Power Side-Channel Key Recovery Attack On a
Hardware Implementation of BIKE

Luke Beckwith!2, Huizhen Zhou!, Jens-Peter Kapsl, Kiris Gaj1
LGeorge Mason University, Fairfax, VA, 22030, USA
2pQSecure Technologies, Boca Raton, FL, 33431, USA
{Ibeckwit, hzhou9, jkaps, kgaj} @gmu.edu

Index Terms—Side-channel Analysis;
Cryptography; Correlation Power Analysis

Abstract—BIKE is a code-based Key Encapsulation Mecha-
nism (KEM) currently under consideration for standardization
by the National Institute of Standards and Technology (NIST).
BIKE, along with several other candidates, is being evaluated
in the fourth round of the NIST Post-Quantum Cryptography
(PQC) competition. In comparison to the lattice-based candidates,
relatively little effort has been focused on analyzing this algorithm
for side-channel vulnerabilities, especially in hardware. There
have been several works on side-channel attacks and countermea-
sures on software implementations of BIKE, but as of yet, there
have been no works focused on hardware. This work presents the
first side-channel attack on a hardware implementation of BIKE.
The attack targets a public implementation of the algorithm and
is able to fully recover the long-term secret key with only several
dozen traces. This work reveals BIKE’s significant susceptibilities
to side-channel attacks when implemented in hardware and the
need for investigation of hardware countermeasures.

Post-Quantum-

I. INTRODUCTION

Current cryptographic algorithms are based on mathematical
problems that are difficult to solve on classical computers
but are trivial to solve using a quantum computer. Thus,
our current cybersecurity infrastructure can be broken by a
sufficiently large quantum computer. Fortunately, over the past
eight years, NIST has coordinated focused research to identify
new cryptographic algorithms that are secure against classical
and quantum computing attacks. While these algorithms are
secure against computational attacks, their implementations
are still vulnerable to side-channel attacks. These attacks
seek to recover sensitive information through physical char-
acteristics of the implementation, such as latency or power
consumption.

Cryptographic engineers have been at work identifying
sensitive operations and devising methods of protection against
these attacks. Much of this effort has been focused on the
popular lattice-based family of algorithms. The newly selected
standards, ML-KEM (based on CRYSTALS-Kyber) [1]] and
ML-DSA (based on CRYSTALS-Dilithium) [2]], have been
well analyzed for side-channel weaknesses and methods of
protection. ML-KEM has received both protected software and
protected hardware implementations [3]]-[7]. One public work
has been published for a software-protected implementation of
ML-DSA [8§]l.

979-8-3503-6806-2/24/$31.00 ©2024 IEEE

NIST has made it clear that they also intend to standardize
other families of algorithms. In particular, three code-based
Key Encapsulation Mechanisms (KEM) are being evaluated
for future standardization: Classic McEliece, BIKE, and HQC.
Of these algorithms, both BIKE and HQC have orders of
magnitude smaller public keys than Classic McEliece, making
them more practical candidates for standardization. Of the
two, HQC has slightly better performance, but BIKE has
keys and ciphertexts that are roughly half the size of those
for HQC. Thus, BIKE is a very competitive algorithm for
standardization.

These algorithms have received significantly less effort in
terms of protection and attacks. Several attacks have been
performed on HQC, but only in software, and no protected
implementation has been developed [9]-[11]. For BIKE, a
previous work performed a single-trace power analysis attack
on a software implementation [[12]]. Another work performed
a side-channel attack on a software implementation of QcBits,
which is in the same family of algorithms as BIKE [13]]. In
terms of protected implementations, one work presented a fully
protected software implementation [14], and two works pre-
sented protected gadgets related to the sampling and inversion
of polynomials [15], [16].

Contribution: This work presents the first effort on side-
channel attacks on hardware implementations of BIKE. The
target of the attack is a publicly available implementation of
BIKE [17]. The sequential design of the polynomial multiplier
enables a large number of attack points to be extracted from
each power trace. On average, the attack requires two dozen
traces and does not rely on any strong assumptions such as
chosen ciphertext or the ability to create templates for the
target device. The CPA attack code is available onlin Due
to the large size of the trace data, only a subset of the power
traces are included. These results show the need to investigate
side-channel countermeasures for hardware implementations
of BIKE.

II. BACKGROUND
A. BIKE Algorithm

BIKE, described in [18]], is a code-based KEM constructed
using Quasi-Cyclic Moderate Density Parity Check (QC-
MDPC) codes. These codes define their generator and parity

Uhttps://cryptography.gmu.edu/artifacts/AsianHOST24/BIKE-SCA/

check matrices using a single vector of length r with binary
coefficients. Each row of the matrix is defined by cyclically
shifting the vector by one position. Thus, a matrix-vector
multiplication is equivalent to polynomial multiplication in the
ring Zo[z]/ (" + 1).

TABLE I: BIKE ALGORITHM PARAMETERS.

Security Level r w t
1 12,323 | 142 | 134
3 24,659 | 206 | 199
5 40,973 | 274 | 264

The secret key of BIKE consists of two sparse polyno-
mials hg, hy of degree r, each having exactly w/2 non-zero
entries. Together, these polynomials define the parity check
matrix. The public key is calculated from the secret key by
h = hy *x hy !, During encapsulation, the message is used
as the seed for the SHA3 XOF function from which two
sparse polynomials eg, e; with combined weight ¢ are sampled.
These values are used to calculate the first component of the
ciphertext, ¢cg = ey + e; * h. The two vectors are hashed
and added to the message, which is included as the second
ciphertext component, ¢;. During decapsulation, the secret key
decoding algorithm is applied to ¢y, which allows recovery of
eg and eq. These values are then hashed and added to ¢ to
recover the message.

There are two notable features of BIKE that are relevant to
the attack presented in this paper. First, recovery of either hg
or h; is sufficient for full recovery of the secret key. If hg is
known, then we can calculate b x hg = (hy X hy 1) X hg =
hi. If hy is known, we can calculate h~! x hy = (hf1 X
ho) X h1 = hg. Second, the structure of the cyclic code means
that rotations of the secret key polynomials hg,h; generate
equivalent codes. The structure of the hy component of the
parity check matrix is as follows:

rotate(hg,0)

rotate(hg, 1)
Hoy =)

rotate(hg, 7 — 1)

Multiplication of hy by a polynomial x* modulo 2" + 1
is equivalent bitwise to rotation by k. Thus, the polynomial
{, = hg x o generates the following matrix:

rotate(hg, k mod r)

rotate(hg, k + 1 mod r)
!/
H) = _

rotate(ho, k + (r — 1) mod r)

The matrix H/, is equivalent to Hy by row swapping, so it
generates the same code. Thus, two polynomials hf = ho X
¥ hi = h; x 2¥ can be used to decapsulate a ciphertext
encoded with public key h = hq * by L

B. Power Side-Channel Attacks

Side-channel attacks are a category of implementation at-
tacks that exploit information leaked from the physical imple-
mentation of a cryptographic algorithm rather than weaknesses

in the cryptographic algorithms themselves. These attacks
may target characteristics including operation latency, power
consumption, or electromagnetic emissions. This work focuses
on power side-channel attacks, which seek to recover sensitive
information by analyzing the power consumption of the target
device during the cryptographic operation. Two prominent
types of side-channel attacks are Simple Power Analysis (SPA)
and Differential Power Analysis (DPA). SPA attacks attempt
to recover sensitive information by analyzing a single trace;
DPA attacks analyze statistical differences between a larger
number of traces to learn information about the secret value.

In this work, we perform a Correlation Power Analysis
(CPA) attack, which is a type of DPA attack. To perform
a CPA attack, the attacker chooses a target operation of
the form ¢ = f(a,s) where a is a known value, s is the
target secret value, and c is a signal that has a significant
impact on the power consumption of the device (i.e., a value
written to a register in an FPGA). The attacker enumerates
all possible values of s, referred to as key guesses, and
calculates the corresponding hypothetical values of c. The
attack then uses the hypothetical values of ¢ to generate a
power model based on a leakage model, such as the Hamming
weight or Hamming distance. In the case of FPGAs, the power
consumption is generally proportional to the number of bit
flips that occur. Thus, the Hamming distance model is the
most appropriate leakage model. The assumption is that the
calculated power model of the correct key guess will have the
strongest correlation with the actual power consumption of the
device. To determine the correlation between the power model
for all key guesses and the power consumption of the device,
Pearson’s correlation coefficient between each key guess and
each point of the power trace is calculated.

C. BIKE Multiplier Architecture Hardware

In this work, we target a publicly available hardware im-
plementation of BIKE [17]. The hardware architecture im-
plements all three security levels of the algorithm and has
a configurable datapath width. We provide an overview of the
most relevant module, the polynomial multiplier, but refer the
reader to the implementers’ publication for further details.

The block diagram of the multiplier is shown in Figure
The implementation takes advantage of the fact that all
multiplications in BIKE are performed between one dense
polynomial, with an arbitrary number of non-zero entries, and
a sparse polynomial, with a small, fixed number of non-zero
entries. Instead of using traditional schoolbook multiplication,
the multiplier uses a combination of shift and XOR operations.
Since the field of the coefficients is GF'(2) and the polynomial
modulus is 2" + 1, the multiplication of a dense polynomial
by a single value x is equivalent to rotation of the coefficients
by ¢ positions. That is:

(a0 + a1z’ + - +a,12" 1) * (z) =
(a(r’fi)mod r+a(r7i+1) mod rx_'_' : '+a(r7i+r71) mod 'r’xr_l)
Any polynomial multiplication can be viewed as a series of

a(z) * ' operations that are summed together. For each non-
zero coefficient of the sparse input, the dense input is rotated

[E] Addition/subtraction modulo ’V%—I
—0
3 D E-1
1
1
sel
:log b
[los] ind 111 1

sparse_in —r- o

[log b—1:0] AI resa_in-{1

[resb_in-o
1 1

! r | sel
1 1

' ! . r}{otate z

1

1

resa_addr

resb_addr

res_out

Fig. 1: Block diagram of BIKE hardware polynomial multi-
plier. Figure taken from [[17].

based on the non-zero coefficient’s index and accumulated into
the resulting state. In Figure [I] sparse_in is the sparse
coefficient index input which is used to determine how many
bits to rotate the dense input, arb_in. Accumulation of the
result state is performed by XORing the previous state, read
from the memory interface resa or resb, with the shifted
input before writing back to memory through the res_out
signal. The rotation is split into two steps: the bit-wise shift
and the word-wise shift. The bit-wise shift is determined by
the lower bits of sparse_in and is performed using the
Rotate module. The word-wise shift is determined by the
upper bits of sparse_in and is performed by adjusting the
memory address offset when reading and writing the result to
memory. For each sparse index input, [r/b] cycles of shift
and XOR are performed. Thus the latency of this module is
proportional to [r/b] * &, where % is the weight of the sparse
put.

ITI. METHODOLOGY
A. Target Operation and Attack Method

In this section, we describe the approach used for our CPA
key recovery attack on the hardware implementation of BIKE.
Our goal in this attack is full recovery of the long-term secret
key composed of (hg, h1). Recovery of the secret key enables
decryption of the ciphertext and thus decryption of any infor-
mation encrypted under that shared secret key. Decapsulation
is the target of our attack as it is the only operation that
repeatedly uses the same secret key. The target operation is
the multiplication of the known ciphertext value ¢y with the
secret polynomial h(at the beginning of the decapsulation
operation. In most phases of the attack, the target signal is the
memory output data signal, res{a,b}_din, which has the
stronger effect on power consumption than the memory input
signal based on our experiments. The memory input can also
be targeted, but it has less effect on power consumption and
is thus more susceptible to noise.

Since the result of one round of the multiplier is impacted
by the previous rounds, we must attack the coefficients in
sequence. Recovery of hgli] is dependent on the correct
recovery of all previous coefficients. The attack is described
in its three phases: (1) Recovery of the first coefficient hg[0],
(2) recovery of h{'[1], the most significant bits (MSBs) of

ho[1] that determine the word-shift of that round, (3) and the
remaining rounds of the attack that target h{ [i] and h§[i — 1],
where h§[i — 1] represents the least significant bits (LSBs) of
ho[i — 1] which determine the bit-shift.

Recovery of h[0]: The first step of the attack is to recover
the first coefficient, ho[0]. This stage of the attack relies solely
on the memory write of the rotated ciphertext polynomial.
The word-shift is primarily applied by adjusting the read and
write address signals of the result memory. The ciphertext
polynomial, received through the arb_in signal, is always
read starting at index 0. The bit-shift is applied by the rotate
module before the write back to memory. The memory write
of the rotated data is the target for this stage of the attack.

The bit-shift, determined by h}[0], is straightforward to
attack since every word of the shifted data is affected. Even
though the access order of the ciphertext polynomial is the
same for all key values, the word-shift, determined by h'[0],
can still be detected. As shown in Figure[2] the value of h{'[0]
determines where the wrapping caused by the polynomial
reduction occurs. If a separate power model is created for each
intermediate result of the multiplication, the key guesses with
the correct bit-shift and word-shift will be strongly correlated
with all intermediate results, while those with only the correct
bit-shift will be strongly correlated with only a subset of the
results.

Even though there is a distinction between all keys, neigh-
boring keys will only have a single-bit difference in their
power model. Because of this, recovery of h{[0] is the most
challenging step of the attack. Fortunately, two factors make it
easier: (1) there are no parallel operations adding noise to the
measurement, primarily due to the data dependencies of the
decapsulation algorithm, and (2) exact recovery is not required.
As discussed previously, hg x x* produces an equivalent code
to ho. Thus, if the entire key is offset by a constant value, it is
equivalent to the original key. If the recovered h{ [0] is close
to the correct value, the attack can proceed. All the following
coefficients will simply be offset by h§' = ho[0] — hj[0].

There are cases where a non-zero hj* value can initially
prevent recovery of a coefficient. If the value of hj* causes the
target coefficient hg[é] to wrap around the modulus (i.e. ho[i]+
h& > r or hg[i] +h& < 0), then the location of the wrapping
caused by polynomial reduction will be significantly offset.
This can cause a mismatch in most or all of the power model
calculations. However, this can still be addressed. If the attack
fails at a coefficient where h{'[i] is close to r, the attacker
can conclude that this boundary condition has occurred and
attempt a brute-force correction by subtracting or adding b
from all previously recovered coefficients and attempting the
attack again. This process can be repeated multiple times until
the coefficient is successfully recovered or the attacker decides
to halt the attack. The approach was applied in our script, and
we were able to continue the attack successfully when this
edge case occurred.

Recovery of h{'[1]: In the next phase of the attack, we
aim to recover the MSBs of the second coefficient, h{[1],
from the memory read of the second round of multiplication.
Since ho[0] has already been recovered, the values stored in
the result memory are known. The MSBs of hg[1] determine

Rotated Dense Polynomial

Dense Polynomial

Memory Load sparse_in=1 sparse_in=5 sparse_in=9 sparse_in=13
Address Order hg[0] = 0,hg (0] = 1 RE0] = 1, B[] = 1 BI0] = 2, het[o] = 1 ByI0] = 3, het[0] = 1
0 n 0 b | bo | b1 | b2 | big | bo | b1 | b2 b | bo | b1 | b2 big | by | b1 | b2 ‘
S OV I OOV Y Y O O G 3) NS Y
2 nn bro => 2 | br | bs | by | by by | bs | by | bio | by | by | bs | bg | br
3 bi3 | bua 3 | by | bia | bi3 | bus | b1 I bg | by | by | bu bg | by | by | bu

bz | big | bis | bis biz | big | bua | bis bip | big | bua | bis

Fig. 2: Example of input data for various rotation values for simplified parameter » = 17. Partial blocks are colored red, blocks
before the rotation wrap are blue, and blocks after the rotation wrap are green.

the read offset of the result memory, which determines the
value on target the res{a,b}_din signal. Thus, we create
our power model for the jth intermediate results using the
following equation, where res_arr represents the memory
array of b-bit words representing the current result state.

res{a,b}_din = res_arr[h¥[1]+]]

Recovery of 1Y [i] and h}[i—1]: Recovery of the remaining
coefficients targets the memory read of the ith round and
follows a single structure. This stage of the attack assumes
the ho[0], ..., ho[i — 2] and h{ [i — 1] are known. The goal is to
recover hj[i — 1] and h [i]. The known information is used to
create the power model based on the following equations. First,
we determine the theoretical value of the rotated ciphertext in
the previous round using the known word-shift and the current
key guesses for the bit shift. The arb_arr variable represents
the memory array of b-bit words representing the ciphertext
polynomial.

(1) arb_in_rot =
rotate(arb_arr,h¥[i — 1] x b+hf[i — 1))

Then, we calculate the theoretical value of the result mem-
ory using the known word-shift and the previously calculated
ciphertext rotation guess. The value of res_arr[i-1] can
be calculated using hg[0], ..., ho[¢ — 2]. This represents the
data stored in the result memory after the previous rounds’
calculation.

(2) res_arr;[jl = res_arr, 1 [hY[i — 1]+ j] &
arb_in_rot[j * b+ : b]

Finally, we calculate the theoretical value of the memory
output signal during the jth intermediate operation based on
the word-shift key guess.

(3) res{a,b}_din = res_arr;[h¥[i]+7]

In summary, the value of the data in the result memory
is determined by previously recovered coefficients and the
unknown bit-shift value h4[i — 1], while the read offset that is
observed on res{a,b}_din is determined by A [i]. Thus,
we can target h3[i — 1] and h¥[i] for recovery, which has a
search space of a single coefficient, log,(r) bits.

This round of the attack is repeated for all coefficients. The
final coefficient is only partially recovered since in the final
round of multiplication; we target h§[% — 2] and h{[% — 1].
However, the remaining logs(b) bits can be trivially brute-
forced.

B. Impact of Security Level

The relevant parameters, listed in Table [I] are the polyno-
mial degree r, which determines the search space of each
coefficient, and w which defines the number of non-zero
coefficients of hg and thus the number of coefficients that
need to be recovered. As previously stated, the first coeffi-
cient requires significantly more traces to recover than the
following coefficients. Thus, while larger values of w increase
the processing time of the attack, they do not increase the
number of traces required. Intuitively, it seems that increasing
the value of r would proportionally increase the number of
traces required. However, for the second and third steps of the
attack, increasing r also increases the number of intermediate
multiplication values that can be targeted in each trace. So,
the increase in the search space is proportional to the increase
in information in each trace. For the first round, key guesses
that are far from the correct key have a larger number of
mismatched intermediate values, as demonstrated in Figure |Zl
The primary challenge is distinguishing between key guesses
that neighbor the correct key. Therefore, increasing the security
level has minimal impact on the difficulty of the attack.

C. Measurement Setup

The power trace measurements were performed using a
FOBOS workbench [[19]]. The measurements were taken using
a Picoscope 3203D oscilloscope. This oscilloscope has an 8-
bit ADC and was configured to sample at 1 Gigasample/s. The
target board was the CW305 Artix-7 FPGA board which was
run with a clock of 5 MHz.

IV. RESULTS

The attack described in the previous sections was applied to
the hardware implementation presented in [17]. We were able
to successfully recover the full hg vector, which is sufficient
for full recovery of the secret key. No strong assumptions were

e
°
5]

|
2
o
&

|
o
-
o

-0.10

Correlation (Pearson's r)
-
Correlation (Pearson's r)

|
°
o
&

- -0.15

|
o
N
o

01

0.0

I
I
=

Correlation (Pearson's r)

|
o
N

W
25 50 75 100 175 25 50 75

Sample No.

125 150

(a) Correlation graph for attack step 0

targeting ho[0] targeting h'[1]

Sample No.

(b) Correlation graph for attack step 1

75 100
Sample No.

100 125 175 125 150 175

(c) Correlation graph for attack step 2
targeting h{[1] and Ay [2]

Fig. 3: Selected Correlation Graphs. Each trace represents the correlation of one key guess. The correct key’s trace is highlighted.

TABLE II: MAXIMUM OF MTD FOR THE 10 ATTACKS PERFORMED AT EACH SECURITY LEVEL.

Security Level R
1 2 3 4 5 6 7 8] 9 10 | Average
1 28 | 28 | 12 [20 [16 | 24 | 12 | 2| 4 | 24 17
3 30 [29 [25 | 2 | 28 |34 |27 |4]34 |23 24
5 21 | 34 | 24 [24 [26 | 33 |24 |3] 24| 19 24

made. The ciphertext input values were known but not chosen,
and no templates were used. The attack requires a very low
number of traces, as shown in Table |lI} The Measurement to
Disclosure (MTD) value signifies the number of traces needed
before the correct key was recovered by the CPA attack. In
this case, the largest MTD of all coefficients in the key is
recorded. The low number of traces is only possible because
there are a significant number of intermediate values that
can be targeted for each trace. Our attack takes advantage
of the [r/b] operations per trace that are dependent on the
same secret coefficient. This corresponds to 381, 771, and
1,281 attack points per trace for security levels 1, 3, and 5,
respectively. Thus, the average number of attack points was
6,477 for security level 1, 18,504 for security level 3, and
30,744 for security level 5.

Figures and [3¢| show the correlation for the power
model of each key guess at each sample of the power trace.
Correct key guesses should produce power model values that
are positively or negatively correlated with the actual power
consumption of the device. Thus, the chosen key is most likely
to be the key that corresponds to the power model value with
the largest absolute correlation value.

Figure [3a| shows the correlation results for the first coeffi-
cient of hg. The target value is simply the bit-shifted ciphertext
polynomial. Thus, neighboring key guesses produce values one
bit-shift apart, meaning the largest possible difference in the
Hamming distance between neighboring key guesses is one.
This is why the key guesses have very similar shapes with
only slight differences in magnitude. This coefficient requires
the most traces of the attack, though the correct key still
distinguishes itself in relatively few traces. In some cases, the
exact value of the first coefficient was not recovered. How-
ever, the attack was still completed successfully by applying
the techniques discussed in the previous section. Of the 30
experiments performed, the exact value of hg[0] was correctly

recovered in 21. Of the 9 experiments where it was not exactly
recovered, 6 were only offset by 32, and the largest offset was
only 256. Brute-force key correction was only required in one
case, and only one attempt was required. We were able to
complete all attacks successfully.

Figure shows the correlation results for the recovery
of hy'[1]. Recovery of the MSBs of the second coefficient
is significantly easier than recovery of the first coefficient.
The closest neighboring key guesses have somewhat similar
power models, but the distinction is not as close as for the
first coefficient.

Figure shows the correlation for the recovery of h}[1] and
hy[2]. All following rounds of the attack have similar results.
In contrast to the first coefficient, the remaining coefficients
provide very distinct differences in correlation. Since the
previous state affects the target value, neighboring key guesses
can produce results with any number of different bits, which
makes the attack easier than for the first coefficient.

V. COUNTERMEASURES

In order to achieve provable security against this attack
and all forms of DPA attacks, the primary approach is to
apply masking. There are two works on the protection of spe-
cific suboperations, one implementing polynomial inversion
[16] and one implementing polynomial sampling [15]. The
fully protected software implementations presented in [14]]
applied boolean shares to mask the entire algorithm. Their
result suggests the dense polynomial format is more efficient
for protected implementations, which would require using a
traditional polynomial multiplier as was used in [20]. This
adds significant area and performance costs.

As an alternative to these conservative countermeasures, we
propose two lightweight countermeasures. These countermea-
sures do not provide complete security but will add significant
noise to the attacker’s measurements, increasing the number
of traces required for key recovery.

Secret Key Shuffling: Shuffling is a well-known
lightweight countermeasure. It reduces DPA attack effective-
ness since the target operation will not always occur on the
expected clock cycle. In the case of sparse multiplication in
BIKE, shuffling is extremely inexpensive as it can be applied
directly to the key. The array representing the indices of the
non-zero coefficients can be randomly shuffled before each
decapsulation operation.

Secret Key Shifting: As observed previously, a random
shift of the hy and h; polynomials will define an equivalent
code. Our attack exploited this fact to reduce the accuracy
needed when recovering the first coefficient of hy. However,
we can also take advantage of this as a countermeasure. Before
each decapsulation operation, the polynomials ~y and hy can
be multiplied by z* for some random k value. This random
shifting of the polynomial serves as an additional source of
noise.

These lightweight countermeasures could provide some
level of protection with little performance and area overhead.
The exact effectiveness and cost of these countermeasures is
an interesting topic for future work.

VI. CONCLUSIONS

This work has presented a successful key recovery attack
on a hardware implementation of the BIKE algorithm. The
attack applied was a Correlation Power Analysis (CPA) attack
with a minimal attack model that does not require ciphertext
manipulation or templates. The attack is able to exploit the
sequential operation of the polynomial multiplier to extract
multiple attack points from a single power trace. Due to
this optimization, only a couple dozen traces are required
to fully recover the secret key at any security level. This
reveals the need for the development of efficient and effective
countermeasures for BIKE implementations.

REFERENCES

[1] NIST, Module-Lattice-Based Key-Encapsulation Mech-
anism Standard, FIPS 203, Aug. 2024.

[2] NIST, Module-Lattice-Based Digital Signature Stan-
dard, FIPS 204, Aug. 2024.

[3] L. Beckwith, A. Abdulgadir, and R. Azarderakhsh,
“A Flexible Shared Hardware Accelerator for NIST-
Recommended Algorithms CRYSTALS-Kyber and
CRYSTALS-Dilithium with SCA Protection,” in Topics
in Cryptology — CT-RSA, 2023, pp. 469-490.

[4] T. Kamucheka, A. Nelson, D. Andrews, and M. Huang,
“A Masked Pure-Hardware Implementation of Kyber
Cryptographic Algorithm,” in 2022 International Con-
ference on Field-Programmable Technology (ICFPT).

[5] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. v.
Vredendaal, “Masking Kyber: First-and Higher-Order
Implementations,” JACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4), 2024.

[6] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanad-
hya, “A Configurable CRYSTALS-Kyber Hardware
Implementation with Side-Channel Protection,” ACM
Transactions on Embedded Computing Systems, vol. 23,

(7]

(8]

(9]

D. Heinz, M. J. Kannwischer, G. Land, P. Schwabe,
and A. Sprenkels, “First-Order Masked Kyber on ARM
Cortex-M4,” Cryptology ePrint Archive No. 58, 2022.

M. Azouaoui, O. Bronchain, G. Cassiers, et al., “Pro-
tecting Dilithium against Leakage: Revisited Sensitivity
Analysis and Improved Implementations,” IACR Trans-
actions on Cryptographic Hardware and Embedded
Systems, 2023(4), pp. 58-79, 2023.

G. Goy, J. Maillard, P. Gaborit, and A. Loiseau, “Single
trace HQC shared key recovery with SASCA,” IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, 2024(2), pp. 64-87, 2024.

G. Goy, A. Loiseau, and P. Gaborit, “A New Key
Recovery Side-Channel Attack on HQC with Chosen
Ciphertext,” in Post-Quantum Cryptography, 2022.

T. Schamberger, L. Holzbaur, J. Renner, A. Wachter-
Zeh, and G. Sigl, “A Power Side-Channel Attack on
the Reed-Muller Reed-Solomon Version of the HQC
Cryptosystem,” in Post-Quantum Cryptography, 2022.

A. Cheriere, N. Aragon, T. Richmond, and B. Gérard,
“BIKE Key-Recovery: Combining Power Consump-
tion Analysis and Information-Set Decoding,” in Ap-
plied Cryptography and Network Security, May 2023,
pp. 725-748.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and
D.-G. Han, “Novel Side-Channel Attacks on Quasi-
Cyclic Code-Based Cryptography,” IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2019(4), pp. 180-212,

L. Demange and M. Rossi, “A provably masked im-
plementation of BIKE key encapsulation mechanism,”
IACR Communications in Cryptology, vol. 1, no. 1,
Apr. 9, 2024.

M. Krausz, G. Land, J. Richter-Brockmann, and T.
Giineysu, “A holistic approach towards side-channel
secure fixed-weight polynomial sampling,” in Public-
Key Cryptography — PKC 2023, May 2023, pp. 94-124.
M. Krausz, G. Land, J. Richter-Brockmann, and T.
Giineysu, “Efficiently masking polynomial inversion at
arbitrary order,” in Post-Quantum Cryptography, Sep.
2022, pp. 309-326.

J. Richter-Brockmann, M.-S. Chen, S. Ghosh, and T.
Giineysu, “Racing BIKE: Improved Polynomial Mul-
tiplication and Inversion in Hardware,” IACR Trans-
actions on Cryptographic Hardware and Embedded
Systems, 2022(1), pp. 557-588,

N. Aragon, P. S. L. M. Barreto, S. Bettaieb, et al.,
“BIKE: Bit Flipping Key Encapsulation,” [Online].
Available: https://bikesuite.org/.

E. Ferrufino, L. Beckwith, A. Abdulgadir, and J.-P.
Kaps, “FOBOS 3: An Open-Source Platform for Side-
Channel Analysis and Benchmarking,” in 2023 Work-
shop on Attacks and Solutions in Hardware Security,
Copenhagen Denmark: ACM, Nov. 2023, pp. 5-14.

J. Richter-Brockmann, J. Mono, and T. Guneysu, “Fold-
ing BIKE: Scalable Hardware Implementation for Re-
configurable Devices,” IEEE Transactions on Comput-
ers, vol. 71, no. 5, May 2022.

https://bikesuite.org/

	Introduction
	Background
	BIKE Algorithm
	Power Side-Channel Attacks
	BIKE Multiplier Architecture Hardware

	Methodology
	Target Operation and Attack Method
	Impact of Security Level
	Measurement Setup

	Results
	Countermeasures
	Conclusions

