
Disconnected Agreement in Networks Prone to Link Failures

Bogdan S. Chlebus
∗

Dariusz R. Kowalski
∗

Jan Olkowski
†

J ,edrzej Olkowski
‡

Abstract

We consider deterministic distributed algorithms for reaching agreement in synchronous net-
works of arbitrary topologies. Links are bi-directional and prone to failures while nodes stay
non-faulty at all times. A faulty link may omit messages. Agreement among nodes is understood
as holding in each connected component of a network obtained by removing faulty links. We call
“disconnected agreement” the algorithmic problem of reaching such agreement. We introduce
the concept of stretch, which is the number of connected components of a network, obtained by
removing faulty links, minus 1 plus the sum of diameters of connected components. We define
the concepts of “fast” and“early-stopping”algorithms for disconnected agreement by referring to
stretch. We consider trade-o↵s between the knowledge of nodes, size of messages, and running
times of algorithms. A network has n nodes and m links. Nodes are normally assumed to know
their own names and ability to associate communication with local ports. If we additionally
assume that a bound ⇤ on stretch is known to all nodes, then there is an algorithm for dis-
connected agreement working in time O(⇤) using messages of O(log n) bits. We give a general
disconnected agreement algorithm operating in n + 1 rounds that uses messages of O(log n)
bits. Let � be an unknown stretch occurring in an execution; we give an algorithm working in
time (�+ 2)3 and using messages of O(n log n) bits. We show that disconnected agreement can
be solved in the optimal O(�) time, but at the cost of increasing message size to O(m log n).
We also design an algorithm that uses only O(n) non-faulty links and works in time O(nm),
while nodes start with their ports mapped to neighbors and messages carry O(m log n) bits. We
prove lower bounds on the performance of disconnected-agreement solutions that refer to the
parameters of evolving network topologies and the knowledge available to nodes.

Keywords: network, synchrony, omission link failure, agreement, message size.

∗School of Computer and Cyber Sciences, Augusta University, Augusta, Georgia, USA.
†Department of Computer Science, University of Maryland, College Park, Maryland, USA.
‡Wydzia l Matematyki, Mechaniki i Informatyki, Uniwersytet Warszawski, Warszawa, Poland.

ar
X

iv
:2

10
2.

01
25

1v
2

 [c
s.D

C
]

25
 Ju

n
20

23

1 Introduction

We introduce a variant of agreement and present deterministic distributed algorithms for this prob-
lem in synchronous networks. Nodes represent processing units and links model bi-directional com-
munication channels between pairs of nodes. Links are prone to failures but nodes stay operational
at all times. A faulty link may not convey a message transmitted at a round.

Once a link omits a message, it may omit messages in the future. A link that has omitted a
message manifested its faultiness and is considered unreliable. A safe approach for a communication
algorithm is to treat unreliable links as if they crashed and not use them for transmissions after
they manifested unreliability. Based on this intuition, we model a network with link failures as
evolving through a chain of sub-networks obtained by removing unreliable links.

The disconnected agreement problem is about nodes reaching agreement on a common value.
Each node starts with an input value and it eventually decides on some value. The requirements
of reaching disconnected agreement are modeled after the problem of consensus. That problem
is defined by the three requirements of termination, validity, and agreement, which constrain the
output values and the process of deciding. Those conditions may depend on the nature of faults
in a distributed system, for example there are di↵erent conditions specifying what the consensus
problem is in the models of nodes prone to crashes and for arbitrary (Byzantine) faults of nodes. We
address a problem like consensus in a model of dynamic networks whose topologies evolve because
of removal of faulty links.

Deleting links a↵ects the topology of a network, possibly even decomposing a network into
disjoint connected components. If such a decomposition occurs fast enough, it may be impossible
for some nodes to learn of input values in other components whose presence a↵ects the ultimate
decision for a given agreement-seeking algorithm. To make reaching agreement possible, we need
either to restrict link failures, or to modify the specification of the agreement problem, or both.

In this work we study a scenario in which a faulty link may not transmit a message through at
some rounds. Such an omission fault is a relatively benign type of link failure. Messages that are
delivered, even through faulty links, are not tempered with and are received as transmitted. We
do not impose any restrictions on which links may be faulty, in that, a removal of faulty links may
produce an arbitrary sub-network. In particular, it is possible that some links simply crash such
that this disconnects the network.

The problem to reach agreement needs to be suitably reformulated to reflect the possibility of
a network becoming decomposed into disconnected sub-networks by removal of faulty links. We
study agreement that allows nodes in di↵erent connected components of the network obtained by
removing unreliable links to decide on di↵erent values but still requires nodes within a connected
component to decide on the same value. It is natural not to demand that nodes in di↵erent
connected components decide on the same value, due to impossibility to accomplish such a goal
without a proper flow of information. The process of breaking into connected components occurs
in time, which creates a challenge for the nodes in a connected component to decide on the same
value. Any two nodes may eventually end up in di↵erent connected components but what matters
are connected components as they exist at the rounds in which such two nodes actually decide.

Our approach to specifying disconnected agreement subsumes the models of link crashes, which
is stricter in that once a link manifests its faultiness by omitting a message it will omit all the
messages in the future. Node crashes may also decompose a network into separate connected
components, and our approach subsumes the model of node crashes as well. To see this for node
crashes, observe that a node’s crash could be simulated by crashing all the links incident to a
node at the round of its crash. If a node’s crash occurs in such a simulation then the node stays

1

operational but it constitutes a single-node connected component, so any decision by the node on
some initial input value satisfies agreement and validity.

Let n denote the number of nodes and m the number of links in an initial network. Nodes are
equipped with names, which are unique integers represented by O(log n) bits. Initial input values
are assumed to be encodable withO(log n) bits. A message is considered“short” if it carriesO(log n)
bits, and it is “linear” if it carries O(n log n) bits. A network operates with “minimal knowledge” if
each node initially knows its individual name, the initial input value, and it can distinguish among
ports as sources of the incoming and outlets for the outgoing communication.

We use a network’s dynamic attribute called “stretch,” which is an integer determined by the
number of connected components and their diameters. The purpose of using stretch is to consider
scalability of disconnected agreement solutions to networks evolving through link failures and their
removal from the network. In particular, we define “fast” and “early-stopping” algorithms solving
disconnected agreement by referring to stretch. Along with time performance, we consider the
amount of communication, measured as an upper bound on the number of bits in each individual
message. We also study performance of algorithms measured by “link use” defined as the number
of reliable links through which nodes transmit messages.

A summary of the results. We introduce the problem of disconnected agreement and give deter-
ministic algorithms for this problem in synchronous networks with links prone to failures. Faulty
links may omit messages. An upper bound on stretch, denoted ⇤, could be given to all nodes, with
an understanding that faults occurring in an execution are restricted such that the actual stretch
never surpasses ⇤. An algorithm solving disconnected agreement with a known upper bound ⇤ on
the stretch is considered “fast” if it runs in time O(⇤). A fast solution to disconnected agreement
is discussed in Section 3. We also show a lower bound which demonstrates that, for each natural
number � and an algorithm solving disconnected agreement in networks prone to link failures, there
exists a network that has stretch � and such that each execution of the algorithm on this network
takes at least � rounds. In Section 4, we show how to solve disconnected agreement in n+1 rounds
with short messages in networks where nodes have minimal knowledge. We give an algorithm re-
lying on minimal knowledge working in time (�+ 2)3 and using linear messages of O(n log n) bits,
where � is an unknown stretch occurring in an execution; this algorithm is presented in Section 5.
A disconnected agreement solution is considered “early-stopping” if it operates in time proportional
to the unknown stretch actually occurring in an execution. In Section 6, we develop an early-
stopping solution to disconnected agreement relying on minimal knowledge that employs messages
of O(m log n) bits. We propose to count the number of reliable links used by a communication al-
gorithm as its performance metric. To make this performance measure meaningful, the nodes need
to start knowing their neighbors, in having a correct mapping of communication ports to neighbors.
In Section 7, we give a solution to disconnected agreement that uses at most an asymptotically
optimum number 2n of reliable links and works in O(nm) rounds, without knowing the size n of
the network. We also show, in Section 7, that if the nodes start with their ports not mapped on
neighbors, then any disconnected agreement solution has to use ⌦(m) links in some networks of
⇥(m) links, for all numbers n and m such that n  m  n2. A summary of algorithms developed
in this paper, with their performance bounds, is given in Table 1.

The previous work on agreement in networks. Dolev [25] studied Byzantine consensus in networks
with faulty nodes and gave connectivity conditions su�cient and necessary for a solution to exist;
see also Fischer et al. [28], and Hadzilacos [31]. Khan et al. [35] considered a related problem
in the model with restricted Byzantine faults, in particular, in the model requiring a node to
broadcast identical messages to all neighbors at a round. Tseng and Vaidya [52] presented necessary
and su�cient conditions for the solvability of consensus in directed graphs under the models of

2

algorithm / section time message size # links knowledge lower bound

Fast-Agreement (⇤) / 3 ⇤ †
O(log n) O(m) ⇤ known time �  ⇤

SM-Agreement / 4 n+ 1 O(log n) O(m) minimal time �

LM-Agreement / 5 (�+ 2)3 O(n log n) O(m) minimal time �

ES-Agreement / 6 �+ 2 †
O(m log n) O(m) minimal time �

OL-Agreement / 7 O(nm) O(m log n) 2n † neighbors known # links ⌦(n)

Table 1: A summary of the given deterministic distributed algorithms for disconnected agreement

and their respective performance bounds. The notation n means the number of nodes and m the

number of links in the initial network; none of these numbers is ever assumed to be known. The

parameter ⇤ denotes an upper bound on stretch if it is known. The notation � means the stretch

actually occurring in an execution by the time all nodes halt. The dagger symbol † indicates the

asymptotic optimality of the respective upper bound.

crash and Byzantine failures. In a related work, Choudhury et al. [21] provided a time-optimal
algorithm to solve consensus in directed graphs with node crashes. Castañeda et al. [9] considered
networks with nodes prone to crashes with an upper bound t on the number of crashes and showed
that, as long at the network remained (t + 1)-connected, Consensus was solvable in a number of
rounds determined by how conducive the network was to broadcasting. Chlebus et al. [17] studied
networks with Byzantine nodes such that the removal of faulty nodes leaves a network that is
su�ciently connected; they gave fast solutions to consensus and showed a separation of consensus
with Byzantine nodes from consensus with Byzantine nodes using message authentication, with
respect to asymptotic time performance in suitably connected networks. Tseng [51] and Tseng and
Vaidya [53] surveyed work on reaching agreement in networks subject to node faults. Winkler and
Schmidt [55] gave a survey of recent work on consensus in directed dynamic networks.

The approach to failing links that we work with falls within the scope of modeling dynamic
evolution of networks. Next, we discuss previous work on solving consensus in networks under-
going topology changes, malfunctioning links and transmission failures. Perry and Toueg [45],
Santoro and Widmayer [47, 48], and Charron-Bost and Schiper [12] studied agreement problems
in complete networks in the presence of dynamic transmission failures. Kuhn et al. [37] considered
�-coordinated binary consensus in undirected graphs, whose topology could change arbitrarily
from round to round, as long it stayed connected; here � is a parameter that bounds from above
the di↵erence in times of termination for any two nodes. Paper [37] showed how to solve �-
coordinated binary consensus in O(nD

D+� + �) rounds using message of O(m2 log n) size without a
prior knowledge of the network’s diameter D. Augustine et al. [4] studied dynamic networks with
adversarial churn and gave randomized algorithm to reach almost-everywhere agreement with high
probability in poly-logarithmic time. Charron-Bost et al. [11] considered approximate consensus
in dynamic networks and provided connectivity restrictions on network evolution that make ap-
proximate consensus solvable. Coulouma et al. [24] characterized oblivious message adversaries for
which consensus is solvable. Biely et al. [7] considered reaching agreement and k-set agreement in
networks when communication is modeled by directed-graph topologies controlled by adversaries,
with the goal to identify constraints on adversaries to make the considered problems solvable. Pa-
per [7] solved k-set agreement in time O(3D +H) and using messages of O(nD log n) size, where
D denotes the dynamic source diameter and H denotes the dynamic graph depth, and the code of

3

algorithm time message size # links knowledge comments

Kuhn et. al. [36] O(n) O(log n) O(m) minimal for T = ⌦(n)

Biely et. al [7], alg. 2 2D + 2E O(m log n) O(m) D known directed links

Biely et. al [7], alg. 4 3D + 3 O(nD log n) O(m) D known k-set agreement

Kuhn et. al [37] O(n) O(m2 log n) O(m) minimal �-coordinated

Table 2: A summary of the previous consensus results that are most relevant to the model studied

in this paper and their respective performance bounds. Notation n denotes the number of nodes

and m the number of links in an initial network; none of these numbers are ever assumed to be

known. Letter T denotes a number such that in every interval of T rounds there exists a stable

connected spanning subgraph, see [36]. Letter D denotes a dynamic source diameter, and E denotes

a dynamic graph depth, see [7]. The stretch and parameters D and E in bidirectional networks

with unreliable links are related as follows: D = E = ⇤ � �. Parameter � is an upper bound on

the di↵erence in the respective times of termination for any two nodes, see [37].

algorithm includes D. Kuhn et al. [36] considered dynamic networks in which the network topology
changes from round to round such that in every T � 1 consecutive rounds there exists a stable
connected spanning subgraph, where T is a parameter. Paper [36] gave an algorithm that imple-
ments any computable function of the initial inputs, working in O(n + n2/T) time with messages
of O(log n+ d) size, where d denotes the size of input values. Biely et al. [8] studied consensus in
a synchronous model combining transient process and communication failures, with the numbers
of such failures explicitly bounded, and demonstrated adaptability of popular consensus solutions
to this model. Schmid et al. [50] showed impossibility results and lower bounds for the number of
processes and rounds for synchronous agreement under transient link failures. Winkler et al. [56]
investigated solving consensus in dynamic networks with links controlled by adversaries who only
eventually provide a desired behavior of networks. A representative selection of previous results
related to the model of this paper is given in Table 2.

Next, we briefly discuss advances on other algorithmic problems in dynamic networks. Cornejo
et al. [23] considered the aggregation problem in dynamic networks, where the goal is to collect
tokens, originally distributed among the nodes, at a minimum number of nodes. Haeupler and
Kuhn [32] developed lower bounds on information dissemination in adversarial dynamic networks.
Sarma et al. [49] investigated algorithms interpreted as random walks in dynamic networks. Michail
et al. [42] studied naming and counting in anonymous dynamic networks. Michail et al. [43] studied
propagation of influence in dynamic networks that may be disconnected at any round. Frameworks
and models of distributed computing in networks evolving in time were discussed in [10, 36, 38, 41].

The previous work on the scalability of consensus solutions. We review the previous work on
consensus solutions that scale well with their performance metrics, including communication and
running time. Let the letter t denote an upper bound on the number of node failures that is known
to all nodes, and the letter f be an actual number of failures occurring in an execution, which is
not assumed to be known. We may call a consensus solution “fast” if it operates in time O(t + 1)
and “early stopping” if its running time is O(f + 1). Scaling communication performance can be
understood either “globally,” which conservatively means O(n polylog n) total communication, or
“locally,”which conservatively means O(polylog n) communication generated by each communicat-
ing agent.

4

Networks of degrees uniformly bounded by a constant provide an ultimate local scaling of
communication. Upfal [54] showed that an almost-everywhere agreement can be solved in networks
of constant degree with a linear number of crashes allowed to occur. Dolev et al. [27] gave an early
stopping solution for consensus with arbitrary process failures and a lower bound min{t+1, f +2}
on the number of rounds. Berman et al. [6] developed an early-stopping consensus solution with
arbitrary process failures that was simultaneously optimal with respect to time performance min{t+
1, f +2} and the number of processes n > 3t. Galil et al. [29] developed a crash-resilient consensus
algorithm using O(n) messages, thus showing that this number of messages is optimal, but their
algorithm runs in over-linear time O(n1+"), for any 0 < " < 1; they also gave an early-stopping
algorithm with O(n+ fn") message complexity, for any 0 < " < 1. Chlebus et al. [18] presented a
binary consensus algorithm operating in O(t+log n) rounds and sending O(n+ t log t) messages for
t < n

5 ; the algorithm sends the optimum number of bits/messages O(n) in the single-port model,
as long as t = O(n/ log n). Garay and Moses [30] presented a fast consensus solution for arbitrary
processor faults that runs on the optimum n > 3t number of processors while using the amount of
communication that is polynomial in n; they also gave an early-stopping variant of this algorithm.
Chlebus and Kowalski [14] developed a gossiping algorithm coping with crashes and applied it to
develop a consensus solution that is fast, by running in O(t + 1) time, while sending O(n log2 t)
messages, provided that n� t = ⌦(n). Chlebus and Kowalski [15] developed a deterministic early-
stopping algorithm that scales communication globally by sending O(n log5 n) messages. Coan [22]
gave an early-stopping consensus solution that uses messages of size logarithmic in the range of
input values; see also Bar-Noy et al. [5] and Berman et al. [6]. Chlebus at al. [19] gave a fast
deterministic algorithm for consensus which has nodes send O(n log4 n) bits, and showed that
no deterministic algorithm can be locally scalable with respect to message complexity. Chlebus
and Kowalski [16] gave a randomized consensus solution terminating in the expected O(log n)
time, while the expected number of bits that each process sends and receives against oblivious
adversaries is O(log n), assuming that a bound t on the number of crashes is a constant fraction
of the number n of nodes. Chlebus et al. [20] gave a scalable quantum algorithm to solve binary
consensus, in a system of n crash-prone quantum processes, which works in O(polylog n) time
sending O(n polylog n) qubits against the adaptive adversary. Dolev and Lenzen [26] showed that
any crash-resilient consensus algorithm deciding in f +1 rounds has worst-case message complexity
⌦(n2f). Alistarh et al. [1] developed a randomized algorithm for asynchronous message passing
that scales well to the number of crashes, in that it sends the expected O(nt+ t2 log2 t) messages.

A general perspective. Algorithmic problems concerning reaching agreement are central to the
study of distributed systems and communication networks. The probem of consensus was intro-
duced by Pease et al. [44] and Lamport et al. [39]. Books by Attiya and Welch [3], Herlihy and
Shavit [34], Lynch [40], and Raynal [46] provide general expositions of formal models of distributed
systems as frameworks to develop distributed algorithms in systems prone to failures of compo-
nents. Attiya and Ellen [2] and Herlihy et al. [33] present techniques to show impossibilities and
lower bounds for problems in distributed computing.

2 Preliminaries

We model distributed systems as collections of nodes that communicate through a wired communi-
cation network. Executions of distributed algorithms are synchronous, in that they are partitioned
into global rounds coordinated across the whole network. There are n nodes in a network. Each
node has a unique name used to determine its identity; a name can be encoded by O(log n) bits.
Nodes start with a read-only variable name initialized to their names; the private copy of this

5

variable at a node p is denoted by namep. Every node identified other nodes by their names.

A node has distinctly labeled ports that act as interfaces to links connecting the node to its
neighbors. We say that a node knows neighbors if it can associate with each port the name of
a node that receives communication sent through this port and whose communication is received
through this port. Links connecting pairs of nodes serve as bi-directional communication channels.
Messages are scaled to channel capacity, in that precisely one message can be transmitted at a
round through a link in each direction. The size of a message denotes the number of bits used to
encode it. A message transmitted at a round is delivered within the same round. If at least one
message is transmitted by a link in an execution then this link is used and otherwise it is unused

in this execution.

A link may fail to deliver a message transmitted through it at a round; once such omission hap-
pens for a link, it is considered unreliable. The functionality of an unreliable link is unpredictable,
in that it may either deliver a transmitted message or fail to do it. A link that has never failed to
deliver a message by a given round is reliable at this round. A path in the network is reliable at a
round if it consists only of links that are reliable at this round.

Nodes and links of a network can be interpreted as a simple graph, with nodes serving as vertices
and links as undirected edges. A network at the start of an execution is represented by some initial
graph G, which is simple and connected. An edge representing an unreliable link is removed from
the graph G at the first round it fails to deliver a transmitted message. A graph representing the
network evolves through a sequence of its sub-graphs and may become partitioned into multiple
connected components. Once an algorithm’s execution halts, we stop this evolution of the initial
graph G. An evolving network, and its graph representation G, at the first round after all the nodes
have halted in an execution is called final for this execution and denoted by GF .

Nodes start an execution of a distributed algorithm simultaneously. A node performes the
following actions at a round: it sends messages through some of its ports, collects messages sent
by neighbors, and performs local computation. A node can send messages to any subset of its
neighbors and collect messages coming from all neighbors at a round.

Disconnected agreement. We precisely define the algorithmic problem of interest as follows. Each
node p starts with an initial value inputp. We assume two properties of such input values. One
is that an input value can be represented by O(log n) bits. The other is that input values can be
compared, in the sense of belonging to a domain with a total order. In particular, finitely many
initial input values contain a maximum one. We say that a node decides when it produces an
output by seting a dedicated variable to a decision value. The operation of deciding is irrevocable.
An algorithm solves disconnected agreement in networks with links prone to failures if the following
three properties hold in all executions:

Termination: every node eventually decides.

Validity: each decision value is among the input values.

Agreement: when a node p decides then its decision value is the same as these of the nodes that
have already decided and to which p is connected by a reliable path at the round of deciding.

An equivalent formulation of the agreement property is to say that the decisions of all the nodes in
a connected component of GF are equal. This is because if a node p decides at a round and q is a
node that has already decided to which p is still connected by a reliable path at this round then if

6

that path stays reliable until halting then p and q end up in the same connected component of GF .

The size of messages. If a message sent by a node executing a disconnected agreement solution
carries a constant number of node names and a constant number of input values then the size of
such a message is O(log n) bits, due to our assumptions about encoding names and input values.
Messages of O(log n) bits are called short. If a message carries O(n) node names and O(n) input
values then the size of such a message is O(n log n) bits. We call messages of O(n log n) bits linear.

Stretch. Let H be a simple graph. If H is connected then diam(H) denotes the diameter of H.
Suppose H has k connected components C1, . . . , Ck, where k � 1, and let di = diam(Ci) be the
diameter of component Ci. The stretch of H is defined as a number k�1+

Pk
i=1 di. The stretch of

a connected graph equals its diameter, because then k = 1. The stretch of H can be interpreted as
the maximum diameter of a graph obtained from H by adding k � 1 edges such that the obtained
graph is connected. The maximum stretch of a graph with n vertices is n� 1, which occurs when
every vertex is isolated or, more generally, when each connected component is a line of nodes.

Knowledge. A property of distributed communication environments or executions is known if it
can be used in codes of algorithms. We say that an algorithm relies on minimal knowledge if each
node knows its unique name and can identify a port through which a message arrives and can
assign a port for a message to be transmitted through. The number of nodes in a network n is
never assumed to be known in this paper.

Neighbors can be discovered at one round of communication by all nodes sending their names
to the neighbors: incoming messages allow to assign the sender’s name to a port. This operation
requires transmitting through every link in the network. If an algorithmic goal includes minimizing
the number of used links then we assume that each node knows its neighbors prior to the beginning
of an execution, in having the neighbors correctly mapped on ports.

The notation ⇤ will denote an upper bound on the stretch of a communication network in the
course of an execution. If ⇤ is used then this means that ⇤ is known to all nodes.

Performance metrics. An initially connected graph G evolves through a nested sequence of its
original sub-graphs, by removing edges representing faulty links. We want to assess how the running
time an algorithm scales to the sub-networks resulting by removing faulty links. Stretch is used
as a parameter capturing the challenge of solving disconnected agreement in sub-networks. The
challenge in using stretch is that it evolves as a sequence of numbers. Let the notation �k mean a
stretch of a network G at a round k of an execution, and � be a stretch at the round of halting.

Proposition 1 Stretches �k make a monotonously increasing sequence: �i  �j, for i < j.

Proof: Consider an edge e belonging to a connected component C. If e gets removed from the
graph and the connected component C stays intact then its diameter may only increase. Suppose
the edge e is a bridge of C, and after its removal the connected component C breaks into two
connected components C1 and C2. The stretch of the graph after removal of the edge e is the
stretch before removal of this edge minus the diameter of C plus the diameters of C1 and C2, and
this number incremented by 1. So this new stretch cannot be smaller than the original one, because
the diameter of C is at most a sum of the diameters of C1 and C2 incremented by one. ⇤

We consider bounds on performance of algorithms with respect to the stretch � occurring at
a round in which all nodes halt. Let f : N ! N be a monotonously increasing function. For a
communication algorithm to run in O(f(�)) time, it is su�cient and necessary that the running
time is O(f(�k)), for any round number k prior to halting, by Proposition 1.

A disconnected-agreement algorithm in a synchronous network with links prone to failures is

7

early stopping if it runs in a number of rounds proportional to the unknown stretch � actually
occurring. Such an algorithm is fast if it runs in a number of rounds proportional to an upper
bound on stretch ⇤ known to all the nodes.

Our use of terms “fast” and “early stopping” follows a similar approach to consensus algorithms
with node crashes. Let t denote an upper bound on the number of node crashes, which is known
to all nodes, and f be an actual number of node crashes, which is not assumed to be known. Fast
algorithms operate in running time O(t+1) and early stopping algorithms operate in running time
O(f + 1). We use ⇤ similarly as t and � similarly as f .

3 Fast Agreement

We demonstrate the relevance of stretch to the running time of algorithms solving disconnected
agreement. First, we show that a known upper bound on stretch allows to structure a disconnected
agreement solution such that it operates in a number of rounds equal to the bound on stretch, so it
is fast in our terminology. Second, we show that stretch is a meaningful yardstick to measure such
running times, in that each algorithm solving disconnected algorithm may have to be executed for
a number of rounds at least as large as the stretch.

If ⇤ is an upper bound on the stretch known to all nodes, then the following could be a possible
approach to reach disconnected agreement in networks prone to link failures. Each node maintains
a candidate value in a dedicated variable, which it initializes to the input. For ⇤ rounds, each node
does two things per round: (1) sends the current candidate value to all neighbors, (2) updates the
candidate value to the maximum of the current value and the values just received in messages.
This algorithm is incorrect, which can be demonstrated on an example as follows. Let a network
consist of three nodes: node p1 with input 1, node p2 with input 2, and node p3 with input 3, all
connected into a line p1� p2� p3. Suppose the link p1� p2 is non-faulty and p2� p3 is faulty. The
stretch is 2, as the stretch of a network starting a line of n nodes is always n� 1. In the course of
an execution, let the link p2�p3 not deliver messages in the first round and deliver messages in the
second round. The nodes p1 and p2 are in the same connected component p1 � p2, but p1 decides
on 2 while p2 decides on 3, which violates the required agreement property.

We present next a fast algorithm solving disconnected agreement, assuming that a bound ⇤
on stretch is known to all nodes. The algorithm is called Fast-Agreement; its pseudocode is
given in Figure 1. Every node strives to eventually decide on the largest value possible, so a node
remembers, in a variable candidate, only the largest value it has witnessed so far. This variable
is initialized to the input value. At each round, a node either sends its candidate value to all
neighbors or pauses in sending messages, then receives all incoming messages from the neighbors, if
any, and updates candidate to the maximum value received in messages is some are greater than
the current value. A node sends messages to neighbors at a round if either this is the first round, so
candidate is the input value, or if candidate was updated to a new value in the previous round.
We have that if a node sends a particular value to its neighbors then it does so only once. All nodes
halt after ⇤ rounds, and every node decides on the candidate value, which is the largest value it
has learned about.

In analyzing correctness of the algorithm, we asses when values of some magnitude carried in
messages reach connected components of the network GF . Let C be a connected component of
graph GF . We say that value v reaches C at a round if a node in C has its candidate value at
least as large as v by this round. Graph GF � C denotes GF with the nodes in C removed along
with their incident edges.

8

algorithm Fast-Agreement (⇤)

1. initialize candidate inputp
2. repeat ⇤ times

if the current value of candidate has not been sent before then

send candidate to all neighbors

receive messages from all neighbors

if a value greater than candidate has just been received

then set candidate to the maximum value just received

3. decide on candidate

Figure 1: A pseudocode of algorithm Fast-Agreement for a node p. The parameter ⇤ represents

an upper bound on stretches, which is known to all nodes.

Lemma 1 If a value reaches a connected component C of network GF then this occurs by the round

equal to the stretch of GF � C plus 1.

Proof: The argument is by induction on the number of connected components of GF . The base
case occurs if GF is connected. Then GF = C, so GF � C is an empty graph of stretch 0. Any
value that reaches GF is at least as large as the input of some node, and inputs are available by
round 1. Next comes the inductive step. Let C be a connected component of GF , and assume that
the inductive hypothesis holds for GF � C. If a value v has reached C by the first round then we
are done. Otherwise, a value at least as large as v has been brought in a message sent by a node p1
to another node p2, where p1 is in GF � C and p2 is in C. Let C 0 be the connected component
of p1 in GF � C. By the inductive assumption, v reached C 0 by a round r equal to the stretch
of GF � C � C 0 plus 1. After round r, the value traveled through C 0 for a number of rounds at
most equal to the diameter of C 0, because a node transmits a value only in the round immediately
following the round in which the value is received and becomes the new candidate value. After the
journey through C 0, it takes one round to tranmit a value as large as v from p1 to p2, for a total
number of rounds as large as the stretch of GF �C plus 1. This completes the inductive step, and
so the argument by induction. ⇤

Theorem 1 Consider an execution of algorithm Fast-Agreement (⇤) in a network. If the stretch

of the network never gets greater than ⇤ then the algorithm solves disconnected agreement in ⇤

rounds using messages of O(log n) bits.

Proof: The pseudocode in Figure 1 is structured as a loop of ⇤ iterations, each iteration taking one
round. All nodes decide at the end, which gives the termination and time performance.

Each node p initializes its private variable candidatep to the input value inputp. An iteration
of the repeat loop maintains an invariant that the variables candidate store only values taken
from among the original input values, because only the values of this variable are sent and received.
Every message carries only a candidate value. By the assumption on properties of input values,
each such a value can be encoded with O(log n) bits. Ultimately, each node p decides on a value in
its candidatep variable, which gives validity.

Next, we show agreement. Let us consider a connected component C of GF . Let v be the
maximum value that has ever reached C. By Lemma 1, this value has reached C by the round

9

1

M
x

2
3

2D

2D-1

uw

Figure 2: A depiction of graph G(x,D) used in the proof of Lemma 2.

equal to the stretch of GF �C plus 1. Once v arrives at a node in C, this connected component C
is flooded with value v, by design of the algorithm. This takes time equal to the diameter of C. It
follows that flooding of C with v is completed by the round equal to the stretch of GF . This is the
round all nodes decide, so all the nodes in C decide on v. ⇤
A lower bound on running time. We show a lower bound on the running time required to solve
disconnected agreement in networks with link failures. This lower bound equals the stretch of the
final graph of the network. We consider specific network topologies with the property that with no
link failures the time needed to reach agreement is at least a diameter of the network. If a final
graph is connected, then the stretch is the same as the diameter.

Lemma 2 For any algorithm A solving disconnected agreement in networks prone to link failures,

and for positive integers D and n � 2D, there exists a network G with n nodes and with diameter D

such that some execution of A on G takes at least D rounds with no link failures.

Proof: We define graphs G(x,D), where x > 0 is an integer. Start with a cycle of length 2D, and
some three consecutive vertices u, v, and w on the cycle, where v is connected by edges with u
and w. Replace vertex v by x copies of v, each connected precisely to the neighbors u and w of v.
This construction is depicted in Figure 2, in which Mx denotes x copies of some vertex v. Observe
that G(x,D) has 2D+x�1 vertices and diameter D. Take G = G(x,D) such that n = 2D+x�1.

We consider executions of algorithm A on a network modeled by G in which no link ever fails.
Each input value of a node in the network will be either 0 or 1. Start with the initial configuration C0

in which all input values are 0, so decision is on 0 by validity. We proceed through a sequence of
initial configurations C0, C1, C2, . . . , Cn, such that Ci has i nodes starting with the input value 1
and n � i nodes starting with the input value 0. In particular, in configuration Cn all the nodes
start with the input value 1, so decision has to be on 1, by validity. There exist two configurations
Ci and Ci+1 such that for Ci the decision is on 0 and for Ci+1 the decision is on 1. These two
configurations di↵er only in some vertex p having input 0 in Ci and input 1 in Ci+1.

Consider two executions of algorithm A, one starting in configuration Ci and the other in Ci+1.
Each node q of distance D from p sends and receives the same messages in the first D � 1 rounds
in both executions. Take as q a node that is of distance D from p; such a node q exists by the
specification of graph G. Node q needs to wait with deciding until at least the round D, because
its state transitions in the first D � 1 rounds are the same in both executions, while the decisions
are di↵erent. ⇤

10

Corollary 1 For any algorithm A solving disconnected agreement in networks prone to link failures,

and for any even positive integer n, there exists a network G with n nodes such that some execution

of A on G takes at least
n
2 rounds with no link failures.

Proof: We use a network modeled by graph G(x,D) used in the proof of Lemma 2, in which x = 1
and n = 2D. We have that D = n

2 rounds are necessary to reach agreement in some executions of
algorithm A, by Lemma 2. ⇤

Theorem 2 For any natural number � and an algorithm A solving disconnected agreement in net-

works prone to link failures, there exists a network G that has stretch � and such that each execution

of A on G takes at least � rounds.

Proof: Let us take a network G with n � 2� nodes and with diameter � such that some execution
of algorithm A on G takes at least � rounds with no link failures. Such a connected network exists
by Lemma 2. The stretch of a connected network equals its diameter. ⇤

Theorem 2 shows that algorithm Fast-Agreement(⇤) is asymptotically time-optimal on net-
works prone to link failures, because the actual stretch � could be as large as an upper bound ⇤
on stretch.

4 General Agreement with Short Messages

We present a general disconnected-agreement algorithm using short messages of O(log n) bits.
Algorithm Fast-Agreement presented in Section 3, which also employs messages of O(log n)
bits, relies on an upper bound on stretch ⇤ that is a part of code, and if the actual stretch in an
execution goes beyond ⇤ then an execution of algorithm Fast-Agreement may not be correct.
We assume in this section that nodes rely on minimal knowledge only and the given algorithm is
correct for arbitrary patterns of link failures and the resulting stretches. The algorithm terminates
in at most n rounds, while the number of nodes n is not known. The running time is asymptotically
optimal in case there are no failures, by Corollary 1 in Section 3.

The following approach could possibly result in reaching disconnected agreement in networks
prone to link failures, while sending only short messages. A node p maintains a set of input values
in a dedicated variable, which it initializes to the singleton set with the node’s input. The node p
does two things per round: (1) for each neighbor, p sends some input value to this neighbor, but
only such it has never sent before, (2) updates the set of known inputs value by adding new values
just received in messages. A node halts after executing as many rounds as the size of the set of
input values and decides on the maximum input value known. This algorithm works correctly if
all the n input values are distinct, because each node collects all the input values in its connected
component in the final graph. This algorithm is incorrect in general, which can be demonstrated on
an example of a network of three nodes: node p1 with input 1, node p2 with input 1, and node p3
with input 3, connected into a line p1�p2�p3. To see incorrectness, suppose both links p1�p2 and
p2 � p3 are non-faulty. The node p1 halts at the second round and decides on 1 and node p3 halts
at the third round and decides on 3, while all the nodes are in the same connected component.

Next, we give an algorithm for disconnected agreement that uses short messages while the nodes
do not know the size n of the network nor any bound on stretch. Each node p has its name stored
as namep and initial input value stored at inputp. A node p forms a pair (namep, inputp), which we
call input pair, and sends it through each port as the first communication in an execution; simulta-
neously node p receives input pairs from its neighbors. Every other node q forms its respective pair

11

algorithm SM-Agreement

1. initialize: Inputs to empty list, round 1 ; append (namep, inputp) to Inputs

2. for each port ↵ do

initialize set Channel[↵] to empty ; send (namep, inputp) through ↵

3. for each port ↵ do

if a pair (nameq, inputq) received through ↵ then

add (nameq, inputq) to Channel[↵] ; append (nameq, inputq) to Inputs

4. repeat

(a) for each port ↵ do

if some item in Inputs is not in Channel[↵] then

let x be the first such an item ; send x through ↵ ; add x to Channel[↵]

(b) for each port ↵ do

if a pair (nameq, inputq) was just received through ↵ then

add (nameq, inputq) to Channel[↵] ; append (nameq, inputq) to Inputs

(c) round round+ 1

until round > |Inputs|

5. decide on the maximum input value in Inputs

Figure 3: A pseudocode for a node p. The operation of adding an item to a set is void if the item

is already in the set. The operation of appending an item to a list is void if the item is already in

the list. The notation |Inputs| means the number of items in the list Inputs.

(nameq, inputq). If p 6= q then also (namep, inputp) 6= (nameq, inputq), even if inputp = inputq,
so there are n input pairs in total. As an execution continues, nodes exchange input pairs among
themselves. A message carries one input pair. The goal for each node is to learn as many input
pairs as possible and help other nodes in accomplishing the same goal. A node halts in the first
round whose number surpasses the number of input pairs the node has learned.

Next, we discuss how the algorithm is implemented. The algorithm is called SM-Agreement,
its pseudocode is in Figure 3. A node maintains a list Inputs of all input pairs that the node has
ever learned about. For each port ↵, a node maintains a set Channel[↵] storing all input pairs that
have either been received through ↵ or sent through ↵. At every round, a node verifies for each
port ↵ if there is a message to be sent through the port. This is determined by examining the list
Inputs to check if there is an input pair in the list that does not belong to the set Channel[↵]: if
this is the case then the first such a pair is transmitted through ↵. At every round, a node may
receive a message through a port ↵: if this occurs, the node adds the received input pair to set
Channel[↵], unless the pair is already there, and appends the pair to the list Inputs, unless the
pair is already in the list. A node maintains a counter of rounds called round, which is incremented
in each round. An execution ends when this counter surpasses the size of the list Inputs.

We may consider a modification of algorithm SM-Agreement, as presented in Figure 3, in
which the repeat loop (4) is iterated indefinitely, rather than stopping after |Inputs| iterations.
In an execution of the modified algorithm, eventually lists Inputs and sets Channel[↵], for all
ports ↵, stabilize in all nodes, so that messages are no longer sent. Suppose two nodes p and q
are connected by a reliable path at a round when node q decides. By the round all the variables
stabilize, the input pair (namer, inputr) will have reached node q, because there is a reliable path

12

from p to q. We need to show that this also occurs in an execution of algorithm SM-Agreement

without the modification of the condition controlling the repeat loop, for the same link failures in
the two executions. To this end, it su�ces to demonstrate that node q withholds deciding long
enough.

Lemma 3 If nodes p and q are connected by a reliable path at a round when node q decides, and the

list Inputsp includes an input pair (namer, inputr) at that round, then the list Inputsq includes

this pair (namer, inputr) at the round when q decides.

Proof: Let � be a path between nodes r and p through which pair (namer, inputr) arrives to node p
first; suppose � = (s1, s2, . . . , sk), where r = s1 and sk = p. Let � be a reliable path connecting
node p to q at a round when node q decides; suppose � = (t1, t2, . . . , t`), where p = t1 and t` = q.
We want to show that all input pairs originating at the nodes on the paths � and � reach node q
by the round in which q decides. Consider a path ⇣ obtained by concatenating path � with path �
at the node p = sk = t1. Let us denote the nodes on this path as ⇣ = (u1, . . . , u`), where u1 = r
and u` = q, and denote by vi a pair of the form (name, input) originating at ui, for reference.

The simplest scenario, for node q to receive input pair v1 = (namer, inputr), occurs when
pair v1 gets sent in each consecutive round along the path ⇣ until it reaches node q. During these
transmissions, node q receives consecutive pairs vi, starting from v` = (nameq, inputq) originating
in q, through v1 = (namer, inputr). In this scenario, a new pair gets added to list Inputsq in
each of these rounds, which makes node q postpone deciding for a total of at least ` rounds. We
call this the basic scenario. Let us consider conceptual queues Qi at each of the nodes ui on ⇣,
for i < `, where the queue Qi stores pairs that still need to be sent to ui+1. These queues are
manipulated by actions specified in instructions (4a) and (4b) in the pseudocode in Figure 3. In
the basic scenario, each queue Qi is initialized with ui, and then each pair vi moves through the
queues Qj , for j = i+ 1, i+ 2, . . . during consecutive rounds, to eventually arrive at u` = q.

Next, we consider two possible alternative ways for input pairs to be sent along ⇣ to arrive at q,
while departing from the basic scenario.

One possible departure from the basic scenario occurs when a pair vi gets delivered to uj , for
j > i, by a shortcut outside of ⇣ rather than through consecutive nodes ui+1, ui+2, . . . , uj . This
may result in pair vi reaching q earlier than in the basic scenario, while postponing delivery of other
pairs by one round. What does not change is that a new pair gets delivered to q at each round, so
q keeps waiting, and also vi gets added to Qk to be later removed from Qk exactly once, at each
node uk on the path ⇣, for k � i, while sent down the path towards q, by the rules of manipulating
lists Inputs and sets Channel specified in instructions (4a) and (4b) in the pseudocode in Figure 3.
In this scenario, pair (namer, inputr) gets delivered to q no later than in the basic scenario.

Another possible departure occurs when a pair v originating at a node outside ⇣ gets delivered
to a node on ⇣ and then travels along ⇣ towards q. Each such a pair v simply increases the number
of pairs transmitted along ⇣, so it may delay v1 = (namer, inputr) from reaching q by one round.
At the same time, such a pair v increments the size of the list Inputs at q by one when added to
it, thereby extending the time period until q decides by one round. This makes node q wait long
enough to receive input pair (namer, inputr) by the round it decides.

The two possible departures from the basic scenario discussed above can both occur in an
execution, and also there could be multiple instances of pairs creating such scenarios departing
from the basic one, without a↵ecting the conclusion that node q waits long enough to receive pair
(namer, inputr) prior to deciding. ⇤

13

Theorem 3 Algorithm SM-Agreement solves disconnected agreement in n+ 1 rounds relying on

minimal knowledge and using short messages each of O(log n) bits.

Proof: Input pairs stored in the list Inputs at a node have names of nodes as their first components,
so there can be at most n pairs ever added to this list. A node decides immediately when a round
number exceeds the size of list Inputs, which occurs by round n + 1. This gives termination and
the bound on running time. A node decides on an input value in an input pair present in its
list Inputs, which stores pairs that originated at nodes of the network; this implies validity. By
Lemma 3, all nodes in a connected component of the final graph GF have identical lists Inputs

at a round of deciding. A decision is on a maximum value in a list, which is uniquely determined
by the set of pairs stored in the list; this gives agreement. A message carries one input pair, so it
consists of O(log n) bits, per the assumptions about the node names and input values. ⇤

5 Agreement with Linear Messages

The goal of this section is to develop an algorithm whose running time scales well to the stretch
actually occurring in an execution. We are ready to use messages longer than short ones used in the
previous sections, and will use linear messages of O(n log n) bits. Nodes are to rely on the minimal
knowledge only: each node knows its own name and can distinguish ports by their communication
functionality. We give an algorithm that works in (� + 2)3 rounds, where � is the stretch at the
round of halting. The size of linear messages imposes constrains on the design of algorithms, and
the obtained algorithm is not early stopping, but its running time is polynomial in �.

A message of O(n log n) bits allows to represent any set of node names. Once a node receives
a message with names of nodes it can be certain that information about the magnitude of input
values from these nodes has been received as well, assuming some relevant information about the
input values was sent along. In principle, a node may halt as soon as it has heard from all the
nodes in its connected component. The challenge is to detect such a moment, because a message of
O(n log n) bits can bring in many node names at once at a round, but still not all of them, and that
round may be followed by a long stretch of rounds without receiving new names. To determine
when to halt, we use timestamps, which are set to the current round number when created. A
message of O(n log n) bits can represent a set of pairs consisting of a node’s name and a timestamp,
as long as there is at most one such a pair for each node and the timestamp represents a round
during an execution, while the running time of the algorithm is polynomial in n.

An overview of the algorithm. Every node maintains a counter of round numbers, incremented
when a round begins. In each round, a node p generates a new timestamp r equal to the current
value of the round counter, and forms a pair (namep, r), which we call a timestamp pair of node p.
Such timestamp pairs are sent to the neighbors, to be forwarded through the network. Each node
node p stores a timestamp pair with the latest timestamp for a node it has ever received a timestamp
pair from, and sends all such pairs to the neighbors in every round.

An execution of the algorithm at a node is partitioned into epochs, each epoch being a contiguous
interval of rounds. Epochs are not coordinated among nodes, and each node governs its own epochs.
The first epoch begins at round zero, and for the following epochs, the last round of an epoch is
remembered in order to discern timestamp pairs sent in the following epochs. For the purpose of
monitoring progress of discovering the nodes in the connected component during an epoch, each
node maintains a separate collection of timestamp pairs, which we call pairs serving the epoch. This
collection stores only timestamp pairs sent in the current epoch, a pair with the greatest timestamp
per node which originally generated the pair.

14

The status of a node q at a node p during an epoch can be either absent, updated, or stale. If
the node p does not have a timestamp pair for q serving the epoch then q is absent at p. If at a
round of an epoch the node p either adds a timestamp pair serving the epoch for an absent node q
or replaces a timestamp pair of a node q by a new timestamp pair with a greater timestamp than
the previously held one, then q is updated at this round. If the node p has a timestamp pair for
a node q serving the epoch but does not replace it at a round with a di↵erent timestamp pair to
make it updated, then q is stale at this round. If the node p at a round t1 receives an epoch-serving
timestamp pair (nameq, t2) for a node q that replaces a previously stored timestamp for q then the
number t1 � t2 is called the range of q at p. Ranges are determined only for updated nodes at p,
since q becomes updated after p receives (nameq, t2). A range of q is the length of a path traversed
by a timestamp pair of q to reach p in the epoch, at the round the timestamp pair is received, so
it is a lower bound on the distance from q to p at this round.

We say that an epoch of a node p stabilizes at a round if either no new node has its status
changed from absent to updated at p or no node gets its range changed at p. If an epoch stabilizes
at a round, then the epoch ends. During an epoch, a node p builds a set of names of nodes from
which it has received timestamp pairs serving this epoch. A similar set produced in the previous
epoch is also stored. As an epoch ends, p compares the two sets. If they are equal then p stops
executing epochs, decides on the maximum input value ever learned about, notifies the neighbors
of the decision, and halts.

An implementation of the algorithm. The algorithm is called LM-Agreement, its pseudocode is
given in Figure 4. An execution starts with initialization of some variables by instruction (1). The
main repeat loop follows as instruction (2); one iteration of the main repeat-loop makes an epoch.
The pseudocode refers to a number of variables; we review them next.

Each node p uses a variable candidatep, which it initializes to inputp. Node p creates a pair
(this-is-candidate, candidatep), which we call a candidate pair of p. Nodes keep forwarding their
candidate pairs to the neighbors continually. If a node p receives a candidate pair of some other
node with a value x such that x > candidatep then p sets its candidatep to x. An execution
concludes with deciding by performing instruction (5). Just before deciding, a node notifies the
neighbors of the decision. Once a notification of a decision is received, the recipient forwards the
decision to its neighbors, decides on the same value, and halts.

The variable round is an integer counter of rounds, which is incremented in each iteration of
the inner repeat loop by executing instruction (2(b)i). The round counter is used to generate
timestamps. The variable Timestamps stores timestamp pairs that p has received and forwards to
its neighbors. The variable EpochTimestamps stores timestamp pairs serving the current epoch,
which have been generated after the beginning of the current epoch. Each set Timestamps and
EpochTimestamps stores at most one timestamp pair per node, the one with the greatest received
timestamp. Each iteration of the inner repeat loop (2b) implements one round of sending and
collecting messages through all the ports by executing instruction (2(b)iii). The inner repeat
loop (2b) ends as soon as the epoch stays stable at a round, which is represented by condition (2c).

The variable Nodes stores the names of nodes from which timestamp pairs serving the epoch
have been received. The variable Nodes is calculated at the end of an epoch by instruction (2d).
The set of nodes in Nodes at the end of an epoch is stored as PreviousNodes at the start of the next
epoch. The main repeat loop (2) stops to be iterated as soon as the set of names of nodes stored in
Nodes stays the same as the set stored in PreviousNodes, which is checked by condition (3). We
want the set Nodes to be calculated in two consecutive epochs at least once. To guarantee this,
PreviousNodes is initialized to a special value denoted ? by instruction (2a) in the pseudocode,
when the instruction is executed for the first time. The value ? is defined by the property that it
is di↵erent from any set of nodes.

15

algorithm LM-Agreement

1. initialize: candidatep inputp , round 0, Timestamps ;, Nodes ?

2. repeat

(a) epoch round, PreviousNodes Nodes, EpochTimestamps ;

(b) repeat

i. round round+ 1

ii. add pair (namep, round) to sets Timestamps and EpochTimestamps

iii. for each port do

A. send Timestamps and (this-is-candidate, candidatep) through the port

B. receive messages coming through the port

iv. for each received pair (this-is-candidate, x) do

if x > candidatep then assign candidatep x

v. for each received timestamp pair (nameq, y) do

A. add (nameq, y) to Timestamps if this is a good update

B. if y > epoch then add (nameq, y) to EpochTimestamps if this is a good update

(c) until epoch stabilized at the round

(d) set Nodes to the set of first coordinates of timestamp pairs in EpochTimestamps

3. until PreviousNodes = Nodes

4. send (this-is-decision, candidatep) through each port

5. decide on candidatep

Figure 4: A pseudocode for a node p. Each iteration of the main repeat-loop (2) makes an epoch.

Symbol ? denotes a value di↵erent from any actual set of nodes, so the initialization of Nodes to ?

in line (1) guarantees execution of at least two epochs. A good update of a timestamp pair for a

node q either adds a first such a pair for q or replaces a present pair for q with one with a greater

timestamp. At each round, p checks to see if a message of the form (this-is-decision, z) has been

received, and if so then p forwards this message through each port, then decides on z, and halts.

The correctness and running time. A node p is said to have heard of node q in an epoch, if the
node p received a timestamp pair from q serving this epoch. We mean an epoch according to the
node p, since epochs are not coordinated across the network, and so a di↵erent node q could be in a
di↵erent epoch by its count of iterations of the main repeat loop (2) in the pseudocode in Figure 4.

Lemma 4 If a node p has not heard of some node by a round of an epoch yet and that node is still

connected to p by a reliable path at the next round, then the epoch continues through the next round.

Proof: The proof is by induction on round numbers in an epoch. The node p starts an epoch with
an empty set of timestamps pairs serving the epoch and adds at least its own timestamp pair to
make itself updated at the first round of the epoch. If the node p has neighbors connected to it
by reliable links, then, at the first round of the epoch, p hears of them and their status becomes
updated as well. This means that an epoch never stabilizes at the first round, so it always continues
beyond the first round. This provides the base step of induction.

Next we consider the inductive step. Let a round i of an epoch executed by the node p be such
that node p has not heard of some node q in its current connected component up to round i�1, and

16

that such a node q stays connected to p during round i. If the node p has not heard of the node q
by round i � 1, then q’s distance from p is greater than i � 1 at the beginning of round i, so the
distance is at least i. Let ⇡ = (s0, s1, . . . , s`) be a shortest path from p to q, that exists at round i,
where p = s0 and s` = q, for ` � i. Node si has its timestamp pair delivered by s1 to p = s0 at
round i, because such a timestamp pair has just completed its traversal of the path ⇡ towards p.
This arrival establishes the range of si as i, because this is the distance to p at this round. If the
node p has not heard of si before, then p changes the status of si from absent to updated. If the
node p has heard of si before, then the range of si at p is at most i� 1 after round i� 1, so it gets
changed to i. The epoch does not stabilize during round i in either case, so it continues through
the next round i+ 1. ⇤

Each epoch at a node p eventually comes to an end. This is because eventually all nodes in
the connected component of p are either updated or stale at p, and their ranges stabilize to ones
resulting from link failures that manifested themselves in the execution up to this point.

Lemma 5 The duration of an epoch at every node is at most (�+ 2)2.

Proof: Let us consider a node p. At a round i of an epoch, the status of every node of distance at
most i from p at round i becomes either updated or stale at node p. Eventually a round k occurs
such that the diameter of the connected component of p is k, and after this round node p will have
heard of every node in its connected component. If a node q is of distance i from p at a round j,
and this distance stays equal to i for at least i rounds following round j, then the range of every
node on a shortest path of length i from p to q gets updated to its current value, which happens
by round j + i. Let q be an arbitrary node. The distance from q to node p can change at most as
many times as the diameter of the connected component of p at the round p ends the epoch. After
each such a change, it takes up to as many rounds as the distance from p to q to have ranges of
nodes on a shortest path from q to p updated to new values.

Let D denote the diameter of the connected component of node p when it ends the epoch. If
D = 0 then the epoch ends after two rounds. If D � 1 then the round in which p ends the epoch
is at most

D +
D�1X

i=1

i2 = D +
D(D � 1)

2
 D2 .

It follows that an epoch takes at most (�+ 2)2 rounds ⇤

Theorem 4 Algorithm LM-Agreement solves disconnected agreement in (� + 2)3 rounds relying

on minimal knowledge and using messages of O(n log n) bits.

Proof: If a node p decides then the decision is on its candidate value stored in the variable can-

didate. Such a decision value is the initial input value of some node, by the instructions (1)
and (2(b)iv) in Figure 4. This gives validity.

For agreement, we argue that when a node p decides, then it knows the maximum candidate
value of all the nodes in its connected component at the round of deciding. The equality of sets
Nodes and PreviousNodes, verified as condition (3) in the pseudocode in Figure 4 at the end
of the epoch in which p decides, guarantees that the nodes of the connected components at the
ends of the current and previous epochs have stayed the same. Consider the maximum candidate
value present among the nodes of the connected component of p at the round of its deciding. This
candidate value was also maximum among the values held by nodes of the connected component

17

of p in the previous epoch, since no nodes got disconnected from p in the current epoch. Suppose
the maximum candidate value was held by a node q in the connected component at the end of
the previous epoch. The node p hears from q in the current epoch, by Lemma 4. The candidate
value of q travels along the same paths to p as the timestamp pairs from q. It follows that the
node p decides on the candidate value of the node q, and this candidate value is maximum among
candidate values of all nodes in the connected component at the round of deciding.

Next, we estimate the running time. A connected component of a node p can evolve through
a sequence of contractions, occurring when the connected component shrinks and some nodes get
disconnected to make other connected components. The number of epochs for every node is at
least two, and it is at most the number of connected components of the final graph plus 1, for
which the stretch plus 1 is an upper bound. An epoch at a node p takes at most (� + 2)2 time,
by Lemma 5. The number of rounds by halting for a node is a sum of lengths of its epochs, so it
is at most (�+ 2)3.

Finally, we estimate the size of messages. A node sends its variable Timestamps and a candi-
date pair (this-is-candidate, candidate) in a message. The set Timestamps includes at most one
timestamp pair per node. A node’s name needs O(log n) bits and a timestamp needs at most
lg n3 = O(log n) bits, because � < n. Each candidate value is some original input of a node, so it
also needs O(log n) bits. ⇤

6 Early Stopping Agreement

We give an early-stopping disconnected agreement algorithm whose running time performance O(�)
scales optimally to the stretch � occurring in an execution by the time of halting. Nodes rely
only on the minimal knowledge, similarly as in algorithms SM-Agreement (in Section 4) and
LM-Agreement (in Section 5), but messages carry O(m log n) bits. This size is greater than
that of short messages with O(log n) bits in algorithm SM-Agreement and linear messages with
O(n log n) bits in algorithm LM-Agreement.

An overview of the algorithm. A graph whose vertices represent nodes and edges stand for links is
like a map of the network at a round. Nodes executing the algorithm keep sending their knowledge
of the network’s map to neighbors, while simultaneously receiving similar information from them.
The goal for each node is to build an approximation of a map of the network, which we call a
snapshot. More precisely, a snapshot of the network at a node p consists of the names of nodes as
vertices and edges between vertices representing links, but only these nodes and links that p has
heard about. A snapshot at a node p may include the initial input for a vertex, should the node p
know the input of a node represented by this vertex. A whole snapshot encoded as a message takes
O(m log n) bits. We explain how nodes manage snapshots next.

The model of minimal knowledge means that initially a node knows only its own name and
input, but its ports are not labeled with names of the respective neighbors. To mitigate this, at the
first round, every node sends its name through all the communication ports. At this very round,
nodes receive the names of their respective neighbors coming through communication ports. This
results in every node discovering its neighbors, which they use to assign neighbors’ names to ports.
During the first round, nodes do not send their input values. After the first round, a node has a
snapshot consisting of its own name, the names of neighbors that submitted their names, and edges
connecting the node to its newly discovered neighbors.

Starting from the second round, nodes iterate the following per round: send the current snapshot
to each neighbor, receive snapshots from the neighbors, and update the snapshot by incorporating

18

Algorithm ES-Agreement

1. initialize: Nodes {namep}, Inputs {(namep, inputp)}, Links ;, Unreliable ;

2. for each port do

(a) send namep through this port

(b) if nameq received through this port then

i. assign nameq to the port as a name of the neighbor

ii. add nameq to Nodes; add edge {namep, nameq} to Links

3. while there exists an unsettled node in p’s connected component in the snapshot do

for each neighbor q do

i. send sets Nodes, Links, Unreliable, Inputs to q

ii. if a message from q was just received then

update the sets Nodes, Links, Unreliable, Inputs

by adding new elements included in this message from q

else add edge {namep, nameq} to Unreliable

4. for each neighbor q do send sets Nodes, Links, Unreliable, Inputs to q

5. decide on the maximum input value at the second coordinate of a pair in Inputs

Figure 5: A pseudocode for a node p. A node q is considered unsettled by p if it is in the same

connected component as p, according to the snapshot at p, and there is no pair of the form (nameq, ?)

in Inputsp.

newly acquired knowledge. Links may be marked as unreliable, if they have failed at least once to
deliver a transmitted message. Edges representing unreliable links get removed from the snapshot.
Such a removal is permanent, in that an edge representing an unreliable link is not restored to the
snapshot. A snapshot at a node p determines a part of a connected component to which p belongs,
but a snapshot may not be up to date, as links may fail and there could be a delay in p learning
about it.

We say that a node p has heard of a node q if nameq is a vertex in the snapshot at p. Each node
hears of its neighbors by the end of the first round. A node q that belongs to the same connected
component as a node p, according to the current snapshot at p, and such that p knows the initial
input of q, is considered as settled by p.

A node p executing the algorithm participates in exchanging snapshots with neighbors, as long
as its connected component contains nodes that have not been settled yet, according to the current
snapshot. At the end of the first round, every node considers all its neighbors as pending settling.
A soon as a node realizes that all nodes in its connected component according to the snapshot are
settled, it sends its snapshot to the neighbors for the last time, finds the maximum input among
the nodes in its snapshot, decides on this maximum value, and halts.

An implementation of the algorithm. The algorithm is called ES-Agreement, its pseudocode is
given in Figure 5. The pseudocode refers to a number of variables that we introduce next. A set
variable Nodes at a node p stores the names of all the nodes that the node p has ever learned about,
and a set variable Links stores the links known by p to have transmitted messages successfully at
least once, a link is represented as a set of two names of nodes at the endpoints of the link. A set
variable Unreliable stores the edges representing links known to have failed. Knowledge about
failures can be acquired in two ways: either directly, when a neighbor is expected to send a message

19

at a round and no message arrives through the link, or indirectly, contained in a snapshot received
from a neighbor. A node stores all known initial input values of nodes q as pairs (nameq, inputq)
in a set variable Inputs. The nodes keep notifying their neighbors of the values of some of their
private variables during iterations of the while loop in instruction (3) in Figure 5. A node iterates
this loop until all vertices in the connected component of the node are settled, which is su�cient
to decide. Once a node is ready to decide, it forwards its snapshot to all the neighbors for the last
time, decides on the maximum input value in some pair in Inputs, and halts.

An execution of the algorithm starts with each node announcing its name to all its neighbors,
by executing the instruction (2) in Figure 5. This allows every node to discover its neighbors
and map its ports to the neighbors’ names. A node does not send its input in the first round of
communication. A node sends its snapshot to the neighbors for the first time at the second round,
by instruction (3) in the pseudocode in Figure 5.

A node p has heard of a node q if nameq is in the set Nodesp. A node p has settled node q once
the pair (nameq, inputq) is in Inputsp and the node q belongs to the connected component of p
according to its snapshot. We say that a node p knows the state of a node q at the end of a round i
if the following inclusions hold: Nodesq ✓ Nodesp, Linksq ✓ Linksp, Unreliableq ✓ Unreliablep,
and Inputsq ✓ Inputsp, where Nodesq, Linksq, Unreliableq, and Inputsq denote the values of
these variables at q at the end of round i. If the node p hears of its neighbor q at the first round,
then p knows only the q’s name, but does not know either the input or any neighbor of q other
than oneself.

The correctness and performance. We show that the algorithm is a correct disconnected agreement
solution that is early stopping.

Lemma 6 Once a node p settles a node q, then p knows the state of q at the end of the first round.

Proof: After the first round, the set Inputs at q includes the only pair (nameq, inputq). This is
because of the initialization in instruction (1) of the pseudocode in Figure 5, and since q does not
receive the neighbors’ inputs at the first round, by instructions (2). Node q learns the names of
its neighbors during the first round, which q uses to populate Nodes and Links. During the first
iteration of the while loop in Figure 5, which occurs at the second round, the node q sends the pair
(nameq, inputq) to the neighbors, along with the contents of sets Nodes, Links, and Unreliable, as
they were at the end of the first round. Pair (nameq, inputq) spreads through the network carried
in snapshots sent to neighbors, along with the contents of the sets Nodes, Links, and Unreliable

at node q. When a pair (nameq, inputq) reaches a node p for the first time, the contributions of
the sets Inputsq, Nodesq, Linksq, and Unreliableq to the received snapshot are as from these set
variables at the end of the first round at q. ⇤

The nodes settle their neighbors by the end of the second round, after the first iteration of the
while loop in Figure 5, as long as the links to these neighbors have not failed. As the while loop
iterates in consecutive rounds, once a node p hears of some node q at a round i, then the earliest p
is expected to settle the node q is at the next round i+1. To see this, observe that a node p hears of
its neighbors at the first round and settles them in the second round, unless some links to neighbors
failed. A failure of a link to a neighbor may postpone settling this neighbor, if its input value
manages to reach p eventually, or p may never settle this neighbor, if it gets disconnected from p.
The delay of at least one round between hearing of a node and settling this node is maintained
through each iteration of the while loop. Once node p settles a node q, it learns the state of q at
the end of the first round, by Lemma 6. Such a state may include the names of the nodes in Nodesq
that are unsettled by p yet; if this is the case then the node p continues iterating the while loop.

20

After each round, a node builds a snapshot as an approximation of the network’s topology. The
vertices of this graph are the names of nodes from the set Nodes, and these links in the set Links
that are not in Unreliable make the edges. We say that a node p completes survey of the network
by a round if p has settled all nodes in its connected component according to the snapshot of this
round. A node keeps communicating with neighbors until it completes survey, and then one more
time, by instruction (4) in the pseudocode in Figure 5. This extra round of communication serves
the purpose to help the neighbors complete their surveys in turn, as they may need the information
that has just allowed the sender to complete its survey. Finally, a node decides on the maximum
from the set of all the input values stored in the pairs in Inputs, and halts.

Lemma 7 If a node p decides on inputr, another node q also decides, and the nodes p and q are

connected by a reliable path at a round when they have already decided, then q has the node r as

settled in its snapshot at this round.

Proof: Suppose q does not have r in its snapshot as settled at the first round in which both p
and q have completed surveys, to arrive at a contradiction. The node p has q in its connected
component of the snapshot and, similarly, the node q has p in its connected component of the
snapshot, because they are connected by a reliable path at the first round after completing surveys.
Let � = (s1, . . . , sk) be a reliable path connecting p = s1 with q = sk at the first round in which
both p and q have completed surveys and such that q settled p by a snapshot that arrived through
this path. Let a node si on the path � be such that i is the greatest index j of a node sj in � such
that sj settled r in its snapshot. An index i with this property exists because node p = s1 is such.
Moreover, the inequality i < k holds because q = sk does not have r settled in its snapshot. There
is a reliable path � = (t1, . . . , tm) from r = t1 to si = tm through which a snapshot arrived first
bringing inputr to make si settle r. Consider a path ⇣ obtained by concatenating � with a part
of � starting at si and ending at sk = q, where i < k. Let us denote the nodes on this path as
(u1, . . . , u`) = ⇣, where u1 = r and u` = q, for reference.

We examine the flow of information along ⇣ from r = u1 towards u` = q. At the first round,
the node u` = q learns the name of its neighbor u`�1. At the second round, node u` settles u`�1

and learns of the node u`�2, by Lemma 6. In general, a node uj , such that j > 1, hears of its
neighbor uj�1 at the first round and settles it at the second round. At a round a node uj settles its
neighbor uj�1, it also hears of the node uj�2 as still unsettled. This creates a chain of dependencies
such that the node uj heard of a node up the path ⇣ towards r that is still unsettled and in the
same connected component in its snapshot.

As snapshots with inputr move along ⇣ towards q, this chain of dependencies, starting at a
node that received inputr most recently and ending at q, stays unbroken. This is because of the
following two reasons. First, the part of ⇣ taken from � provides reliable edges at all times, since
inputr manages to reach si: the only possibility of this not being the case would be to settle a node
on this path via a di↵erent shorter path to si, but this is a shortest path by its choice. Second, the
part consisting of � provides reliable edges during the considered rounds, since these edges are still
reliable when q completes survey. This makes node q eventually hear of r, and receive inputr at
the next round, which is a contradiction. ⇤

Theorem 5 Algorithm ES-Agreement is an early stopping solution of disconnected agreement that

relies on minimal knowledge, terminates within �+2 rounds and uses messages carrying O(m log n)

bits.

Proof: A node decides on an input value from its snapshot, which gives validity.

21

We show agreement as follows. Consider two nodes p and q that are connected by a reliable
path at the first round when each of these nodes has already decided. Suppose, to arrive at a
contradiction, that node p decided on a value that is greater than the value that node q decided on.
Let r be the node that provided its inputr as the decision value for p. By Lemma 7, node q has
node r settled at the round of deciding, so q decides on a value that is at least as large as inputr,
which is a contradiction.

Next, we estimate the number of rounds needed for each node to halt. As an execution pro-
ceeds, information flows through the connected components of the network, by iteratively sending
a snapshot to the neighbors and updating it at the same round. A value that gets decided on,
in a particular connected component, may travel along a path that shares its parts with multiple
connected components. If such a path crosses a connected component then its length is upper
bounded by the connected component’s diameter. If a link on such a path fails, this may occur
after the future decision value got transmitted through this link, and the endpoints of this link may
belong to di↵erent connected components. This shows that the number of hops a decision value
makes on its way between a pair of nodes it at most the stretch. There are only two rounds that
cannot be accounted for by this counting: the first round, during which the nodes discover their
neighbors, and the last round, when a node notifies its neighbors of its snapshot for the last time.
So if an execution terminates at a round t, then the stretch at this round is at least t�2. It follows
that the algorithm terminates by the round �+ 2. ⇤

7 Optimizing Link Use

We present an algorithm solving disconnected agreement that uses the optimal number O(n) of
links and messages of O(m log n) bits. Optimizing the link use in order to achieve an algorithmic
goal could be interpreted as relying on a network backbone to accomplish the task and building such
a backbone on the fly. We depart from the model of minimal knowledge of the previous sections
and assume that nodes know their neighbors at the outset, in having names of the corresponding
neighbors associated with all their ports. We identify links, determined by the ports of a node,
by the names of the respective neighbors of the node, and use the terms ports and incident links
interchangeably. The disconnected agreement algorithm we describe next makes nodes halt in
O(nm) rounds. We complement the algorithm by showing that using O(n) links is only possible
when each node starts with a mapping of ports on its neighbors, because otherwise ⌦(m) is a lower
bound on the link use. We also show that no algorithm can simultaneously be early stopping and
use O(n) links.

An overview of the algorithm. The general idea of the algorithm is to have nodes build their maps
of the network, representing the topology, that include the connected component of each node. In
this the algorithm resembles ES-Agreement. An approximation of the map at a node evolves
through a sequence of snapshots of the vicinity of the node. Such a snapshot helps to coordinate
choosing links through which messages are sent to extend the current snapshot to a bigger one. We
want to accomplish manipulating snapshots by sending messages through as few links as possible,
meaning O(n) links. This is possible in principle, because a spanning forest has O(n) links, and at
the start each node already knows its neighbors. Input values could be a part of node attributes
of the vertices on such a map. After the process of drawing a map is completed, which includes
identifying a connected component, a decision can be made based on the information included in
the map.

A node categorizes its incident links as either passive, active or unreliable; these are exclusive

22

categories that evolve in time. An active link is used to send messages through it, so a node
categorizes an incident link as active once it receives a message through it. Initially, one link
incident to a node is considered as active by the node, and all the remaining incident links are
considered passive. A link is passive at a round if none of its endpoint nodes has ever attempted
a transmission through this link. A node transmits through an active port at every round, unless
the node decides and halts. It follows that if a node p considers a link active, which connects it to
a neighbor q, then q considers the link active as well, possibly with a delay of one round. Similarly,
if a node p considers a link passive, which connects it to a neighbor q, then q considers the link
passive as well, possibly for one round longer than p. A node p detects a failure of an active link
and begins to consider it unreliable after the link fails to deliver a message to p as it should. For
an active link connecting a node p with q, once p considers the link unreliable then q considers the
link unreliable as well, possibly with a delay of one round.

The state of a node p at a round consists of its name, the input value, and a set of its neighbors,
with each incident link categorized as either passive, active, or unreliable, representing this catego-
rization of links by the node p at the round. The states of a node may evolve in time, in that an
incident link may change its categorization. Links start as passive, except for one incident link per
node initialized as active, then they may become active, and finally they may become unreliable.

A snapshot of the network at a node represents the node’s knowledge of its connected component
in the network restricted to the active edges and the states of its nodes. Formally, a snapshot of

network at a node p at a round is a collection of states of some nodes that p has received and stores.
A snapshot allows to create a map of a portion of the network, which is a graph with the names of
nodes as vertices and the edges representing links. This map can include the input values of some
nodes, should they become known. A connected component of a node with other nodes reachable
by active links is a part of such a map. Formally, the active connected component of a node p at
a round is a connected component, of the vertex representing p, in a graph that is a map of the
network according to the snapshot of p at the round with only active links represented by edges.

A node p sends a summary of its knowledge of the states of nodes in the network to the
neighbors through all its active links at each round. If p receives a message with such knowledge
from a neighbor, then p updates its knowledge and the snapshot by incorporating the newly learned
information. Such new information may include either a state of a node q, such that p has never
had a state of q, or a subsequent state of node q, such that p has already had some state of q. At
each round, a node p determines its active connected component based on the current snapshot. If
we refer to an active connected component of p then this means the active connected component
according to the current snapshot. We say that a node p has heard of a node q if the nameq occurs
in the snapshot at p; the node p may either store some q’s state or q’s name may belong to a state
of some other node that p stores. A node p considers another node q settled if p has q’s state in its
snapshot. A node p considers its active connected component settled if p has settled all the nodes
in its active connected component.

If a node p has heard about another node q such that q does not belong to the node p’s active
connected component, but it is connected to a node r in the active connected component by a
passive link, then the node p considers the link connecting q to r as outgoing. If there is an
outgoing link in p’s active connected component then p considers its active connected component
extendible, otherwise p considers its active connected component enclosed.

We want the nodes to participate in making some outgoing links active, each time the active
connected component is settled and still extendible. All the nodes in the active connected compo-
nent of a node p can choose the same outgoing link to make it active, once the active connected
component becomes settled, because each node knows the same set of outgoing links. Once p’s

23

algorithm OL-Agreement

1. initialize: Unreliable ;, Active {{p, q}} where q is some neighbor,

Passive set of links to p’s neighbors, except for the neighbor q used in Active,

state (namep, inputp, Active, Passive, Unreliable),

round 0, timestamp (state, round)

2. repeat

(a) epoch round, Snapshot {state}

(b) repeat

i. round round+ 1, add timestamp to set Timestamps

ii. for each incident link ↵ do

A. if ↵ is in Active then send Timestamps through ↵

B. if ↵ is mature in Active and no message received through ↵

then move ↵ to Unreliable

C. if a message received through ↵ then place ↵ in Active

iii. for each received timestamp pair (state, y) do

A. add (state, y) to Timestamps

B. if y > epoch then add state to Snapshot

(c) until the active connected component is settled

(d) if the active connected component is extendible then

i. identify an outgoing edge as a connector

ii. if the connector is incident to p then place it in Active

3. until the active connected component is enclosed

4. set candidatep to the maximum input value in Snapshot

5. send pair (this-is-decision, candidatep) through each active incident link

6. decide on candidatep

Figure 6: A pseudocode for a node p. In each round, node p checks to see if a pair of the form

(decision, z) has been received, and if so then p forwards this pair through each active port, decides

on z, and halts.

active connected component becomes settled and enclosed then p may decide.

An implementation of the algorithm. The algorithm is called OL-Agreement, its pseudocode is
in Figure 6. Each node stores links it knows as unreliable in a set Unreliable, initialized to the
empty set. Each node stores links it considers active in a set Active, initialized to some incident
link. Each node stores passive links in a set Passive, which a node initializes to the set of all
incident links except for the one initially activated link.

All nodes maintain a variable round as a counter of rounds. In each round, a node creates a
timestamp pair, which consists of its current state and the value of the round counter used as a
timestamp. A node p stores timestamp pairs in a set Timestamps. For each node q di↵erent from p,
a node p stores a timestamp pair for q if such a pair arrived in messages and only one pair with the
largest timestamp. These variables are initialized by instruction (1) in Figure 6.

The initialization is followed by iterating a loop performed by instruction (2) in the pseudocode
in Figure 6. The purpose of an iteration is to identify a new settled active connected component;

24

we call an iteration epoch. An epoch is determined by the round in which it started, remembered
in the variable epoch by instruction (2a). The knowledge of an active connected component of a
node p identified in an epoch is stored in a set Snapshot, which is initialized at the outset of an
epoch to the p’s state by instruction (2a). This knowledge is represented as a collection of states
of nodes that arrived to p in timestamp pairs, with timestamps indicating that they were created
after the start of the current epoch, as verified by instruction (2(b)iiiB). The main part of an
epoch is implemented as an inner repeat loop (2b). An iteration of this loop implements a round of
communication with neighbors through active links and updating the state by instruction (2(b)ii).
An incident link in Active is mature if either it became active because a message arrived through
it or p made it active spontaneously at some round i and the current round is at least i + 2. If a
mature active link fails to deliver a message then p moves it to Unreliable.

A set variable Timestamps stores timestamp pairs that a node sends in each message and
updates after receiving messages at a round. A set variable Snapshot is used to construct an active
connected component. Snapshot is rebuilt in each epoch, starting only with the current p’s state.
We separate storing timestamp pairs in a set Timestamps used for communication from storing
states in Snapshot to build an active connected component, to facilitate a proper advancement of
epochs in other nodes.

We say that node p completes the survey of the network by a round if p has settled all the
nodes in its active connected component according to the snapshot of this round. The inner repeat
loop (2b) terminates once p completes the survey of the network, by condition (2c) controlling the
loop. If the active connected component is extendible, then p identifies a connector which is an
outgoing edge to be made active. We may identify an outgoing edge that is minimal with respect
to the lexicographic order among all the outgoing links for a settled active connected component
to be designated as a connector. If a connector is a link incident to p then p moves it to the set
Active, by instruction (2d).

Once an epoch ends, by condition (2c), and the active connected component is enclosed, then
the main repeat loop ends, by condition (3) controlling the loop. At this point, a node p is ready
to decide, and the decision is on the maximum input value in a state stored in Snapshot, by
instruction (4). Node p notifies each neighbor connected by an active link of the decision value, by
instruction (5), and decides, by instruction (6). The pseudocode in Figure 6 omits what pertains
to handling messages that could be generated in round (5) by some nodes. Namely, as a first thing
at a round, a node p verifies if a pair of the form (decision, z) has been received in the previous
round, and if so then p forwards this pair through all active ports, decides on this value z, and
halts.

The correctness and performance bounds. We show that algorithm OL-Agreement is a correct
solution to disconnected agreement, and estimate its performance. The algorithm uses a similar
paradigm to survey connected components as algorithm ES-Agreement. A node first learns of
other nodes’ names and later of these nodes’ input values. This creates a chain of dependencies
along paths through connected components, which in the case of algorithmOL-Agreement consist
of active links.

Lemma 8 If two nodes p and q are connected by a reliable path just after they both decided then

each of them counts the other node in its last active connected component.

Proof: Let us consider an arbitrary reliable path from p to q. Each link on this path is either active
or passive. This is because once a passive link becomes active, then a message is sent trough it in
each round, so a failure is immediately detected. A passive link is never activated only if it already

25

connects two nodes in the same active connected component. An active link makes its endpoints
belong to the same active connected component. ⇤

The following Lemma 9 is analogous to Lemma 7 about algorithm ES-Agreement, which
also uses su�ciently large messages to build a map approximating the network. We need it to
show agreement. A proof could be structured similarly to that of Lemma 7; we include a detailed
argument for the sake of completeness.

Lemma 9 If a node p decides on inputr, another node q also decides, and nodes p and q are

connected by a reliable path at a round when they have already decided, then q has node r as settled

in its snapshot at this round.

Proof: Suppose q does not have r in its snapshot as settled at the first round in which both p and q
have completed their surveys, to arrive at a contradiction. The nodes p and q have each other in
their active connected components, by Lemma 8. Let � = (s1, . . . , sk) be a path consisting of the
active links that connect p = s1 with q = sk just after both p and q have completed their surveys
and such that q settled p by a chain of Timestamps that arrived through this path. Let a node si on
the path � be such that i is the greatest index j of a node sj in � that has settled r in its snapshot.
Such an index i exists because the node p = s1 has this property. The inequality i < k holds
because q = sk does not have r settled in its snapshot. There is a path � = (t1, . . . , tm) from r = t1
to si = tm consisting of active links through which Timestamps arrived first bringing stater to
enable si to settle r. Consider a path ⇣ consisting of the active links obtained by concatenating �
with a part of � starting at si and ending at sk = q, where i < k. Let us denote the nodes on this
path as (u1, . . . , u`) = ⇣, where u1 = r and u` = q.

At the first round, the node u` = q learns a state of its neighbor u`�1. At the second round,
the node u` settles u`�1 and hears of the node u`�2. In general, a node uj , such that j > 1, hears
of its neighbor uj�1 at the first round and settles it at the second round. If a node uj settles its
neighbor uj�1 at a round then it also hears of the node uj�2 as still unsettled. This creates a chain
of dependencies such that the node uj heard of a node up the path ⇣ towards r that is still unsettled
and in the same connected component in its snapshot.

As Timestamps with stater move along ⇣ towards q, this chain of dependencies, starting at a
node that received stater most recently and ending at q, stays unbroken. This is because of the
following two reasons. First, the part of ⇣ taken from � provides active edges at all times, since
stater manages to reach si: the only possibility of this not being the case would be to settle a node
on this path via a di↵erent shorter path to si, but this is a shortest path by its choice. Second, the
part consisting of � provides active edges during the considered rounds, since these edges are still
reliable when q completes the survey. This makes node q eventually hear of r, and receive stater
at the next round, which is a contradiction. ⇤

We consider an auxiliary activation process on a graph that models the activation of connectors
in an execution of algorithm OL-Agreement. The process acts on a given simple graph H that
has some k vertices and proceeds through consecutive rounds. An edge of H may progress through
three states, first passive, then possibly active, and then possibly be deleted. We consider subgraphs
determined by active edges, so connected components are active connected components. An edge
connecting a vertex in a connected component C to a vertex in a di↵erent connected component is
considered as outgoing from C. In the beginning of a round, if an active connected component has
an outgoing edge, then one such an edge is made active. At the end of a round, some active edges
may be deleted. The process continues until there are no outgoing edges.

26

Lemma 10 In the course of the activation process on a graph with k vertices, the number of active

edges in the graph at any round is at most 2k � 2.

Proof: We start with no active edges, so each vertex is an active connected component and k is
the number of such components. Consider the activation of new edges at a round as occurring
sequentially. As an edge is activated, it may connect two di↵erent active connected components,
thus decreasing their number, or it may close a cycle. Suppose an active connected component C1

gets connected to an active connected component C2, then C2 to C3, and so on through Ci, with
the edge activated in Ci connecting Ci to some Cj , for 1  j < i. That last edge from a vertex
in Ci to a vertex in Cj is not needed to make all Ci, for 1  j  i, into one connected component,
so we treat it as an extra edge. A number of such extra edges created at a round is maximized
when i = 2, because for each decrease of the number of connected components with one activated
edge we also activate another edge. A tree minimizes the number of connected components to one,
and a tree on k vertices has k� 1 edges. We obtain that the number of active edges at each round
is at most twice the number of edges in a tree of k vertices, which is 2(k � 1). ⇤

Theorem 6 Algorithm OL-Agreement solves disconnected agreement in O(nm) rounds with fewer

than 2n links used at any round and sending messages of O(m log n) bits.

Proof: A node decides on an input value from a state in its snapshot. All states include original
input values, which gives validity.

Consider two nodes p and q connected by a reliable path at the first round when each of these
nodes has already decided. We want to show that p and q decide on the same value. Suppose, to
arrive at a contradiction, that the node p has decided on a value that is greater than the value that
the node q has decided on. Let r be the node whose state provided its input value as the decision
value for p. By Lemma 9, the node q has the node r settled at the round of deciding, so q decides
on a value that is at least as large as inputr, which is a contradiction. This gives agreement.

As an execution proceeds, information flows through each active connected component, by
iteratively sending timestamp pairs to neighbors via active links and simultaneously updating the
latest states in timestamp pairs. The length of a path of active links traversed by a timestamp pair
may be as long as the number of nodes in an active connected component minus one. This means
that an epoch takes fewer than n rounds. After a new connector is added, it takes the length of
an epoch for all the nodes to settle on the states of the nodes in an active connected component.
There may be up to m links added as connectors. This means that every node halts in O(nm)
rounds.

The process of making links active could be modeled as the activation process on a graph
representing the network. By Lemma 10, the number of links that are active at the same time is
less than 2n. ⇤

Lower bounds for link usage. We now consider a setting in which the destinations of ports are not
initially known to nodes. For any positive integers n and m such that m = O(n2), we design a graph
G(n,m) with ⇥(n) vertices and ⇥(m) edges, which makes any disconnected agreement solution to
use ⇥(m) links even if the nodes know the parameters n and m. We drop the parameters n and
m from the notation G(n,m), whenever they are fixed and understood from context, and simply
use G.

Consider any positive integers n and m such that m = O(n2). Let graph G consist of two
identical parts G1 and G2 as its subgraphs. The parts are

⌃
m
n

⌥
-regular graphs of

⌃
n
2

⌥
vertices each.

Without loss of generality, we can assume that the number
⌃
m
n

⌥
is even, to guarantee that such

27

regular graphs exist. Graph G is obtained by connecting G1 and G2 with
⌃
n
2

⌥
edges such that each

vertex from G1 has exactly one neighbor in G2.

By the construction, graph G has 2
⌃
n
2

⌥
= ⇥(n) vertices and (

⌃
m
n

⌥
+ 1)

⌃
n
2

⌥
= ⇥(m) edges. Let

us assume now that the destinations of outgoing links are not initially known to the nodes. This
means that ports can be associated with neighbors’s names only after receiving messages through
them. The following Theorem 7 holds even if n and m can be a part of code.

Theorem 7 For any disconnected agreement algorithm A relying on minimal knowledge, and positive

integer numbers n and m such that n  m and m  n2
, there exists a network G(n,m) with ⇥(n)

nodes and ⇥(m) links and an execution of algorithm A on G(n,m) that uses ⇥(m) links.

Proof: If a node p executing A sends a message by an incident link, through which it has not
received nor sent any messages yet, then the receiving node could be any original neighbor of the
node p in the network G = G(n,m) which has not communicated with p yet. We refer as uncovered
neighbors of p at a round to these among p’s neighbors that p has not received a message from nor
sent a direct message to yet. Choosing a node that is an uncovered p’s neighbor, identifiable only
by its port at p, is a part of the adversarial strategy of failing links.

Algorithm A gets executed on some initial configurations of the network G, as defined above.
Let the notation Ci,j mean an initial configuration in which the nodes from the subgraph G1 have
i 2 {0, 1} as their input values while the nodes from the subgraph G2 have j 2 {0, 1}. We call a
link between two nodes in G1 unused, by a given round, if none of its endpoints has tried to send
a message through it yet. Let k1 denote the number of nodes in G1 that have at least one unused
link incident to some other node in G2. At the beginning, k1 = |G1| and k1 may decrease in the
course of an execution.

For any initial configuration Ci,j , where i, j 2 {0, 1}, consider the following adversarial strategy
to fail links. Let a node p be in G1 and let ` denote a link that p wants to send a message through
at a round. Suppose node p has at least two unused links but wants to send a message by only one
of them. The adversary allows the message to be delivered and the other endpoint of ` is chosen
to be an arbitrary uncovered neighbor of p in G1. Suppose there is only one unused link incident
to p and the node p wants to send a message through it. If k1 > 1 then let this link ` fail before
it delivers a message, and otherwise, if k1 = 1, then let link ` deliver the message to a remaining
unassigned neighbor of p. It follows that in this case the message must go outside G1. Each time
number k1 decreases by one, then all but one reliable links incident to some node of G1 have been
used and they will not be failed by the adversary in the continuation of the execution. Hence,
before the first message is delivered from some node in part G1 to some node in part G2, at least
(
⌃
m
n

⌥
+1) · (|G1|�1) reliable links will have been used for communication between the nodes in G1.

A similar reasoning applies to communication within part G2 of G.

Assume now, to arrive at a contradiction, that in all executions starting from the configurations
C0,0, C0,1, and C1,1, in which the above strategy has been used, fewer than (

⌃
m
n

⌥
+ 1) · (|G1| � 1)

non-faulty links have been used. We call these executions E0, Eb, and E1, respectively. Nodes in
part G1 do not communicate with nodes in G2 in any of these executions. For nodes in the part G1,
an execution starting from C0,0 is indistinguishable from an execution starting from C0,1. Similarly,
for nodes in the part G2, an executions starting from C0,1 is indistinguishable from an execution
starting from C1,1. It follows that each node in the part G1 decides on the same value in the
execution Eb as in the execution E0, and a decision has to be on 0 by validity. Each node in the
part G2 decides on the same value as in the execution E1, and a decision is on 1, by validity. This
is a contradiction with agreement, as both parts G1 and G2 are connected in Eb and have to decide

28

on the same value. Therefore, in one of the considered executions, more than these many reliable
links have to be used: (dmn e+ 1) · (|G1|� 1) = (dmn e+ 1) · (|G2|� 1), which is ⇥(m). ⇤

Theorem 8 Let A be a disconnected agreement algorithm that uses O(n) reliable links concurrently

when executed in networks with n nodes. For all natural numbers n and �  n, there exists a

network G with the stretch � on which some execution of algorithm A takes ⌦(n) rounds.

Proof: Let n and �  n be natural numbers; we assume that both n and � are even to simplify the
notations. Let H1 be a network with n

2 nodes and diameter �
2 � 1. Let H2 be a copy of H1. Let

us form a network G by taking the nodes in H1 and H2 and adding all possible links between the
nodes in H1 and H2. The diameter of G is at most 2 · (�2 � 1) + 1 = �� 1.

The following is an adversarial strategy to fail links. For a round i, let Ki be a set of all
the reliable links between H1 and H2 by which nodes attempt to send messages at this round.
The adversary fails all the links from Ki before any message arrives, as long as H1 and H2 stay
connected. Because there are n2

4 links between the nodes in parts H1 and H2, this guarantees
that no two nodes, of which one is in H1 and the other in H2, exchange a message during at least
⌦(n

2

4n) = ⌦(n) rounds.

Let us consider the following three initial configurations of G. In the first configuration I1,
all the nodes start with input values 0. In the second configuration I2, all the nodes start with
inputs 1. In the third configuration I3, the nodes from H1 start with the input 0, while the nodes
from H2 start with the input 1. We consider executions of algorithm A starting with each of the
initial configurations Ik, for k = 1, 2, 3, when the adversary applies the strategy described above
to fail edges; let Ek be the respective execution. If all the nodes halt before some pair of nodes
such that one is from H1 and the other is from H2 communicate among themselves, then the nodes
in H1 cannot distinguish the execution E1 from E3 and the nodes in H2 cannot distinguish the
execution E2 from E3. Let us consider decisions by the nodes in execution E3. The nodes in H1

decide on 0, as they should in E1, by validity, while the nodes in H2 decide on 1, as they should
in E2, by validity. This contradicts the requirement of agreement. ⇤

We conclude by settling the question if an algorithm can be simultaneously early stopping and
optimize link use.

Corollary 2 If a disconnected agreement algorithm uses O(n) reliable links concurrently at any time,

when executed in networks of n nodes, then this algorithm cannot be early stopping.

Proof: Let us consider integers n and �n  n such that �n = o(n). By Theorem 8, the algorithm
works in ⌦(n) rounds. The algorithm cannot be early stopping, because this would mean running
in time O(�n) = o(n). ⇤

8 Conclusion

We introduced the problem of disconnected agreement in the model of networks with links prone to
failures such that faulty links may omit messages. Disconnected agreement is a variant of consensus
that has the agreement condition reformulated such that nodes have to agree on the same value only
if they belong to the same connected component of a network obtained by removing the faulty links.
The number of values that nodes decide on can be as large as the number of connected components.
As far as allowing for di↵erent decision values, the problem is similar to k-set agreement, in which

29

agreement is relaxed such that nodes may agree on at most k values, for a positive integer k. The
essential di↵erence between the two problems is that an acceptable number of decision values in k-
set agreement is known in advance while the disconnected agreement has the admissible number of
decision values enforced by the changes of topology, and in particular if the network stays connected
then all the nodes have to decide on the same value. An interesting aspect of k-set agreement, as
compared to consensus, is that it can be solved in time b tkc + 1 with up to t node crashes in
synchronous message-passing systems, and this time is necessary, see [13], while consensus requires
t + 1 rounds. The motivation for disconnected agreement is not to relax consensus such that it
can be solved faster, but rather to investigate what running time and size of messages is needed to
solve a problem defined by (1) not imposing any restrictions on which links in a network fail and
omit messages, and (2) minimally relaxing the agreement condition such that solutions exist. We
showed such trade-o↵s between running time and size of messages, and also looked into minimizing
the number of used links. A possible future direction of work concerns more severe link faults, for
example such that result in delivering forged messages.

We demonstrated that a dynamic stretch of a network is a meaningful parameter that serves
as a yardstick to measure running time e�ciency of disconnected agreement algorithms. The
most running-time e�cient disconnected-agreement algorithms are early stopping in that they work
in O(�) rounds, where � is the stretch occurring in an execution. We showed how to design such an
algorithm that uses messages of O(m log n) bits. Trading o↵ running time for size of messages, we
developed an algorithm using smaller messages of only O(n log n) bits that runs in (�+2)3 rounds.
The running time (� + 2)3 of this disconnected-agreement algorithm could possibly be improved
asymptotically, while still using messages of O(n log n) bits, but we are sceptical if it is possible
to design an early stopping disconnected-agreement algorithm that uses messages of a size that is
significantly smaller than ⇥(m log n) bits.

We measure the communication e�ciency of algorithms by the size of individual messages or the
number of non-faulty links used. This approach allows to demonstrate apparent trade-o↵s between
running time and communication. One could study dependencies of the running time and the total
number of messages exchanged or the total number of bits in messages sent by nodes executing
disconnected-agreement algorithms.

References

[1] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia. Communication-e�cient random-
ized consensus. Distributed Computing, 31(6):489–501, 2018.

[2] Hagit Attiya and Faith Ellen. Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2014.

[3] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. Wiley, Second edition, 2004.

[4] John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards robust and
e�cient computation in dynamic peer-to-peer networks. In Proceedings of the Twenty-Third

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 551–569. SIAM, 2012.

[5] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears:
Changing algorithms on the fly to expedite Byzantine agreement. Information and Computa-

tion, 97(2):205–233, 1992.

30

[6] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal early stopping in distributed
consensus (extended abstract). In Proceedings of the 6th International Workshop on Dis-

tributed Algorithms (WDAG), volume 647 of Lecture Notes in Computer Science, pages 221–
237. Springer, 1992.

[7] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. Gracefully
degrading consensus and k -set agreement in directed dynamic networks. Theoretical Computer

Science, 726:41–77, 2018.

[8] Martin Biely, Ulrich Schmid, and Bettina Weiss. Synchronous consensus under hybrid process
and link failures. Theoretical Computer Science, 412(40):5602–5630, 2011.

[9] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. In Proceeding of the

21st International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS), volume 11914 of Lecture Notes in Computer Science, pages 53–68. Springer, 2019.

[10] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed

Systems, 27(5):387–408, 2012.

[11] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In Proceedings of the 42nd
International Colloquium on Automata, Languages, and Programming (ICALP 2015), Part II,
volume 9135, pages 528–539. Springer, 2015.

[12] Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

[13] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for
k -set agreement. Journal of the ACM, 47(5):912–943, 2000.

[14] Bogdan S. Chlebus and Dariusz R. Kowalski. Robust gossiping with an application to consen-
sus. Journal of Computer System and Sciences, 72(8):1262–1281, 2006.

[15] Bogdan S. Chlebus and Dariusz R. Kowalski. Time and communication e�cient consensus for
crash failures. In Proceedings of the 20th International Symposium on Distributed Computing

(DISC), volume 4167 of Lecture Notes in Computer Science, pages 314–328. Springer, 2006.

[16] Bogdan S. Chlebus and Dariusz R. Kowalski. Locally scalable randomized consensus for syn-
chronous crash failures. In Proceedings of the 21st ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA), pages 290–299. ACM, 2009.

[17] Bogdan S. Chlebus, Dariusz R. Kowalski, and Jan Olkowski. Fast agreement in networks with
Byzantine nodes. In Proceedings of the 34th International Symposium on Distributed Comput-

ing (DISC), volume 179 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[18] Bogdan S. Chlebus, Dariusz R. Kowalski, and Jan Olkowski. Deterministic fault-tolerant
distributed computing in linear time and communication. In Proceedings of the 42nd ACM

Symposium on Principles of Distributed Computing (PODC), pages 344–354. ACM, 2023.

31

[19] Bogdan S. Chlebus, Dariusz R. Kowalski, and Micha l Strojnowski. Fast scalable deterministic
consensus for crash failures. In Proceedings of the ACM Symposium on Principles of Distributed

Computing (PODC), pages 111–120. ACM, 2009.

[20] Bogdan S. Chlebus, Dariusz R. Kowalski, and Micha l Strojnowski. Scalable quantum consensus
for crash failures. In Proceedings of the 24th International Symposium on Distributed Com-

puting (DISC), volume 6343 of Lecture Notes in Computer Science, pages 236–250. Springer,
2010.

[21] Ashish Choudhury, Gayathri Garimella, Arpita Patra, Divya Ravi, and Pratik Sarkar. Crash-
tolerant consensus in directed graph revisited (extended abstract). In Revised Selected Papers of

the 25th International Colloquium on Structural Information and Communication Complexity

(SIROCCO), volume 11085 of Lecture Notes in Computer Science, pages 55–71. Springer, 2018.

[22] Brian A. Coan. E�cient agreement using fault diagnosis. Distributed Computing, 7(2):87–98,
1993.

[23] Alejandro Cornejo, Seth Gilbert, and Calvin C. Newport. Aggregation in dynamic networks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pages
195–204. ACM, 2012.

[24] Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious
message adversaries for which consensus is solvable. Theoretical Computer Science, 584:80–90,
2015.

[25] Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.

[26] Danny Dolev and Christoph Lenzen. Early-deciding consensus is expensive. In Proceedings of

the ACM Symposium on Principles of Distributed Computing (PODC), pages 270–279. ACM,
2013.

[27] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in Byzantine agree-
ment. Journal of the ACM, 37(4):720–741, 1990.

[28] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for dis-
tributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[29] Zvi Galil, Alain J. Mayer, and Moti Yung. Resolving message complexity of Byzantine agree-
ment and beyond. In Proceedings of the 36th IEEE Symposium on Foundations of Computer

Science (FOCS), pages 724–733. IEEE, 1995.

[30] Juan A. Garay and Yoram Moses. Fully polynomial Byzantine agreement for n > 3t processors
in t+ 1 rounds. SIAM Journal on Computing, 27(1):247–290, 1998.

[31] Vassos Hadzilacos. Connectivity requirements for Byzantine agreement under restricted types
of failures. Distributed Computing, 2(2):95–103, 1987.

[32] Bernhard Haeupler and Fabian Kuhn. Lower bounds on information dissemination in dy-
namic networks. In Proceedings of the 26th International Symposium on Distributed Computing

(DISC), volume 7611 of Lecture Notes in Computer Science, pages 166–180. Springer, 2012.

[33] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through Com-

binatorial Topology. Morgan Kaufmann, 2013.

32

[34] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2012.

[35] Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact Byzantine consensus
on undirected graphs under local broadcast model. In Proceedings of the ACM Symposium on

Principles of Distributed Computing (PODC), pages 327–336. ACM, 2019.

[36] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),
pages 513–522. ACM, 2010.

[37] Fabian Kuhn, YoramMoses, and Rotem Oshman. Coordinated consensus in dynamic networks.
In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing

(PODC), pages 1–10. ACM, 2011.

[38] Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms. SIGACT News,
42(1):82–96, 2011.

[39] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[40] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[41] Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet

Mathematics, 12(4):239–280, 2016.

[42] Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Naming and counting in anony-
mous unknown dynamic networks. In Proceedings of the 15th International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS), volume 8255 of Lecture Notes

in Computer Science, pages 281–295. Springer, 2013.

[43] Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Causality, influence, and com-
putation in possibly disconnected synchronous dynamic networks. Journal of Parallel and

Distributed Computing, 74(1):2016–2026, 2014.

[44] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, 1980.

[45] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477–482, 1986.

[46] Michel Raynal. Fault-tolerant Agreement in Synchronous Message-passing Systems. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2010.

[47] Nicola Santoro and Peter Widmayer. Time is not a healer. In Proceedings of the 6th Annual

Symposium on Theoretical Aspects of Computer Science (STACS), volume 349 of Lecture Notes
in Computer Science, pages 304–313. Springer, 1989.

[48] Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous
faults. Theoretical Computer Science, 384(2-3):232–249, 2007.

33

[49] Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Fast distributed com-
putation in dynamic networks via random walks. In Proceedings of the 26th International

Symposium on Distributed Computing (DISC), volume 7611 of Lecture Notes in Computer

Science, pages 136–150. Springer, 2012.

[50] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for
consensus under link failures. SIAM Journal on Computing, 38(5):1912–1951, 2009.

[51] Lewis Tseng. Recent results on fault-tolerant consensus in message-passing networks. In Pro-

ceedings of the 23rd International Colloquium on Structural Information and Communication

Complexity (SIROCCO), volume 9988 of Lecture Notes in Computer Science, pages 92–108.
Springer, 2016.

[52] Lewis Tseng and Nitin H. Vaidya. Fault-tolerant consensus in directed graphs. In Proceedings

of the 2015 ACM Symposium on Principles of Distributed Computing (PODC), pages 451–460.
ACM, 2015.

[53] Lewis Tseng and Nitin H. Vaidya. A note on fault-tolerant consensus in directed networks.
SIGACT News, 47(3):70–91, 2016.

[54] Eli Upfal. Tolerating a linear number of faults in networks of bounded degree. Information

and Computation, 115(2):312–320, 1994.

[55] Kyrill Winkler and Ulrich Schmid. An overview of recent results for consensus in directed
dynamic networks. Bulletin of EATCS, 128, 2019.

[56] Kyrill Winkler, Manfred Schwarz, and Ulrich Schmid. Consensus in rooted dynamic networks
with short-lived stability. Distributed Computing, 32(5):443–458, 2019.

34

	Introduction
	Preliminaries
	Fast Agreement
	General Agreement with Short Messages
	Agreement with Linear Messages
	Early Stopping Agreement
	Optimizing Link Use
	Conclusion

