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ABSTRACT

This paper presents and validates a multi-autonomous underwater
vehicle (AUV) tracking system for localizing acoustic tags that
typically are affixed to fish. This work is motivated by the current
limitations in the tracking of marine animals. The work presented
is a key component for a multi-AUV system that can autonomously
follow tagged marine animals with increased temporal and spatial
resolution and accuracy. A single compact omnidirectional acoustic
receiver, called the Rx-Live receiver, is mounted on each AUV which
reduces drag compared to multi-hydrophone payloads. To fuse the
acoustic measurements received by multiple AUVs, a particle filter
algorithm is used which outputs the estimated state (e.g. position)
of the acoustic tag. To validate the system, multiple receivers and
tags were deployed in ocean environments that are habitats for
several species of interest, e.g., nurse sharks and white sharks.
The algorithm was tested on multiple datasets including one in
which the tag and receivers are stationary, and one in which the
tag and receivers all moved dynamically. The estimated trajectories
of the acoustic tag produced by the algorithm were compared to
groundtruth GPS trajectories of the tag and achieved a root mean
square error (RMSE) of approximately 10 meters after convergence.

KEYWORDS

underwater robotics, multi-robot system, state estimation

ACM Reference Format:

Christopher Herrera, Caitlyn Ossa, Yoo-Jin Hwang, Declan O’Neill, Alberto
Soto, Christopher Clark and Christopher G. Lowe. 2023. Multi-AUV Marine
Life Tracking via Single Transceiver Payloads. In Proc. of the 22nd Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2023), London, United Kingdom, May 29 — June 2, 2023, IFAAMAS, 7 pages.

1 INTRODUCTION

In recent years, a multitude of studies have been conducted on the
movements and migratory patterns of marine animals, the data for
which have been gathered using acoustic telemetry-based tracking.
Tagged animals can be tracked passively by static receivers, or ac-
tively by researchers follow the animal using a surface-based direc-
tional receiver system. Both approaches present unique challenges:
passive tracking has a fixed detection area outside of which no data
is collected, while active tracking requires hours of manual labor
resulting in limited run times. Autonomous tracking using AUVs
with mounted hydrophones addresses many of the challenges with
both approaches. It allows the receivers to move with the animal
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Figure 1: Marine life tracking with AUVs. (a) A nurse shark be-
ing fitted with an acoustic transmitter for tracking its move-
ments. (b) AUV with Rx-Live Receiver during a field deploy-
ment.

and greatly reduces the manual labor and onsite requirements of the
researchers. However, it also brings its own challenges including
limitations on AUV battery life, the need to minimize AUV-marine
life interactions, AUV obstacle avoidance, and a general increased
level of complexity. Additionally, past approaches have utilized
AUVs equipped with a large payload holding two hydrophones at
each end, separated by the length of the AUV. The payload makes
state estimation easier but induces a considerable amount of drag



leading to reduced battery life and maneuverability [10, 11]. One
solution which has been implemented in the past is to enable two
way communication between the tag and AUV. This allows for
position estimation without the large hydrophone payload but at
the cost of requiring a larger and more complex custom tag to be
attached to the animal, limiting the size of animals that can be
tracked [7, 9].
In developing a strategy that enables multiple AUVs, each equipped

with a single receiver, to track marine life affixed with acoustic
transmitters, the following contributions have been made:

(1) An approach to measuring distance using a single omnidi-
rectional acoustic receiver and an off-the-shelf tag, of which
10,000 plus are currently deployed in our oceans.

(2) A multi-robot particle filter for estimating the location of an
acoustic tag with said receivers.

(3) Offline validation of the particle filter with experimental data
from real ocean deployments.

This paper is organized as follows: Section 2 provides relevant
background regarding previous work with hydrophones, AUVs,
filters, and marine-life tracking methods. Section 3 provides a sys-
tem overview and describes the multi-robot particle filter. Section
4 describes the field experiments performed to collect data. Section
5 presents and analyzes the results of running the particle filter
offline on that data. Finally, Section 6 explains the impact of this
paper and describes future work.

2 BACKGROUND

In the past, researchers have used satellite tags, acoustic telemetry,
stationary reciever arrays, and manually controlled boats to track
the motion patterns of individual fish [3, 4, 8, 12-17]. However,
each of these methods require certain conditions for accuracy such
as ensuring that the fish remains near the surface of the water.
When determining the position of an animal, a manually controlled
boat can be used but it requires continuous repositioning of the
boat with respect to the movements of the fish below and the
tracking quality is conditional on the human’s ability [3, 8, 12,
14, 17]. As such, in recent years, scientists have developed AUV
tracking systems to mitigate the inconsistencies and requirements
previously needed to track marine life [1, 2, 6]. For example, AUVs
have been equipped with GPS, 3-axis compass, state estimation
processors, and a stereo-hydrophone receiver system that listens
for acoustic transmitters attached to the marine life being tracked
[17]. The receiver system provides “differential time of arrival data
necessary for state estimation,” which is then processed using the
particle filter [5]. These robots were found to have “significantly
better spatial accuracy” than human-based active tracking as well as
a “higher frequency of accurate location estimates,” with positional
errors being less than ten meters [18]. In 2012, a team of researchers
added a particle filter to their AUV in an effort to enable real-time
state estimation of sharks and other marine life, including their
position, orientation, velocity, and weight, in the immediate area
[5]. With multiple AUVs running during testing, this dramatically
increased the accuracy when determining an animal’s location and
movements. However, due to the additional weight and drag of the
multi-hydrophone payloads, the AUVs were considerably slower
and harder to maneuver than without the hydrophones.
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Figure 2: Top down view of two Rx receiver equipped AUVs
estimating the geoposition of an acoustically tagged shark.

To improve the efficiency of the AUVs, the new system replaces
the multi-hydrophone payload with a single omnidirectional hy-
drophone placed within each robot, as shown in Figure 1b. The
new setup’s compact nature allows the AUV to move at greater
speeds for an increase in mobility and maneuvering. With multiple
AUVs in the water and this system in place, larger data sets can be
collected in a shorter period of time, thus increasing the efficiency
and quantity all the while ensuring the quality of the data.

Together, these contributions form a key component for a new
system of sensing and an enhanced method of state estimation for
highly mobile tagged marine-life animals. This tracking system was
validated through real ocean deployments to test the hardware and
software which will be discussed throughout the paper.

3 MULTI-ROBOT SYSTEM

3.1 System Overview

The multi-robot system consists of two AUVs and an acoustic tag as
shown in Figure 2. The acoustic tag emits signals which the AUVs
are capable of detecting via mounted omnidirectional hydrophones.
While the system is 3 dimensional, for the current work it is assumed
that the AUVs and the tag remain close to the surface at all times,
allowing the use of 2D positions and orientations. This assumption
is valid since during field experiments, the tag and hydrophones
were deployed in shallow water and remained near the surface. For
the general case where full 3D state estimation is needed, acoustic
tags that include depth sensors have successfully been used for 3D
position state estimation in other AUV tracking work [10]. In this
system, the AUV states (i.e. positions, orientations, and velocities)
are known via on board sensing (e.g. GPS, compass, DVL), but the
tag’s state is unknown. The state x to be estimated consists of the
tag’s x and y coordinates, its orientation 6, its linear speed v, and
its angular velocity o

x; =[x, k. 0L, 0, 01] 7. (1)



3.2 Distance Estimation

The first step to estimating the state of the tag is estimating the
distances between it and each AUV. The tag emits signals at a
constant rate of approximately 0.125 Hz, or once every 8 seconds,
with the exact value depending on the specific tag. The hydrophone
mounted on the AUV actively listens for these signals and has some
probability of detecting them depending on the distance, the amount
of ambient noise, and whether they have a clear line of sight to
the tag. When a detection occurs, the hydrophone receiver outputs
the tag’s ID, an estimate of the signal’s strength, and the time ¢ at
which the detection occurred. If the signal’s time of flight (TOF)
7; were known, then the distance r; between the hydrophone and
tag could be computed by multiplying 7; by the speed of sound in
water (s = 1460 m/s). Unfortunately 7; cannot be measured directly,
but the amount by which the TOF has changed between detections,
A1y, can be used to estimate it. By comparing the difference in time
At between subsequent detections with the tag’s known period T
between signals, it is possible to compute Az;. If At is greater than T,
this indicates that the tag has moved further from the hydrophone
in the time between the two detections, and vice versa. To start, the
change in TOF can be calculated as a function of the period T and
the measurement dt:

1 1
AT[ = mod (At - ET, T) - ET (2)

In equation (2) above it is necessary to use modular arithmetic in-
stead of just subtracting T because it is possible for the hydrophone
to miss one or more signals, in which case the time between detec-
tions given no change in r; would be a multiple of T. Changes in
distance between detections Ar; can then be computed as:

Art =1y —ri—1 = SATt, (3)
Args =re —rog=Arg+ -+ + Aryq. 4)

Starting the system with the tag next to the hydrophone guarantees
that ro = 0, which means Arg.; = r;. The relative speed between
the hydrophone and tag can also be approximated as 7; = %

Figure 3 compares the groundtruth distance between the tag and
the hydrophone measured using GPS coordinates with distances
computed using the TOF method described. In Figure 3, the label
"TOF distance’ refers to Arg.; where ry # 0 and as seen in the top
panel, this results in an offset from the true distance. The label
"Shifted TOF distance’ refers to Ary = ro.; + ro computed using the
initial GPS distance as ry. Unfortunately, the clocks used by the
AUV computers, the tags, and the hydrophones are all subject to
drift. Although it starts close to the groundtruth distance, Figure 3’s
bottom panel shows that as time passes the drift in r; increases, i.e.
the error grows. The "Adjusted TOF distance’ attempts to correct for
this drift by linearly interpolating between the errors at the initial
and final times to approximate the error in r; for any time ¢. This
approximated error is subtracted from the TOF distance resulting in
the most accurate measurement of distance. Note that this approach
requires knowing both the initial and final groundtruth distances,
which can be accomplished if the system both starts and ends with
the tag next to the hydrophone. The subsequent results presented
use the shifted TOF r; as a compromise between accuracy and
required knowledge of true distances.
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Figure 3: TOF distance estimates. (Top panel) TOF distance
estimates and groundtruth GPS distance. (Bottom panel) Er-
ror in meters for each TOF distance estimate.

3.3 Particle Filter

The particle filter is a state estimation algorithm that uses a collec-
tion of particles to represent a probability distribution over the state.
It consists of a prediction and correction step. While no new mea-
surements are available, the prediction step propagates particles
forward in time according to a motion model. As measurements
are received, the correction step assigns weights to each particle us-
ing a measurement model and resamples the particles. Resampling
consists of drawing a new set of particles from the old set with
probabilities proportional to the weights and with replacement.

Particle i at time t and the set of particles at time t are denoted
respectively as

Py =[xty O 0 g wil T (5)
Pr={pl,....p"}. (6)
where w is the particle’s weight and n is the number of particles.

A measurement z; at time t consists of the distance r between a
hydrophone and the tag, and its time derivative 7

zt = [re.ie] T 7)
These are obtained for each detection using the TOF method de-

scribed previously. Algorithm 1 provides pseudocode for initializing
the particle filter.

Algorithm 1 Particle Filter Initialization(n)

1: // Initialize particles uniformly randomly

2 fori=1tondo

3 sample xi’ y(i) ~ U (Xmin» Xmax)s U (Ymin> Ymax)
4 sample 0y ~ U(=75, %

s: ph=[xb,y).60,0,0,1]T

6: end for
7 Po={pg,---.p}




3.3.1 Prediction Step. On each prediction step, random numbers
Ax and Ay are sampled from Gaussians with mean 0 and are added
to each particle’s current x; and y; coordinates to produce x;41 and
Yr+1. The particles’ new angles and new velocities are calculated
using the old and new coordinates, and the new particles’ weights
are set to the old particles’ weights. The ith particle at time ¢ + 1 is
given by

xy + Ax

yr + Ay
atan2(Ay, Ax)

VAXTHAY ®)

At
0r41—0:
At

i
Pry1 =

Wt
Prediction steps are scheduled at regular 1 second intervals.

3.3.2 Correction Step. Let Z; = {z?, ..., 2"} be the set of m mea-
surements available during the correction step. If both hydrophones
detected the same signal from the tag, two measurements will be
available nearly simultaneously. Otherwise, only one or zero mea-
surements could be available. If Z; is not empty, then the particles
are weighted by comparing the true measurements z{ with the
predicted measurements 2;’] given the ith particle’s state. The pre-
dicted distance and relative speed for particle i and measurement j
are given by

P = L~ xy2+ (, — yi )
g ey =xD =5+ (hy = yD) (= 35)
r= 7 . (10)
Ty
where h{c,t, hé,t, hit and hét are the x and y coordinates and

x and y velocities respectively of the hydrophone that produced
measurement j at time ¢. The predicted measurements are then
used to update the weights as follows

wp =L N (2 |2], %), (11)

where X is the measurement covariance matrix whole value is given
as a parameter of the particle filter. The final weight is the joint
probability of all of the measurements, assuming independence. All
weights are set to 1 the first time the particles are created and after
every resample.

Resampling occurs after all measurements between prediction
steps have been processed. It is advantageous not to resample be-
tween simultaneous measurements in order to maintain particle
diversity. This also ensures that resampled particles do not depend
on the order that the measurements were processed. Algorithm 2
provides pseudocode for one iteration of the algorithm which per-
forms a prediction step and a correction step if necessary for every
time step ¢. Its inputs are the particles P; and measurements Z;.

4 FIELD DEPLOYMENTS

To collect data to validate the distance estimation and particle filter,
the hydrophones and acoustic tag were deployed multiple times off
the coast in Long Beach, CA and in Santa Elena Bay, Costa Rica.
The data shown in Figure 3 is from a Long Beach deployment in

Algorithm 2 Particle Filter Iteration(P;, Z;)

1: // Prediction step

2: for pl in P; do

3 sample P§+1 ~ Pr(x; |p;') // Implemented by equation (8)
4 end for

50 Pre1 = {P;H’ : "’p?+1}
6:

7:

8:

9

// Correction step
if Z; # 0 then
for p! in P; do
10: wp =z, ez, Pr(zelp})
11: end for
12:
13: // Resample

14: Pt+1 =0

15: fori=1tondo

16: draw i from {1, ..., n} with probability o wf
17: add a copy ofpi to Ps41 with weight set to 1
18: end for

19: end if

which the tag was anchored with a buoy at known coordinates. An
AUV with a mounted Rx-Live receiver then followed predetermined
paths, driving farther and farther from the tag before returning. The
AUV’s built-in GPS and state estimation software was used to obtain
groundtruth distances. A boat containing a laptop PC connected to
another Rx-Live receiver and a USB GPS was anchored near the tag
throughout this test and also recorded detections and coordinates.

Two additional datasets collected in Costa Rica were used to val-
idate the particle filter. In both datasets, two hydrophones recorded
detections and coordinates from a tag deployed in Santa Elena Bay.
The first dataset, called the static dataset, was collected on July
19, 2022. Two boats containing hydrophones and a tag were an-
chored in place throughout the deployment. Tag detections and
coordinates of the boats were then recorded for 760 seconds, or
12 minutes and 40 seconds. Unlike the boats which recorded their
coordinates continuously, the tag’s coordinates were only recorded
once when the buoy it was anchored to was deployed. The two
boats and tag were roughly co-linear along the surface of the water,
with the tag placed in between the two boats.

The second dataset, called the dynamic dataset, was collected on
July 21, 2022. Both hydrophones as well as the tag moved through-
out this deployment which lasted about an hour. Neither the boats
nor the tag were anchored in place. The boats were allowed to drift
for most of the deployment but were moved when necessary to stay
near the tag. The tag was moved near the shore of Santa Elena bay
by a swimmer. As with the static dataset, the boats continuously
recorded tag detections and coordinates. The tag’s coordinates were
recorded continuously by a waterproof GPS watch carried along by
the swimmer. There were substantial gaps in the watch’s coordi-
nates resulting in long periods without groundtruth. The dynamic
dataset consists of 349 seconds, or 5 minutes and 49 seconds during
which the watch’s coordinates were recorded and there were a
substantial number of detections by both hydrophones.
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Figure 4: Static deployment data. (Top panel) The trajectories
of the hydrophones and the tag. (Bottom panel) Timing of
GPS coordinate acquisition and tag detection events.

100 4 X error
—— yerror
distance
s detections
50 4
E
2 o
—50
=100
T T T T T
0 100 200 300 400 500 600 700
Time (s)
0.0 4.0 61.0 400.0 759.0
‘ . . ) D ) o
. .
e
IS RinC IR
Particles @ 457049 position ®  VRIOD position —+— Tag coords —+— Tag cstimated coords

Figure 5: Static dataset prediction errors. (Top panel) Esti-
mated tag x, y, and position errors. (Bottom 5 panels) Particle
distribution at different points in time.
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Figure 6: Dynamic deployment data. (Top panel) The trajecto-
ries of the hydrophones and the tag. (Bottom panel) Timing
of GPS coordinate acquisitions and tag detection events.
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5 VALIDATION

5.1 Static Dataset

The top panel in Figure 4 shows the trajectories of the two hy-
drophones and the tag in the static dataset, as well as the estimated



Table 1: Static Dataset Errors

Distance (m) RMSE (m)

Max  Average Stdev

Time span

Ostoend 110.19 16.27 23.69 28.74
6lstoend 15.16 9.72 2.82 10.12

trajectory of the tag produced by the particle filter. All trajectories
are plotted over a map of Santa Elena Bay. The bottom panel in Fig-
ure 4 shows the times at which each hydrophone’s GPS coordinates
were recorded as well as the times at which each hydrophone de-
tected the tag. The dataset contains 66 detections from hydrophone
457049 and 66 detections from hydrophone VR100 spanning 760
seconds. Since the tag was deployed on a stationary buoy, its GPS
coordinates were recorded only at the time of deployment. While
hydrophone VR100 received detections the entire time, hydrophone
457049 started receiving detections slightly later and stopped re-
ceiving them 2 minutes before the other hydrophone.

Figure 5 compares the estimated tag position to the true tag po-
sition at each point in time. The differences in x and y coordinates
as well as the distance between the estimate and true positions are
plotted. Points in time at which a detection from either hydrophone
was received are plotted as dots. The lower panels in Figure 5 show
the state of the particle filter at different points in time. Particles
are plotted as dots and the circles show the estimated distances
from each hydrophone to the tag, as well as one standard devia-
tion around the estimate. At the start, the particles are initialized
randomly since the tag’s initial position can not be assumed to be
known, as seen in the panel at 0 seconds. While only hydrophone
VR100 has detected the tag, the particles cluster in a circle around
its location as seen in the second panel at 44 seconds. After 61 sec-
onds, both hydrophones have received detections so the particles
converge at the intersection of both ranges as seen in the third
lower panel. The particles continue to gather tightly around the
tag’s location until hydrophone 457049 stops receiving detections.
At this point, the particles began to spread out along hydrophone
VR100’s range. Since the particles spread evenly, their average does
not move, so the error stays constant. Table 1 summarizes the dis-
tance errors and RMSE over the entire dataset and after the particles
converged after approximately 61 seconds. After convergence, the
RMSE dropped to approximately 10 meters.

5.2 Dynamic Dataset

Figures 6 and 7 follow the same format as figures 4 and 5, giving
an overview of the dynamic dataset and plotting its estimation er-
rors. As with the previous dataset, the top panel in Figure 6 shows
the trajectories of the two hydrophones, the estimated and true
trajectories of the tag, and the times at which detections occurred.
The bottom panel in Figure 7 shows the times that GPS coordinates
and detections where recorded. Unlike the static dataset, GPS co-
ordinates were recorded continuously for the tag in this dataset.
The dataset contains 39 detections from hydrophone 457049 and
23 detections from hydrophone VR100 spanning 349 seconds. Hy-
drophone 457049 received detections nearly continuously while

Table 2: Dynamic Dataset Errors

Distance (m) RMSE (m)

Max Average Stdev

Time span

Ostoend 56.14 8.60 10.16 13.31
30stoend 18.69 6.10 3.52 7.04

hydrophone VR100 had some gaps in detections, the biggest of
which occurred at about 100 seconds and lasted about a minute.

Figure 7 plots the errors for the dynamic dataset and highlights
the state of the particle filter at 5 different times. Once again, the
particles are initialized randomly at the start as seen in the panel at
0 seconds. After detections are received from both hydrophones, the
particles converge around the overlap of the two ranges as seen in
the second panel at 16 seconds. After some more time has passed and
the tag and hydrophones have moved around relative to each other,
most particles have converged around the true location. However,
a small set of particles linger near the other point at which the two
ranges overlap, as seen in the third panel at 41 seconds. As more
detections are received, these particles are resampled away. When
the gap in hydrophone VR100’s detections occurs, hydrophone
457049 manages to continue accurately tracking the tag, as shown
by the error plots in Figure 7 and by the positions of the particles in
the last two lower panels. Table 2 summarizes the distance errors
and RMSE over the entire dataset and after the particles converged
after approximately 30 seconds.

The particle filter converges even when there are multiple clus-
ters of particles at the two points where the hydrophone ranges
overlap. It does so faster and more accurately when the tag itself is
moving, as shown by the reduced RMSE after convergence in the
dynamic dataset compared to the static dataset. As the hydrophones
move, only a couple detections are necessary before most of the
particles converge on the groundtruth location. Overall, the system
has proven accurate, with state estimation and the integrated par-
ticle filter system having an accuracy of approximately 10m after
convergence.

6 CONCLUSIONS

The ability to conduct fish tag localization off-line, after tracking
experiments have been conducted, has been shown to be successful.
However, the system has additional use as a state estimation system
that can be run online and act as an input to the AUV’s planning
and control system. This would provide AUVs equipped with this
newer, lower drag profile sensing system the ability to conduct
real time autonomous tracking as done in our previous work. As
in previous work, an AUV-to-AUV communication system will be
needed.

While the system in place has a variety of potential applica-
tions, the possibility of extending it to marine-life tracking to better
improve conservation efforts has proven extremely valuable. The
compactness of the AUV and hydrophone combination opens new
doors to speed and maneuvering capabilities and, by extension, a
stealthier method of tracking which puts less stress on both the
system and the surrounding environment. Further, these new capa-
bilities allow for longer and more accurate missions. The accurate



and efficient system created herein will provide experts with a bet-
ter understanding of wildlife behaviors and movement patterns.
This knowledge will then assist with the identification of areas
most suited for and requiring protection.
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