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Scientists must have an integrative understanding of ecology and 
evolution across spatial and temporal scales to predict how species will 
respond to global change. Although comprehensively investigating 
these processes in nature is challenging, the infrastructure and data from 
long-term ecological research networks can support cross-disciplinary 
investigations. We propose using these networks to advance our 
understanding of fundamental evolutionary processes and responses 
to global change. For ecologists, we outline how long-term ecological 
experiments can be expanded for evolutionary inquiry, and for 
evolutionary biologists, we illustrate how observed long-term ecological 
patterns may motivate new evolutionary questions. We advocate for 
collaborative, multi-site investigations and discuss barriers to conducting 
evolutionary work at network sites. Ultimately, these networks offer 
valuable information and opportunities to improve predictions of species’ 
responses to global change.

Predicting species’ responses to environmental change is increasingly 
important as global change continues to alter ecosystems worldwide1–3. 
Global change may require species to evolve at a pace that matches 
environmental change to persist4. Fortunately, there is some evidence 
for rapid adaptation (when evolutionary processes occur on ecological 
timescales), especially in species with short generation times2,5,6. Yet, 
it remains unclear whether most species have the capacity to adapt 
fast enough (particularly in complex environments that may constrain 
evolutionary responses7,8) and how evolutionary changes might affect 
community and ecosystem processes (particularly in dominant taxa). 
As a result, there is a need for targeted studies investigating evolution-
ary processes under natural environments in ecosystems worldwide9. 

We contend that global long-term ecological monitoring networks 
provide an unparalleled opportunity for such evolutionary inquiry.

Long-term ecological research networks (LTERNs) support 
research sites where environmental conditions and biological com-
munities have been monitored for decades. Data collected at LTERNs 
have historically been used to investigate community and ecosystem 
dynamics and social–ecological processes, and to support environmen-
tal stewardship10,11. However, recent studies have demonstrated how 
these long-term ecological experiments can be successfully leveraged 
to address evolutionary questions (for example, examining whether 
increased nitrogen or long-term drought causes rapid adaptation of 
rhizobium mutualists12 or primary producers13). In general, long-term 
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for example, by capturing fluctuating selection (when the direction of 
selection changes over a relatively short time). We encourage research-
ers to explore the Dynamic Ecological Information Management Sys-
tem—Site and Dataset Registry (https://deims.org/), Environmental 
Data Initiative (https://edirepository.org/) and Forest Global Earth 
Observatory websites (https://forestgeo.si.edu/) to better understand 
the extent of available site-specific, open-source ecological data, spe-
cies lists and resources and facilities.

In this Perspective, we address how LTERNs can help researchers 
to unravel the interconnected ecological and evolutionary processes 
driving species responses to global change (Fig. 1). First, we provide 
guidance on expanding long-term ecological experiments to address 
evolutionary questions that we specifically believe ecologists will find 
useful. Importantly, LTERNs provide unique opportunities to integrate 
ecology and evolutionary biology, as evolutionary processes undoubt-
edly affect the ecological patterns observed across LTERN sites (and 
vice versa) (Fig. 1). Second, we hope to familiarize researchers with 
the exciting opportunities that global LTERNs offer by illustrating 
how commonly collected data can be leveraged for new evolutionary 
insights. Third, we wish to call attention to barriers historically hinder-
ing evolutionary work within LTERNs. Ultimately, we intend to highlight 
how these networks can be used to advance our understanding of 
evolutionary responses to global change.

Expanding long-term ecological experiments for 
evolutionary insights
To understand evolutionary patterns, we must evaluate whether 
phenotypic change arises due to adaptive evolution (evolution that  
confers a fitness advantage in the context of selective pressures), 
non-adaptive evolution (evolution due to random processes such as 

studies have established links between the environment and individual 
traits, genes and fitness14–17 to document how natural populations are 
responding to environmental change18–20. Despite this, studies con-
ducted at LTERNs rarely consider evolutionary questions.

Yet, these networks provide an important opportunity for evolu-
tionary research because they: (1) span a huge variety of systems and 
species with diverse life histories in natural settings; (2) host ongoing, 
long-running experiments that can be harnessed to analyse drivers of 
evolutionary change; and (3) have extensive datasets on ecological 
and environmental conditions that comprise an excellent springboard 
for the pursuit of eco-evolutionary questions. For example, the Inter-
national Long-Term Ecological Research Network includes more than 
800 sites in various ecosystems (for example, grassland, temperate 
forest and marine) across 44 member countries where ecological 
data (for example, temperature, rainfall and abundance of focal spe-
cies) have been gathered for up to five decades21,22. The Forest Global 
Earth Observatory Network includes over 77 sites across 29 countries 
that have collected data on forest function and diversity for the past 
four decades. These networks create extraordinary opportunities 
to examine the effects of global change on species, populations and 
communities (for example, ref. 23).

Although current ecological data collected over four to five dec-
ades may be insufficient for investigating evolutionary processes in 
longer-lived species, these data are certainly valuable when consider-
ing taxa with short generation times (insects, small mammals, many 
reptiles and amphibians, herbaceous plants and so on). This timeframe 
may also reveal evolutionary patterns such as gene flow or strong 
directional selection within longer-lived species. In addition, such 
time periods may help researchers to better understand how global 
change affects the direction and stochasticity of evolutionary change; 
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Fig. 1 | Global LTERNs provide unique opportunities to study the complex 
evolutionary patterns that are revealed over longer timescales. a, Leveraging 
LTERNs can help us to better understand the vital relationships between 
ecological processes, environmental changes and evolution. Such networks 
are currently underutilized for evolutionary studies, but can support our 
understanding of how species are simultaneously responding through ecological 
and evolutionary processes to global change. b, Schematic of ecological and 

evolutionary dynamics under global change. Leveraging these networks for 
evolutionary research can enhance the understanding of ecological dynamics 
and evolution under global change. The black arrows represent existing 
ecological relationships between common processes studied at global LTERNs, 
the red arrows represent evolutionary change affecting ecological processes 
and the blue arrows represent ecological or environmental change affecting 
evolutionary processes.
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Box 1

A framework for leveraging long-term ecological research to 
answer evolutionary questions
Many long-term ecological experiments at LTERNs involve decades 
of manipulation in replicate plots (for example, nitrogen addition or 
precipitation addition or removal). Researchers may be motivated 
to test for rapid evolution when they observe different phenotypic 
responses of the same species to alternative treatments. Researchers 
may also pursue evolutionary questions based on other theoretical or 
empirical knowledge (for example, one predicts that severe drought 
selects for trait values that confer drought avoidance or tolerance). 
It is important to emphasize that although the following methods 
do not require LTERNs, long-term experimental plots associated 
with LTERNs provide researchers with invaluable information and 
resources, including (but not limited to) plot history, detailed data 
on microhabitats and species, local knowledge on abiotic and 
biotic conditions from site managers and, crucially, the chance 
for comprehensive experimental results to be obtained through 
repeated measurements both within and across sites.

We highlight two possible paths that researchers might take to 
explore evolutionary dynamics at LTERNs. The entire sequence of 
inference in the diagram may not be necessary for every situation. 
For example, dissecting the genetic basis of adaptation is largely 
irrelevant to questions about whether evolutionary change feeds 
back to influence community structure and ecosystem processes.

In the first path (solid arrows), a researcher begins by testing 
whether potential phenotypic differences (panel a, step 2) have a 

heritable genetic basis and whether evolution has occurred (panel 
a, step 3). This hypothesis can be tested using a common garden 
experiment (panel b) to ask whether the mean phenotype from each 
treatment differs for organisms that were sourced from different 
treatments. Ideally, one should standardize maternal environmental 
effects by growing organisms for one generation in a common garden 
before the test generation. This step is also necessary for resurrection 
experiments (panel c). If desired, information on the quantitative 
genetic basis of phenotypic variation can be collected using 
pedigreed populations created through crosses. When phenotypic 
differences observed in the field do not persist in a common garden 
experiment, these differences probably reflect phenotypic plasticity. 
When researchers do not initially observe phenotypic differences, it 
may be valuable to test alternative explanations (panel a, step 3) to 
ask which factors may have impeded rapid evolution (for example, a 
lack of heritable genetic variation, gene flow through space or time or 
genetic constraints).

Evidence of evolutionary change does not necessarily imply that 
phenotypic change has been adaptive. In some situations, gene flow, 
genetic drift or limited genetic variation restrict adaptive responses 
to treatments. Therefore, further experiments would be needed 
to test whether evolutionary change confers a fitness advantage 
(panel a, step 4). However, when consistent evolutionary changes 
are observed across multiple replicate treatment plots, researchers 
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mutation, recombination or genetic drift) or phenotypic plasticity 
(phenotypic variation resulting from environmental effects on trait 
expression). Additionally, an important component is understanding 
whether plasticity is adaptive or not24. As a first step towards deter-
mining whether evolution has occurred in response to components 
of global change, researchers can expand on long-term field experi-
ments that are a hallmark of LTERN sites (for example, refs. 25–27). 
The most common ecological processes studied at LTERNs include 
nutrient cycling, primary production, disturbance and population 
and community dynamics (Fig. 1).

Researchers can collect individuals from treatment and/or control 
groups and use experimental approaches to assess whether phenotypic 
differences result from plasticity or evolution (Box 1a). For example, 
researchers capitalized on a long-term (22 years) LTERN experiment 
by using a common garden experiment (Box 1b) to demonstrate the 
evolution of less mutualistic Rhizobium strains in response to elevated 
nitrogen levels12. Other studies have used genotyping-by-sequencing 
in populations undergoing long-term treatments to reveal rapid evolu-
tion and reduced genetic diversity; for instance, in black grama grass 
(Bouteloua eriopoda) under drought conditions13 and in the common 
reed (Phragmites australis) under increased nitrogen28. Resurrection 
experiments (Box 1c) can be used to compare the fitness and pheno-
typic traits of historical and contemporary lineages and rely on species 
having a dormant egg or seed stage. Such species are well represented 
across global LTERNs and have proved fruitful for evolutionary insights 
(for example, refs. 29–31). Reciprocal transplant experiments (Box 1d) 
or common garden experiments under natural conditions32 can deter-
mine whether experimental populations have adapted to manipulated 
global change factors, as can resurrection methods in combination with 
a reciprocal transplant design33. Cross-site LTERN investigations would 
particularly benefit these types of studies, specifically when research-
ers are interested in dominant, generalist or invasive species that can be 
found across LTERN sites comprising similar ecosystems (see https://
deims.org/, where a researcher can search for specific ecosystems or 
choose observed properties and all relevant sites and the affiliated 
network will be listed). Common gardens, reciprocal transplants and 
resurrection experiments can also be used to discern the effect of 
phenotypically differentiated populations on ecological processes and 
ecosystem parameters for researchers interested in feedback loops and 
how evolutionary change shapes ecological processes (Fig. 1).

In cases where long-term studies lack a control, researchers can 
use unassociated reference plots at each site to account for site-specific 
random effects (for example, ref. 34). Although this can also apply to 

long-term studies conducted outside of LTERN sites, using long-term 
experimental plots associated with LTERNs is valuable because 
researchers have access to: (1) information on plot history (for exam-
ple, treatment timing, effect size and so on); (2) high-resolution micro-
habitat and species data that are otherwise unrepresented in global 
temperature datasets and species distribution models; and (3) repeated 
measures via replicate plots both within and across sites.

Quantitative trait loci (QTL) mapping (Box 1e) and genome-wide 
association studies (Box 1f) can reveal genomic changes linked to 
traits and fitness shifts in long-term treatment and control groups. 
For example, researchers used QTL mapping to uncover the major loci 
influencing adaptation in two grass ecotypes physiologically adapted 
to different ecosystems within LTERN sites35. Researchers should avoid 
concluding an adaptive response from molecular studies alone because 
differences may be attributed to non-adaptive or neutral evolution 
(evolution due to the accumulation of mutations that do not provide a 
selective advantage or disadvantage)36. However, combining genomic 
techniques with the experimental approaches described above can be 
extremely powerful for linking the genomic basis of adaptation across 
space and time to phenotypes, community shifts and ecosystem func-
tions (for example, refs. 37,38).

Leveraging long-term data for novel evolutionary insights
Applying these classic approaches in LTERN studies might be particu-
larly powerful given that long-term ecological changes are already 
well documented in many LTERN sites11—providing an opportunity 
to investigate the effects of changing ecological patterns on evolu-
tion. To familiarize scientists with LTERNs, we propose examples of 
evolutionary questions motivated by existing LTERN studies (Fig. 2). 
Most ongoing LTERN studies focus on the ecological impacts of altered 
nutrient fluxes, bioinvasions, environmental disturbances, extreme 
climatic events or changes to community structure or primary produc-
tion. These ecological patterns may alter the evolution of component 
populations and can therefore be used to address questions about how 
ecological pressures affect evolution, and reciprocally how evolution-
ary responses may influence ecological outcomes.

Opportunities to study evolution under natural environments
Performing evolutionary experiments in laboratory settings or 
semi-natural environments allows researchers to isolate the effect of 
one or a few environmental variables on fitness and trait expression39,40. 
Yet, it does not account for the complex and covarying factors that are 
inherent in nature and are perhaps the most important influences on 

could infer that selection probably underlies parallel evolution 
(although it is possible that replicated phenotypic evolution  
is due to mutational bias coupled with strong drift induced by an 
experimental treatment)70. To test for local adaptation, one must 
reciprocally expose a sample of genotypes sourced from each 
treatment plot or environment to all treatment conditions. Ideally, 
reciprocal transplants (panel d) are performed in the same  
field plots and under the same environment when permitted. 
Alternatively, one might grow organisms at another LTERN site 
or under a controlled environment where the original long-term 
treatments are simulated (for example, drought versus control 
treatments in a greenhouse).

Although a reciprocal transplant experiment can test whether 
evolutionary change is adaptive, it does not identify the traits that 
have been the targets of selection (panel a, steps 5 and 6). In the 
second path (dashed arrow), a researcher may begin by asking 
whether alternative environments differentially select for traits. The 
classical approach for identifying traits under selection is to relate 

fitness components to trait variation under different environments 
or treatments using selection analyses71–73 (panel a, step 6). This 
approach is most effective when trait variation is manipulated (for 
example, expansion of trait variance) and when genotypes are 
replicated within a randomized design. We urge caution when 
attributing selection or adaptation to particular traits, as genetic 
correlations between traits due to pleiotropy or tight linkage may 
confound inferences of the targets of selection.

Molecular approaches such as QTL mapping (panel e), population 
genomic outlier analyses or genome-wide association studies 
(GWASs; panel f) can identify regions of the genome and candidate 
loci associated with traits subject to selection (panel a, step 5). 
Additionally, in cases where researchers have hypotheses about the 
alleles involved in adaptation to environmental factors (for example, 
from large-scale environmental association analyses), LTERN 
experiments can be used to retrospectively validate whether such 
alleles have changed in frequency (relative to controls) in plots that 
have been experimentally manipulated on those environmental axes.

(continued from previous page)
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eco-evolutionary dynamics and outcomes41–43. Importantly, we urge 
researchers to consider global LTERNs as a valuable resource for study-
ing evolution in the real world because: (1) the infrastructure to perform 
field studies in natural environments already exists (for example, labora-
tories, field stations and treatment plots); and (2) an existing community 
of researchers can provide knowledge on how best to conduct complex 
experiments specific to each site when considering site-specific prob-
lems (flooding, biotic interruptions and so on). Engaging with local 
researchers is also important when considering that many sites have 
intricate plot histories, where treatments may have changed over time 
due to the need to secure long-term funding. To secure ongoing sup-
port, researchers may need to explore new questions and introduce 
additional treatments. Yet, this challenge underscores an advantage of 
LTERNs over other research locations for those considering long-term 
studies. These networks provide access to extensive records and the 
expertise of researchers familiar with plot history.

We would also like to highlight additional infrastructures such 
as the Nutrient Network (https://nutnet.org/), FLUXNET (https://
fluxnet.org/), the International Drought Experiment (https://drought-
net.weebly.com/) and the Disturbance and Resources Across Global 
Grasslands Network (https://nutnet.org/dragnet). These networks 

support global, long-term experiments with standardized protocols, 
allowing for increased precision and inference about evolutionary 
dynamics under natural conditions. Importantly, these initiatives are 
driven by voluntary participation and researchers are encouraged to 
propose add-on measurements to their often simple designs, affording a 
straightforward mechanism to the inclusion of evolutionary research44. 
Additional information on research initiatives, parameters observed, 
biomes represented and the number of sites and countries participating 
in each LTERN mentioned here can be found in Supplementary Table 1.

Overcoming limitations of global LTERNs
Despite their utility for answering evolutionary questions, few evo-
lutionary studies have been conducted at LTERNs. Here we address 
obstacles hindering evolutionary work at LTERNs and offer suggestions 
to overcome them.

Focal species studies
Studies at LTERN sites tend to focus on individual species that are eco-
logically important, such as dominant plant species that mediate eco-
system function or are of conservation interest. For example, Spartina 
alterniflora is well studied in coastal LTERNs given its global distribution 
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Fig. 2 | Examples of published studies from global LTERNs and potential 
evolutionary inquiries. Existing, long-term ecological studies provide unique 
opportunities for collaboration among ecologists and evolutionary biologists 
to evaluate ecological dynamics and evolution under global change. a–e, Here 
we present the results of published studies from various LTERN sites around 
the globe that investigated how changing environmental conditions, including 
nutrient cycling65 (a), changes to population dynamics66 (b), community 
structure67 (c), primary production68 (d) and disturbance69 (e), affect ecosystem 
processes. These have been included as they are common overarching themes 
across many LTERNs. We propose questions specific to these themes that 

researchers can ask as an extension to existing studies. Additional research can 
focus on how ecological or environmental change is affecting evolutionary 
processes (ecology → evolution) or how evolution is affecting ecological 
processes (evolution → ecology). Information on potential sampling schemes and 
available data that can be used to address questions is also presented. Credit: a, 
adapted with permission from ref. 65, Elsevier; b, adapted with permission from 
ref. 66, American Institute of Biological Sciences; c, adapted with permission 
from ref. 67, Elsevier; d, adapted from ref. 68, Springer Nature; e, adapted from 
ref. 69, Springer Nature.
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and role as an ecosystem engineer45,46. Although this limitation may 
restrict researchers studying non-focal species, it also renders LTERN 
sites highly suitable for studying evolution in focal species. Indeed, 
because many focal species are clonal plants and long-term experi-
ments may retain source propagules, these species are amenable to 
the manipulative approaches we discussed earlier, including common 
garden studies, reciprocal transplants and resurrection experiments. 
Researchers interested in leveraging LTERN studies focusing on domi-
nant species should be mindful that manipulated plots may only con-
tain a fraction of the total population. If these plots constitute a small 
portion of the overall population, gene flow may dilute evolutionary 
responses to ecological manipulations (but see ref. 47 for a discussion 
on microgeographic adaptation).

In the future, we argue that LTERNs should strategically begin 
archiving genetic material (for example, ref. 48) and recording pheno-
typic data (through photographic records or surveys) for ecologically 
important species. Although some sites may already record phenotypic 
data for certain species, the sampling scheme is often determined 
by the need of an individual study. An organized, multi-site endeav-
our would benefit all researchers. For example, the Disturbance and 
Resources Across Global Grasslands Network recommends that all 
participating sites start a seed bank, where propagules are collected 
and stored from both treatment and control plots. Soil microbiomes 
(and when appropriate, microbiomes specific to other species, such 
as skin microbiomes in amphibians) should also be considered for 
archiving, and cultures of infectious pathogens could be considered 
for cryopreservation. LTERN managers should consult evolutionary 
geneticists or other relevant experts for advice on archiving schemes 
(for example, the number of samples, time span between samples 
and so on).

Single-site studies
Most studies at LTERNs include experiments or long-term data col-
lected at a single site, probably because of the logistical difficulties of 
setting up, conducting and coordinating across-site experiments. We 
have discussed how in situ experiments such as reciprocal transplants 
should be considered across sites. However, we urge researchers and 
network managers to collaborate on identifying additional strategies 
to maximize data output for evolutionary insights. For example, sites 
that comprise similar ecosystems could start collecting individual-level 
data (trait data and genetic material) on the same species or species 
of the same functional group. By having data replicated across sites, 
researchers could potentially identify where natural selection has 
resulted (or not) in parallel evolution. Given that many species of 
plants and animals are advancing their phenological transitions in 
response to climate change49–51, we suggest that researchers consider 
monitoring phenology as a key trait in these new endeavours. When a 
disturbance or bioinvasion occurs exclusively at one site, genetic and 
ecological data will be available at other locations that have not been 
affected. For example, the National Ecological Observatory Network 
performs coordinated collection of abiotic and phenology data across 
sites in the USA that could be leveraged to examine the consequences 
of disturbance and to monitor invasion fronts.

Lack of genetic reference material
Assembled genetic material, in the form of reference genomes and tran-
scriptomes, has not yet become a research focus for LTERNs. Although 
many well-tested and reference-free approaches for analysing genetic 
data are available (such as reduced representation methods), these 
methods still present challenges for species with complex genetic 
structure, such as mixed polyploidy, and/or large genomes. Expand-
ing methods for analysing polyploid genetic data are promising52,53, as 
are the declining costs of sequencing and ongoing interdisciplinary 
collaborations aimed at producing high-quality reference genomes. 
For example, a large team recently created a high-quality switchgrass 

genome assembly to understand its adaptation to climate, despite its 
large and complex genome54. This resource will make it easier for future 
researchers to detect variation, monitor change and investigate gene 
function in this key species. We call for targeted funding programmes to 
create similar genomic resources for ecologically important non-model 
organisms in LTERNs.

Geographical gaps
The distribution of long-term studies tends to bias towards North-
ern Hemisphere ecosystems55. If researchers are to truly understand 
the long-term effect of global change on the world’s biodiversity and 
ecosystems, there needs to be a wider range and higher coverage of 
LTERN sites across a greater diversity of ecosystems. Accomplishing 
this expansion across political borders is challenging, particularly when 
considering the scope of funding needed to establish and maintain 
sites. It is fundamental that networks support programmes such as 
match-funding schemes across nations and incentivize collaborative 
efforts56.

Awareness in the evolutionary biology community
In general, the fields of ecology and evolutionary biology may often 
be siloed and there is no exception to this within the LTERN commu-
nity. Network managers and researchers familiar with LTERNs should 
encourage collaborative eco-evolutionary work by widely distributing 
network newsletters, attending evolution-focused conferences and 
planning dedicated sessions at interdisciplinary meetings to facili-
tate conversations and raise awareness on the exciting opportunities 
LTERNs present for evolutionary work.

Social and financial constraints
Dismantling social barriers that prevent individuals from conduct-
ing evolutionary research at LTERN sites is imperative to productive 
investigations. First, creating an equitable, inclusive, safe and wel-
coming environment for fieldwork for all researchers is of the utmost 
importance57–60. Second, ecologists and evolutionary biologists must 
improve their collaborative efforts across disciplines, sites and coun-
tries to capitalize on global LTERNs. Collaborations with local com-
munities and/or Indigenous people in the areas of research, as holders 
of long-term knowledge, will serve to enhance efforts. Third, seasoned 
LTERN investigators should provide opportunities for early-career 
evolutionary researchers to become involved in long-term projects. 
Investigators will benefit from the diverse perspectives of early-career 
researchers and cross-disciplinary collaborations will support new 
evolutionary research.

Early-career researchers may hesitate to pursue long-term 
research because of the pressure to publish frequently in academia. 
However, LTERNs mitigate this barrier by providing early-career and 
under-represented researchers access to long-term funding, rich lon-
gitudinal datasets, well-developed experimental infrastructure and 
extensive knowledge about local ecosystems. Although early-career 
researchers may be dissuaded from long-term research because their 
careers require them to move institutions often, LTERNs provide oppor-
tunities for research regardless of affiliation.

To further the goals of this Perspective, we encourage funding 
organizations to consider additional support for evolutionary studies 
at LTERNs. Specifically, funding agencies should consider establishing 
a dedicated funding scheme explicit to supporting research addressing 
evolutionary questions at LTERNs, with an emphasis on international 
collaborations. This could be a new funding programme that is paral-
lel or similar to the Long Term Research in Environmental Biology 
Program from the US National Science Foundation. Targeted funding 
programmes can help to overcome limitations posed by the costs 
of archiving and organizing samples, preserving tissue samples for 
genomic analyses and conducting bioinformatics studies, in addition 
to evolutionary experiments.
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Top four priorities moving forward
We suggest four actions to increase evolutionary work at LTERN sites:

	(1)	 We encourage ecologists to record individual-level trait and 
fitness/performance data in ongoing and new experiments at 
LTERN sites. Researchers may consider archiving samples for 
genomic studies, as well as maintaining a collection of resting 
life stages of relevant species (such as seed banks).

	(2)	We suggest that evolutionary biologists inquire with data man-
agers as to what types of studies and data are available at global 
networks and to look at existing data repositories.

	(3)	We encourage network managers to publish and broadly distrib-
ute quarterly newsletters on recently published studies, facili-
tate network-wide mixed conferences that include evolutionary 
biologists and set up baseline species trait and genetic material 
data repositories.

	(4)	We call for funding agencies to allocate more resources to 
programmes that support long-term experiments focused 
on evolution, such as the National Science Foundation’s Long 
Term Research in Environmental Biology Program, and to con-
sider creating additional dedicated funding programmes for 
long-term evolutionary research. Moreover, increased cross-site 
studies, including international collaborations, should be 
a priority.

Concluding remarks
Recent reviews highlight the importance of long-term ecological 
monitoring networks for ecological insights10,11,21,61 but overlook the 
opportunity that networks present for understanding evolutionary 
responses to environmental change62,63. The percentage of evolutionary 
studies that occur at such sites is low10 and recognition among ecolo-
gists and evolutionary biologists that long-term ecological networks 
are ideally suited for addressing species’ evolutionary responses to 
climate change is limited64.

Here we have outlined how global LTERNs’ infrastructure and data 
can be used to investigate species’ evolutionary responses to climate 
change (Box 1). Additionally, we offer examples of recent studies from 
global LTERN sites that can inspire new evolutionary inquiries (Fig. 2) 
and we propose priorities for researchers, network managers and fund-
ing agencies moving forward. Most importantly, we believe that global 
LTERNs are valuable beyond the long-term data they provide. They 
also establish a foundation where researchers across institutions, dis-
ciplines and countries can foster new collaborations and instil future 
generations of ecologists and evolutionary biologists the value of 
long-term research for evolutionary insights.
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