontolati et al., 2023), (Bonev et al., 2023) Lu et al.
(2022) that are getting deployed.

In the context of understanding the generalization error of Siamese networks, the authors in Dahiya et al.
(2021) dealt with a certain product of neural outputs structure (where the nets share weights). In their
analysis, the authors bound the Rademacher complexity via covering numbers. Since we try to directly
bound the Rademacher complexity for DeepONets, it would be interesting to investigate if our methods can
be adapted to improve such results about Siamese nets.

Lastly, we note that the existing bounds on the Rademacher complexity of nets have typically been proven by
making ingenious use of the algebraic identities satisfied by Rademacher complexity (Theorem 12 in Bartlett
& Mendelson (2001)). But to the best of our knowledge, we are not aware of any general result on how
Rademacher complexity of a product of function spaces can be written in terms of individual Rademacher
complexities. We posit that such a mathematical development, if achieved in generality, can be a significant
advance affecting various fields.

6 Methods

In this section, we will outline the proofs of the main results, Theorems 4.1 and 4.2. We would like to
emphasize that the subsequent propositions 6.2 and 6.3 hold in more generality than Theorem 4.1, because
they do not need the branch and the trunk nets to be of equal depth.

Outline of the Proof Techniques Derivation of the first main result, Theorem 4.1, involves 3 key
steps: (a) formulating a variation of the standard Talagrand contraction (Lemma 6.1) (b) using this to
bound the Rademacher complexity of a class of DeepONets with certain activations (e.g. absolute value)
by the Rademacher complexity for a class of DeepONets having one less depth and 1−dimensional outputs,
for both the branch and the trunk (Lemma 6.2) and lastly (c) uncovering a recursive structure for the
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Rademacher complexity across depths between special DeepONet classes having 1−dimensional outputs for
both the branch and the trunk. (Lemma 6.3).

Lemma 6.2 removes the last 4 matrices from the DeepONet (2 each from the branch and the trunk) leading
to one-dimensional output branch and trunk nets. Lemma 6.3 removes 2 matrices (1 each from branch and
trunk) – by an entirely different argument than needed in the former. Lemma 6.2 is invoked only once at
the beginning, while Lemma 6.3 is repeatedly used for each remaining layer of the DeepONet.

We note that both our “peeling” lemmas above are structurally very different from the one in Golowich et al.
(2018) - where the last layer of a standard net gets peeled in every step.

Deriving the second main result, Theorem 4.2, involves the following key steps: (a) establishing a relationship
between the Rademacher complexity of the loss class and that of the DeepONet when the loss function is
Lipschitz (Proposition G.6) and (b) using this to upper bound the expectation over data of the supremum
of generalization error in terms of the Rademacher complexity of the DeepONet.

Towards proving Theorem 4.1, we need the following lemma which can be seen as a variation of the standard
Talagrand contraction lemma,

Lemma 6.1. Let ϕP , ϕQ ∶ R → R be two functions such that Assumption 1 holds and let P and Q be any
two sets of real-valued functions. Then given any two sets of points {xi ∣ i = 1, . . . , m} and {yi ∣ i = 1, . . . , m}
in the domains of the functions in P and Q respectively, we have the following inequality of Rademacher
complexities - where both the sides are being evaluated on this same set of points,

Rm(ϕP ○P ⋅ ϕQ ○Q) ≤ LRm(P ⋅Q).
The above lemma has been proven in Appendix H.1.

Towards stating Propositions 6.2 and 6.3, we will need to define certain classes of sub-DeepONets s.t these
sub-DeepONets would be one depth lower in the branch and trunk network, and would always have one
dimensional outputs for both the branch and trunk nets and would share weights below that with the
corresponding layers in the original DeepONet.

Definition 6. (Classes of sub-DeepONets) Let Wrest be a set of allowed matrices for nets f ′B and f ′T
as in Definition 2. Now, given a constant CqB ,qT ,qB−1,qT−1 > 0 we define the following set of 4−tuples of
outermost layer of matrices in the DeepONet as,

W(CqB ,qT ,qB−1,qT−1) ∶= ⎧⎪⎪⎨⎪⎪⎩(BqB
, BqB−1, TqT

, TqT−1) RRRRRRRRRRR
b−1

∑
k1=1

t−1

∑
k2=1

∥BqB−1,k1
∥ ⋅ ∥TqT−1,k2

∥ ⋅ RRRRRRRRRRR[
p

∑
j=1

(BqB ,jT ⊺qT ,j)]
k1,k2

RRRRRRRRRRR ≤ CqB ,qT ,qB−1,qT−1

⎫⎪⎪⎬⎪⎪⎭. (13)

Secondly, corresponding to the above we define the following class of DeepONets,

DeepONet(W(CqB ,qT ,qB−1,qT−1),Wrest) ∶=
{DeepONet

w
(as in Definition 1) ∣ w ∈ (W(CqB ,qT ,qB−1,qT−1),Wrest)}. (14)

Lastly, we define the following class of DeepONets,

DeepONet(Wrest) ∶= ⎧⎪⎪⎨⎪⎪⎩(xB , xT )↦ v⊺f ′B(xB) ⋅w⊺f ′T (xT ) ∈ R
∣ the set of allowed matrices for nets f ′B and f ′T are in Wrest ; (v, w) ∈ Sb−2−1

× St−2−1

⎫⎪⎪⎬⎪⎪⎭. (15)
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Proposition 6.2 (Removal of the Last 4 Matrices of a DeepONet). We continue to be in the
setup of Definition 2 and assuming that Ã1, Ã2 satisfies Assumption 1 for some L > 0, and are positively
homogeneous. Then given the definitions of DeepONet(W(CqB ,qT ,qB−1,qT−1),Wrest) and DeepONet(Wrest)
in Definition 6, we have the following upperbound on empirical Rademacher complexity of a DeepONet,
(here Sk ∶= Sb−k−1

× St−k−1)

R̂m(DeepONet(W(CqB ,qT ,qB−1,qT−1),Wrest))
≤ 2L ⋅ CqB ,qT ,qB−1,qT−1 ⋅Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦
≤ 2L ⋅ CqB ,qT ,qB−1,qT−1 ⋅ R̂m(DeepONet(Wrest)).

Note that both sides of the above are computed for the same data {(xB,i, xT,i) ∈ Rd1 ×R
d2 ∣ i = 1, . . . , m}.

The proof of the above proposition is given in Appendix E.

Referring to the definitions of the DeepONet classes on the L.H.S. and the R.H.S. of the above, as given in
equations 14 and 15 respectively, we see that the above lemma upperbounds the Rademacher complexity of a
DeepONet class (whose individual nets can have multi-dimensional outputs) by the Rademacher complexity
of a simpler DeepONet class. The DeepONet class in the R.H.S. is simpler because the last layer of each
of the individual nets therein is constrained to be a unit vector of appropriate dimensions (and thus the
individual nets here are always of 1 dimensional output) – and whose both branch and the trunk are shorter
in depth by 1 activation and 1 linear transform than in the L.H.S.

Proposition 6.3 (Peeling for DeepONets). We continue in the setup of Proposition 6.2 and define
the functions f ′′B and f ′′T s.t we have the following equalities, f ′B = Ã1 (BqB−2f ′′B) and f ′T = Ã2 (TqT−2f ′′T )
Further, given a constant C−2,−2 > 0, we define W ′rest as the union of (a) the set of weights that are allowed
in the Wrest set for the matrices BqB−3, BqB−4, . . . , B1 and TqT−3, TqT−4, . . . , T1 and (b) the subset of the
weights for BqB−2 and TqT−2 that are allowed by Wrest which also additionally satisfy the constraint, (here
Sk ∶= Sb−k−1

× St−k−1)

sup
(v,w) ∈S2

b−2

∑
j1=1

t−2

∑
j2=1

∣(vw⊺)j1,j2
∣∥BqB−2,j1

∥∥TqT−2,j2
∥ ≤ C−2,−2. (16)

Then we get the following inequality between Rademacher complexities,

Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦
≤ 2LC−2,−2Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S3

W
′

rest

(m

∑
i=1

ϵi(v⊺f ′′B(xB,i))(w⊺f ′′T (xT,i)))⎤⎥⎥⎥⎥⎦,
where b−k, t−k are as in Definition 2.

Proof of the above proposition is given in Appendix F. And now we have stated all the intermediate results
needed to prove our bounds on the Rademacher complexity of a certain DeepONet class.

Proof of Theorem 4.1

Proof. For each k = 2, 3, . . . , n − 1, we define a product of unit-spheres, Sk ∶= Sb−k−1
× St−k−1 and let Sn ∶=

Sd1−1
× Sd2−1. Now we define,

W1
rest ∶= {(Bn, Bn−1, Tn, Tn−1) ∣ b−1

∑
k1=1

t−1

∑
k2=1

∥Bn−1,k1
∥ ⋅ ∥Tn−1,k2

∥ ⋅ [ p

∑
j=1

(Bn,jT ⊺n,j)]
k1,k2

≤ Cn,n−1}.
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Next, for each i = 2, 3, . . . , n − 1, we define

Wi
rest ∶=

n−i

⋃
k=1

{(Bk, Tk) ∣ sup
(v,w) ∈Sk

b−k

∑
j1=1

t−k

∑
j2=1

∣(vw⊺)j1,j2
∣ ⋅ ∥Bn−k,j1

∥ ⋅ ∥Tn−k,j2
∥ ≤ C−k,−k}.

Thus we have,

mR̂m = Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W1

rest,W2
rest)
(m

∑
i=1

ϵi ⟨BnÃ1 (Bn−1f ′B(xB,i)) , TnÃ2 (Tn−1f ′T (xT,i))ð)⎤⎥⎥⎥⎥⎦.
Then we can invoke Lemma 6.2 on the above to get,

mR̂m = Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W1

rest,W2
rest)
(m

∑
i=1

ϵi ⟨BnÃ1 (Bn−1f ′B(xB,i)) , TnÃ2 (Tn−1f ′T (xT,i))ð)⎤⎥⎥⎥⎥⎦
≤ 2LCn,n−1Eϵ

⎡⎢⎢⎢⎢⎣ sup
W

2
rest

v1,v2 ∈S2

(m

∑
i=1

ϵiv
⊺

1 f ′B(xB,i)v⊺2 f ′T (xT,i))⎤⎥⎥⎥⎥⎦.
Now, using Lemma 6.3 repeatedly on the R.H.S above, and defining in a natural fashion the subsequent
branch and trunk sub-networks as f (i)(⋅) we have,

mR̂m ≤ (2L)2Cn,n−1 C−2,−2Eϵ

⎛⎜⎜⎜⎝
sup
W

3
rest(v1,v2) ∈S3

m

∑
i=1

ϵi(v⊺1 f ′′B(xB,i))(v⊺2 f ′′T (xT,i))
⎞⎟⎟⎟⎠

⋮

≤ (2L)iCn,n−1

⎛⎝
i

/
j=2

C−j,−j

⎞⎠ Eϵ

⎛⎜⎜⎜⎝
sup
W

i+1
rest(v1,v2) ∈Si+1

m

∑
i=1

ϵi(v⊺1 f
(i)
B (xB,i))(v⊺2 f

(i)
T (xT,i))

⎞⎟⎟⎟⎠
⋮

≤ (2L)n−1Cn,n−1

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

m

∑
i=1

ϵi(v⊺1 xB,i)(v⊺2 xT,i)⎞⎠ .

Using Lemma 6.4, the final bound on the empirical Rademacher complexity becomes,

R̂m ≤
(2L)n−1Cn,n−1

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠
¿ÁÁÀm

∑
i=1

∥x̃i∥22.

Invoking the assumption that the input is bounded s.t E [∥x̃B∥22] ≤M2
x,B and E [∥x̃T ∥22] ≤M2

x,T , the average

Rademacher complexity can be bounded as

Rm ≤
(2L)n−1Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T .

Lemma 6.4.

Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

m

∑
i=1

ϵi(v⊺1 xB,i)(v⊺2 xT,i)⎞⎠ ≤
¿ÁÁÀm

∑
i=1

∥x̃i∥22.

where x̃i = xB,ix
⊺

T,i and Sn = Sd1−1
× Sd2−1 and each ϵi ∼ ±1 uniformly.

Proof of the above lemma is given in Appendix D. In Appendix G we have setup a general framework for using
Rademacher bounds as proven in the above theorem to prove generalization error bounds for DeepONets.
And we will now invoke the result there to prove our main theorem about generalization error of DeepONets.
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Proof of Theorem 4.2

Proof. We recall from Theorem 4.1 the following bound on Rademacher complexity for the given DeepONet
class,

Rm ≤
(2L)n−1Cn,n−1√

m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T

Combining the above with Proposition G.6 we have,

E{(fi,xT,i)iid
∼ D ∣i=1...m} [sup

h∈H

[ 1

m

m

∑
i=1

ℓ(h(fi, xT,i)) −E(f,xT )∼D [ℓ(h(f, xT ))]]]
≤ 2R ⋅

(2L)n−1Cn,n−1√
m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T

Note that Huber-loss ℓH,¶ is ¶-Lipshitz and further setting ¶ = (1
2
)n−1

and rewriting the supremum over all
h ∈H as supremum over all w ∈W we can write the above inequality as

E{(fi,xT,i)iid
∼ D ∣i=1...m} [ sup

w∈W

[ 1

m

m

∑
i=1

ℓH,¶(h(fi, xT,i)) −E(f,xT )∼D [ℓH,¶(h(f, xT ))]]]
≤
(2L)n−1Cn,n−1

2(n−2)√m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T

Lastly, considering that the activation functions are Ã1(x) = Ã2(x) = ∣x∣ which makes L = 1 in Lemma 6.1 we
obtained the claimed bound,

E{(fi,xT,i)iid
∼ D ∣i=1...m} [ sup

w∈W

[ 1

m

m

∑
i=1

ℓH,¶(h(fi, xT,i)) −E(f,xT )∼D [ℓH,¶(h(f, xT ))]]]
≤

2Cn,n−1√
m

⎛⎝
n−1

/
j=2

C−j,−j

⎞⎠ Mx,BMx,T
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Appendix

A Evidence for Training DeepONets with tanh Activation and Huber Loss

Similar to the experiments in Section 4.3, in this section too we use DeepONets whose both branch and trunk
networks are of depth of 3 and have a width of 100. However, unlike Section 4.3, the activation function
used in the experiments displayed in Figure 4 is tanh. The chosen training loss is the same as in equation 11,
where ℓ is set to the Huber loss with ¶ = 1

23−1 = 0.25, the value as would be inspired by Theorem 4.2.

Figure 4: This plot demonstrates the ability of Huber loss trained DeepONets to predict the solution to a Burgers’
P.D.E. on an arbitrarily chosen inhomogeneous term u, which is different from the u’s used for training the net.

The plots above motivate future studies exploring the possibility of Huber loss being good for training
DeepONets.

B Empirical Study on the Behaviour of Generalization Error for Huber Loss at
Different δ

Figure 5: These plots demonstrate the behaviour of generalization error and test error for Huber loss trained
DeepONets to predict the solution to a Burgers’ P.D.E. at varying values of δ for 2 different dataset sizes.
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Similar to the experiments in Section 4.3, in this section too we use DeepONets whose both branch and
trunk networks are of depth 3 and have a width of 100. The selected training loss is identical to the one
in Equation 11, with ℓ set to the Huber loss. The generalization error is plotted for various values of
delta at Ptraining = 200 and 1500, while maintaining Ntraining = 400. In this setup, in Figure 5 we plot the
generalization error for ¶ = 1

(√2)k for k = 4, 5,⋯ , 18 to show how the generalization error as well as the test

error drops as ¶ gets smaller.

C Review of the Universal Approximation Property of DeepONets

We follow the setup in Lanthaler et al. (2022) for a brief review of its key theorem that motivates DeepONets.

Definition 7 (Solution Operator). Given U ⊂ Rn and D ⊂ Rd, compact sets with boundaries, suppose we
have a differential operator L ∶Hs(U)→ C(D), where Hs(U) is the L2-based Sobolev space for some s > 0.
Denote the functions in the range of L to be “forcing” / “input” functions and those in the domain of L
to be the “output" functions. Let ∂U denote the boundary of U . Then given g ∈ L2(∂U) and f ∈ C(D) a
solution to the differential system (g, f,L) is a function u∗ ∈Hs(U) s.t.

Lu∗ = f s.t u∗ = g on ∂U.

At a fixed “boundary condition” g for such a differential system, we assume that the solutions for the above
system for different forcing functions f are given via an operator/map, G s.t.

G ∶ C(D)→Hs(U) s.t L ○ G(f) = f and G(f) = g on ∂U.

Further, assume that µ is a probability measure on C(D) s.t G ∈ L2(µ) i.e. ∫C(D) ∥G(f)∥2Hs(U) dµ (f) <∞.

Multiple examples of G have been discussed in Lanthaler et al. (2022), and bounds on these operators
evaluated – for instance, in Lemma 4.1 therein one can see the bounds on the G that corresponds to the the
case of a forced pendulum that we used as a demonstrative example in Section 1.1

Definition 8 (DeepONet (Version 2)). Suppose ∀f ∈ C(D), xB(f) is a discretization of f. Further
suppose A is a branch net mapping to R

p and Ä ∶ Rn
↦ R

p+1 is a trunk net. Then a “DeepONet" (N ∶
C(D)↦ L2(U)) is defined as,

∀xT ∈ U ⊂ Rn, N (f)(xT ) ∶= Ä0(xT ) + p

∑
k=1

Ak(xB(f))Äk (xT ).

Theorem C.1 (Restatement of a Key Result from Lanthaler et al. (2022)). Let µ be as in Definition
7. Let G : C(D)→ L2(U) be a Borel measurable mapping, with G ∈ L2(µ), then for every ϵ > 0, there exists
an operator network N ∶ C(D)→ L2(U) as given above, such that

∥G −N ∥L2(µ) = (+
C(D) ∥G(f) −N (f)∥2L2(U)dµ(f))1/2

< ϵ.

Remark. Henceforth xB ∶= xB(f) for any function f, and similarly xB,i for a function fi.

The above approximation guarantee between DeepONets (N ) and solution operators of differential equations
(G) clearly motivates the use of DeepONets for solving differential equations. In Deng et al. (2022), the
authors present specific scenarios wherein particularly small DeepONets satisfy Theorem C.1. And as a
counterpoint, in Mukherjee & Roy (2024), scenarios are demonstrated where small DeepONets would not be
able to reduce the empirical training error below a certain threshold in the presence of noise in the data.

D Proof of Lemma 6.4

Proof. Denote by Sn = Sd1−1
× Sd2−1. Define W̃ = (v1v⊺2) and x̃i = (xB,i(xT,i)⊺). Then,
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Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

m

∑
i=1

ϵi(v⊺1 xB,i)(v⊺2 xT,i)⎞⎠ = Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

m

∑
i=1

ϵi

⎛⎝
d1

∑
k1=1

v1,k1
xB,i,k1

⎞⎠⎛⎝
d2

∑
k2=1

v2,k2
xT,i,k2

⎞⎠⎞⎠
= Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

m

∑
i=1

d1

∑
k1=1

d2

∑
k2=1

ϵi (v1,k1
xB,i,k1

) (v2,k2
xT,i,k2

)⎞⎠
= Eϵ

⎛⎝ sup
(v1,v2) ∈Sn

d1

∑
k1=1

d2

∑
k2=1

v1,k1
v2,k2

(m

∑
i=1

ϵi (xB,i,k1
) (xT,i,k2

))⎞⎠
Note that,(v1, v2) ∈ Sn Ô⇒ ∥W̃∥2 =

¿ÁÁÁÀ d1

∑
k1=1

d2

∑
k2=1

v2
1,k1

v2
2,k2
= ∥v1∥2∥v2∥2 = 1.

Hence, we can enlarge the domain to get,

≤ Eϵ

⎛⎝ sup
∥W̃∥

2
≤1

d1

∑
k1=1

d2

∑
k2=1

W̃(k1,k2) (m

∑
i=1

ϵi x̃i,k1,k2
)⎞⎠ .

The above sum can be viewed as an inner product of 2 vectors in R
d1×d2 . We have,

= Eϵ

⎛⎝ sup
∥W̃∥

2
≤1

⟨W̃,
m

∑
i=1

ϵi x̃i⟩⎞⎠ ≤
¿ÁÁÀm

∑
i=1

∥x̃i∥22 ≤
¿ÁÁÀm

∑
i=1

∥xB,i∥22∥xT,i∥22,

where the inequality follows from Theorem 5.5 in Ma (2021).

E Proof of Proposition 6.2

Proof. We recall from the setup of Definition 2 that b−1 and t−1 are the number of rows of the matrices
BqB−1 and TqT−1 - and b−2 and t−2 are the output dimensions of the nets f ′B and f ′T . From Definition 6
we further recall the definitions of the 2 sets of matrices W(CqB ,qT ,qB−1,qT−1) and Wrest and we simplify the
required empirical Rademacher complexity as,

mR̂m = Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

m

∑
i=1

ϵi ⟨fB(xB,i), fT (xT,i)ð ⎤⎥⎥⎥⎥⎦
= Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

(m

∑
i=1

ϵi ⟨BqB
Ã1 (BqB−1f ′B(xB,i)) , TqT

Ã2 (TqT−1f ′T (xT,i))ð)⎤⎥⎥⎥⎥⎦. (17)

Here, we have substituted the definitions of the functions f ′B and the f ′T as given in the statement of Lemma
6.2. To ease notation now we define the following vectors,

bi ∶= Ã1 (BqB−1f ′B(xB,i)) , ti ∶= Ã2 (TqT−1f ′T (xT,i)) .
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Then we can rewrite the above as,

mR̂m = Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

(m

∑
i=1

ϵi ⟨BqB
bi, TqT

tið)⎤⎥⎥⎥⎥⎦
= Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎝
m

∑
i=1

ϵi

p

∑
j=1

B⊺qB ,jbi ⋅ T
⊺

qT ,jti

⎞⎠
⎤⎥⎥⎥⎥⎦

= Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎝
m

∑
i=1

ϵi

p

∑
j=1

⎛⎝
b−1

∑
k1=1

BqB ,j,k1
bi,k1

⎞⎠ ⋅ ⎛⎝
t−1

∑
k2=1

TqT ,j,k2
ti,k2

⎞⎠⎞⎠
⎤⎥⎥⎥⎥⎦

= Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎝
p

∑
j=1

b−1

∑
k1=1

t−1

∑
k2=1

BqB ,j,k1
TqT ,j,k2

m

∑
i=1

ϵibi,k1
⋅ ti,k2

⎞⎠
⎤⎥⎥⎥⎥⎦

= Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎝
p

∑
j=1

b−1

∑
k1=1

t−1

∑
k2=1

BqB ,j,k1
TqT ,j,k2

m

∑
i=1

ϵibi,k1
⋅ ti,k2

⎞⎠
⎤⎥⎥⎥⎥⎦

= Eϵ

⎡⎢⎢⎢⎢⎣ sup
W(CqB ,qT ,qB−1,qT −1)

Wrest

⎛⎝
p

∑
j=1

b−1

∑
k1=1

t−1

∑
k2=1

(BqB ,jT ⊺qT ,j)k1,k2

⋅

m

∑
i=1

ϵiÃ1 (BqB−1f ′B(xB,i))k1
⋅ Ã2 (TqT−1f ′T (xT,i))k2

⎞⎠
⎤⎥⎥⎥⎥⎦

= Eϵ

⎡⎢⎢⎢⎢⎣ sup
W(CqB ,qT ,qB−1,qT −1)

Wrest

( p

∑
j=1

b−1

∑
k1=1

t−1

∑
k2=1

(BqB ,jT ⊺qT ,j)k1,k2
⋅ ∥BqB−1,k1

∥ ⋅ ∥TqT−1,k2
∥

⋅

m

∑
i=1

ϵiÃ1 (B̂⊺qB−1,k1
f ′B(xB,i)) ⋅ Ã2 (T̂ ⊺qT−1,k2

f ′T (xT,i)) )⎤⎥⎥⎥⎥⎦.
In the last line above we have invoked the positive homogeneity of Ã1 and Ã2.

Now assume 2 vectors v and w of dimensions b−1 − 1 × t−1 − 1 s.t they are indexed by the tuple (k1, k2) for
k1 ∈ {1, . . . ,−1 + b−1} and k2 ∈ {1, . . . ,−1 + t−1} as follows,

v(k1,k2) ∶= ∥BqB−1,k1
∥ ⋅ ∥TqT−1,k2

∥ ⋅ p

∑
j=1

(BqB ,jT ⊺qT ,j)k1,k2
,

w(k1,k2) ∶=
m

∑
i=1

ϵiÃ1 (B̂⊺qB−1,k1
f ′B(xB,i)) ⋅ Ã2 (T̂ ⊺qT−1,k2

f ′T (xT,i)) .

Then we have,

mR̂m = Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎝
b−1

∑
k1=1

t−1

∑
k2=1

v(k1,k2) ⋅w(k1,k2)
⎞⎠
⎤⎥⎥⎥⎥⎦.

Note that for any ³, ´ ∈ Rk we have, ⟨³, ´ð ≤ (maxp∈1,...,k ∣´p∣) ⋅3k
j=1 ∣³j ∣

≤ Eϵ

⎡⎢⎢⎢⎢⎣ sup
(W(CqB ,qT ,qB−1,qT −1),Wrest)

⎛⎜⎝
b−1

∑
k1=1

t−1

∑
k2=1

∣v(k1,k2)∣ ⋅ max
k1=1,...,b−1−1
k2=1,...,t−1−1

∣w(k1,k2)∣⎞⎟⎠
⎤⎥⎥⎥⎥⎦.

Now we define a set of weightsWexcept−outer which is an union of all possible weight matrices that are allowed
in Wrest and all possible choices of (BqB−1, TqT−1) that are allowed in the set W(CqB ,qT ,qB−1,qT−1).
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Then we recall the definition of W(CqB ,qT ,qB−1,qT−1), to get,

mR̂m ≤ Eϵ

⎡⎢⎢⎢⎢⎣ sup
Wexcept−outer

⎛⎜⎝CqB ,qT ,qB−1,qT−1 ⋅ max
k1=1,...,b−1−1
k2=1,...,t−1−1

∣m

∑
i=1

ϵiÃ1 (B̂⊺qB−1,k1
f ′B(xB,i)) ⋅ Ã2 (T̂ ⊺qT−1,k2

f ′T (xT,i))∣⎞⎟⎠
⎤⎥⎥⎥⎥⎦.

where

CqB ,qT ,qB−1,qT−1 =

b−1

∑
k1=1

t−1

∑
k2=1

∣v(k1,k2)∣
=

b−1

∑
k1=1

t−1

∑
k2=1

∥BqB−1,k1
∥ ⋅ ∥TqT−1,k2

∥RRRRRRRRRRRR
⎡⎢⎢⎢⎣

p

∑
j=1

BqB ,jT ⊺qT ,j

⎤⎥⎥⎥⎦k1,k2

RRRRRRRRRRRR
Note that any pair of row directions in the pair of matrices (BqB−1, TqT−1) is in ∈ Sb−2−1

× St−2−1. So a sup

over the set of BqB−1 and TqT−1 that is allowed by the constraint of CqB ,qT ,qB−1,qT−1 and a subsequent max

over the pairs of row directions can be upperbounded by a single sup over Sb−2−1
× St−2−1. Thus we have,

mR̂m ≤ Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w)∈Sb−2−1

×St−2−1

Wrest

⎛⎝CqB ,qT ,qB−1,qT−1 ⋅ ∣m

∑
i=1

ϵiÃ1 (v⊺f ′B(xB,i)) ⋅ Ã2 (w⊺f ′T (xT,i))∣⎞⎠
⎤⎥⎥⎥⎥⎦.

Invoking Lemma H.1, we have

mR̂m ≤ Eϵ

⎡⎢⎢⎢⎢⎣2 × sup
(v,w)∈Sb−2−1

×St−2−1

Wrest

⎛⎝CqB ,qT ,qB−1,qT−1 ⋅

m

∑
i=1

ϵiÃ1 (v⊺f ′B(xB,i)) ⋅ Ã2 (w⊺f ′T (xT,i))⎞⎠
⎤⎥⎥⎥⎥⎦.

Now we invoke Lemma 6.1, assuming that Assumption 1 holds for Ã1 and Ã2 for some L > 0, to get,

mR̂m ≤ 2L ⋅ CqB ,qT ,qB−1,qT−1 ⋅Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w)∈Sb−2−1

×St−2−1

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦.
The above inequality is exactly what we set out to prove.

F Proof of Proposition 6.3

Proof. We start with the expression in the R.H.S. of the Proposition 6.2 and simplify it similarly as was
done in its proof in the previous appendix. Denote S2 = Sb−2−1

× St−2−1.

Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦
=Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺Ã1(BqB−2f ′′B(xB,i)) ⋅w⊺Ã2(TqT−2f ′′T (xT,i))⎞⎠

⎤⎥⎥⎥⎥⎦
=Eϵ

⎡⎢⎢⎢⎢⎢⎢⎣
sup

(v,w) ∈S2

Wrest

b−2

∑
j1=1

t−2

∑
j2=1

(vw⊺)j1,j2
∥BqB−2,j1

∥∥TqT−2,j2
∥ ⋅ m

∑
i=1

ϵiÃ1(B̂⊺qB−2,j1
f ′′B(xB,i))Ã2(T̂ ⊺qT−2,j2

f ′′T (xT,i))
⎤⎥⎥⎥⎥⎥⎥⎦

.

Define
ṽj1,j2

∶= (vw⊺)j1,j2
∥BqB−2,j1

∥∥TqT−2,j2
∥

w̃j1,j2
∶=

m

∑
i=1

ϵiÃ1(B̂⊺qB−2,j1
f ′′B(xB,i))Ã2(T̂ ⊺qT−2,j2

f ′′T (xT,i)).
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Thus we get,

Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦ = Eϵ

⎡⎢⎢⎢⎢⎢⎢⎣
sup

(v,w) ∈S2

Wrest

b−2

∑
j1=1

t−2

∑
j2=1

ṽj1,j2
w̃j1,j2

⎤⎥⎥⎥⎥⎥⎥⎦
≤ Eϵ

⎡⎢⎢⎢⎢⎢⎢⎣
sup

(v,w) ∈S2

Wrest

⎛⎝
b−2

∑
j1=1

t−2

∑
j2=1

∣ṽj1,j2
∣ ⋅max

j1,j2

∣w̃j1,j2
∣⎞⎠
⎤⎥⎥⎥⎥⎥⎥⎦

.

For ease of notation we define the set W−2,−2 as the set of matrices allowed in Wrest but with those with
indices qB −2 and qT −2 additionally satisfying the constraint in equation 16 in the statement of the lemma.

Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦
≤ C−2,−2Eϵ

⎡⎢⎢⎢⎢⎢⎣
sup
W−2,−2

⎛⎜⎝ max
j1=1,...qB−2
j2=1,...,qT−2

∣w̃j1,j2
∣⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

≤ C−2,−2Eϵ

⎛⎜⎝ sup
W−2,−2

⎛⎜⎝ max
j1=1,...qB−2
j2=1,...,qT−2

∣m

∑
i=1

ϵiÃ1(B̂⊺qB−2,j1
f ′′B(xB,i))Ã2(T̂ ⊺qT−2,j2

f ′′T (xT,i))∣⎞⎟⎠
⎞⎟⎠ .

We note that any pair of row directions in the pair of matrices (BqB−2, TqT−2) is ∈ Sb−3−1
× St−3−1. So a sup

over the set of BqB−2 and TqT−2 that is allowed by the constraint of C−2,−2 and a subsequent max over the
pairs of row directions can be upper-bounded by a single sup over Sb−3−1

× St−3−1.

We recall the definition of W ′rest given in the lemma to conclude, (S3 = Sb−3−1
× St−3−1)

Eϵ

⎡⎢⎢⎢⎢⎣ sup
(v,w) ∈S2

Wrest

⎛⎝
m

∑
i=1

ϵiv
⊺f ′B(xB,i) ⋅w⊺f ′T (xT,i)⎞⎠

⎤⎥⎥⎥⎥⎦
≤ C−2,−2Eϵ

⎛⎜⎜⎜⎝
sup

(v,w) ∈S3

W
′

rest

∣m

∑
i=1

ϵiÃ1(v⊺f ′′B(xB,i))Ã2(w⊺f ′′T (xT,i))∣
⎞⎟⎟⎟⎠

.

Invoking Lemma H.1,

≤ 2C−2,−2Eϵ

⎛⎜⎜⎜⎝
sup

(v,w) ∈S3

W
′

rest

m

∑
i=1

ϵiÃ1(v⊺f ′′B(xB,i))Ã2(w⊺f ′′T (xT,i))
⎞⎟⎟⎟⎠

≤ 2LC−2,−2Eϵ

⎛⎜⎜⎜⎝
sup

(v,w) ∈S3

W
′

rest

m

∑
i=1

ϵi(v⊺f ′′B(xB,i))(w⊺f ′′T (xT,i))
⎞⎟⎟⎟⎠

.

In the last step above we have invoked Lemma 6.1 using the fact that Assumption 1 is true about Ã1 and
Ã2.

G Generalization Bound For DeepONets For Unbounded Data

Definition 9 (ϕH Loss Function Class). GivenH as defined in Theorem 4.2, we define the class ϕH associated
with H as,

ϕH ∶= {F ×Rd2
∋ (f, xT )↦ ℓ(h(f, xT )) ∈ [0,∞) ∣ h ∈H}

where ℓ is some non-negative univariate (loss) function
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Applying Theorem 4.13 of Ma (2021) to the above loss class we get the following theorem

Theorem G.1. Given ϕH as in Definition 9 we have,

E{(fi,xT,i)iid
∼ D∣i=1...m} [sup

h∈H

[ 1

m

m

∑
i=1

ℓ(h(fi, xT,i)) −E(f,xT )∼D [ℓ(h(f, xT ))]]] ≤ 2Rm(ϕH)
where m is the number of samples used in the empirical risk, D is a distribution over F × Rd2 , and Rm is
Rademacher complexity as defined in Equation 9.

Lemma G.2 (Lipschitz Composition in Rademacher Complexity). Assume that ϕ ∶ R↦ R is a Lϕ-Lipschitz
continuous function, such that ∣ϕ(t) − ϕ(s)∣ ≤ Lϕ∣t − s∣. Suppose V ⊂ Rm. Then,

Eϵ [sup
f∈V

1

m

m

∑
i=1

ϵiϕ(fi)] ≤ Lϕ Eϵ [sup
f∈V

1

m

m

∑
i=1

ϵifi] .

Lemma G.3 (R(ℓ(H)) in terms of R(H)). Given H as defined in Theorem 4.2, if ℓ(⋅) is R−Lipschitz,

Eϵ [sup
h∈H

1

m

m

∑
i=1

ϵi ℓ(h(fi, xT,i))] =R(ℓ(H)) ≤ R ⋅R(H) = R ⋅Eϵ [sup
h∈H

1

m

m

∑
i=1

ϵi h(fi, xT,i)] .

Proof. Any function h ∈ H maps from F ×Rd2
↦ R. Hence, training data of size m for the DeepONet is of

the form {(fi, xT,i) ∈ F ×Rd2 , i = 1, 2, . . . , m}.
Consider the set K = {(h(f1, x1), . . . , h(fm, xm)) ∣h ∈H} ⊂ Rm. Then we can re-write,

R(ℓ(H)) = Eϵ [sup
k∈K

1

m

m

∑
i=1

ϵi ℓ(ki)] .

Invoking that the Lipschitz constant for ℓ(⋅) is R, and Lemma G.2 we have,

R(ℓ(H)) ≤ REϵ [sup
k∈K

1

m

m

∑
i=1

ϵi ki] ,

which we recognize as the inequality we set out to prove,

R(ℓ(H)) ≤ R ⋅R(H).

Lemma G.4 (R(H) in terms of R(DeepONet)). Recall thatW is the set of allowed weights in the function
class H (as defined in Theorem 4.2). Corrresponding to it define the class DeepONet s.t DeepONet

w
∈

DeepONet denotes a DeepONet with weight w ∈W . Then the following holds,

R(DeepONet) ∶= Eϵ [ sup
w∈W

1

m

m

∑
i=1

ϵi DeepONet
w
(fi, xT,i)] =R(H).

Proof. Realizing that taking a sup over h ∈H and w ∈W are equivalent, we get,

Eϵ [sup
h∈H

1

m

m

∑
i=1

ϵi h(fi, xT,i)] = Eϵ [ sup
w∈W

1

m

m

∑
i=1

ϵi (G(fi, xT,i) −DeepONet
w
(fi, xT,i))] ,
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where we have used h(fi, xT,i) = G(fi, xT,i) −DeepONet
w
(fi, xT,i). We can write R(H) as

R(H) = Eϵ [ sup
w∈W

1

m

m

∑
i=1

ϵi (G(fi, xT,i) −DeepONet
w
(fi, xT,i))]

= Eϵ [ sup
w∈W

{ 1

m

m

∑
i=1

ϵi G(fi, xT,i) − 1

m

m

∑
i=1

ϵi DeepONet
w
(fi, xT,i)}]

= Eϵ [ 1

m

m

∑
i=1

ϵi G(fi, xT,i) + sup
w∈W

1

m

m

∑
i=1

(−ϵi)DeepONet
w
(fi, xT,i)]

= 0 +Eϵ [ sup
w∈W

1

m

m

∑
i=1

ϵi DeepONet
w
(fi, xT,i)]

=R(DeepONet).
since, ϵ = −ϵ in distribution.

Hence combining the above two lemmas we get,

Lemma G.5 (R(ℓ(H)) in terms of R(DeepONet)). Let ℓ(⋅) be R−Lipschitz. Then,

R(ℓ(H)) ≤ R ⋅R(DeepONet).
Proposition G.6 (Generalization Error Bound for DeepONet). Given ϕH as in Definition 9 and let
ℓ(⋅) be R−Lipschitz. Then we have the following generalization bound,

E{(fi,xT,i)iid
∼ D ∣i=1...m} [sup

h∈H

[ 1

m

m

∑
i=1

ℓ(h(fi, xT,i)) −E(f,xT )∼D [ℓ(h(f, xT ))]]] ≤ 2R ⋅Rm

where Rm is as in Theorem 4.1, and D is a distribution over F ×Rd2

Proof. We recall from Theorem G.1 that,

E{(fi,xT,i)iid
∼ D∣i=1...m} [sup

h∈H

[ 1

m

m

∑
i=1

ℓ(h(fi, xT,i)) −E(f,xT )∼D [ℓ(h(f, xT ))]]] ≤ 2Rm(ϕH)
Now, invoking Lemma G.5 and using the fact that ℓ(⋅) is R−Lipschitz we get the claimed inequality.

H Contraction Lemmas

Lemma H.1. (From Ma (2021)) Let ϵ ∼ Uniform({1,−1}m) and suppose we have functions f¹ and g¹

parameterized by ¹ s.t, (Rk)m ∋ x ↦ f¹(x) = (g¹ (x1) , . . . , g¹ (xm))) ∈ Rm. Suppose that for any ϵ ∈ {±1}m,
sup¹ ⟨ϵ, f¹(x)ð ≥ 0. Then,

Eϵ [sup
¹

∣⟨ϵ, f¹(x)ð∣] ≤ 2Eϵ [sup
¹

⟨ϵ, f¹(x)ð] .

Proof. Letting ϕ be the ReLU function, the lemma’s assumption implies that sup¹ ϕ (⟨ϵ, f¹(x)ð) =
sup¹ ⟨ϵ, f¹(x)ð for any ϵ ∈ {±1}n. Observing that ∣z∣ = ϕ(z) + ϕ(−z),

sup
¹

∣⟨ϵ, f¹(x)ð∣ = sup
¹

[ϕ (⟨ϵ, f¹(x)ð) + ϕ (⟨−ϵ, f¹(x)ð)]
≤ sup

¹

ϕ (⟨ϵ, f¹(x)ð) + sup
¹

ϕ (⟨−ϵ, f¹(x)ð)
= sup

¹

⟨ϵ, f¹(x)ð + sup
¹

⟨−ϵ, f¹(x)ð .
Taking the expectation over ϵ (and noting that ϵ and −ϵ have the same distribution) we get the desired
conclusion.
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H.1 Proof of Lemma 6.1

Proof.

Rm(ϕP ○P ⋅ ϕQ ○Q) = 1

m
Eϵ∼U({−1,1}m)

⎡⎢⎢⎢⎣ sup
(p,q)∈P×Q

m

∑
i=1

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi))⎤⎥⎥⎥⎦ .

We explicitly open up the expectation on ϵ1 to get,

=
1

2m
⋅E(ϵ2,...,ϵm)∼U({−1,1}m−1)

⎡⎢⎢⎢⎢⎣ sup
f,q∈P×Q

(ϕP (p(x1))ϕQ(q(y1)) + m

∑
i=2

ϵi ⋅ ϕP (p(xi)ϕQ(q(yi))))+
sup

f ′,q′∈P×Q

(−ϕP (p′(x1))ϕQ(q′(y1)) + m

∑
i=2

ϵi ⋅ ϕP (p′(xi))ϕQ(q′(yi)))⎤⎥⎥⎥⎥⎦
≤

1

2m
⋅E(ϵ2,...,ϵm)

⎡⎢⎢⎢⎢⎣ sup
((p,q),(p′,q′))∈(P×Q)2

⎛⎝∣ϕP (p(x1))ϕQ(q(y1)) − ϕP (p′(x1))ϕQ(q′(y1))∣
+

m

∑
i=2

ϵi (ϕP (p(xi))ϕQ(q(yi)) + ϕP (p′(xi))ϕQ(q′(yi)))⎞⎠
⎤⎥⎥⎥⎥⎦

By invoking the the assumption 1 we get,

≤
1

2m
⋅E(ϵ2,...,ϵm)

⎡⎢⎢⎢⎢⎣ sup
((p,q),(p′,q′))∈(P×Q)2

⎛⎝L ⋅ ∣p(x1)q(y1) − p′(x1)q′(y1)∣
+

m

∑
i=2

ϵi (ϕP (p(xi))ϕQ(q(yi)) + ϕP (p′(xi))ϕQ(q′(yi)))⎞⎠
⎤⎥⎥⎥⎥⎦

Now we invoke the fact that inside a supremum, an absolute value function is redundant, since anyway the
higher combination will get picked. Thus we can rearrange the above to get,

≤
1

2m
⋅E(ϵ2,...,ϵm)

⎡⎢⎢⎢⎢⎣ sup
(p,q)∈P×Q

(L ⋅ p(x1)q(y1)) + m

∑
i=2

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi)))
+ sup
(p′,q′)∈P×Q

(−L ⋅ p′(x1)q′(y1) + m

∑
i=2

ϵi ⋅ ϕP (p′(xi))ϕQ(q′(yi)))⎤⎥⎥⎥⎥⎦
≤

1

m
⋅Eϵ

⎡⎢⎢⎢⎢⎣ sup
(p,q)∈P×Q

(ϵ1 ⋅L ⋅ p(x1)q(y1) + m

∑
i=2

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi)))⎤⎥⎥⎥⎥⎦
Re-iterating the above argument for i = 2, 3, , . . . , m we get,

=
1

m
Eϵ∼U({−1,1}m) sup

(p,q)∈P×Q
[m

∑
i=1

ϵiL ⋅ p(xi)q(yi)]
= LRm(P ⋅Q).
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H.2 A Contraction Lemma with Biased Absolute Functions

Suppose F is set of functions with a common domain D and a common range space, and B is a subset of
that range space. Then we denote a new function space F +B ∶= {x↦ f(x) + b, ∀x ∈D ∣ f ∈ F , b ∈ B}.
Lemma H.2. Let P and G be set of functions valued in R closed under negation. Given points {xi ∣
i = 1, . . . , m}, {yi ∣ i = 1, . . . , m} in the domain of the functions then we have the following inequality of
Rademacher complexities - where both the sides are being evaluated on this same set of points,

Rm(∣P +B1∣ ⋅ ∣G +B2∣) ≤Rm(P ⋅ G) + ∣B2∣Rm(P) + ∣B1∣Rm(G)
Proof. From the definition of Rademacher complexity it follows that,

Rm(∣P +B1∣ ⋅ ∣Q +B2∣) = 1

m
Eϵ∼U({−1,1}m) sup

p,q∈P×Q

[m

∑
i=1

ϵi ⋅ ∣p(xi) +B1∣∣q(yi) +B2∣] .

We explicitly open up the expectation on ϵ1 to get,

=
1

2m
⋅E(ϵ2,...,ϵm)∼U({−1,1}m−1)

⎡⎢⎢⎢⎢⎣ sup
p,q∈P×Q

(∣p(x1) +B1∣∣q(y1) +B2∣ + m

∑
i=2

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi)))+
sup

p′,q′∈P×Q

(−∣p′(x1) +B1∣∣q′(y1) +B2∣ + m

∑
i=2

ϵi ⋅ ϕP (p′(xi))ϕQ(q′(yi)))⎤⎥⎥⎥⎥⎦ (18)

≤
1

2m
⋅E(ϵ2,...,ϵm)

⎡⎢⎢⎢⎢⎣ sup
p,p′,q,q′∈P×P×Q×Q

⎛⎝∣p(x1)q(y1) − p′(x1)q′(y1)∣ + ∣B2∣∣p(x1) − p′(x1)∣ + ∣B1∣∣q(y1) − q′(y1)∣
+

m

∑
i=2

ϵi (ϕP (p(xi))ϕQ(q(yi)) + ϕP (p′(xi))ϕQ(q′(yi)))⎞⎠
⎤⎥⎥⎥⎥⎦ (19)

=
1

2m
⋅E(ϵ2,...,ϵm)

⎡⎢⎢⎢⎢⎣ sup
p,q∈P×Q

(p(x1)q(y1) + ∣B2∣p(x1) + ∣B1∣q(y1) + m

∑
i=2

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi)))
+ sup

p′,q′∈P×Q

(−p′(x1)q′(y1) − ∣B2∣p′(x1) − ∣B1∣q′(y1) + m

∑
i=2

ϵi ⋅ ϕP (p′(xi))ϕQ(q′(yi)))⎤⎥⎥⎥⎥⎦ (20)

≤
1

m
⋅Eϵ

⎡⎢⎢⎢⎢⎣ sup
f,g∈P×Q

(ϵ1 ⋅ (p(x1)q(y1) + ∣B2∣p(x1) + ∣B1∣q(y1)) + m

∑
i=2

ϵi ⋅ ϕP (p(xi))ϕQ(q(yi)))⎤⎥⎥⎥⎥⎦ (21)

Iterating this, we get

≤
1

m
Eϵ∼U({−1,1}m) sup

p,q∈P×Q

[m

∑
i=1

ϵi ⋅ (p(xi)q(yi) + ∣B2∣p(xi) + ∣B1∣q(yi)]
≤Rm(P ⋅Q) + ∣B2∣Rm(P) + ∣B1∣Rm(Q).

In equation 19, we have used the triangle inequality, followed by

∣∣p(x1)+B1∣ ⋅ ∣q(y1)+B2∣− ∣p′(x1)+B1∣ ⋅ ∣q′(y1)+B2∣∣ ≤ ∣(p(x1)+B1)(q(y1)+B2)−(p′(x1)+B1)(q′(y1)+B2)∣
In equation 20, we could open up the ∣⋅∣ since the supremum would be positive. This follows from the fact that
P and Q are closed under multiplication by −1, which implies supf∈F f = supf∈−F f = supf∈F −f = supf∈F ∣f ∣
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I Converting ReLU−DeepONets to abs−DeepONets

Firstly, we recall that the map R
q
∋ x ↦ x ∈ Rq is an exact depth 2 ReLU net – one which passes every

coordinate of the input through the ReLU net R ∋ z ↦ max{0, z} −max{0,−z} ∈ R. Using this, given any
ReLU DeepONet, we can symmetrize the depths between the branch and the trunk by attaching the required
number of identity computing layers at the input to the shorter side.

Secondly, for typical DeepONet experiments, one can assume that the the set of all possible input data is
bounded. Combining this with the assumption of boundedness of the allowed matrices, we conclude that
# B > 0 s.t the input to any ReLU gate in any DeepONet in the given class is bounded by B. Now we observe
that ∀∣z∣ ≤ B, we can rewrite the map z ↦max{0, z} as, z ↦ 1

2
∣z∣ + 1

4
∣z +B∣ − 1

4
∣z −B∣.

Hence, doing the above replacement at every gate we can rewrite any ReLU DeepONet (without biases) as
a DeepONet using only absolute value activations but with biases – and computing the same function on
the same bounded domain, at the cost of increasing the size of the branch and the trunk net by a factor
of 3. Thirdly, a similar result as in Lemma 6.1 continues to hold for this setup as given in Lemma H.2.
Note that, Lemma H.2 bounds the Rademacher complexity of a DeepONet class with the branch and trunk
depths (k, k) by a linear sum of that of (k − 1, k − 1) and sum of a (k, 0) and a (0, k) DeepONet. While the
first term can be recursed on again (using identical techniques as used to prove Theorem 4.1), for the last
two one can invoke Theorem 1 of Golowich et al. (2018).

Thus, we observe that following the same arguments as in the proof for Theorem 4.1 we can derive an
analogous bound for arbitrary ReLU DeepONet classes - but with twice the depth of the DeepONet number
of extra terms in the R.H.S. These extra terms would come in pairs – each pair consisting of a Rademacher
complexity bound on a standard net, one from the branch side and one from the trunk side and of decreasing
depths.

J Choosing C̃
−k,−k

Defining

⎡⎢⎢⎢⎢⎣Xj1,j2

⎤⎥⎥⎥⎥⎦j1=1,...,b−k

k1=1,...,t−k

∶= X ∈ R
b−k×t−k s.t Xj1,j2

∶= ∥Bn−k,j1
∥ ⋅ ∥Tn−k,j2

∥, we can simplify as follows the

expression defining C−k,−k in equation 4,

sup
(v,w)∈S−1+b

−k×S−1+t
−k

b−k

∑
j1=1

t−k

∑
j2=1

∣(vw⊺)j1,j2
∣∥Bn−k,j1

∥∥Tn−k,j2
∥ = sup

(v,w)∈S−1+b
−k×S−1+t

−k

b−k

∑
j1=1

t−k

∑
j2=1

∣vj1
∣∥Bn−k,j1

∥∥Tn−k,j2
∥∣wj2

∣
= sup
(v,w)∈S−1+b

−k×S−1+t
−k

b−k

∑
j1=1

t−k

∑
j2=1

∣vj1
∣ ⋅Xj1,j2

⋅ ∣wj2
∣ = sup
(v,w)∈S−1+b

−k×S−1+t
−k

ṽ⊺Xw̃

In the last line above we defined vectors ṽ and w̃ of appropriate dimensions s.t ṽi = ∣vi∣ and w̃i = ∣wi∣. Then
note that, ṽ

⊺
Xw̃ ≤ ∥ṽ∥2∥Xw̃∥2 ≤ ∥ṽ∥2∥X∥∥w̃∥2

In above ∥X∥ is the spectral norm of X. Therefore we have the following upperbound,

sup
v,w
∥ṽ∥2∥X∥∥w̃∥2 ≤ sup

v

∥ṽ∥2 ⋅ sup
w

∥w̃∥2 ⋅ ∥X∥
Since ∥ṽ∥ = ∥v∥ ≤ 1 and ∥w̃∥ = ∥w∥ ≤ 1 we have,

sup
(v,w)∈S−1+b

−k×S−1+t
−k

ṽ⊺Xw̃ ≤

XXXXXXXXXXXXXXXX
⎡⎢⎢⎢⎢⎣∥Bn−k,j1

∥ ⋅ ∥Tn−k,j2
∥⎤⎥⎥⎥⎥⎦j1=1,...,b−k

k1=1,...,t−k

XXXXXXXXXXXXXXXX
Thus it follows that the RHS of the above inequality gives an intuitive candidate for the quantity C̃−k,−k.
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K Behaviour of Rademacher Bound for ℓ2-loss

Figure 6: The above plot shows the behaviour of the measured generalization error with respect to
C3,2 C̃−2,−2√

m

for training DeepONets to solve Burgers’ PDE using the empirical loss as given in equation 11, specialized
to the ℓ2 loss and for the branch and the trunk nets being of depth 3. Each point is labelled by the number
of training data used in that experiment.

L Link to Code

Here is the link to the GitHub repository containing our code for training a DeepONet for the Heat and
Burgers’ P.D.Es.
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M Plot Showing the Evolution of Solution to the 2D Heat P.D.E. with Time

Figure 7: This plot demonstrates the solution to 2D Heat P.D.E. at different times. In each figure, we have
shown the analytical solution first followed by the prediction from the DeepONet trained with ℓ2 and Huber
loss at ¶ = 0.25. Here, the DeepONets we used have ReLU activation functions and include bias terms.
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